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THE WANG–LANDAU ALGORITHM REACHES THE FLAT
HISTOGRAM CRITERION IN FINITE TIME

BY PIERRE E. JACOB1 AND ROBIN J. RYDER2

National University of Singapore and Université Paris Dauphine

The Wang–Landau algorithm aims at sampling from a probability dis-
tribution, while penalizing some regions of the state space and favoring oth-
ers. It is widely used, but its convergence properties are still unknown. We
show that for some variations of the algorithm, the Wang–Landau algorithm
reaches the so-called flat histogram criterion in finite time, and that this cri-
terion can be never reached for other variations. The arguments are shown
in a simple context—compact spaces, density functions bounded from both
sides—for the sake of clarity, and could be extended to more general contexts.

1. Introduction and notation. Consider the problem of sampling from a
probability distribution π defined on a measure space (X ,�,μ). We suppose that
we can compute the probability density function of π at any point x ∈ X , up to
a multiplicative constant. Given a proposal kernel Q(·, ·) we define a Metropolis–
Hastings (MH) [Hastings (1970), Tierney (1998)] transition kernel targeting π ,
denoted by K(·, ·), as follows:

∀x, y ∈ X K(x,y) = Q(x,y)ρ(x, y) + δx(y)
(
1 − r(x)

)
with ρ(x, y) defined by ρ(x, y) := 1 ∧ π(y)

π(x)
Q(y,x)
Q(x,y)

and r(x) defined by

r(x) :=
∫

X
ρ(x, y)Q(x, y) dy.

Here the delta function δa(b) takes value 1 when a = b and 0 otherwise. Under
some conditions on the proposal Q and the target π , the MH kernel defines an
algorithm to generate a Markov chain with stationary distribution π [Robert and
Casella (2004)].

Let us consider a partition of the state space X into d disjoint sets X1, . . . , Xd ,

X =
d⋃

i=1

Xi .
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If we have a sample X1, . . . ,Xt independent and identically distributed from π ,
then for any i ∈ [1, d],

1

t

t∑
n=1

1Xi
(Xn)

P−→
t→∞

∫
Xi

π(x) dx =: ψi,

where we denote by 1Xi
(x) the indicator function that is equal to 1 when x ∈ Xi

and 0 otherwise. Similar convergence is obtained when X1, . . . ,Xt is an ergodic
chain such as the one generated by the MH algorithm. The purpose of the Wang–
Landau algorithm [Wang and Landau (2001a, 2001b), Atchadé and Liu (2010),
Liang (2005)] is to obtain a sample:

• such that for any i ∈ [1, d], the subsample{
Xn for n ∈ [1, t] s.t. Xn ∈ Xi

}
is distributed according to the restriction of π to Xi , and

• such that for any i ∈ [1, d],
1

t

t∑
n=1

1Xi
(Xn)

P−→
t→∞φi,

where φ = (φ1, . . . , φd) is chosen by the user, and could be any vector in ]0,1[d
such that

∑d
i=1 φi = 1.

A typical use of this algorithm is to sample from multimodal distributions, by
penalizing already-visited regions and favoring the exploration of regions between
modes, in an attempt to recover all the modes. In many applications, φ is set to
∀i, φi = 1/d; however, other choices are possible, as exemplified by the adaptive
binning scheme of Bornn et al. (2011).

This algorithm, in the class of Markov chain Monte Carlo (MCMC) algorithms
[Robert and Casella (2004)], therefore allows us to learn about π while “forcing”
the proportions of visits φi of the generated chain to any of the sets Xi , which are
typically also chosen by the user. The vector φ1, . . . , φd might be referred to as the
“desired frequencies,” and the sets Xi are called the “bins.” In a typical situation,
the mass of π over bin Xi , which we denote by ψi , is unknown, and hence one
cannot easily guess how much to “penalize” or to “favor” a bin Xi in order to obtain
the desired frequency φi . The Wang–Landau algorithm introduces a vector θt =
(θt (1), . . . , θt (d)), referred to as “penalties” at time t , which is updated at every
iteration t , and which acts like an approximation of the ratios ψ1/φ1, . . . ,ψd/φd ,
up to a multiplicative constant.

For a distribution π and a vector of penalties θ = (θ(1), . . . , θ(d)), we define
the penalized distribution πθ ,

πθ(x) ∝ π(x) ×
d∑

i=1

1Xi
(x)

θ(i)
.
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To be more concise we define a function J : X �→ {1, . . . , d} that takes a state
x ∈ X and returns the index i of the bin Xi such that x ∈ Xi . We can now write
πθ(x) ∝ π(x)/θ(J (x)). We will denote by Kθ the MH kernel targeting πθ .

The Wang–Landau algorithm, described in the next section, alternates between
generating a sample by targeting πθ using Kθ , and updating θ using the generated
sample. In this sense it is an adaptive MCMC algorithm (past samples are used to
update the kernel at a given iteration), using an auxiliary chain (θt ), and therefore
the behavior of the sample is not obvious.

The Wang–Landau algorithm is widely used in the Physics community [Silva,
Caparica and Plascak (2006), Malakis, Kalozoumis and Tyraskis (2006),
Cunha Netto et al. (2006)]. In particular, many practitioners use flavors of the
algorithm with a “flat histogram” criterion. However, its convergence properties
are still partially unknown. We show that this criterion is reached in finite time for
some variations of the algorithm. This result is all that was missing to apply results
on adaptive algorithms with diminishing adaptation [Fort et al. (2011)].

In Section 2, we define variations of the Wang–Landau algorithm. We then in-
troduce ratios of penalties and argue for their convenience in studying the proper-
ties of the algorithm. We prove in Sections 3 and 4 that under certain conditions,
the flat histogram criterion is met in finite time, for the cases d = 2 and d > 2,
respectively. The result is illustrated in Section 5, and in Section 6, we hint at how
our assumptions might be relaxed.

2. Wang–Landau algorithms: Different flavors. There are several versions
of the Wang–Landau algorithm. We describe the general version introduced by
Atchadé and Liu (2010), both in its deterministic form and with a stochastic sched-
ule.

2.1. A first version with deterministic schedule. Let (γt )t∈N (referred to as a
schedule or a temperature) be a sequence of positive real numbers such that⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∑
t≥0

γt = ∞,

∑
t≥0

γ 2
t < ∞.

A typical choice is γt := t−α with α ∈]0.5,1[. The Wang–Landau algorithm is
described in pseudo-code in Algorithm 1. In this form, the schedule γt decreases
at each iteration, and is therefore called “deterministic.”

Step 5 of Algorithm 1 updates the penalties from θt−1 to θt , by increasing it if
the corresponding bin has been visited by the chain at the current iteration, and
by decreasing it otherwise. This rationale seems natural; however, we did not find
any article arguing for a particular choice of update, among the infinite number of
updates that would also follow the same rationale. In other words, it is not obvious
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Algorithm 1 Wang–Landau with deterministic schedule.
1: Init ∀i ∈ {1, . . . , d} set θ0(i) ← 1/d .
2: Init X0 ∈ X .
3: for t = 1 to T do
4: Sample Xt from Kθt−1(Xt−1, ·), MH kernel targeting πθt−1 .
5: Update the penalties: log θt (i) ← log θt−1(i) + f (1Xi

(Xt ), φi, γt ).
6: end for

how to choose the function f , except that it should be such that it is positive when
Xt ∈ Xi and such that it is closer to 0 when γt decreases, to ensure that the penalties
converge. Some practitioners use the following update:

log θt (i) ← log θt−1(i) + γt

(
1Xi

(Xt ) − φi

)
(1)

while others use

log θt (i) ← log θt−1(i) + log
[
1 + γt

(
1Xi

(Xt ) − φi

)]
.(2)

Since γt converges to 0 when t increases, and since update (1) is the first-order
Taylor expansion of update (2), one legitimately expects both updates to result in
similar performance in practice. We shall see in Section 3 that this is not necessar-
ily the case.

Some convergence results have been proven about Algorithm 1: the determinis-
tic schedule ensures that θt changes less and less along the iterations of the algo-
rithm, and consequently the kernels Kθt change less and less as well. The study of
the algorithm hence falls into the realm of adaptive MCMC where the diminishing
adaptation condition holds [Andrieu and Thoms (2008), Atchadé et al. (2009), Fort
et al. (2011)], although it is original in the sense that the target distribution, (πθt )
is adaptive, but not necessarily the proposal distribution Q. See also the literature
on stochastic approximation, Andrieu, Moulines and Priouret (2005).

In this article we are especially interested in a more sophisticated version of the
Wang–Landau algorithm that uses a stochastic schedule, and for which, as we shall
see in the following, the two updates result in different performance.

2.2. A sophisticated version with stochastic schedule. A remarkable improve-
ment has been made over Algorithm 1: the use of a “flat histogram” (FH) criterion
to decrease the schedule only at certain random times. Let us introduce νt (i), the
number of generated points at iteration t that are in Xi ,

νt (i) :=
t∑

n=1

1Xi
(Xn).

For some predefined precision threshold c, we say that FH is met at iteration t if

max
i∈{1,...,d}

∣∣∣∣νt (i)

t
− φi

∣∣∣∣ < c.
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Algorithm 2 Wang–Landau with flat histogram
1: Init ∀i ∈ {1, . . . , d} set θ0(i) ← 1/d .
2: Init X0 ∈ X .
3: Init κ = 0, the number of FH criteria already reached.
4: Init the counter ∀i ∈ {1, . . . , d} ν1(i) ← 0
5: for t = 1 to T do
6: Sample Xt from Kθt−1(Xt−1, ·) targeting πθt−1 .
7: Update νt : ∀i ∈ {1, . . . , d} νt (i) ← νt−1(i) + 1Xi

(Xt )

8: Check whether FH is met.
9: if FH is met then

10: κ ← κ + 1
11: ∀i ∈ {1, . . . , d} νt (i) ← 0
12: end if
13: Update the bias: log θt (i) ← log θt−1(i) + f (1Xi

(Xt ), φi, γκ).
14: end for

Intuitively, this criterion is met if the observed proportion of visits to each bin is
not far from φ, the desired proportion. The name “flat histogram” comes from the
observation that if the desired proportions are all equal to 1/d , this criterion is
verified when the histogram of visits is approximately flat. The threshold c could
possibly decrease along the iterations to get an always finer precision.

The Wang–Landau with flat histogram (Algorithm 2) is similar to the previous
algorithm, with a single difference: the schedule γ does not decrease at each step
anymore, but only when FH is met. To know whether it is met or not, a counter νt

of visits to each bin is updated at each iteration, and when FH is met, the schedule
decreases and the counter is reset to 0.

Note the difference between Algorithms 1 and 2: γ is indexed by κ instead of t ,
and κ is a random variable. As with Algorithm 1, the update of penalties (step 13
of Algorithm 2) can be either update (1) or update (2), or possibly something else.
Interestingly in this case, it is not obvious anymore that both updates will give
similar results. Indeed, for γκ to go to 0, we need FH to be reached in finite time,
so that κ regularly increases.

This flavor of the Wang–Landau algorithm is widely used in the Physics liter-
ature [Cunha Netto et al. (2006), Malakis, Kalozoumis and Tyraskis (2006), Ngo
and Diep (2008), Silva, Caparica and Plascak (2006)].

Our contribution is to show in a simple context that update (1) is such that FH is
met in finite time, while (2) is not so. Hence only using update (1) can one expect
the convergence properties of Algorithm 1 to still hold for Algorithm 2, since if FH
is met in finite time, a sort of diminishing adaptation condition would still hold.

To underline the difficulty of knowing whether FH is met in finite time or not,
let us recall that between two FH occurrences, the schedule is constant (equal to
some γκ > 0); hence the penalties (θt ) change at a constant scale and diminishing
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adaptation does not directly hold. Other adaptive algorithms share this lack of
diminishing adaptation, as, for example, the accelerated stochastic approximation
algorithm [Kesten (1958)], in which the adaptation of some process diminishes
only if its increments change sign. In our case, FH will be reached if the chain
(Xt) lands with frequency φi in each bin Xi ; see Corollary 2.

Note that in the implementation of the algorithm, the penalties θt need only be
defined up to a normalizing constant, since they only appear in ratios of the form
θt (i)/θt (j). We therefore introduce the following notation:

∀i, j ∈ {1, . . . , d} such that i �= j Z
(i,j)
t = log

θt (i)

θt (j)
,

and we note Zt the collection of all the Z
(i,j)
t . Some intuition behind the study

of such ratios comes from considering update (1). With this update, assume that
for each i, E[1Xi

(Xt )] = φi . Then we could easily check that for each pair (i, j),

E[Z(i,j)
t |Z(i,j)

t−1 ] = Z
(i,j)
t−1 , so this process would be constant on average. The re-

mainder of this paper hinges on two facts: that we can control (Zt ) in the sense
that Z

(i,j)
t /t → 0, and that if we control (Zt ), then we control the frequencies of

visits (νt/t).
More generally, notice that with fixed γ , the pair (Xt ,Zt) forms a homogeneous

Markov chain. We would like to prove that its proportion of visits to the set Xi ×
Rd(d−1) converges to some value in [0,1]; one way to prove this is to show that
the chain is irreducible. We would then need to check that the limit is indeed the
desired frequency φi for all i. Unfortunately, properties of the joint chain (Xt ,Zt)

are difficult to establish due to the complexity of its transition kernel. Finding a so-
called drift function for the joint Markov chain is also typically difficult. In general,
we are not able to show that the chain is irreducible. In Section 3, we prove directly
that Z

1,2
t /t → 0 in the special case d = 2, under some assumptions. In Section 4,

we make more restrictive assumptions which imply irreducibility. In both cases,
we show the implication of this convergence on the frequencies of visits.

3. Proof when d = 2. In the following we consider a simple context with only
two bins: d = 2 and Xt can therefore only be either in X1 or in X2. Suppose the
current schedule is at γ > 0, and we want to know whether FH is going to be met
in finite time (hence γ is fixed here). To simplify notation, in this section we note

Zt = Z
(1,2)
t = log θt (1) − log θt (2).

Using the definition of the penalties (θt ) and of the counts (νt ), we obtain

Zt = Z0 + [
νt (1)f (1, φ1, γ ) + (

t − νt (1)
)
f (0, φ1, γ )

]
− [

νt (2)f (1, φ2, γ ) + (
t − νt (2)

)
f (0, φ2, γ )

]
= Z0 + νt (1)

[
f (1, φ1, γ ) − f (0, φ1, γ )

] + tf (0, φ1, γ )
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− [(
t − νt (1)

)
f (1, φ2, γ ) + νt (1)f (0, φ2, γ )

]
= Z0 + νt (1)

[
f (1, φ1, γ ) − f (0, φ1, γ ) + f (1, φ2, γ ) − f (0, φ2, γ )

]
+ t

(
f (0, φ1, γ ) − f (1, φ2, γ )

)
.

If we prove that Zt/t goes to 0 (e.g., in mean), this will imply the following
convergence of the proportion of visits:

νt (1)

t
−→
t→∞

f (1, φ2, γ ) − f (0, φ1, γ )

f (1, φ1, γ ) − f (0, φ1, γ ) + f (1, φ2, γ ) − f (0, φ2, γ )

(also in mean). Since we want FH to be reached in finite time for any precision
threshold c > 0, we need the proportions of visits to Xi to converge to φi . Hence
we want

f (1, φ2, γ ) − f (0, φ1, γ )

f (1, φ1, γ ) − f (0, φ1, γ ) + f (1, φ2, γ ) − f (0, φ2, γ )
= φ1.(3)

Using the specific forms of f (1Xi
(Xt ), φi, γ ) for both updates, we can easily see

that:

• update (1) satisfies equation (3) for any φ and γ ;
• in general, update (2) does not satisfy equation (3), except in the special case

where φ1 = φ2 = 1/2.

Note that the second point states that the proportions of visits converge to some
vector φ̃ different than φ. The vector φ̃ can be expressed as a function of φ : φ̃ =
g(φ). By numerically or analytically inverting this function g, one can plug g−1(φ)

as an algorithmic parameter, so that the limiting proportions of visits converge to
g(g−1(φ)) = φ. Hence one can use update (2) and get the desired proportions of
visits by plugging g−1(φ) instead of φ in the update.

The rest of the paper is devoted to the proof that Zt/t goes to 0 under some
assumptions. More formally, we state in Theorem 1 what we shall prove in the
remainder of this section. This theorem holds for both updates.

THEOREM 1. Consider the sequence of penalties (θt ) introduced in Algo-
rithm 2. We define

Zt = log θt (1) − log θt (2).

Then

Zt

t

L1−→
t→∞ 0.

As a consequence, the long run proportion of visits to each bin converges to the
desired frequency φ for update (1), and not necessarily for update (2). Corollary 2
clarifies the consequence of Theorem 1 on the validity of Algorithm 2.
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COROLLARY 2. When the proportions of visits converge in mean to the de-
sired proportions, the flat histogram criterion is reached in finite time for any pre-
cision threshold c.

We already made the simplification of considering the simple case d = 2. We
make the following assumptions:

ASSUMPTION 1. The bins are not empty with respect to μ and π ,

∀i ∈ {1,2} μ(Xi ) > 0 and π(Xi ) > 0.

ASSUMPTION 2. The state space X is compact.

ASSUMPTION 3. The proposition distribution Q(x,y) is such that

∃qmin > 0 ∀x ∈ X ∀y ∈ X Q(x,y) > qmin.

ASSUMPTION 4. The MH acceptance ratio is bounded from both sides

∃m > 0 ∃M > 0 ∀x ∈ X ∀y ∈ X m <
π(y)

π(x)

Q(y, x)

Q(x, y)
< M.

Assumption 1 guarantees that the bins are well designed, and if it was not ver-
ified, the algorithm would never reach FH, regardless of the other assumptions.
Assumptions 2–4 are, for example, verified by a Gaussian random walk proposal
over a compact space, where there is a lower bound on π . We believe that these
assumptions can be relaxed to cover the most general Wang–Landau algorithm.
Making these four assumptions allows us to propose a clearer proof, and we pro-
pose hints on how to relax them in Section 6.

We denote by Ut the increment of Zt , such that for any t ,

Zt+1 = Zt + Ut = Zt + f
(
1X1(Xt), φ1, γ

) − f
(
1X2(Xt), φ2, γ

)
.

Here with only two bins, the increments Ut can take two different values, +a

or −b, for some a > 0 and b > 0 that depend on φ and γ . For example, with
update (1), {

a = 2γ (1 − φ1) > 0,

b = 2γφ1 > 0,

whereas with update (2),⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a = log
(

1 + γ (1 − φ1)

1 − γ (1 − φ1)

)
> 0,

b = log
(

1 + γφ1

1 − γφ1

)
> 0,

and in both cases, if Xt ∈ X1, then Ut = +a, otherwise Ut = −b.
We want to prove that Zt/t goes to 0, and we are going to prove a stronger result

that states, in words, that when Zt leaves a fixed interval [Z̄lo, Z̄hi], it returns to it
in a finite time.
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3.1. Behavior of (Zt ) outside an interval. First, Lemma 3 states that if Zt goes
above a value Z̄hi, it has a strictly positive probability of starting to decrease, and
that when that happens, it keeps on decreasing with a high probability.

LEMMA 3. With the introduced processes Zt and Ut , there exists ε > 0 such
that for all η > 0, there exists Z̄hi such that, if Zt ≥ Z̄hi, we have the following two
inequalities:

P [Ut+1 = −b|Ut = +a,Zt ] > ε,

P [Ut+1 = −b|Ut = −b,Zt ] > 1 − η.

PROOF. We start with the first inequality. Let qmin be like in Assumption 3.
In terms of events {Ut = +a} is equivalent to {Xt ∈ X1}, by definition. If Xt ∈

X1 and π(Xt) > 0, then

Kθt (Xt , X2) =
∫

X2

Kθt (Xt , y) dy

=
∫

X2

Q(Xt, y)ρθt (Xt , y) dy

=
∫

X2

Q(Xt, y)

(
1 ∧ π(y)

π(Xt)

Q(y,Xt)

Q(Xt , y)

θt (J (Xt))

θt (J (y))

)
dy

=
∫

X2

Q(Xt, y)

(
1 ∧ π(y)

π(Xt)

Q(y,Xt)

Q(Xt , y)
eZt

)
dy.

Using Assumption 4, π(y)
π(x)

Q(y,x)
Q(x,y)

is bounded from below, hence there exists K1

such that

∀k ≥ K1 ∀x, y ∈ X π(y)

π(x)

Q(y, x)

Q(x, y)
ek ≥ 1.

If Zt ≥ K1 and Xt ∈ X1, then

Kθt (Xt , X2) =
∫

X2

Q(Xt, y) dy > qminμ(X2).

Hence if Zt ≥ K1,

P [Ut+1 = −b|Ut = +a,Zt ] = P [Xt+1 ∈ X2|Xt ∈ X1,Zt ]
> qminμ(X2).

We now prove the second inequality. Let us show that for any η > 0, there
exists K2 such that, provided Zt > K2,

P [Ut+1 = −b|Ut = −b,Zt ] > 1 − η.

We have

P [Ut+1 = −b|Ut = −b,Zt ] = P [Xt+1 ∈ X2|Xt ∈ X2,Zt ].
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Again let us first work for a fixed Xt ∈ X2.

Kθt (Xt , X2) = 1 − Kθt (Xt , X1)

= 1 −
[∫

X1

Q(Xt, y)ρθt (Xt , y) dy

]

= 1 −
[∫

X1

Q(Xt, y)

(
1 ∧ π(y)

π(Xt)

Q(y,Xt)

Q(Xt , y)
e−Zt

)
dy

]
.

Using the assumption that the MH ratio π(y)
π(x)

Q(y,x)
Q(x,y)

is bounded from above, there
exists K2 such that

∀k ≥ K2 ∀x, y ∈ X π(y)

π(x)

Q(y, x)

Q(x, y)
e−k ≤ 1.

And hence for Zt > K2,

Kθt (Xt , X2) = 1 − e−Zt

∫
X1

Q(Xt, y)
π(y)

π(Xt)

Q(y,Xt)

Q(Xt , y)
dy

> 1 − e−Zt

∫
X1

Q(Xt, y)M dy

> 1 − Me−Zt ,

and hence for any η, there is a K3 greater than K2 such that for all Zt ≥ K3,

Kθt (Xt , X2) > 1 − η.

We thus obtain

P [Ut+1 = −b|Ut = −b,Zt ] > 1 − η.

To conclude we finally define ε = qminμ(X2), and then for any η > 0, by taking
any Z̄hi greater than K1 ∨ K3, we have both inequalities. �

Considering the symmetry of the problem, we instantly have the following
corollary result. It states that if Zt goes too low, it has a strictly positive proba-
bility of starting to increase, and when that happens, it keeps on increasing with a
high probability.

LEMMA 4. With the introduced processes Zt and Ut , there exists ε > 0 such
that for all η > 0, there exists Z̄lo such that, if Zt ≤ Z̄lo, we have the following two
inequalities:

P [Ut+1 = +a|Ut = −b,Zt ] > ε,

P [Ut+1 = +a|Ut = +a,Zt ] > 1 − η.
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FIG. 1. Trajectory of Z (full line with dots) and of Z̃ (dotted line), when these processes go above
some level Z̄hi indicated by a horizontal full line. Z goes above the level at time s, and returns below
it at time s + T , whereas Z̃ stays above the level until time s + T̃ , with T ≤ T̃ .

3.2. A new process that bounds (Zt ) outside the set. In this section, the proof
introduces a new sequence of increments Ũt that bounds Ut , and such that the
sequence Z̃t using Ũt as increments,

Z̃t+1 = Z̃t + Ũt

returns to [Z̄lo, Z̄hi] in a finite time whenever it leaves it. It will imply that Zt also
returns to [Z̄lo, Z̄hi] in finite time whenever it leaves it. Figure 1 might help to
visualize the proof.

First let us use Lemma 3. We can take ε < 1/2 and η < min(1/2, εb/a). The
lemma gives the existence of an integer K such that if Zt ≥ K , we have the fol-
lowing two inequalities:

P [Ut+1 = −b|Ut = +a,Zt ] > ε,(4)

P [Ut+1 = −b|Ut = −b,Zt ] > 1 − η.(5)

Suppose that there is some time s such that Zs−1 ≤ K and Zs ≥ K . Note that
necessarily Zs ∈ [K,K + a]. Then we define Z̃s = Zs , a new process starting at
time s. Let s + T be the first time after s such that Zs+T ≤ K . We wish to show
that E[T ] < ∞.

We define the sequence of random variables (Zt )t≥s defined by Z̃s = Zs and
Z̃t+1 = Z̃t + Ũt for t > s, where (Ũt )t≥s is a sequence of random variables taking
the values +a or −b.

For s ≤ t < T , Ũt is defined as follows:

• if Ut+1 = +a, then Ũt+1 = +a;
• if Ut+1 = −b, Ut = −b and Ũt = −b, then Ũt+1 = −b with probability p1 =

(1 − η)/P [Ut+1 = −b|Ut = −b,Zt ] and Ũt+1 = +a otherwise;
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• if Ut+1 = −b, Ut = +a and Ũt = +a, then Ũt+1 = −b with probability p2 =
ε/P [Ut+1 = −b|Ut = +a,Zt ] and Ũt+1 = +a otherwise;

• if Ut+1 = −b, Ut = −b and Ũt = +a, then Ũt+1 = −b with probability p3 =
ε(1 + P [Ut+1 = +a|Ut = −b,Zt ]/P [Ut+1 = −b|Ut = −b,Zt ]) and Ũt+1 =
+a otherwise.

For times t ≥ T , Ũt is a Markov chain independent of Ut and Zt , with transition
matrix (

1 − ε ε

η 1 − η

)
,

where the first state corresponds to +a and the second state to −b.
First, let us check that all these probabilities are indeed less than 1. For p1, it

follows from inequality (5). For p2, it follows from inequality (4). For p3, we have

ε

(
1 + P [Ut+1 = +a|Ut = −b,Zt ]

P [Ut+1 = −b|Ut = −b,Zt ]
)

≤ ε

(
1 + η

1 − η

)
≤ 2ε ≤ 1,

where we used the conditions η < 1/2 and ε < 1/2. Hence (Ũt ) is well defined.

LEMMA 5. (Ũt ) is a Markov chain over the space {+a,−b} with transition
matrix (

1 − ε ε

η 1 − η

)
,

where the first state corresponds to {+a} and the second state to {−b}.
PROOF. We only need to check this for times t ≤ T . The events {Ũt = −b}

and {Ũt = −b,Ut = −b} are identical, hence

P [Ũt+1 = −b|Ũt = −b,Zt ] = P [Ũt+1 = −b|Ũt = −b,Ut = −b,Zt ]
= P [Ũt+1 = −b|Ut+1 = −b, Ũt = −b,Ut = −b,Zt ]

× P [Ut+1 = −b|Ũt = −b,Ut = −b,Zt ]
= (1 − η)P [Ut+1 = −b|Ut = −b,Zt ]

P [Ut+1 = −b|Ut = −b,Zt ]
= 1 − η.

Note that this does not depend on Zt .
Similarly,

P [Ũt+1 = −b|Ũt = +a,Ut = +a,Zt ]
= P [Ũt+1 = −b|Ut+1 = −b, Ũt = +a,Ut = +a,Zt ]

× P [Ut+1 = −b|Ũt = +a,Ut = +a,Zt ]
= εP [Ut+1 = −b|Ut = +a,Zt ]

P [Ut+1 = −b|Ut = +a,Zt ]
= ε
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and

P [Ũt+1 = −b|Ũt = +a,Ut = −b,Zt ]
= P [Ũt+1 = −b|Ut+1 = −b, Ũt = +a,Ut = −b,Zt ]

× P [Ut+1 = −b|Ũt = +a,Ut = −b,Zt ]
= ε

(
1 + P [Ut+1 = +a|Ut = −b,Zt ]

P [Ut+1 = −b|Ut = −b,Zt ]
)

× P [Ut+1 = −b|Ut = −b,Zt ]
= ε

(
P [Ut+1 = −b|Ut = −b,Zt ] + P [Ut+1 = +a|Ut = −b,Zt ])

= ε.

These last two calculations result in

P [Ũt+1 = −b|Ũt = +a] = ε

with no dependence on Zt (or Ut ). �

The previous lemma is central to the proof, and especially the lack of depen-
dence on Zt . We always have Ũs = +a, since Us = +a. Hence for each t ≥ s, the
distribution of Ũt depends only on η and ε, and implicitly on the threshold K , but
not on the value of Zs . Hence (Ũt ) has the same law, every time the process (Zt )

goes above K .

3.3. Conclusion: Proof of Theorem 1 and Corollary 2. Let us now use the
bounding process (Z̃t ) to control the time spent by (Zt ) above K .

LEMMA 6. There exists τ ∈ R such that, for all times s such that Zs−1 ≤ K

and Zs ≥ K , and defining T by T = infd≥0{Zs+d ≤ K}, then

E[T ] ≤ τ.

PROOF. The Markov chain (Ũt ) admits the following stationary distribution:

π
Ũ

=
(

η

ε + η
,

ε

ε + η

)
.

Let us denote by T̃ the time spent by (Z̃t ) over K , that is,

T̃ = inf
d≥0

{
s+d∑

t=s+1

Ũt ≤ −a

}
.

Remember that Z̃s = Zs ∈ [K,K + a], hence Z̃
s+T̃

≤ K (whatever the value of

Zs). Now, our choice of η results in aη < bε which implies E[T̃ ] < ∞ [Norris
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(1998)]. Let τ = E[T̃ ]. Note that since the law of (Ũt ) does not depend on the
value of Zs , τ does not depend on Zs .

Since, for t ≤ T , we impose that “if Ut+1 = +a, then Ũt+1 = +a,” it follows
that ∀t ≤ T ,Ut ≤ Ũt . Consequently ∀t ≤ T ,Zt ≤ Z̃t and hence T ≤ T̃ . Note that
(the distribution of) T depends on the exact value of Zs , but that T̃ as we have
defined it has a fixed distribution. We have E[T ] ≤ τ (whatever the value Zs). �

PROOF OF THEOREM 1. Let us define the following sequence of indices:

S1 = inf
s≥0

{Zs−1 ≤ K and Zs ≥ K};
Sk = inf

s≥Sk−1
{Zs−1 ≤ K and Zs ≥ K}.

The sequence (Sk) represents the times at which the process (Zt ) goes above K .
Moreover let us introduce the sequence of time spent above K ,

Tk = inf
s≥0

{ZSk+s−1 ≥ K and ZSk+s ≤ K}.
We have ZSk

∈ [K,K + a]. Define k(t) such that Sk(t) ≤ t < Sk(t)+1. Either Zt ≤
K or Zt > K . In the latter case, Zt ≤ ZSk(t)

+ aTk(t). Clearly, in any case,

E[Zt ] ≤ (K + a) + aτ.(6)

A similar reasoning on the lower bound leads to K ′ and τ ′ < ∞ such that

E[Zt ] ≥ (
K ′ − b

) − bτ ′.(7)

Inequalities (7) and (6) imply

E

[
Zt

t

]
→ 0. �

As stated at the beginning of the section, for update (1) the convergence Zt/t →
0 (in mean) implies the convergence of the proportions (νt/t) to φ (also in mean).
We now show that this ensures that the flat histogram is reached in finite time.

PROOF OF COROLLARY 2. For a fixed threshold c, recall that FH being
reached at time t corresponds to the event

FHt =
{
∀i ∈ {1, . . . , d}

∣∣∣∣νt (i)

t
− φi

∣∣∣∣ < c

}
.

We will only use the convergence in probability of the proportions to φ for all i

νt (i)

t

P−→
t→∞φi,

which implies

∀ε > 0 ∃N ∈ N ∀t ≥ N P(FHt ) ≥ 1 − ε.



48 P. E. JACOB AND R. J. RYDER

We can hence define a stopping time T FH corresponding to the first FH being
reached,

T FH = inf
t≥0

{FHt }
and some ε > 0 such that

∃N ∈ N ∀n ≥ N P
(
T FH ≤ N + n

) ≥ ε.

Using Lemma 10.11 of Williams, 1991, the expectation of T FH is then finite. �

4. Proof when d ≥ 2. In this section we extend the proof to the more general
case d ≥ 2. Having proved that for d = 2, only update (1) is valid, we now focus
on this update and omit update (2).

We consider the log penalties defined for update (1) by

log θt (i) = νt (i)(1 − φi) − (
t − νt (i)

)
φi = νt (i) − tφi,

where νt (i) is the number of visits of (Xt) in Xi . We assume without loss of
generality that log θ0 = 0. Then (Xt , log θt ) is a Markov chain, by definition of the
WL algorithm. We first prove that (Xt , log θt ) is λ-irreducible, for a sigma-finite
measure λ. We will require the following additional assumption on the desired
frequencies φ.

ASSUMPTION 5. The desired frequencies are rational numbers,

φ = (φ1, . . . , φd) ∈ Qd .

LEMMA 7. Let � be the following subset of Rd :

� =
{
z ∈ Rd :∃(n1, . . . , nd) ∈ Ndzi = ni − φiSn where Sn =

d∑
j=1

nj

}
.

Then denoting by λ the product of the Lebesgue measure μ on X and of the count-
ing measure on �, (Xt , log θt ) is λ-irreducible.

PROOF. The proof essentially comes from Bézout’s lemma, and is detailed in
the Appendix. Note, however, that it relies on Assumption 5, that was not required
for the case d = 2. Although not a very satisfying assumption, which is likely not
to be necessary for proving the occurrence of FH in finite time, it seems to be
necessary for the irreducibility of (Xt , log θt ), at least with respect to a standard
sigma-finite measure. In any case, this assumption is not restrictive in practice. �

Since this chain is λ-irreducible, the proportion of visits to any λ-measurable
set of X × � converges to a limit in [0,1]. This implies that the vector (νt (i)/t)

converges to some vector (pi). The following is a reductio ad absurdum.
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Suppose that for some i ∈ {1, . . . , d}, pi �= φi . Since the vectors p and φ both
sum to 1, this means that for some i, pi < φi : such a state i is visited less than the
desired frequency.

Let {i1, i2, . . .} = argmin1≤j≤d(pj −φj ). Then for any ik and for j /∈ {i1, i2, . . .},
we have

Z
j,ik
t = −νt (ik) + νt (j) + t (φik − φj ) ∼ t (−pik + φik + pj − φj ) → ∞.

This implies

∀K > 0 ∃T ∈ N ∀t > T Z
j,ik
t > K.

Now consider the stochastic process (Ut ) such that:

• Ut = −b if J (Xt) ∈ {i1, i2, . . .};
• Ut = +a otherwise,

for some real numbers a and b. Recall that the function J is such that if Xt ∈ Xi ,
then J (Xt) = i.

Let ε be such that when Xt /∈ Xi1 ∪ Xi2 ∪ · · ·, there is probability at least ε of
proposing in Xi1 ∪ Xi2 ∪ · · ·. For large enough K , these proposals will always be
accepted. As before, for large enough K , we can make the probability η of leaving
Xi1 ∪ Xi2 ∪ · · · as small as we wish.

Using the exact same reasoning as in Section 3, we can construct a process (Ũt )

which is a Markov chain with transition matrix(
1 − ε ε

η 1 − η

)

and with Ut < Ũt almost surely. Therefore for t > T , (Ut ) decreases on average,
hence (Z

j,ik
t ) decreases on average, which contradicts the assumption that it goes

to infinity. Hence for all i, pi = φi .

5. Illustration of Theorem 1 on a toy example. Let us show the conse-
quences of Theorem 1 on a simple example. We consider as the target distribu-
tion the standard normal distribution truncated to the set X = [−10,10]. We use a
Gaussian random walk proposal, with unit standard deviation. Finally we arbitrar-
ily split the state space in X1 = [−10,0] and X2 =]0,10], and we set the desired
frequencies to be φ = (0.75,0.25). Figure 2 shows the results of the Wang–Landau
algorithm. Using update (1) and 200,000 iterations, we obtain the histogram of
Figure 2(a). Figure 2(b) shows the convergence of the proportions of visits to each
bin, using update (1). The dotted horizontal lines indicate φ, and we can check that
the observed proportions of visits converge toward it.

Figure 2(c) shows a similar plot, this time using update (2). Again, the de-
sired frequencies are represented by dotted lines. Using the left-hand side of equa-
tion (3), we can calculate the theoretical limit of the observed proportion of vis-
its in each bin, which for γ = 1 and φ = (0.75,0.25), is approximately equal to
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(a) Histogram of the (b) Convergence of the (c) Convergence of the

generated sample proportions of visits to each bin, proportions of visits to each bin

using the right update using the wrong update

FIG. 2. Results of the Wang–Landau algorithm using two different updates of the penalties. His-
togram of the generated sample using update (1), with a vertical line showing the binning (left).
Convergence of the proportions of visits to each bin, using update (1) (middle) and using update (2)
(right). The dotted horizontal lines represent the desired frequencies.

(0.79,0.21). Hence for a precision threshold c equal to, for example, 1%, the oc-
currence of FH is not likely to occur if one uses update (2).

As expected, update (1) leads to convergence to the desired frequencies, but
update (2) does not.

6. Discussion. As seen in Theorem 1 and Corollary 2 of Section 3, update (1)
is valid, in the sense that the frequencies of visits of the chain (Xt) converges
toward φ. Consequently FH is met in finite time, for any threshold c > 0.

Regarding the proof of Theorem 1 in the case d > 2, we assume that the desired
frequencies φ are rationals (Assumption 5), which allows to prove that the Markov
chain generated by the algorithm (Xt ,Zt ) is λ-irreducible for some sigma-finite
measure λ. However, our proof requires mainly that the proportions of visits of
(Xt) to any bin Xi converge, which is equivalent to the convergence of (Zt/t). We
believe that results on random walks in random environments [Zeitouni (2006)]
would allow us to remove the rationality assumption.

Assumptions 2–4 could be relaxed by using the well-known properties of
the Metropolis–Hastings algorithm, from which we did not take advantage here.
More precisely, note that the Wang–Landau transition kernel differs from the
Metropolis–Hastings only when the proposed points, generated through Q(·, ·),
land in a different bin than the current position of the chain. Otherwise, the ker-
nel behaves like a Metropolis–Hastings targeting π . Hence under some weaker
assumptions than the one we have formulated here, it has recurrence properties.

To conclude, we have shown that for fixed γ , the Flat Histogram criterion is
reached in finite time for certain updates. For other updates, the observed frequen-
cies do not converge to the desired frequencies, and so there is a nonzero proba-
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bility that the flat histogram criterion will never be verified. Note that we do not
make any claims about the distribution of the sample inside each of the bins Xi at
fixed γ .

APPENDIX: PROOF OF LEMMA 7

Let � ⊂ Rd be the set of possibly reachable values of the process (log θt ). We
define it by

� =
{
z ∈ Rd :∃(n1, . . . , nd) ∈ Ndzi = ni − φiSn where Sn =

d∑
j=1

nj

}
.

We want to prove the existence of a measure λ on X × � such that the Markov
chain (Xt , log θt ) is λ-irreducible. Denote by μ the Lebesgue measure on X , and
let A ∈ B(X ) such that μ(A) > 0, and let z� ∈ �. Let us show that for any time s at
which Xs = xs ∈ X and log θs = zs ∈ �, there exists t > 0 such that Xs+t ∈ A and
log θs+t = z� with strictly positive probability. This will prove the λ-irreducibility
of (Xt , log θt ) where λ is the product of the Lebesgue measure μ on X and the
counting measure on �.

Note first that for any n = (n1, . . . , nd) ∈ Nd , the process (Xt) can visit exactly
ni times each set Xi (for all i) between some time s+1 and some time s+∑d

i=1 ni ,
since there is always a nonzero probability of Xt+1 visiting any Xi given Xt and
log θt (using Assumptions 3 on the proposal distribution and the form of the MH
kernel). More formally, given any n ∈ Nd and any time s, denoting Sn = ∑d

i=1 ni ,

P

(
∀i ∈ {1, . . . , d}

s+Sn∑
t=s+1

1Xi
(Xt ) = ni

∣∣∣∣Xs, log θs

)
> 0.(8)

Furthermore since μ(A) > 0 and since (Xi )
d
i=1 is a partition of X (satisfying

Assumption 1 on nonempty bins), there exists B ⊂ A such that B ⊂ Xi� for some
i� ∈ {1, . . . , d} and μ(B) > 0. We are going to prove the following statement,
which means that there is a “path” between any pair of points in �:

LEMMA 8.

∀z1, z2 ∈ � ∃n ∈ Nd ∀i ∈ {1, . . . , d} z1
i + ni −

(
d∑

j=1

nj

)
φi = z2

i .

Then we will conclude as follows: the Markov chain can go from any (xs, zs) to
some (xs+t−1, zs+t−1) where zs+t−1 can be anywhere in �, and then in one final
step to (xs+t , zs+t ) such that xs+t ∈ B and zs+t = z�, since zs+t−1 can be chosen
such that zs+t = z� when xs+t ∈ B ⊂ Xi� .
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PROOF. The structure of the proof is the following: we prove that (log θt ) can
go from 0 to 0, then from any z ∈ � to 0, and the possibility of going from 0 to
any z ∈ � comes from the definition of �.

Suppose that log θ0 = (0, . . . ,0), and let us prove that the process (log θt ) can
go back to 0, that is, let us find a vector n = (n1, . . . , n2) ∈ Nd such that

∀i ∈ {1, . . . , d} 0 = ni − φiSn where Sn =
d∑

j=1

nj .

Under the rationality assumption on φ (Assumption 5), there exists (ai, . . . , ad) ∈
Nd and b ∈ N such that φi = ai/b for all i. Now define n ∈ Nd as follows:

∀i ∈ {1, . . . , d} ni = k

d∏
j=1,j �=i

1

aj

,

where k ∈ N is such that ni ∈ N for all i. Then using
∑d

j=1 φj = 1 one can readily
check that

∀i ∈ {1, . . . , d} ni − φi

(
d∑

j=1

nj

)
= 0.

Hence the vector n defines a possible path for (log θt ) between 0 and 0, in Sn =∑d
j=1 nj steps, with a strictly positive probability [using equation (8)].
A similar reasoning allows us to find a possible path from any z ∈ � to 0. For

such a z ∈ �, there exists (m1, . . . ,md) ∈ Nd such that

∀i ∈ {1, . . . , d} zi = mi − Smai/b where Sm =
d∑

j=1

mj .(9)

We wish to show that there exits (k1, . . . , kd) ∈ Nd such that ki − Skai/b = −zi

for all i, where Sk = ∑d
j=1 kj . To construct (k1, . . . , kd), we use the already intro-

duced vector (n1, . . . , nd) such that ni −Snai/b = 0 for all i, where Sn = ∑d
j=1 nj .

Putting this together with (9), we get for any C ∈ N,

−zi + C ∗ 0 = −mi + C ∗ ni − ai

b
(CSn − Sm).(10)

For C large enough, for all i, Cni − mi > 0. We simply take ki = Cni − mi for
all i. This proves that starting from a point z ∈ � (by definition reachable from 0),
(log θt ) can reach 0 again. �
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