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DIMENSIONAL REDUCTION IN NONLINEAR FILTERING:
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We propose a homogenized filter for multiscale signals, which allows us
to reduce the dimension of the system. We prove that the nonlinear filter con-
verges to our homogenized filter with rate

√
ε. This is achieved by a suitable

asymptotic expansion of the dual of the Zakai equation, and by probabilisti-
cally representing the correction terms with the help of BDSDEs.

1. Introduction. Filtering theory is an established field in applied probability
and decision and control systems, which is important in many practical applica-
tions from inertial guidance of aircrafts and spacecrafts to weather and climate
prediction. It provides a recursive algorithm for estimating a signal or state of a
random dynamical system based on noisy measurements. More precisely, filtering

problems consist of an unobservable signal process X
def= {Xt : t ≥ 0} and an ob-

servation process Y
def= {Yt : t ≥ 0} that is a function of X corrupted by noise. The

main objective of filtering theory is to get the best estimate of Xt based on the

information Yt
def= σ {Ys : 0 ≤ s ≤ t}. This is given by the conditional distribution

πt of Xt given Yt or equivalently, the conditional expectations E[f (Xt)|Yt ] for a
rich enough class of functions. Since this estimate minimizes the mean square er-
ror loss, we call πt the optimal filter. The goal of filtering theory is to characterize
this conditional distribution effectively. In simplified problems where the signal
and the observation models are linear and Gaussian, the filtering equation is finite-
dimensional, and the solution is the well-known Kalman–Bucy filter. In more re-
alistic problems, nonlinearities in the models lead to more complicated equations
for πt , defined by Zakai (1969) and Fujisaki, Kallianpur and Kunita (1972), which
describe the evolution of the conditional distribution in the space of probability
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measures; see, for example, Bain and Crisan (2009), Kallianpur (1980), Liptser
and Shiryaev (2001).

It is impractical to implement a numerical solution to such infinite dimensional
stochastic evolution equations of the general nonlinear filtering problem by finite
difference or finite element approximations. Therefore, extended Kalman filter al-
gorithms, which use linear approximations to the signal dynamics and observa-
tion, have been used extensively in several applications. These provide essentially
a first-order approximation to an infinite dimensional problem and can perform
quite poorly in problems with strong nonlinearities. Particle filters have been well
established for the implementation of nonlinear filtering in science and engineering
applications. Doucet, de Freitas and Gordon (2001) and Arulampalam et al. (2002)
provide comprehensive insight into particle filtering. However, due to dimensional-
ity issues [see, e.g., Snyder et al. (2008)] and computational complexities that arise
in representing the signal density using a high number of particles, the problem of
particle filtering in high dimensions is still not completely resolved. As a result
of these difficulties, we have established a novel particle filtering method Park,
Namachchivaya and Yeong (2011) for multiscale signal and observation processes
that combines the homogenization with filtering techniques. The theoretical basis
for this new capability is presented in this paper.

The results presented here are set within the context of slow-fast dynamical
systems, where the rates of change of different variables differ by orders of magni-
tude. Multiple time scales occur in models throughout the science and engineering
field. For example, climate evolution is governed by fast atmospheric and slow
oceanic dynamics and state dynamics in electric power systems consists of fast-
and slowly-varying elements. This paper addresses the effects of the multiscale
signal and observation processes via the study of the Zakai equation. We construct
a lower dimensional Zakai equation in a canonical way. This problem has also been
studied in Park, Sowers and Sri Namachchivaya (2010) using a different approach
from what is presented here. In moderate dimensional problems, particle filters
are an attractive alternative to numerical approximation of the stochastic partial
differential equations (SPDEs) by finite difference or finite element methods. For
the reduced nonlinear model an appropriate form of particle filter can be a viable
and useful scheme. Hence, Lingala et al. (2012) presents the numerical solution of
the lower dimensional stochastic partial differential equation derived here, as it is
applied to a chaotic high-dimensional multiscale system.

In general, this paper provides rigorous mathematical results that support the
numerical algorithms based on the idea that stochastically averaged models pro-
vide qualitatively useful results which are potentially helpful in developing inex-
pensive lower dimensional filtering as demonstrated by Park, Namachchivaya and
Yeong (2011) in the context of homogenized particle filters and by Harlim and
Kang (2012) in the context of averaged ensemble Kalman filters. The convergence
of the optimal filter to the homogenized filter is shown using backward stochastic
differential equations (BSDEs) and asymptotic techniques.
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Let us describe the main result. We assume the signal is given as solution of the
two time scale stochastic differential equation (SDE)

dXε
t = b

(
Xε

t ,Z
ε
t

)
dt + σ

(
Xε

t ,Z
ε
t

)
dVt ,

dZε
t = 1

ε
f

(
Xε

t ,Z
ε
t

)
dt + 1√

ε
g
(
Xε

t ,Z
ε
t

)
dWt .

Here Xε is the slow component, and Zε is the fast component. We assume that for
every fixed x, the solution Zx of

dZx
t = f

(
x,Zx

t

)
dt + g

(
x,Zx

t

)
dWt

is ergodic and converges rapidly to its unique stationary distribution. In this case it
is well known that Xε converges in distribution to a diffusion X0 which is governed
by an SDE

dX0
t = b̄

(
X0

t

)
dt + σ̄

(
X0

t

)
dVt .

This X0 is used to construct an averaged filter π0. We denote the optimal filter for
the full system by πε . Define the x-marginal of πε as πε,x , that is,∫

ϕ(x)π
ε,x
t (dx) =

∫
ϕ(x)πε

t (dx, dz).

Our main result is then the following:

THEOREM. Under the assumptions stated in Theorem 3.1, for every p ≥ 1
and T ≥ 0 there exists C > 0, such that for every ϕ ∈ C4

b(
EQ

[∣∣πε,x
T (ϕ) − π0

T (ϕ)
∣∣p])1/p ≤ √

εC‖ϕ‖4,∞.

In particular, there exists a metric d on the space of probability measures, such
that d generates the topology of weak convergence, and such that for every T ≥ 0
there exists C > 0 such that

EQ

[
d
(
π

ε,x
T ,π0

T

)] ≤ √
εC.

We begin in Section 2 by presenting the general formulation of the multiscale
nonlinear filtering problem. Here we describe the measure-valued Zakai equation
and introduce the homogenized equations that we seek to derive for the reduced
dimension unnormalized filter. Section 3 presents the formal asymptotic expansion
of the multi scale Zakai equation that results in several SPDEs. We also present the
main results of this paper in this section. Section 4 provides the probabilistic rep-
resentation of the SPDEs, that is, we describe the solutions of the infinite dimen-
sional SPDEs by finite dimensional backward doubly stochastic differential equa-
tions (BDSDEs). We restate some of the results in this context due to Rozovskiı̆
(1990) and Pardoux and Peng (1994) at the end of this section. We present some
of the preliminary results of Pardoux and Veretennikov (2003) on convergence of
the transition function of Zx in Section 5. These estimates are used in the proof of
the main results presented in Section 6.
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2. Formulation of multiscale nonlinear filtering problems. Let (�, F ,

(Ft ),Q) be a filtered probability space that supports a (k + l + d)-dimensional
standard Brownian motion (V ,W,B). Let the signal (Xε,Zε) be a two time scale
diffusion process with a fast component Zε and a slow component Xε ,

dXε
t = b

(
Xε

t ,Z
ε
t

)
dt + σ

(
Xε

t ,Z
ε
t

)
dVt ,

(1)

dZε
t = 1

ε
f

(
Xε

t ,Z
ε
t

)
dt + 1√

ε
g
(
Xε

t ,Z
ε
t

)
dWt,

where Xε
t ∈ Rm, Zε

t ∈ Rn, Wt ∈ Rl and Vt ∈ Rk are independent standard Brown-
ian motions, b : Rm+n → Rm, σ : Rm+n → Rm×k , f : Rm+n → Rn, g : Rm+n →
Rn×l . All the functions above are assumed to be Borel measurable. For fixed
x ∈ Rm, define

dZx
t = f

(
x,Zx

t

)
dt + g

(
x,Zx

t

)
dWt .(2)

Assume that for all x ∈ Rm, Zx is ergodic and converges rapidly towards its sta-
tionary measure μ(x, ·). We will make this precise later.

The d-dimensional observation Y ε is given by

Y ε
t =

∫ t

0
h
(
Xε

s ,Z
ε
s

)
ds + Bt

with Borel-measurable h : Rm+n → Rd . B is assumed to be a d-dimensional stan-
dard Brownian motion that is independent of W and V .

Define Y ε
t = σ(Y ε

s : 0 ≤ s ≤ t) ∨ N , where N are the Q-negligible sets. For a
finite measure π on Rm+n and for a bounded measurable function ϕ on Rm+n de-
note π(ϕ) = ∫

ϕ(x, z)π(dx, dz). Then our aim is to calculate the measure-valued
process (πε

t , t ≥ 0) determined by

πε
t (ϕ) = E

[
ϕ

(
Xε

t ,Z
ε
t

)|Y ε
t

]
.

Define the Girsanov transform
dPε

dQ

∣∣∣
Ft

= Dε
t = exp

(
−

∫ t

0
h
(
Xε

s ,Z
ε
s

)∗
dBs − 1

2

∫ t

0

∣∣h(
Xε

s ,Z
ε
s

)∣∣2 ds

)
.

Under Pε , the observation process, Y ε , is a Brownian motion and independent of
(Xε,Zε). By the Kallianpur–Striebel formula,

EQ

[
ϕ

(
Xε

t ,Z
ε
t

)|Y ε
t

] = EPε [ϕ(Xε
t ,Z

ε
t )(dQ/dPε)|Ft |Y ε

t ]
EPε [(dQ/dPε)|Ft |Y ε

t ]
with

dQ

dPε

∣∣∣
Ft

= D̃ε
t = exp

(∫ t

0
h
(
Xε

s ,Z
ε
s

)∗
dY ε

s − 1

2

∫ t

0

∣∣h(
Xε

s ,Z
ε
s

)∣∣2 ds

)
.

So if we define

ρε
t (ϕ) = EPε

[
ϕ

(
Xε

t ,Z
ε
t

)
exp

(∫ t

0
h
(
Xε

s ,Z
ε
s

)∗
dY ε

s − 1

2

∫ t

0

∣∣h(
Xε

s ,Z
ε
s

)∣∣2 ds

)∣∣∣Y ε
t

]
,
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then

πε
t (ϕ) = ρε

t (ϕ)

ρε
t (1)

.

Denote by Lε = 1
ε

LF + LS the differential operator associated to (Xε,Zε). That
is,

LF =
n∑

i=1

fi(x, z)
∂

∂zi

+ 1

2

n∑
i,j=1

(
gg∗)

ij (x, z)
∂2

∂zi ∂zj

,

LS =
m∑

i=1

bi(x, z)
∂

∂xi

+ 1

2

m∑
i,j=1

(
σσ ∗)

ij (x, z)
∂2

∂xi ∂xj

,

where ·∗ denotes the transpose of a matrix or a vector.
Then the unnormalized measure-valued process, ρε , satisfies the Zakai equation

dρε
t (ϕ) = ρε

t

(
Lεϕ

)
dt + ρε

t (hϕ)dY ε
t ,

(3)
ρε

0(ϕ) = EQ

[
ϕ

(
Xε

0,Z
ε
0
)]

for every ϕ ∈ C2
b(Rm+n,R); see, for example, Bain and Crisan (2009). For k ≥ 0,

Ck
b is the space of k times continuously differentiable functions f , such that f and

all its partial derivatives up to order k are bounded.
The theory of stochastic averaging [see, e.g., Papanicolaou, Stroock and Varad-

han (1977)] tells us that under suitable conditions, Xε converges in law to X0 as
ε → 0, where X0 is the solution of an SDE

dX0
t = b̄

(
X0

t

)
dt + σ̄

(
X0

t

)
dWt

for suitably averaged b̄ and σ̄ . Denote the generator of X0 by L̄.
We want to show that as long as we are only interested in estimating the slow

component, we can take advantage of this fact. More precisely, we want to find a
homogenized (unnnormalized) filter ρ0, such that for small ε, ρε,x which is the
x-marginal of ρε

t , is close to ρ0. The x-marginal of ρε
t is defined as

ρ
ε,x
t (ϕ) =

∫
Rm+n

ϕ(x)ρε
t (dx, dz)

for every measurable bounded ϕ : Rm → R, and ρ0 is the solution of

dρ0
t (ϕ) = ρ0

t (L̄ϕ)dt + ρ0
t (h̄ϕ) dY ε

t ,
(4)

ρ0
0(ϕ) = EQ

[
ϕ

(
X0

0
)]

,

where h̄ is a suitably averaged version of h. The measure-valued processes π0 and
πε,x are then defined in terms of ρ0 and ρε,x as πε was defined in terms of ρε ,

π0
t (ϕ) = ρ0

t (ϕ)

ρ0
t (1)

and π
ε,x
t (ϕ) = ρ

ε,x
t (ϕ)

ρ
ε,x
t (ϕ)

.
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Note that the homogenized filter is still driven by the real observation Y ε and
not by a “homogenized observation,” which is practical for implementation of the
homogenized filter in applications since such homogenized observation is usually
not available. However, should such homogenized observation be available, using
it would lead to loss of information for estimating the signal compared to using the
actual observation.

In this paper, we will prove L1-convergence of the actual filter to the homoge-
nized filter, that is, we will show that for any T > 0,

lim
ε→0

E
[
d
(
π

ε,x
T ,π0

T

)] = 0,

where d denotes a suitable distance on the space of probability measures that gen-
erates the topology of weak convergence. This convergence result is shown in Park,
Sowers and Sri Namachchivaya (2010) for a two-dimensional multiscale signal
process with no drift in the fast component SDE. Here, we extend the result to an
Rm+n-dimensional signal process with drift and diffusion coefficients of the fast
and slow components dependent on both components. The proof of Park, Sow-
ers and Sri Namachchivaya (2010) is based on representing the slow component
as a time-changed Brownian motion under a suitable measure, which cannot be
extended easily to the multidimensional setting we assume here.

Based on (3) and (4), the filter convergence problem is a problem of homog-
enization of a SPDE. In Papanicolaou, Stroock and Varadhan (1977), homoge-
nization of diffusion processes with periodic structures is done using the mar-
tingale problem approach. In Papanicolaou and Kohler (1975) and Chapter 2 of
Bensoussan, Lions and Papanicolaou (1978), limit behavior of stochastic processes
is studied using asymptotic analysis. Bensoussan, Lions and Papanicolaou (1978)
study linear SPDEs with periodic coefficients and also used a probabilistic ap-
proach in Chapter 3. Homogenization in the nonlinear filtering problem framework
has been studied in Bensoussan and Blankenship (1986) and Ichihara (2004) via
asymptotic analysis on a dual representation of the nonlinear filtering equation. As
far as we are aware, Ichihara (2004) has used BSDEs for studying homogeniza-
tion of Zakai-type SPDEs for the first time. Our convergence proof applies BSDE
techniques by invoking the dual representation of the filtering equation and using
asymptotic analysis to determine the limit behavior of the solution of the backward
equation. Pardoux and Veretennikov (2003) give precise estimates for the transi-
tion function of an ergodic SDE of the type (2), and these results are used in our
proof. To our knowledge, such method of homogenization for SPDEs combining
BSDE and asymptotic methods has not been done before.

To our knowledge, a result presented in Chapter 6 of Kushner (1990) is the
closest to the results presented in this paper. In Theorem 6.3.1 of Kushner (1990)
it is shown that for a fixed test function, the difference of the unnormalized actual
and homogenized filters for multiscale jump-diffusion processes converges to zero
in distribution. Standard results then give convergence in probability of the fixed
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time marginals. Kushner (1990)’s method of proof is by averaging the coefficients
of the SDEs for the unnormalized filters and showing that the limits of both filters
satisfy the same SDE that possesses a unique solution. We obtain Lp convergence
of the measure valued process, not just for fixed test functions, and we are able to
quantify the rate of convergence, which, to the best of our knowledge, has not been
achieved before in homogenization of nonlinear filters.

In Kleptsina, Liptser and Serebrovski (1997), convergence of the nonlinear filter
is shown in a very general setting, based on convergence in total variation distance
of the law of (Xε,Y ε). This is then applied to two examples. Since the diffusion
matrix of our slow component is allowed to depend on the fast component, our
results are not a special case. In the examples of Kleptsina, Liptser and Serebrovski
(1997), Xε converges to X̄ in probability, which is no longer the case in our setting.
However it might be possible to apply the total variation techniques developed in
Kleptsina, Liptser and Serebrovski (1997) to obtain convergence in our setting.
Only the rate of convergence cannot be determined with these techniques.

For a given bounded test function ϕ and terminal time T , we follow Pardoux
(1979) in introducing the associated dual process v

ε,T ,ϕ
t (x, z), which is a dynamic

version of EPε [ϕ(Xε
T )D̃ε

T |Y ε
T ],

v
ε,T ,ϕ
t (x, z) = EPε

t,x,z

[
ϕ

(
Xε

T

)
D̃ε

t,T |Y ε
t,T

]
,

where Pε
t,x,z is the measure under which Xε and Zε are governed by the same

dynamics as under Pε , but (Xε,Zε) stays in (x, z) until time t , and then it starts
to follow the SDE dynamics. D̃ε

t,T = D̃ε
T (D̃ε

t )
−1; and Y ε

t,T = σ(Y ε
r − Y ε

t : t ≤ r ≤
T ) ∨ N (recall that N denotes the Q-negligible sets). From the Markov property
of (Xε,Zε) it follows that for any t ∈ [0, T ] :ρε

t (v
ε,T ,ϕ
t ) = ρ

ε,x
T (ϕ). In particular

[because at time 0, ρε is just the starting distribution of (Xε,Zε)],

ρ
ε,x
T (ϕ) =

∫
v

ε,T ,ϕ
0 (x, z)Q(Xε

0,Zε
0)(dx, dz).

Similarly introduce

v
0,T ,ϕ
t (x) = EPε

t,x

[
ϕ

(
X0

T

)
D̃0

t,T |Y ε
t,T

]
,

where

D̃0
t,T = exp

(∫ T

t
h̄
(
X0

r

)∗
dY ε

r − 1

2

∫ T

t

∣∣h̄(
X0

r

)∣∣2 dr

)

and Pε
t,x is the measure under which X0 is governed by the same dynamics

as under Pε , but stays in x until time t . We can also show that for any t ∈
[0, T ] :ρ0

t (v
0,T ,ϕ
t ) = ρ0

T (ϕ), so that

ρ0
T (ϕ) =

∫
v

0,T ,ϕ
0 (x)QX0

0
(dx).
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Note that QX0
0

= QXε
0

because the homogenized process has the same starting
distribution as the unhomogenized one.

Now fix T and ϕ ∈ C2
b(Rm,R) and write vε

t = v
ε,T ,ϕ
t and v0

t = v
0,T ,ϕ
t .

Our aim is to show that for nice test functions ϕ, and for the dual processes vε

and v0 defined above, E[|vε
0(x, z) − v0

0(x)|p] is small (in a way that will depend
on x and z). Then

E
[∣∣ρε,x

T (ϕ) − ρ0
T (ϕ)

∣∣p] = E

[∣∣∣∣
∫ (

vε
0(x, z) − v0

0(x)
)
Q(Xε

0,Zε
0)(dx, dz)

∣∣∣∣
p]

≤ E

[∫ ∣∣vε
0(x, z) − v0

0(x)
∣∣pQ(Xε

0,Zε
0)(dx, dz)

]

=
∫

E
[∣∣vε

0(x, z) − v0
0(x)

∣∣p]
Q(Xε

0,Zε
0)(dx, dz)

will also be small as long as Q(Xε
0,Zε

0) is well behaved.

3. Formal expansions of the filtering equations and the main results. Be-
fore we continue, let us change notation: For large parts of this article we will only
work under Pε , and the process Y ε is a Brownian motion under Pε which is inde-
pendent of (Xε,Zε,X0). Therefore from now on we write P instead of Pε and B

instead of Y ε to facilitate the reading. The distribution and notation for the Markov
processes (Xε,Zε,X0) do not change.

The key point is now that vε and v0 solve backward SPDEs

−dvε
t (x, z) = Lεvε

t (x, z) dt + h(x, z)∗vε
t (x, z) d

←
Bt,

(5)
vε
T (x, z) = ϕ(x)

and

−dv0
t (x) = L̄v0

t (x, z) dt + h̄(x)∗v0
t (x) d

←
Bt,

(6)
v0
T (x) = ϕ(x).

Here and everywhere in this article, d
←
B denotes Itô’s backward integral.

We formally expand vε as

vε
t (x, z) = u0

t (x, z) + εu1
t/ε(x, z) + ε2u2

t/ε(x, z).

Note that rigorously this does not make any sense because:

• We work with equations with terminal conditions. But when we send ε → 0,
then t/ε converges to infinity. So for which time should the terminal condition
of, for example, u1 be defined?

• The terms in this expansion will all be stochastic. Then if u1 is adapted to F B ,

the stochastic integral
∫ T
t u1

s/ε(x, z) d
←
Bs a priori does not make any sense for

ε < 1.
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However if we do such a formal asymptotic expansion, and then call

v0(t, x) = u0(t, x), ψ1(t, x, z) = εu1
t/ε(x, z), R(t, x, z) = ε2u2

t/ε(x, z)

(of course all terms except v0 depend on ε, which we omit in the notation to facil-
itate the reading), then these terms have to solve the following equations:

−dv0
t (x) = L̄v0

t (x, z) dt + h̄(x)∗v0
t (x) d

←
Bt,

−dψ1
t (x, z) = 1

ε
LF ψ1

t (x, z) dt + (LS − L̄)v0
t (x) dt

(7)
+ (

h(x, z) − h̄(x)
)∗

v0
t (x) d

←
Bt,

−dRt(x, z) = LεRt (x, z) dt + LSψ1
t (x, z) dt

(8)
+ h(x, z)∗

(
ψ1

t (x, z) + Rt(x, z)
)
d

←
Bt

with terminal conditions

v0(T , x) = ϕ(x), ψ1(T , x, z) = R(T , x, z) = 0.

Note that the equation for v0 is exactly the desired equation (6). By existence and
uniqueness of the solutions to these linear equations, we can apply superposition
to obtain that then indeed

vε
t (x, z) = v0

t (x) + ψ1
t (x, z) + Rt(x, z).

Therefore the problem of showing Lp-convergence of vε to v0 reduces to show-
ing Lp-convergence of ψ1 + R to 0. To achieve this, we will give probabilistic
representations of ψ1 and R in terms of backward doubly stochastic differential
equations. This will allow us to apply the existing estimates for the transition func-
tion of Zx from Pardoux and Veretennikov (2003).

It will be convenient for us to work with functions that are smoother in their x-
component than they are in their z-component or vice versa. To do so, introduce the
function spaces Ck,l(Rm ×Rn,Rd): For θ : Rm ×Rn → Rd , θ = θ(x, z), write θ ∈
Ck,l(Rm ×Rn,Rd), if θ is k times continuously differentiable in its x-components
and l times continuously differentiable in its z-components. If θ as well as its
partial derivatives up to order (k, l) are bounded, write θ ∈ C

k,l
b (Rm × Rn,Rd).

Introduce the following assumptions:

(Hstat) For the existence of a stationary distribution μ(x, dz) for Zx , we sup-
pose that there exist M0 > 0, α > 0, such that for all |z| ≥ M0

sup
x

〈
f (x, z), z

〉 ≤ −C|z|α.

For the uniqueness of the stationary distribution μ(x, dz) of Zx , we suppose uni-
form ellipticity, that is, that there are 0 < λ ≤ 
 < ∞, such that

λI ≤ gg∗(x, y) ≤ 
I

in the sense of positive semi-definite matrices (I is the unit matrix).
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(HFk,l) The coefficients of the fast diffusion satisfy f ∈ C
k,l
b (Rm × Rn,Rn)

and g ∈ C
k,l
b (Rm × Rn,Rn×k).

(HSk,l) The coefficients of the slow diffusion satisfy b ∈ C
k,l
b (Rm × Rn,Rm)

and σ ∈ C
k,l
b (Rm × Rn,Rm×k).

(HOk,l) The observation function h satisfies h ∈ C
k,l
b (Rm × Rn,Rd).

We will usually write p∞(x, dz) instead of μ(x, dz). Also introduce the nota-
tion

pt(z, θ;x) :=
∫

Rn
θ
(
x, z′)pt

(
z, z′;x)

dz′ := Ez

[
θ
(
Zx

t

)]
,

where z denotes the starting point of Zx , and z′ 
→ pt(z, z
′;x) is the density of Zx

t

if at time 0 it is started in z. Note that the density exists for all t > 0 under the
condition (Hstat), because of the uniform ellipticity of gg∗. Similarly

p∞(θ;x) =
∫

Rn
θ(x, z)p∞(x, dz).

Let the differential operator L̄ be defined as

L̄ =
m∑

i=1

b̄i (x)
∂

∂xi

+ 1

2

m∑
i,j=1

āij (x, z)
∂2

∂xi ∂xj

,

where b̄(x) = p∞(b;x) and ā = p∞(σσ ∗;x). Also define h̄(x) = p∞(h;x).
We introduce the following notation: A multiindex α = (α1, . . . , αm) ∈ Nn

0 is of
order

|α| = α1 + · · · + αm.

Given such a multiindex, define the differential operator

Dα = ∂ |α|

∂x
α1
1 · · ·xαm

m

.

Finally introduce the following norms for f ∈ Ck
b(Rm,Rn):

‖f ‖k,∞ = ∑
|α|≤k

∥∥Dαf
∥∥∞,

where ‖ · ‖∞ is the usual supremum norm.
Our main result is:

THEOREM 3.1. Assume (Hstat), (HF8,4), (HS7,4), (HO8,4) and that the initial
distribution Q(Xε

0,Zε
0) has finite moments of every order. Then for every p ≥ 1 and

T ≥ 0 there exists C > 0, such that for every ϕ ∈ C4
b(

EQ

[∣∣πε,x
T (ϕ) − π0

T (ϕ)
∣∣p])1/p ≤ √

εC‖ϕ‖4,∞.
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In particular, there exists a metric d on the space of probability measures, such
that d generates the topology of weak convergence, and such that for every T ≥ 0
there exists C > 0, such that

EQ

[
d
(
π

ε,x
T ,π0

T

)] ≤ √
εC.

This result will be proven in Section 6.
In particular we can use Borel–Cantelli to conclude that if (εn) converges

quickly enough to 0, then πεn will a.s. converge weakly to π0.
The ideas are rather simple: We represent the backward SPDEs by finite-

dimensional stochastic equations (this will be BDSDEs). The diffusion operators
get replaced by the associated diffusions. We are able to solve those finite-
dimensional equations explicitly, or at least give explicit estimates up to an appli-
cation of Gronwall. This allows us to estimate ψ1 and R in terms of the transition
function of the fast diffusion. But Pardoux and Veretennikov (2003) proved very
precise estimates for this transition function. These estimates allow us to obtain
the convergence.

While the ideas are simple, the precise formulation and the actual proofs are
quite technical. We start by describing the probabilistic representation.

4. Probabilistic representation of SPDEs. In this section, we derive proba-
bilistic representations for SPDEs of the form

−dψ(ω, t, x) = Lψ(ω, t, x) dt + f (ω, t, x) dt

+ (
g(ω, t, x) + G(ω, t, x)ψ(ω, t, x)

)
d

←
Bt,(9)

ψ(T ,x) = ϕ(ω,x),

where ψ :�×[0, T ]×Rm → R, f :�×[0, T ]×Rm → R, g :�×[0, T ]×Rm →
R1×d , and G :� × [0, T ] × Rm → R1×d , ϕ :� × Rm → R are all jointly measur-
able, and (Bt : t ∈ [0, T ]) is a d-dimensional standard Brownian motion under the
measure P. Equation (9) represents the general form of equations (7) and (8) for
the corrector ψ1

t (x, z) and error Rt(x, z), respectively. The differential operator L
is given by

L =
m∑

i=1

bi(x)
∂

∂xi

+ 1

2

m∑
i,j=1

aij (x)
∂2

∂xi ∂xj

for measurable b : Rm → Rm and a : Rm → Sm×m (Sm×m denotes positive
semidefinite symmetric matrices). We will represent these equations in terms of
BDSDEs as introduced by Pardoux and Peng (1994). Note that for these linear
equations it is possible to give a Feynman–Kac type representation without us-
ing BDSDEs. This is done, for example, in Rozovskiı̆ (1990) (“The Method of
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Stochastic Characteristics”). However the BDSDE-representation has the advan-
tage that it permits us to apply Gronwall’s lemma. This would not be possible with
the method of stochastic characteristics.

A BDSDE is an integral equation of the form

Yt = ξ +
∫ T

t
f (s, Ys,Zs) ds +

∫ T

t
g(s, Ys,Zs) d

←
Bs −

∫ T

t
Zs dWs,

where B and W are independent Brownian motions. The solution (Yt ,Zt ) will
be F B

t,T ∨ F W
t -measurable. Starting from the notion of BDSDEs, we can define

forward-backward doubly stochastic differential equations. Let σ = a1/2 and

Xt,x
s = x +

∫ s

t
b
(
Xt,x

s

)
ds +

∫ s

t
σ

(
Xt,x

s

)
dWs for s ≥ t,

Xt,x
s = x for s ≤ t.

We then define the following BDSDE:

−dY t,x
s = f

(
s,Xt,x

s

)
ds + (

g
(
s,Xt,x

s

)
ds + G

(
s,Xt,x

s

)
Y t,x

s

)
d

←
Bs −Zt,x

s dWs,

Y
t,x
T = ϕ

(
X

t,x
T

)
.

It turns out that Y gives a finite-dimensional probabilistic representation for equa-
tion (9), more precisely we have Y

t,x
t = ψ(t, x). This is not completely covered by

Pardoux and Peng (1994), because we have random unbounded coefficients, and
because we do not assume the diffusion matrix a to have a smooth square root. On
the other side, the equation is of a particularly simple linear type. In the remainder
of this section, we give the precise statement and proof for this representation. This
can be skipped at first reading.

We will not be able to get an existence result for classical solutions of the above
SPDE from the theory of BDSDEs: This is due to the fact that for this we would
need smoothness properties of a square root of a. But even when a is smooth, in
the degenerate elliptic case it does not need to have a smooth square root; see,
for example, Stroock (2008), Chapter 2.3. Instead we will use the existence result
of Rozovskiı̆ (1990) and only reprove the uniqueness result of Pardoux and Peng
(1994) in our setting. This will work under Lipschitz continuity of a1/2.

Define for 0 ≤ t ≤ s ≤ T

F 0,B
t,s = σ(Bu − Bt : t ≤ u ≤ s)

and F B
t,s as the completion of F 0,B

t,s under P. Introduce the space of adapted random
fields of polynomial growth:

DEFINITION 1. PT (Rm,Rn) is the space of random fields

H :� × [0, T ] × Rm → Rn
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that are jointly measurable in (ω, t, x), and for fixed (t, x), ω 
→ H(ω, t, x) is
F B

t,T -measurable. Further for fixed ω outside a null set, H has to be jointly contin-
uous in (t, x), and it has to satisfy the following inequality: For every p ≥ 1 there
is Cp > 0, q > 0, such that for all x ∈ Rm,

E
[

sup
0≤t≤T

∣∣H(t, x)
∣∣p]

≤ Cp

(
1 + |x|q)

.

We make the following assumptions on the coefficients of the SPDE:

(Sk) f and g are k times continuously differentiable and the partial derivatives
up to order k are all in PT . G is (k + 1) times continuously differentiable and the
partial derivatives up to order (k + 1) are all uniformly bounded in (ω, t, x). ϕ is k

times continuously differentiable, and all partial derivatives of order 0 to k grow at
most polynomially.

We make the following assumptions on the coefficients of the differential oper-
ator L:

(Dk) b ∈ Ck
b(Rm,Rm), a ∈ Ck

b(Rm,Sm×m), and a is degenerate elliptic: For
every ξ ∈ Rm and every x ∈ Rm,

〈
a(x)ξ, ξ

〉 = m∑
i,j=1

aij (x)ξiξj ≥ 0.

Then we have the following result:

PROPOSITION 4.1. Assume (Sk) and (Dk) for some k ≥ 3. Then equation (9)
has a unique classical solution ψ in the sense that for every fixed ω outside a
null set, ψ(ω, ·, ·) ∈ C0,k−1([0, T ] × Rd,R), ψ and its partial derivatives are in
PT (Rm,R), and ψ solves the integral equation. If ψ̃ is any other solution of the
integral equation, then ψ and ψ̃ are indistinguishable. If further f,g and ϕ as
well as their derivatives up to order k are uniformly bounded in (ω, t, x), then for
any p > 0 there exist Cp,q > 0 (only depending on p, the dimensions involved,
the bounds on a, b and G, and on T), such that for all |α| ≤ k − 1 and x ∈ Rm,

E
[
sup
t≤T

∣∣Dαψ(t, x)
∣∣p]

≤ C
(
1 + |x|q)

E
[
‖ϕ‖p

k,∞ + sup
t≤T

∥∥f (t, ·)∥∥p
k,∞ + sup

t≤T

∥∥g(t, ·)∥∥p
k,∞

]
.

PROOF. This is a combination of Theorem 4.3.2 and Corollary 4.3.2 of
Rozovskiı̆ (1990) (The claimed bound is only given for the equation in unweighted
Sobolev spaces, in Corollary 4.2.2. But from that we can deduce the result for the
weighted Sobolev case). The only thing we need to verify is that our polynomial
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growth assumption on the coefficients is compatible with the Sobolev norm con-
dition there. But if θ ∈ PT (Rm,Rn), then for any p ≥ 1 there certainly is an r < 0
such that θ takes its values in the weighted Lp-space with weight (1 + |x|2)r/2,

E

[
sup

0≤t≤T

∫ ∣∣θ(t, x)
∣∣p(

1 + |x|2)r/2
dx

]

≤ E

[∫
sup

0≤t≤T

1
∣∣θ(t, x)

∣∣p(
1 + |x|2)r/2

dx

]

=
∫

E
[

sup
0≤t≤T

∣∣θ(t, x)
∣∣p](

1 + |x|2)r/2
dx

≤
∫

Cp

(
1 + |x|q)(

1 + |x|2)r/2
dx < ∞

for small enough r . �

Now we combine this result with the theory of BDSDEs:
Let (Wt : t ∈ [0, T ]) be an n-dimensional standard Brownian motion that is in-

dependent of B . For 0 ≤ t ≤ s, F W
t,s is defined analogously to F B

t,s . For 0 ≤ t ≤ T

we set

Ft = F B
t,T ∨ F W

t .

Note that this is not a filtration, as it is neither decreasing nor increasing in t .
Introduce the following notation:

• H 2
T (Rm) is the space of measurable Rm-valued processes Y s.t., Yt is Ft -

measurable and

E

[∫ T

0
|Yt |2 dt

]
< ∞.

• S2
T (Rm) is the space of continuous adapted Rm-valued processes Y s.t. Yt ∈ Ft

and

E
[

sup
0≤t≤T

|Yt |2
]
< ∞.

A BDSDE is an integral equation of the form

Yt = ξ +
∫ T

t
f (s, ·, Ys,Zs) ds +

∫ T

t
g(s, ·, Ys,Zs) d

←
Bs −

∫ T

t
Zs dWs,(10)

where f : [0, T ] × � × R × R1×n → R, g : [0, T ] × � × R × R1×n → R1×l ,
and for fixed y ∈ R, z ∈ R1×n the processes (ω, t) 
→ f (t,ω, x, z) and (ω, t) 
→
g(t,ω, x, z) are (F B

0,T ∨ F W
T )⊗ B(R)-measurable, and for every t , f (t, ·, x, z) and

g(t, ·, x, z) are Ft -measurable.
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(Y,Z) will be called solution of (10) if (Y,Z) ∈ S2
T (R) × H 2

T (R1×n) and if the
couple solves the integral equation.

We will also write the equation in differential form

−dYt = f (t, Yt ,Zt ) dt + g(t, Yt ,Zt ) d
←
Bt −Zt dWt .

Observe that with suitable adaptations, all of the following results also hold in
the multidimensional case, that is, for Y ∈ Rm. We restrict to one-dimensional Y

for simplicity and because ultimately we are only interested in that case.
Pardoux and Peng (1994) show that under the following conditions, equa-

tion (10) has a unique solution:

• ξ ∈ L2(�, FT ,P;R);
• for any (y, z) ∈ R × R1×n :f (·, ·, y, z) ∈ H 2

T (R) and g(·, ·, y, z) ∈ H 2
T (R1×k);

• f and g satisfy Lipschitz conditions and g is a contraction in z: there exist
constants L > 0 and 0 < α < 1 s.t. for any (ω, t) and y1, y2, z1, z2,∣∣f (t,ω, y1, z1) − f (t,ω, y2, z2)

∣∣2 ≤ L
(|y1 − y2|2 + |z1 − z2|2)

and∣∣g(t,ω, y1, z1) − g(t,ω, y2, z2)
∣∣2 ≤ L|y1 − y2|2 + α|z1 − z2|2.

Now we want to associate a diffusion X to the differential operator L. To do
so, assume that (Dk) is satisfied for some k ≥ 2. Then σ := a1/2 is Lipschitz con-
tinuous by Lemma 2.3.3 of Stroock (2008). Hence for every (t, x) ∈ [0, T ] × Rm,
there exists a strong solution of the SDE

Xt,x
s = x +

∫ s

t
b
(
Xt,x

s

)
ds +

∫ s

t
σ

(
Xt,x

s

)
dWs for s ≥ t,

Xt,x
s = x for s ≤ t.

Associate the following BDSDE to (9):

−dY t,x
s = f

(
s,Xt,x

s

)
ds + (

g
(
s,Xt,x

s

) + G
(
s,Xt,x

s

)
Y t,x

s

)
d

←
Bs −Zt,x

s dWs,
(11)

Y
t,x
T = ϕ

(
X

t,x
T

)
.

Under the assumptions (Sk) and (Dk) for k ≥ 2, this equation has a unique solution.

PROPOSITION 4.2. Assume (Sk) and (Dk) for some k ≥ 3. Then the unique
classical solution ψ of the SPDE (9) is given by ψ(t, x) = Y

t,x
t , where (Y t,x,Zt,x)

is the unique solution of the BDSDE (11).

We can give exactly the same proof as in Pardoux and Peng (1994), Theo-
rem 3.1, taking advantage of the independence of B and W . For the reader’s con-
venience, we include it here.
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PROOF. Let ψ be a classical solution of (9). It suffices to show that(
ψ

(
s,Xt,x

s

)
,Dψ

(
s,Xt,x

s

)
σ

(
Xt,x

s

)
: t ≤ s ≤ T

)
solves the BDSDE (11). Here Dψ is the gradient of ψ . For this purpose, consider
a partition t = t0 < t1 < · · · < tn = T of [t, T ]. Then

ψ
(
t,X

t,x
t

) = ψ
(
T ,X

t,x
T

) +
n−1∑
i=0

(
ψ

(
ti ,X

t,x
ti

) − ψ
(
ti+1,X

t,x
ti+1

))

= ϕ
(
X

t,x
T

) +
n−1∑
i=0

(
ψ

(
ti ,X

t,x
ti

) − ψ
(
ti+1,X

t,x
ti+1

))

and

ψ
(
ti ,X

t,x
ti

) − ψ
(
ti+1,X

t,x
ti+1

)
= (

ψ
(
ti ,X

t,x
ti

) − ψ
(
ti ,X

t,x
ti+1

)) + (
ψ

(
ti ,X

t,x
ti+1

) − ψ
(
ti+1,X

t,x
ti+1

))
= −

(∫ ti+1

ti

Lψ
(
ti ,X

t,x
s

)
ds +

∫ ti+1

ti

Dψ
(
ti ,X

t,x
s

)
σ

(
Xt,x

s

)
dWs

)

+
∫ ti+1

ti

(
Lψ

(
s,X

t,x
ti+1

) + f
(
s,X

t,x
ti+1

))
ds

+
∫ ti+1

ti

(
g
(
s,X

t,x
ti+1

) + G
(
X

t,x
ti+1

)
ψ

(
s,X

t,x
ti+1

))
d

←
Bs .

This is justified because Xt,x and ψ are independent and because ψ grows polyno-
mially, hence we can apply Itô’s formula. We also used the fact that ψ is a classical
solution to (9). If we let the mesh size tend to 0, then by continuity of Xt,x and ψ ,
the result follows. �

5. Preliminary estimates. The notation Dα
x indicates that the differential op-

erator Dα is only acting on the x-variables.
The following result will help us to justify the BDSDE-representations on the

deeper levels. Recall that pt(z, θ;x) = E[θ(x,Zx
t )|Zx

0 = z].

PROPOSITION 5.1. Assume (HFk,l). Let θ ∈ Ck,l(Rm × Rn,R) satisfy for
some C,p > 0 ∑

|α|≤k

∑
|β|≤l

∣∣Dα
x Dβ

z θ(x, z)
∣∣ ≤ C

(
1 + |x|p + |z|p)

.

Then

(t, x, z) 
→ pt(z, θ;x) ∈ C0,k,l(R+ × Rm × Rn,R
)
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and there exist C1,p1 > 0, such that for all (t, x, z) ∈ [0,∞) × Rm × Rn∑
|α|≤k

∑
|β|≤l

∣∣Dα
x Dβ

z pt (z, θ;x)
∣∣ ≤ C1e

C1t
(
1 + |x|p1 + |z|p1

)
.

If the bound on the derivatives of θ can be chosen uniformly in x, that is,∑
|α|≤k

∑
|β|≤l

sup
x

∣∣Dα
x Dβ

z θ(x, z)
∣∣ ≤ C

(
1 + |z|p)

,

then the bound on the derivatives of pt(z, θ;x) is also uniform in x,∑
|α|≤k

∑
|β|≤l

sup
x

∣∣Dα
x Dβ

z pt (z, θ;x)
∣∣ ≤ C1e

C1t
(
1 + |z|p1

)
.

PROOF. Note that

pt(z, θ;x) = E
[
θ
(
x,Zx

t

)|Zx
0 = z

] = E
[
θ(Xt ,Zt )|(X0,Z0) = (x, z)

]
is the solution of Kolmogorov’s backward equation associated to (X,Z), where

Xt = X0,

Zt = Z0 +
∫ t

0
f (Xs,Zs) ds +

∫ t

0
g(Xs,Zs) dWs.

In this formulation, the first result is standard; cf., for example, Stroock (2008),
Corollary 2.2.8.

The second statement can be proven in the same way as Stroock (2008), Corol-
lary 2.2.8. �

Some results from Pardoux and Veretennikov (2003) are collected in the fol-
lowing proposition:

PROPOSITION 5.2. Assume (Hstat) and (HFk,3). Let θ ∈ Ck,0(Rm × Rn,R)

satisfy for some C,p > 0,∑
|α|≤k

sup
x

∣∣Dα
x θ(x, z)

∣∣ ≤ C
(
1 + |z|p)

.

Then:

(1) x 
→ p∞(θ;x) ∈ Ck
b(Rm,R).

(2) Assume additionally that θ satisfies the centering condition∫
Rn

θ(x, z)p∞(x, dz) = 0

for all x, and that θ ∈ Ck,1(Rm × Rn,R) and∑
|α|≤k

∑
|β|≤1

sup
x

∣∣Dβ
z Dα

x θ(x, z)
∣∣ ≤ C

(
1 + |z|p)

.



DIMENSIONAL REDUCTION IN NONLINEAR FILTERING 2307

Then

(x, z) 
→
∫ ∞

0
pt(z, θ;x)dt ∈ Ck,1(

Rm × Rn,R
)
,

and for every q > 0 there exist C1, q1 > 0, such that for every z ∈ Rn

∑
|α|≤k

∑
|β|≤1

∫ ∞
0

sup
x

∣∣Dβ
z Dα

x pt (z, θ;x)
∣∣q dt ≤ C1

(
1 + |z|q1

)
.

PROOF. The statements in the proposition are taken from Theorems 1 and 2
and Proposition 1 of Pardoux and Veretennikov (2003):

(1) We get from Theorem 1 of Pardoux and Veretennikov (2003), that for any
q > 0 there exists Cq > 0, such that for any (x, z, z′) ∈ Rm × Rn × Rn,

∑
|α|≤k

sup
x

∣∣Dα
x p∞

(
z′;x)∣∣ ≤ Cq

1 + |z′|q .

So if we choose q large enough and differentiate p∞(θ;x) under the integral sign,
then we obtain the first claim. (Of course here we have to use the growth constraint
on θ and its derivatives.)

(2) This follows from the bounds on the derivatives of pt(z, θ;x) that are given
in Pardoux and Veretennikov (2003), Theorem 2, formulas (14) and (15): For any
k > 0 there exist Ck,mk > 0, such that for any (t, x, z) ∈ [1,∞) × Rm × Rn,∑

|α|≤k

∑
|β|≤1

∣∣Dβ
z Dα

x pt (z, θ;x)
∣∣ ≤ Ck

1 + |z|mk

(1 + t)k
.

We combine this estimate with Proposition 5.1, from where we obtain for
(t, x, z) ∈ R+ × Rm × Rn∑

|α|≤k

∑
|β|≤l

sup
x

∣∣Dα
x Dβ

z pt (z, θ;x)
∣∣ ≤ C1e

C1t
(
1 + |z|p1

)
.

We choose k such that qk > 1 and use the first estimate on [1,∞) and the second
estimate on [0,1). The result follows. �

We will also need some moment bounds for the diffusions Xε and Zε .

PROPOSITION 5.3. Assume (Hstat) and that the coefficients b and σ and f

and g of the fast and slow motion are bounded and globally Lipschitz continuous.
Then for any p ≥ 1 there exists Cp > 0, such that

sup
(t,ε,x)∈[0,∞)×[0,1]×Rm

E
[∣∣Zε

t

∣∣p|(Xε
0,Z

ε
0
) = (x, z)

] ≤ Cp

(
1 + |z|p)

.

Also, for every T > 0 and every p ≥ 1 there exist C(p,T ), q > 0, such that

sup
(t,ε)∈[0,T ]×[0,1]

E
[∣∣Xε

t

∣∣p|(Xε
0,Z

ε
0
) = (x, z)

] ≤ C(p,T )
(
1 + |x|p)

.
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PROOF. The first claim can be proven exactly as in Veretennikov (1997): First
write Z̄ε

t := Zε
tε2 . Then

dZ̄ε
t = f

(
Xε

ε2t
, Z̄ε

t

)
dt + g

(
Xε

ε2t
, Z̄ε

t

)
dW̄ ε

t ,

where W̄ ε
t := 1/εWε2t is a Wiener process. Next, introduce the same time change

as in Pardoux and Veretennikov [(2001), page 1063],

κ(x, z) := ∣∣g(x, z)∗z
∣∣/|z|, γ ε(t) :=

∫ t

0
κ2(

Xε
ε2s

, Z̄ε
s

)
ds,

τ ε(t) := (
γ ε)−1

(t).

Define Z̃ε
t := Z̄ε

τ ε(t). Then

dZ̃ε
t = κ−2(

Xε
ε2t

, Z̃ε
t

)
f

(
Xε

ε2t
, Z̃ε

t

)
dt + κ−1(

Xε
ε2t

, Z̃ε
t

)
g
(
Xε

ε2t
, Z̃ε

t

)
dW̃ ε

t

with a new standard Brownian motion W̃ ε . Now we are in a position to just copy
the proof of Lemma 1 in Veretennikov (1997) (which we do not do here) to get the
first result.

The second claim is obvious, because the coefficients of Xε are bounded. �

Now we we are able to impose conditions on the coefficients of the diffusions
that guarantee smoothness of the coefficients of L̄. Recall that L̄ was defined as

L̄ =
m∑

i=1

b̄i (x)
∂

∂xi

+ 1

2

m∑
i,j=1

āij (x, z)
∂2

∂xi ∂xj

,

where b̄ = p∞(b;x) and ā = p∞(σσ ∗;x).

PROPOSITION 5.4. Assume (HFk,3), (HSk,0) and (HOk,0). Then

b̄ ∈ Ck
b

(
Rm,Rm)

, ā ∈ Ck
b

(
Rm,Sm×m)

, h̄ ∈ Ck
b

(
Rm,Rk).

PROOF. All the terms of b̄, ā and h̄ are of the form p∞(θ;x). So by Propo-
sition 5.2, we only need to verify that the respective θ are in Ck,0 and satisfy the
polynomial bound ∑

|α|≤k

sup
x

∣∣Dα
x θ(x, z)

∣∣ ≤ C
(
1 + |z|p)

for some C,p > 0. But we even assumed them to be in C
k,0
b , so the result follows.

�

6. Proof of the main result. We will find convergence rates for the correc-
tor and remainder terms that are expressed in terms of v0 and its derivatives. So
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now we give bounds on v0 and its derivatives in terms of the test function ϕ. This
is necessary because we do not only want to show convergence of the filter inte-
grating fixed test functions, but with respect to a suitable distance on the space of
probability measures.

LEMMA 6.1. Let k ≥ 2 and assume b̄, ā, ϕ ∈ Ck+1
b and h̄ ∈ Ck+2

b . Then v0 ∈
C0,k([0, T ] × Rm,R), and for any p ≥ 1 there exist Cp,q > 0, independent of ϕ,
such that for all x ∈ Rm,∑

|α|≤k

E
[

sup
0≤t≤T

∣∣Dαv0
t (x)

∣∣p]
≤ Cp

(
1 + |x|q)‖ϕ‖p

k,∞.

In particular, v0 and all its partial derivatives up to order (0, k) are in PT (Rm,R).

PROOF. This is a simple application of Proposition 4.1, noting that equa-
tion (6) for v0 is of the type (9) with f = 0, g = 0, and G = h̄∗. �

We will prove Lp-convergence of ψ1 and R separately:

LEMMA 6.2. Let k, l ≥ 2. Assume (Hstat), (HFk+1,l+1), (HSk+1,l+1) and
(HOk+1,l+1). Also assume v0 ∈ C0,k+1([0, T ] × Rm,R), and that all its partial
derivatives in x up to order k + 1 are in PT (Rm,R). Finally assume ā, b̄, h̄ ∈ Ck

b .
Then ψ1 ∈ C0,k,l([0, T ] × Rm × Rn,R), and ψ1 as well as its partial derivatives
up to order (0, k, l) are in PT (Rm × Rn,R). For any p ≥ 1 there exist Cp,q > 0,
independent of ϕ, such that for any (x, z) ∈ Rm+n and any ε ∈ (0,1)∑

|α|≤k−1

sup
0≤t≤T

E
[∣∣Dα

x ψ1
t (x, z)

∣∣p]

≤ εp/2Cp

(
1 + |z|q) ∑

0≤|α|≤k+1

E
[

sup
0≤t≤T

∣∣Dα
x v0

t (x)
∣∣p]

.

PROOF. ψ1
t (x, z) solves the BSPDE

−dψ1
t (x, z) =

[
1

ε
LF ψ1

t (x, z) + (LS − L̄)v0
t (x)

]
dt

+ [
h(x, z) − h̄(x)

]∗
v0
t (x) d

←
Bt,(12)

ψ1
T (x, z) = 0.

Existence of the solution ψ1 and its derivatives as well as the polynomial growth
all follow from Proposition 4.1. Write Zε,x,(t,z) for the solution of the SDE

dZε,x,(t,z)
s = 1

ε
f

(
x,Zε,x,(t,z)

s

)
ds + 1√

ε
g
(
x,Zε,x,(t,z)

s

)
dWt, s ≥ t,

Zε,x,(t,z)
s = z, s ≤ t.
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We consider (x,Zε,x,(t,z)) as a joint diffusion, just as in the proof of Proposition 5.1
(x has generator 0). By Proposition 4.2, the solution of (12) is given by θ

(t,x,z)(1)
t ,

the unique solution to the BDSDE

−dθ(t,x,z)(1)
s = (

LS

(·,Zε,x,(t,z)
s

) − L̄
)
v0
s (x) ds

+ (
h
(
x,Zε,x,(t,z)

s

) − h̄(x)
)∗

v0
s (x) d

←
Bs +γ t,x,z

s dWs,

θ
(t,x,z)(1)
T = 0.

We will drop superscripts (t, x, z) for θ
(t,x,z)(1)
s and write θ1

s instead. Similarly, we
write Zε,x

s instead of Z
ε,x,(t,z)
s . ψ1

t (x, z) is F B
t,T -measurable, hence so is θ1

t . We
can then write θ1

t = E[θ1
t |F B

t,T ], where

E
[
θ1
t |F B

t,T

]
= E

[∫ T

t
(LS − L̄)v0

s (x) ds|F B
t,T

]

+ E

[∫ T

t

[
h
(
x,Zε,x

s

) − h̄(x)
]∗

v0
s (x) d

←
Bs |F B

t,T

]

− E

[∫ T

t
γ t,x,z
s dWs |F B

t,T

]
.

W and B are independent; therefore W is a Brownian motion in the large filtra-
tion (FW

s ∨ FB
t,T : s ∈ [0, T ]), hence E[∫ T

t γ t,x,z
s dWs |F W

t ∨ F B
t,T ] = 0, and by the

tower property

E

[∫ T

t
γ t,x,z
s dWs |F B

t,T

]
= 0.

v0
s is F B

s,T -measurable, and L̄ has deterministic coefficients. Thus

E

[∫ T

t
L̄v0

s (x) ds|F B
t,T

]

=
∫ T

t
E

[
L̄v0

s (x)|F B
s,T

]
ds

=
∫ T

t

{
m∑

i=1

p∞(bi;x)
∂

∂xi

v0
s (x) +

m∑
i,j=1

p∞
((

σσ ∗)
ij ;x

) ∂2

∂xixj

v0
s (x)

}
ds.

Since Zε,x is independent of B ,

E

[∫ T

t
LS

(·,Zε,x
s

)
v0
s (x) ds|F B

t,T

]

=
∫ T

t
E

[
LS

(·,Zε,x
s

)
v0
s (x)|F B

s,T

]
ds
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=
∫ T

t

{
m∑

i=1

E
[
bi

(
x,Zε,x

s

)] ∂

∂xi

v0
s (x)

+ 1

2

m∑
i,j=1

E
[(

σσ ∗)
ij

(
x,Zε,x

s

)] ∂2

∂xixj

v0
s (x)

}
ds

=
∫ T

t

{
m∑

i=1

p(s−t)/ε(z, bi;x)
∂

∂xi

v0
s (x)

+ 1

2

m∑
i,j=1

p(s−t)/ε

(
z,

(
σσ ∗)

ij ;x
) ∂2

∂xixj

v0
s (x)

}
ds,

so∣∣∣∣E
[∫ T

t
(LS − L̄)v0

s (x) ds|F B
t,T

]∣∣∣∣
=

∣∣∣∣∣
∫ T

t

{
m∑

i=1

p(s−t)/ε

(
z, bi − p∞(bi;x);x) ∂

∂xi

v0
s (x)

+ 1

2

m∑
i,j=1

p(s−t)/ε

(
z,

(
σσ ∗)

ij − p∞
((

σσ ∗)
ij ;x

);x) ∂2

∂xixj

v0
s (x)

}
ds

∣∣∣∣∣
[the p∞(·;x) terms have been brought inside the integral p(s−t)/ε(z, ·;x) since
they not depend on z]

≤ ε

∣∣∣∣∣
m∑

i=1

∫ (T −t)/ε

0
pu

(
z, bi − p∞(bi;x);x) ∂

∂xi

v0
εu+t (x) du

∣∣∣∣∣
+ ε

2

∣∣∣∣∣
m∑

i,j=1

∫ (T −t)/ε

0
pu

(
z,

(
σσ ∗)

ij − p∞
((

σσ ∗)
ij ;x

);x) ∂2

∂xixj

v0
εu+t (x) du

∣∣∣∣∣
≤ ε

m∑
i=1

∫ ∞
0

∣∣pu

(
z, bi − p∞(bi;x);x)∣∣du sup

t≤s≤T

∣∣∣∣ ∂

∂xi

v0
s (x)

∣∣∣∣
+ ε

2

m∑
i,j=1

∫ ∞
0

∣∣pu

(
z,

(
σσ ∗)

ij − p∞
((

σσ ∗)
ij ;x

);x)∣∣du sup
t≤s≤T

∣∣∣∣ ∂2

∂xixj

v0
s (x)

∣∣∣∣
[f − p∞(f ;x) is centered, so by Proposition 5.2, (5.2)]

≤ εC1
(
1 + |z|q1

){ m∑
i=1

sup
t≤s≤T

∣∣∣∣ ∂

∂xi

v0
s (x)

∣∣∣∣ +
m∑

i,j=1

sup
t≤s≤T

∣∣∣∣ ∂2

∂xixj

v0
s (x)

∣∣∣∣
}
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and therefore finally

E

[∣∣∣∣E
[∫ T

t
(LS − L̄)v0

s (x) ds|F B
t,T

]∣∣∣∣
p]

≤ εpC2
(
1 + |z|q2

)
(13)

× E

[
m∑

i=1

sup
t≤s≤T

∣∣∣∣ ∂

∂xi

v0
s (x)

∣∣∣∣
p

+
m∑

i,j=1

sup
t≤s≤T

∣∣∣∣ ∂2

∂xixj

v0
s (x)

∣∣∣∣
p
]
.

Next, using again v0
s ∈ F B

s,T and that Zε,x is independent of B ,

E

[∫ T

t

[
h
(
x,Zε,x

s

) − h̄(x)
]∗

v0
s (x) d

←
Bs |F B

t,T

]

=
∫ T

t
E

[[
h
(
x,Zε,x

s

) − h̄(x)
]∗

v0
s (x)|F B

s,T

]
d

←
Bs

=
∫ T

t
p(s−t)/ε(z, h − h̄;x)∗v0

s (x) d
←
Bs .

For t ≤ r ≤ T , r 
→ ∫ T
r p(s−t)/ε(z, h − h̄;x)∗v0

s (x) d
←
Bs , is a martingale w.r.t.

(F B
r,T : r ∈ [t, T ]) if time is run backwards. Hence by the Burkholder–Davis–

Gundy inequality,

E

[∣∣∣∣
∫ T

t
p(s−t)/ε(z, h − h̄;x)∗v0

s (x) d
←
Bs

∣∣∣∣
p]

≤ CpE

[〈∫ T

t
p(s−t)/ε(z, h − h̄;x)∗v0

s (x) d
←
Bs

〉p/2]
,

where〈∫ T

t
p(s−t)/ε(z, h − h̄;x)∗v0

s (x) d
←
Bs

〉

=
∫ T

t

∣∣∣∣p(s−t)/ε(z, h − h̄;x)∗v0
s (x)

∣∣∣∣
2

ds

≤ ε

∫ ∞
0

∣∣pu(z,h − h̄;x)
∣∣2 du sup

t≤s≤T

∣∣v0
s (x)

∣∣2 ≤ εC3
(
1 + |z|q3

)
sup

t≤s≤T

∣∣v0
s (x)

∣∣2,
where the last inequality is by Proposition 5.2, (5.2), since h− h̄ is centered. There-
fore,

E

[∣∣∣∣
∫ T

t
p(s−t)/ε(z, h − h̄;x)∗v0

s (x) d
←
Bs

∣∣∣∣
p]

(14)
≤ εp/2C4

(
1 + |z|q4

)
E

[
sup

t≤s≤T

∣∣v0
s (x)

∣∣p]
.
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Combining (13) and (14),

E
[∣∣θ1

t

∣∣p] ≤ εpC4
(
1 + |z|q4

) ∑
|α|≤2

E
[

sup
t≤s≤T

∣∣Dα
x v0

s (x)
∣∣p]

.

Next, consider a first-order x-derivative of θ1
t ,

∂

∂xk

θ1
t = ∂

∂xk

∫ T

t
E[LS − L̄]v0

s (x) ds

+ ∂

∂xk

∫ T

t
E

[
h
(
x,Zε,x

s

) − h̄(x)
]∗

v0
s (x) d

←
Bs .

As before, the forward Itó integral term vanished after taking the (conditional)
expectation.

Interchanging order of differentiation and integration,∣∣∣∣ ∂

∂xk

∫ T

t
E[LS − L̄]v0

s (x) ds

∣∣∣∣
≤ ε

m∑
i=1

∣∣∣∣
∫ (T −t)/ε

0

{
∂

∂xk

pu

(
z, bi − p∞(bi;x);x) ∂

∂xi

v0
εu+t (x)

+ pu

(
z, bi − p∞(bi;x);x) ∂2

∂xkxi

v0
εu+t (x)

}
du

∣∣∣∣
+ ε

2

m∑
i,j=1

∣∣∣∣
∫ (T −t)/ε

0

{
∂

∂xk

pu

(
z,

(
σσ ∗)

ij − p∞
((

σσ ∗)
ij ;x

);x)

× ∂2

∂xixj

v0
εu+t (x)

+ pu

(
z,

(
σσ ∗)

ij − p∞
((

σσ ∗)
ij ;x

);x)

× ∂3

∂xixjxk

v0
εu+t (x)

}
du

∣∣∣∣
≤ ε

m∑
i=1

{∫ ∞
0

∣∣∣∣ ∂

∂xk

pu

(
z, bi − p∞(bi;x);x)∣∣∣∣du sup

t≤s≤T

∣∣∣∣ ∂

∂xi

v0
s (x)

∣∣∣∣
+

∫ ∞
0

∣∣pu

(
z, bi − p∞(bi;x);x)∣∣du sup

t≤s≤T

∣∣∣∣ ∂2

∂xkxi

v0
s (x)

∣∣∣∣
}

+ ε

2

m∑
i,j=1

{∫ ∞
0

∣∣∣∣ ∂

∂xk

pu

(
z,

(
σσ ∗)

ij − p∞
((

σσ ∗)
ij ;x

);x)∣∣∣∣du

× sup
t≤s≤T

∣∣∣∣ ∂2

∂xixj

v0
s (x)

∣∣∣∣
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+
∫ ∞

0

∣∣pu

(
z,

(
σσ ∗)

ij − p∞
((

σσ ∗)
ij ;x

);x)∣∣du

× sup
t≤s≤T

∣∣∣∣ ∂3

∂xixjxk

v0
s (x)

∣∣∣∣
}
.

Then, from Proposition 5.2, (5.2) again,∣∣∣∣ ∂

∂xk

∫ T

t
E[LS − L̄]v0

s (x) ds

∣∣∣∣ ≤ εC5
(
1 + |z|q5

) ∑
1≤β≤3

sup
t≤s≤T

∣∣Dβ
x v0

s (x)
∣∣,

since the quantities b − b̄ and σσ ∗ − ¯σσ ∗ are centered. Taking expectation,

E

[∣∣∣∣ ∂

∂xk

∫ T

t
E[LS − L̄]v0

s (x) ds

∣∣∣∣
p]

(15)
≤ εpC6

(
1 + |z|q6

) ∑
1≤β≤3

E
[

sup
t≤s≤T

∣∣Dβ
x v0

s (x)
∣∣p]

.

Next, by (HOk,l), we can interchange the order of ordinary differentiation and
stochastic integration [cf. Karandikar (1983)],

E

[∣∣∣∣ ∂

∂xk

(∫ T

t
E

[
h
(
x,Zε,x

s

) − h̄(x)
]∗

v0
s (x) d

←
Bs

)∣∣∣∣
p]

= E

[∣∣∣∣
∫ T

t

∂

∂xk

(
E

[
h
(
x,Zε,x

s

) − h̄(x)
]∗

v0
s (x)

)
d

←
Bs

∣∣∣∣
p]

≤ CpE

[(∫ T

t

∣∣∣∣ ∂

∂xk

(
E

[
h
(
x,Zε,x

s

) − h̄(x)
]∗

v0
s (x)

)∣∣∣∣
2

ds

)p/2]
,

where ∫ T

t

∣∣∣∣ ∂

∂xk

(
E

[
h
(
x,Zε,x

s

) − h̄(x)
]∗

v0
s (x)

)∣∣∣∣
2

ds

= ε

∫ (T −t)/ε

0

∣∣∣∣ ∂

∂xk

pu(z,h − h̄;x)v0
εu+t (x)

+ pu(z,h − h̄;x)
∂

∂xk

v0
εu+t (x)

∣∣∣∣
2

du

≤ 2ε

{∫ ∞
0

∣∣∣∣ ∂

∂xk

pu(z,h − h̄;x)

∣∣∣∣
2∣∣v0

εu+t (x)
∣∣2 du

+
∫ ∞

0

∣∣pu(z,h − h̄;x)
∣∣2∣∣∣∣ ∂

∂xk

v0
εu+t (x)

∣∣∣∣
2

du

}

≤ εC7
(
1 + |z|q7

){
sup

t≤s≤T

∣∣v0
s (x)

∣∣2 + sup
t≤s≤T

∣∣∣∣ ∂

∂xk

v0
s (x)

∣∣∣∣
2}

.
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The last step follows once again from Proposition 5.2, (5.2). So,

E

[∣∣∣∣ ∂

∂xk

(∫ T

t
E

[
h
(
x,Zε,x

s

) − h̄(x)
]∗

v0
s (x) d

←
Bs

)∣∣∣∣
p]

(16)

≤ εp/2C8
(
1 + |z|q8

){
E

[
sup

t≤s≤T

∣∣v0
s (x)

∣∣p]
+ E

[
sup

t≤s≤T

∣∣∣∣ ∂

∂xk

v0
s (x)

∣∣∣∣
p]}

.

Combining (15) and (16)

E

[∣∣∣∣ ∂

∂xk

θ1
t

∣∣∣∣
p]

≤ εp/2C9
(
1 + |z|q9

) ∑
α≤3

E
[

sup
t≤s≤T

∣∣Dα
x v0

s (x)
∣∣p]

.

Iterating these arguments for the higher order derivatives of θ1,∑
|α|≤k−1

E
[∣∣Dα

x θ1
t

∣∣p] ≤ εp/2C10
(
1 + |z|q10

) ∑
|α|≤k+1

E
[

sup
t≤s≤T

∣∣Dα
x v0

s (x)
∣∣p]

.
�

LEMMA 6.3. Let k, l ≥ 3. Assume (HFk,l), (HSk,l) and (HOk+1,l+1). Also as-
sume ψ1 ∈ C0,k+2,l([0, T ] × Rm × Rn,R) and that all its partial derivatives up
to order (0, k + 2, l) are in PT ([0, T ] × Rm,R). Then for any p ≥ 1 there exists
Cp > 0, independent of ϕ, such that for any (x, z) ∈ Rm+n, any ε ∈ (0,1) and any
t ∈ [0, T ],

E
[∣∣Rt(x, z)

∣∣p] ≤ Cp

∑
|α|≤2

∫ T

t
E

[
E

[∣∣Dα
x ψ1

s

(
x′, z′)∣∣p]

(x′,z′)=(X
ε,(t,x)
s ,Z

ε,(t,z)
s )

]
ds.

PROOF. Rt(x, z) solves the BSPDE

−dRt(x, z) = (
LεRt (x, z) + LSψ1

t (x, z)
)
dt

+ h(x, z)∗
(
ψ1

t (x, z) + Rt(x, z)
)
d

←
Bt,(17)

RT (x, z) = 0.

Existence of the solution R and its derivatives, as well as the polynomial growth
all follow from Proposition 4.1. By Proposition 4.2, the solution of (17) is given
by θ

(t,x,z)(2)
t , the solution to the BDSDE

−dθ(t,x,z)(2)
s = LSψ1

s

(
Xε,(t,x)

s ,Zε,(t,z)
s

)
ds

+ h
(
Xε,(t,x)

s ,Zε,(t,z)
s

)∗
ψ1

s

(
Xε,(t,x)

s ,Zε,(t,z)
s

)
d

←
Bs

+ h
(
Xε,(t,x)

s ,Zε,(t,z)
s

)∗
θ(t,x,z)(2)
s d

←
Bs −γ t,x,z

s dWs − δt,x,z
s dVs,

θ
(t,x,z)(2)
T = 0.

We will drop superscripts (t, x, z) for θ
(t,x,z)(2)
t , (t, z) for Zε,(t,z) and (t, x) for

Xε,(t,x).
Rt(x, z) is F B

t,T -measurable, hence, so is θ2
t . As before, the stochastic integrals

over dV and dW vanish when we take conditional expectation with respect to
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F B
t,T . Thus

θ2
t = E

[∫ T

t
LSψ1

s

(
Xε

s ,Z
ε
s

)
ds

∣∣∣F B
t,T

]

+ E

[∫ T

t
h
(
Xε

s ,Z
ε
s

)∗
ψ1

s

(
Xε

s ,Z
ε
s

)
d

←
Bs

∣∣∣F B
t,T

]
(18)

+ E

[∫ T

t
h
(
Xε

s ,Z
ε
s

)∗
θ2
s d

←
Bs

∣∣∣F B
t,T

]
.

Consider each term separately:

E

[∣∣∣∣E
[∫ T

t
LSψ1

s

(
Xε

s ,Z
ε
s

)
ds

∣∣∣F B
t,T

]∣∣∣∣
p]

≤ E

[∣∣∣∣
∫ T

t
LSψ1

s

(
Xε

s ,Z
ε
s

)
ds

∣∣∣∣
p]

≤ (T − t)p−1
∫ T

t
E

[∣∣∣∣∣
(

m∑
i=1

bi

(
Xε

s ,Z
ε
s

) ∂

∂xi

+ 1

2

m∑
i,j=1

(
σσ ∗)

ij

(
Xε

s ,Z
ε
s

) ∂2

∂xixi

)
ψ1

s

(
Xε

s ,Z
ε
s

)∣∣∣∣
p
]

ds

≤ C1

∫ T

t

(
‖b‖∞

m∑
i=1

E

[∣∣∣∣ ∂

∂xi

ψ1
s

(
Xε

s ,Z
ε
s

)∣∣∣∣
p]

+ 1

2

∥∥σσ ∗∥∥∞
m∑

i,j=1

E

[∣∣∣∣ ∂2

∂xixi

ψ1
s

(
Xε

s ,Z
ε
s

)∣∣∣∣
p])

ds

≤ C2

∫ T

t

∑
1≤|α|≤2

E
[∣∣Dα

x ψ1
s

(
Xε

s ,Z
ε
s

)∣∣p]
ds.

Note that Zε
s and Xε

s are F W
s ∨ F V

s -measurable, ψ1
s is F B

s,T -measurable and B and
(V ,W) are independent. Thus

E
[∣∣Dα

x ψ1
s

(
Xε

s ,Z
ε
s

)∣∣p] = E
[
E

[∣∣Dα
x ψ1

s

(
Xε

s ,Z
ε
s

)∣∣p|F V
s ∨ F W

s

]]
= E

[
E

[∣∣Dα
x ψ1

s

(
x′, z′)∣∣p]

(x′,z′)=(Xε
s ,Z

ε
s )

]
,

so that

E =
[∣∣∣∣E

[∫ T

t
LSψ1

s

(
Xε

s ,Z
ε
s

)
ds

∣∣∣F B
t,T

]∣∣∣∣
p]

(19)

≤ C2
∑

1≤|α|≤2

∫ T

t
E

[
E

[∣∣Dα
x ψ1

s

(
x′, z′)∣∣p]

(x′z′)=(Xε
s ,Z

ε
s )

]
ds.
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Next, by Jensen’s inequality, the tower property and the Burkholder–Davis–
Gundy inequality,

E

[∣∣∣∣E
[∫ T

t
h
(
Xε

s ,Z
ε
s

)∗
ψ1

s

(
Xε

s ,Z
ε
s

)
d

←
Bs

∣∣∣F B
t,T

]∣∣∣∣
p]

≤ E

[∣∣∣∣
∫ T

t
h
(
Xε

s ,Z
ε
s

)∗
ψ1

s

(
Xε

s ,Z
ε
s

)
d

←
Bs

∣∣∣∣
p]

≤ CpE

[〈∫ T

t
h
(
Xε

s ,Z
ε
s

)∗
ψ1

s

(
Xε

s ,Z
ε
s

)
d

←
Bs

〉p/2]
,

where by Hölder’s inequality and the Cauchy–Schwarz inequality,〈∫ T

t
h
(
Xε

s ,Z
ε,x
s

)∗
ψ1

s

(
Xε

s ,Z
ε
s

)
d

←
Bs

〉p/2

=
(∫ T

t

∣∣h(
Xε

s ,Z
ε,x
s

)∗
ψ1

s

(
Xε

s ,Z
ε
s

)∣∣2 ds

)p/2

≤ C3

∫ T

t

∣∣h(
Xε

s ,Z
ε
s

)∣∣p∣∣ψ1
s

(
Xε

s ,Z
ε
s

)∣∣p ds.

So by the same arguments as for the first term,

E

[∣∣∣∣E
[∫ T

t
h
(
Xε

s ,Z
ε
s

)∗
ψ1

s

(
Xε

s ,Z
ε
s

)
d

←
Bs

∣∣∣F B
t,T

]∣∣∣∣
p]

(20)

≤ C4

∫ T

t
E

[
E

[∣∣ψ1
s

(
x′, z′)∣∣p]

(x′,z′)=(Xε
s ,Z

ε
s )

]
ds.

Finally, using Burkholder–Davis–Gundy in the second line, and Cauchy-
Schwarz in the third line,

E

[∣∣∣∣E
[∫ T

t
h
(
Xε

s ,Z
ε
s

)∗
θ2
s d

←
Bs

∣∣∣F B
t,T

]∣∣∣∣
p]

≤ E

[∣∣∣∣
∫ T

t

[
h
(
Xε

s ,Z
ε
s

)]∗
θ2
s d

←
Bs

∣∣∣∣
p]

(21)

≤ CpE

[(∫ T

t

∣∣h(
Xε

s ,Z
ε
s

)∗
θ2
s

∣∣2 ds

)p/2]

≤ CpE

[(∫ T

t

∣∣h(
Xε

s ,Z
ε
s

)∣∣2∣∣θ2
s

∣∣2 ds

)p/2]
≤ C5‖h‖p∞

∫ T

t
E

[∣∣θ2
s

∣∣p]
ds.

Combining (18) with (19), (20) and (21),

E
[∣∣θ2

t

∣∣p] ≤ C6
∑

|α|≤2

∫ T

t
E

[
E

[∣∣Dα
x ψ1

s

(
x′, z′)∣∣p]

(x′,z′)=(Xε
s ,Z

ε
s )

]
ds

+ C5‖h‖p∞
∫ T

t
E

[∣∣θ2
s

∣∣p]
ds.
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By Gronwall,

E
[∣∣θ2

t

∣∣p]
≤ C6

( ∑
|α|≤2

∫ T

t
E

[
E

[∣∣Dα
x ψ1

s

(
x′, z′)∣∣p]

(x′,z′)=(Xε
s ,Z

ε
s )

]
ds

)
e(T −t)C5‖h‖p∞

≤ C7

( ∑
|α|≤2

∫ T

t
E

[
E

[∣∣Dα
x ψ1

s

(
x′, z′)∣∣p]

(x′,z′)=(Xε
s ,Z

ε
s )

]
ds

)
,

where we choose C7 so that the inequality holds for every t ∈ [0, T ] (replace
e(T −t)C5‖h‖∞ by eT C5‖h‖∞ ). �

Now we can collect all these results to obtain the first step towards Theorem 3.1.

LEMMA 6.4. Assume (Hstat), (HF8,4), (HS7,4), (HO8,4) and that
ϕ ∈ C7

b(Rm,R). Then for every p ≥ 1 there exists C,q1, q2 > 0, independent of
ϕ, such that

sup
0≤t≤T

E
[∣∣vε

t (x, z) − v0
t (x)

∣∣p] ≤ εp/2C
(
1 + |x|q1 + |z|q2

)‖ϕ‖p
4,∞.

PROOF OF THEOREM 3.1. We track the necessary conditions backwards from
Lemma 6.3:

(1) For the solution R given in Lemma 6.3 to exist and satisfy the stated bound,
we need (HF3,3), (HS3,3), (HO4,4) and ψ1 ∈ C0,5,3([0, T ] × Rm × Rn,R). The
polynomial growth condition will be satisfied anyway.

(2) For ψ1 to be in C0,5,3([0, T ] × Rm × Rn,R), we need (Hstat), (HF6,4),
(HS6,4), (HO6,4) and ā, b̄, h̄ ∈ C5

b . We also need v0 ∈ C0,6([0, T ]×Rm,R). Again,
the polynomial growth condition will be satisfied.

(3) For v0 to be in C0,6([0, T ] × Rm,R) we need ā, b̄, ϕ ∈ C7
b and h̄ ∈ C8

b .
(4) For ā, b̄ to be in C7

b we need (HF7,3) as well as (HS7,0) by Proposition 5.4.
Similarly we need (HF8,3) as well as (HO8,0) for h̄ to be in C8

b .
(5) So sufficient conditions are (Hstat), (HF8,4), (HS7,4), (HO8,4). In that case

we obtain from Lemma 6.1∑
|α|≤4

E
[

sup
0≤t≤T

∣∣Dαv0
t (x)

∣∣p]
≤ C1

(
1 + |x|q1

)‖ϕ‖p
4,∞.(22)

From Lemma 6.2 we obtain∑
|α|≤2

sup
0≤t≤T

E
[∣∣Dα

x ψ1
t (x, z)

∣∣p]
(23)

≤ εp/2C2
(
1 + |z|q2

) ∑
|α|≤4

E
[

sup
0≤t≤T

∣∣Dα
x v0

t (x)
∣∣p]

.
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From Lemma 6.3 we get

E
[∣∣Rt(x, z)

∣∣p]
(24)

≤ C3
∑

|α|≤2

∫ T

t
E

[
E

[∣∣Dα
x ψ1

s

(
x′, z′)∣∣p]

(x′,z′)=(X
ε,(t,x)
s ,Z

ε,(t,z)
s )

]
ds.

Combining (22), (24), (24), we get for any t ∈ [0, T ] (by time-homogeneity of Xε

and Zε)

E
[∣∣Rt(x, z)

∣∣p] + E
[∣∣ψ1

t (x, z)
∣∣p]

(25)
≤ εp/2C4

(
1 + sup

0≤s≤T

E
[∣∣Xε

s

∣∣q1 + ∣∣Zε,x
s

∣∣q2 |(Xε
0,Z

ε
0
) = (x, z)

])‖ϕ‖p
4,∞.

From Proposition 5.3 we obtain

sup
0≤s≤T

E
[∣∣Xε

s

∣∣q1 + ∣∣Zε,x
s

∣∣q2 |(Xε
0,Z

ε
0
) = (x, z)

] ≤ C5
(
1 + |x|q3 + |z|q4

)
.

Noting that the right-hand side in (25) does not depend on t ∈ [0, T ],
sup

0≤t≤T

E
[∣∣Rt(x, z)

∣∣p] + sup
0≤t≤T

E
[∣∣ψ1

t (x, z)
∣∣p]

≤ εp/2C6
(
1 + |x|q3 + |z|q4

)‖ϕ‖p
4,∞.

Finally

sup
0≤t≤T

E
[∣∣vε

t (x, z) − v0
t (x)

∣∣p]

≤ C7

(
sup

0≤t≤T

E
[∣∣Rt(x, z)

∣∣p] + sup
0≤t≤T

E
[∣∣ψ1

t (x, z)
∣∣p])

≤ εp/2C8
(
1 + |x|q3 + |z|q4

)‖ϕ‖p
4,∞,

which completes the proof. �

Now we recall that all the calculations up until now were under the changed
measure Pε . We only wrote P and B to facilitate the reading. So let us transfer the
results to the original measure Q.

LEMMA 6.5. Assume (Hstat), (HF8,4), (HS7,4), (HO8,4) and that ϕ ∈
C7

b(Rm,R). Then for every p ≥ 1 there exist C,q1, q2 > 0, independent of ϕ,
such that

sup
0≤t≤T

EQ

[∣∣vε
t (x, z) − v0

t (x)
∣∣p] ≤ εp/2C

(
1 + |x|q1 + |z|q2

)‖ϕ‖p
4,∞.
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PROOF. This is a simple application of the Cauchy–Schwarz inequality in
combination with Gronwall’s lemma,

EQ

[∣∣vε
t (x, z) − v0

t (x)
∣∣p] = EPε

[∣∣vε
t (x, z) − v0

t (x)
∣∣p dQ

dPε

]

≤ EPε

[∣∣vε
t (x, z) − v0

t (x)
∣∣2p]1/2

EPε

[(
dQ

dPε

)2]1/2

,

so we see that the result is true by Lemma 6.4 as long as the second expectation is
finite. Recall that we had defined the notation

dQ

dPε

∣∣∣
Ft

= D̃ε
t = exp

(∫ t

0
h
(
Xε

s ,Z
ε
s

)∗
dY ε

s − 1

2

∫ t

0

∣∣h(
Xε

s ,Z
ε
s

)∣∣2 ds

)
.

So D̃ε satisfies the SDE

dD̃ε
t = D̃ε

t h
(
Xε

t ,Z
ε
t

)∗
dY ε

t , D̃ε
0 = 1.

Since under Pε , Y ε is a Brownian motion, we get by Itô-isometry

EPε

[(
D̃ε

t

)2] = EPε

[∫ t

0

(
D̃ε

s

)2∣∣h(
Xε

s ,Z
ε
s

)∣∣2 ds

]
≤ ‖h‖2∞EPε

[∫ t

0

(
D̃ε

s

)2
ds

]
,

so that by Gronwall EPε [(D̃ε
T )2] < ∞. �

LEMMA 6.6. Assume (Hstat), (HF8,4), (HS7,4), (HO8,4), that ϕ ∈ C7
b and that

the initial distribution Q(Xε
0,Zε

0) has finite moments of every order. Then for every
p ≥ 1 there exists C > 0, independent of ϕ, such that

EQ

[∣∣ρε,x
T (ϕ) − ρ0

T (ϕ)
∣∣p] ≤ εp/2C‖ϕ‖p

4,∞.

PROOF. As we already described in the Introduction, we obtain from Lem-
ma 6.5

EQ

[∣∣ρε,x
T (ϕ) − ρ0

T (ϕ)
∣∣p]

= EQ

[∣∣∣∣
∫ (

vε
0(x, z) − v0

0(x)
)
Q(Xε

0,Zε
0)(dx, dz)

∣∣∣∣
p]

≤
∫

EQ

[∣∣vε
0(x, z) − v0

0(x)
∣∣p]

Q(Xε
0,Zε

0)(dx, dz)

≤ εp/2C1

∫ (
1 + |x|q1 + |z|q2

)
Q(Xε

0,Zε
0)(dx, dz)‖ϕ‖p

4,∞

≤ εp/2C2‖ϕ‖p
4,∞. �

The convergence of the actual filter, that is, of πε,x to π0, now follows exactly
as in Chapter 9.4 of Bain and Crisan (2009). For the sake of completeness, we
include the arguments.
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LEMMA 6.7. Let p ≥ 1. Then

sup
ε∈(0,1],t∈[0,T ]

{
EQ

[∣∣ρε,x
t (1)

∣∣−p] + EQ

[∣∣ρ0
t (1)

∣∣−p]}
< ∞

as long as h is bounded.

PROOF. We give the argument for EQ[|ρε,x
t (1)|−p], EQ[|ρ0

t (1)|−p] being
completely analogue. We have

EQ

[∣∣ρε,x
t (1)

∣∣−p] = EPε

[∣∣ρε,x
t (1)

∣∣−p dQ

dPε

]

≤ EPε

[∣∣ρε,x
t (1)

∣∣−2p]1/2
EPε

[(
dQ

dPε

)2]1/2

.

We showed in the proof of Lemma 6.5 that the second expectation is finite. Note
that x 
→ x−2p is convex. Therefore by Jensen’s inequality,

EPε

[∣∣ρε,x
t (1)

∣∣−2p]
= EPε

[∣∣∣∣EPε

[
exp

(∫ t

0
h
(
Xε

s ,Z
ε
s

)∗
dY ε

s − 1

2

∫ t

0

∣∣h̄(
Xε

s ,Z
ε
s

)∣∣2 ds

)∣∣∣Y ε
t

]∣∣∣∣
−2p]

≤ EPε

[∣∣∣∣exp
(∫ t

0
h
(
Xε

s ,Z
ε
s

)∗
dY ε

s − 1

2

∫ t

0

∣∣h̄(
Xε

s ,Z
ε
s

)∣∣2 ds

)∣∣∣∣
−2p]

≤ EPε

[∣∣∣∣ dQ

dPε

∣∣∣∣
−2p]

= EQ

[∣∣∣∣dPε

dQ

∣∣∣∣
2p+1]

.

The result now follows exactly as in the proof of Lemma 6.5 because for Dε
t =

dPε/dQ|Ft , we have

dDε
t = −h

(
Xε

t ,Z
ε
t

)∗
dBt , Dε

0 = 1,

and B is a Brownian motion under Q. �

Define for any measurable and bounded test function ϕ : Rm → R,

π0
t (ϕ) = ρ0

t (ϕ)

ρ0
t (1)

.

Recall that π
ε,x
t was defined analogously with ρ

ε,x
t instead of ρ0

t . We then have

LEMMA 6.8. Assume (Hstat), (HF8,4), (HS7,4), (HO8,4) and that the initial
distribution Q(Xε

0,Zε
0) has finite moments of every order. Let p ≥ 1. Then there

exists C > 0 such that for every ϕ ∈ C7
b

EQ

[∣∣πε,x
T (ϕ) − π0

T (ϕ)
∣∣p] ≤ εp/2C‖ϕ‖p

4,∞.
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PROOF. In the third line we use that πε,x is a.s. equal to a probability measure,

EQ

[∣∣πε,x
T (ϕ) − π0

T (ϕ)
∣∣p]

= EQ

[∣∣∣∣ρ
ε,x
T (ϕ)

ρ
ε,x
T (1)

− ρ0
T (ϕ)

ρ0
T (1)

∣∣∣∣
p]

= EQ

[∣∣∣∣ρ
ε,x
T (ϕ) − ρ0

T (ϕ)

ρ0
T (1)

− π
ε,x
T (ϕ)

ρ
ε,x
T (1) − ρ0

T (1)

ρ0
T (1)

∣∣∣∣
p]

≤ Cp

(
EQ

[∣∣∣∣ρ
ε,x
T (ϕ) − ρ0

T (ϕ)

ρ0
T (1)

∣∣∣∣
p]

+ ‖ϕ‖p∞EQ

[∣∣∣∣ρ
ε,x
T (1) − ρ0

T (1)

ρ0
T (1)

∣∣∣∣
p])

≤ Cp

(
EQ

[∣∣ρ0
T (1)

∣∣−2p])1/2(
EQ

[∣∣ρε,x
T (ϕ) − ρ0

T (ϕ)
∣∣2p]1/2

+ ‖ϕ‖p∞EQ

[∣∣ρε,x
T (1) − ρ0

T (1)
∣∣2p]1/2)

≤ εp/2C1‖ϕ‖4,∞,

where the last step follows from Lemmas 6.6 and 6.7. �

Since the bound only depends on ‖ϕ‖4,∞, we can replace the assumption ϕ ∈
C7

b by ϕ ∈ C4
b : Just approximate ϕ ∈ C4

b by ϕn ∈ C7
b in the ‖ · ‖4,∞-norm, and

take advantage of the fact that π
ε,x
T and π0

T are a.s. equal to probability measures.
Therefore we have:

COROLLARY 6.9. Assume (Hstat), (HF8,4), (HS7,4), (HO8,4) and that the ini-
tial distribution Q(Xε

0,Zε
0) has finite moments of every order. Let p ≥ 1. Then there

exists C > 0 such that for every ϕ ∈ C4
b ,

EQ

[∣∣πε,x
T (ϕ) − π0

T (ϕ)
∣∣p] ≤ εp/2C‖ϕ‖p

4,∞.

Now note that there exists a countable algebra (ϕi)i∈N of C4
b functions that

strongly separates points in Rm. That is, for every x ∈ Rm and δ > 0, there exists
i ∈ N, such that infy : |x−y|>δ |ϕi(x) − ϕi(y)| > 0. Take, for example, all functions
of the form

exp

(
−

n∑
j=1

qj (x − xj )
2

)

with n ∈ N, qj ∈ Q+, xj ∈ Qm. By Theorem 3.4.5 of Ethier and Kurtz (1986), the
sequence (ϕi) is convergence determining for the topology of weak convergence
of probability measures. That is, if μn and μ are probability measures on Rm, such
that limn→∞ μn(ϕi) = μ(ϕi) for every i ∈ N, then μn converges weakly to μ.



DIMENSIONAL REDUCTION IN NONLINEAR FILTERING 2323

Define the following metric on the space of probability measures on Rm:

d(ν,μ) = d(ϕi)(ν,μ) =
∞∑
i=1

|ν(ϕi) − μ(ϕi)|
2i

.

Because (ϕi) is convergence determining, the metric d generates the topology of
weak convergence. Therefore the proof of Theorem 3.1 is complete.

7. Conclusion and future directions. This paper presented the theoretical
basis for the development of a lower-dimensional particle filtering algorithm for
the state estimation in complex multiscale systems. To this end, we combined
stochastic homogenization with nonlinear filtering theory to construct a homog-
enized SPDE which is the approximation of a lower-dimesional nonlinear filter for
the “coarse-grained” process. The convergence of the optimal filter of the “coarse-
grained” process to the solution of the homogenized filter is shown using BSDEs
and asymptotic techniques. This homogenized SPDE can be used as the basis for
an efficient multi-scale particle filtering algorithm for estimating the slow dynam-
ics of the system, without directly accounting for the fast dynamics. In Lingala
et al. (2012) we present a numerical algorithm based on this scheme that enables
efficient incorporation of observation data for estimation of the coarse-grained
(“slow”) dynamics, and we apply the algorithm to a high-dimensional chaotic mul-
tiscale system.

Even though this paper deals with just one widely separated characteristic time
scale, one can extend this work to incorporate a more realistic setting where the
signal has more than one time scale separation. As before we let ε be a small
parameter that measures the ratio of slow and fast time scales. Consider the signal
and observation processes governed by

dZε
t = 1

ε2 f
(
Zε

t ,X
ε
t

) + 1

ε
g
(
Zε

t ,X
ε
t

)
dWt, Zε

0 = z,

dXε
t = 1

ε
bI (

Zε
t ,X

ε
t

) + b
(
Zε

t ,X
ε
t

) + σ
(
Zε

t ,X
ε
t

)
dVt , Xε

0 = x,(26)

dY ε
t = h

(
Zε

t ,X
ε
t

)
dt + dBt , Y ε

0 = 0,

where W , V and B are independent Wiener processes and x and z are random
initial conditions which are independent of W , V and B . It is important to realize
that there are several scales in (26), even the slow process Xε

t has a fast varying
component. This case is important, in particular, for applications in geophysical
flows and climate dynamics. The drift term b and the diffusion σ cause fluctuations
of order order 1, and the drift term f and the diffusion g cause fluctuations of
order order ε−2, whereas the drift term bI causes fluctuations at an intermediate
order ε−1. It was found that when the average of bI with respect to the invariant
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measure of the fast component Zε
t (for the fixed slow component) is zero, the

limit distribution of the slow component (away from the initial layer) can also
be obtained in terms of the solution of some auxiliary Poisson equation in the
homogenization theory. However, a unified framework to deal with ε−1 term in
developing a lower-dimensional nonlinear filter for the “coarse-grained” process
is still not available.

Our conditions on the coefficients are very restrictive and exclude, for ex-
ample, linear models. This is due to the fact that we are using homogeniza-
tion of SPDEs to obtain convergence of the filter, and that for existence of
solutions to the SPDEs, the coefficients need to be bounded and sufficiently
smooth. Working with weak solutions in place of classical solutions would not
improve the conditions much. Using viscosity solutions or entirely relying on
probabilistic arguments might be a way to get less restrictive conditions how-
ever, with these methods we do not expect that a rate of convergence can be ob-
tained.

While we were able to obtain the explicit rate of convergence
√

ε, the constant
C in Theorem 3.1 depends on the terminal time T . It would be interesting to find
conditions under which this can be avoided. This might be achieved by building
on stability results for nonlinear filters; see, for example, Crisan and Rozovskiı̆
(2011), Chapter 4, “Stability and asymptotic analysis.”

Acknowledgments. We wish to express our gratitude to the anonymous ref-
eree for their careful reading of the manuscript and for their detailed comments
which improved the presentation of this paper. Part of this research was carried out
while P. Imkeller and N. Perkowski were visiting the Department of Aerospace
Engineering of University of Illinois at Urbana-Champaign. They are grateful for
the hospitality at UIUC. Any opinions, findings and conclusions or recommenda-
tions expressed in this paper are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

REFERENCES

ARULAMPALAM, M. S., MASKELL, S., GORDON, N. and CLAPP, T. (2002). A tutorial on particle
filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50 174–
188.

BAIN, A. and CRISAN, D. (2009). Fundamentals of Stochastic Filtering. Stochastic Modelling and
Applied Probability 60. Springer, New York. MR2454694

BENSOUSSAN, A. and BLANKENSHIP, G. L. (1986). Nonlinear filtering with homogenization.
Stochastics 17 67–90. MR0878554

BENSOUSSAN, A., LIONS, J.-L. and PAPANICOLAOU, G. (1978). Asymptotic Analysis for Pe-
riodic Structures. Studies in Mathematics and Its Applications 5. North-Holland, Amsterdam.
MR0503330

http://www.ams.org/mathscinet-getitem?mr=2454694
http://www.ams.org/mathscinet-getitem?mr=0878554
http://www.ams.org/mathscinet-getitem?mr=0503330


DIMENSIONAL REDUCTION IN NONLINEAR FILTERING 2325
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