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Given a probability distribution on an open book (a metric space obtained
by gluing a disjoint union of copies of a half-space along their boundary hy-
perplanes), we define a precise concept of when the Fréchet mean (barycen-
ter) is sticky. This nonclassical phenomenon is quantified by a law of large
numbers (LLN) stating that the empirical mean eventually almost surely lies
on the (codimension 1 and hence measure 0) spine that is the glued hyper-
plane, and a central limit theorem (CLT) stating that the limiting distribution
is Gaussian and supported on the spine. We also state versions of the LLN and
CLT for the cases where the mean is nonsticky (i.e., not lying on the spine)
and partly sticky (i.e., is, on the spine but not sticky).

Introduction. The mean of a finite set of points in Euclidean space moves
slightly when one of the points is perturbed. This fluctuation is pervasive in clas-
sical probabilistic and statistical situations. In geometric contexts, the barycenter
(Fréchet mean [10], L?-minimizer, least squares approximation), which minimizes
the sum of the square distances to a given set of points, generalizes the notion of
mean. Intuition from the Euclidean setting suggests that if the points are randomly
sampled from a well-behaved probability distribution on a space M of dimension
d + 1, then the random variable that is the barycenter ought not be confined to
a particular subspace of dimension d or less, if the distribution is generic. While
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FI1G. 1. (left) The space of rooted phylogenetic trees with three leaves and fixed pendant edge
lengths; (center) the probability distribution supported on three points in 13 equidistant from the
vertex O has barycenter 0; (right) perturbing the distribution—and even macroscopically moving all
three points a limited distance—leaves the barycenter fixed.

this intuition has been made rigorous when M is a manifold [5, 12, 14, 15], it
can fail when M has certain types of singularities, as we demonstrate here for an
open book O: a space obtained by gluing disjoint copies of a half-space along their
boundary hyperplanes; see Section 1 for precise definitions.

EXAMPLE 1. The simplest singular space is the 3-spider: a union 73 of three
rays with their endpoints glued at a point O (Figure 1, left). This space 73 is the
open book O of dimension 1 with three leaves. If three points are chosen equidis-
tant from O on the different rays, then the barycenter lies at 0 by symmetry (Fig-
ure 1, center). The unexpected “sticky” phenomenon is that wiggling one or more
of the points has no effect on the barycenter (Figure 1, right). For instance, if the
points lie at radius r from 0, then the barycenter remains at 0 upon moving one of
the points to radius at most 2r.

EXAMPLE 2. The name “open book” comes from the case of dimension 2,
which looks like an ordinary open book, in the usual lay sense of the words; see
Figure 2.

Our main goal is to define a precise concept of when a distribution on an open
book has a sticky mean in Definition 2.10, and to quantify this highly nonclassical
condition with a law of large numbers (LLN) in Theorem 4.3 and a central limit
theorem (CLT) in Theorem 5.7. Roughly speaking, the sticky LLN says that in
certain situations, empirical (sample) means almost surely eventually lie on the
spine: the hyperplane shared by all of the glued half-spaces by virtue of the gluing.
In Figure 1, the spine is the point 0. In Figure 2, the spine is the central line.

The phenomenon of the sticky mean contrasts with the classical LLN, where the
empirical mean approaches the theoretical mean from all directions. The sticky
CLT says that the limiting distribution is Gaussian and supported on the spine.
Again, the nonclassical nature of this result contrasts with the classical CLT, in
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FI1G. 2.  Open book of dimension 2 with five leaves. Ideally, the picture of this embedding would
continue to infinity vertically, both up and down, as well as away from the spine on every leaf.

which the limiting distribution has full support rather than being supported on a
thin (positive codimension and hence measure zero) subset of the sample space.
Versions of the LLN and CLT are also stated in Theorems 4.3, 5.7 and 5.11 for the
cases where the mean is:

e nonsticky—not lying on the spine—so the LLN and CLT behave classically;
and

e partly sticky—on the spine but not sticky—so the LLN and CLT are hybrids of
the sticky and nonsticky ones.

This paper is motivated by a desire to understand statistical sampling from topo-
logically stratified spaces, including:

e shape spaces, representing equivalence classes of point configurations under
operations such as rotation, translation, scaling, projective transformations, or
other nonlinear transformations (e.g., see [9, 18, 19] for direct similarities, affine
transformations, and projective transformations, resp.);

e spaces of covariance matrices, arising as data points in diffusion tensor imaging
(see [1, 3, 6, 20, 21], e.g.); and

e tree spaces, representing metric phylogenetic trees on fixed sets of taxa (see [7,
16, 17], e.g.).

Open books are the simplest singular topologically stratified spaces. Roughly
speaking, topologically stratified spaces decompose as finite disjoint unions of
manifolds (strata) in such a way that the singularities of the total space are con-
stant along each stratum (this is the structure described in [11], Section 1.4). Every
topologically stratified space that is singular along a stratum of codimension 1 is,
by definition of topological stratification, locally homeomorphic to an open book
along that stratum. Therefore, to understand statistical sampling from arbitrary
stratified spaces possessing singularities in maximal dimension, it is first neces-
sary to understand sampling from open books.
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The metrics on open books that appear as local pieces of arbitrary stratified
spaces are arbitrary. However, sticky means on open books seem to stem from
topological phenomena, rather than geometric ones, so we consider only the sim-
plest metric on O: each half-space has the Euclidean metric and the boundaries
are glued isometrically. Although this restriction is substantial, these “Euclidean”
open books occur in applications. For instance, the space 73 from the first example
above parametrizes all rooted (metric) phylogenetic trees with three taxa and fixed
pendant edge lengths. More generally, open books of arbitrary dimension and pre-
cisely three leaves reflect the local structure of phylogenetic tree space near any
point on a stratum of codimension 1; such a point represents a tree possessing
a node with nonbinary branching. Observations of “unresolved” (i.e., nonbinary)
trees as barycenters of biologically meaningful samples (see [16], Examples 5.5
and 5.6, for descriptions of cases involving yeast phylogenies and brain arteries)
constituted crucial motivation for the present study.

The relation between open books and tree spaces is that of local to global. After
completing an early draft of this paper we found that Basrak [2] had indepen-
dently and simultaneously proved a sticky CLT for certain global situations in di-
mension 1, namely arbitrary binary trees: connected graphs with no cycles where
each node is incident to at most three edges. In contrast, our dimension 1 results
are local, in that all edges meet, but there can be more than three incident to the
intersection.

It bears mentioning that in contrast to their behavior in open books, barycen-
ters do not stick to thin subspaces of shape spaces, or to thin subspaces of more
general quotients of manifolds by isometric proper actions of Lie groups [13]. The
differentiating property amounts to curvature: open books are, in a precise sense,
negatively curved at the spine, whereas passing to the quotient in the construction
of shape spaces adds positive curvature. Basrak’s binary trees [2] are negatively
curved in the same way that open books or spaces of trees are [7]: they are globally
nonpositively curved. (We recommend Sturm’s exposition of this condition [22],
particularly for its clarity regarding connections between probability and geome-
try, which was both a theoretical starting point and a source of inspiration for our
developments here.) It is a principal long-term goal of our investigations to tease
out the connection between stickiness of means of probability distributions with
values in metric spaces and notions of negative curvature.

1. Open books. Set S = R?, the real vector space of dimension d with the
standard Euclidean metric. If R>o = [0, co) is the closed nonnegative ray in the
real line, then the closed half-space

ﬁ_;_:RZoXS

is a metric subspace of RY*! = R x § with boundary S which we identify
with H = {0} x S, and interior H; = R.¢ x S. The open book O is the quo-
tient of the disjoint union H4 x {1,..., K} of K closed half-spaces modulo
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the equivalence relation that identifies their boundaries. Therefore p = (x, k) =
(x(o),x(l),...,x(d),k) is identified with ¢ = (y,j) = (y(o),y(l),...,y(d),j)
whenever x© =0 = y(o) and x@ = y(i) for all i € {0, ..., d}, regardless of k
and j. The following definition summarizes and introduces terminology.

DEFINITION 1.1 (Leaves and spine). The open book O consists of K > 3
leaves Ly, fork =1, ..., K, each of dimension d + 1 and defined by

Li=Hy x [k}

The leaves are joined together along the spine Lo which comprises the equivalence
classes in U,{(: 1 (H x {k}), that is, Lo can be identified with the hyperplane H =
{0} x S or with the space S = R?. Thus, the open book © is the disjoint union

(1.1) O=LoUL{U---UL}

of the spine Lg and the interiors L,‘f = L \ Lo of the leaves, k=1, ..., K. Fig-
ure 2 illustrates an open book withd =1 and K =5.

When we speak of the spine in the following, we make clear which of these
three instances of the spine we have in mind. The following diagram gives an
overview of these instances, spaces and mappings introduced further below in Def-
initions 2.4, 3.4, 5.2 and in the proof of Lemma 3.5.

(@) 2 Ly 2 L c Ly € O

N T Filr,

RH L H. o H Py = mgoF,
I msla
S =R?

DEFINITION 1.2 (Reflection). For a given point x € H, let Rx € E, =
R<g x R? = (—o0, 0] x R? denote its reflection across the hyperplane H . NH _ =
{0} x S.

The metric d on O is expressed in terms of reflection in a natural way: given
two points p,q € O, with p = (x, k) and ¢ = (y, j),

x—yl,  ifk=j,
X —Ryl,  ifk#j,

where |x — y| denotes Euclidean distance on R¢+!. Note that if k # j in equa-
tion (1.2), then d(p, g) = 0 if and only if x and y lie on the spine and coincide.
Our assumption K > 3 implies that O is not isometric to a subset of R?*! (as it
would be for K < 2).

The next lemma refers to globally nonpositive curvature. See [22] for a defini-
tion and background. The only times we apply this concept here are in noting the
uniqueness of barycenters in our context (see Definition 3.1 and the line following
it) and to obtain a quick proof of a strong law of large numbers (Lemma 4.2).

(12) tﬂnq)={
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LEMMA 1.3. The open book (O, d) is a Hausdorff metric space that is glob-
ally nonpositively curved, and its spine is isometric to R?.

PROOF. [22], Example 3.3. [
REMARK 1.4. Although the open book O is not a vector space over R, scaling
by a positive constant A € Rx¢ is defined in the natural way:
Ap = (Ax, k) forall p=(x,k) € O.
The open book also carries an action of the spine S, considered as an additive
group, by translation, via the action of S on each leaf:
Osp= (x(o),x(l), e x @D k) 5 (x(o), D 4D @Dy @) k) e O,

with z = (z1, ..., z®) e S. For the above right-hand side we write simply z + p.

2. Probability measures on the open book. Our goal is to understand the
statistical behavior of points sampled randomly from . Suppose that p is a
Borel probability measure on . We assume throughout the paper that d(0, q)
has bounded expectation under the measure 1,

@.1) L;uamdum><w.

When explicitly stated, we also assume the stronger condition

2.2) Laam%mm<w,

of square integrability.

LEMMA 2.1. Any Borel probability measure pu on the open book O decom-
poses uniquely as a weighted sum of Borel probability measures i on the open
leaves L,': and a Borel probability measure (o on the spine Ly. More precisely,
there are nonnegative real numbers {wk}/{{:o summing to 1 such that, for any Borel
set A C O, the measure u takes the value

K
w(A) = wouo(AN Ly) + Z wk,bLk(A N LZ_)
k=1

PROOF. This follows from the decomposition (1.1) and the additivity of mea-
sures on disjoint sets. [

REMARK 2.2. Fork > 1, wy = /L(L,f) is the probability that a random point
lies in L,j, while wg = (Lg) is the probability that a point lies somewhere on the
spine.



2244 T. HOTZ ET AL.

L
Lo, ‘

FIG. 3. The 4th folding map identifies leaf L4 with the half-space H. and identifies all other leaves
L for j # k with the half-space H—.

ASSUMPTION 2.3. Throughout this paper, assume the nondegeneracy condi-
tion

(2.3) we=wp(L{)>0  forallke{l,...,K}.

Otherwise, we would remove those leaves L; for which ,u(L,:L) = 0 from the open
book. Nondegeneracy implies that wy < 1 and 0 < wy < 1 for all £ > 1 in the
decomposition from Lemma 2.1.

DEFINITION 2.4 (Folding map). For k € {1,..., K} the kth folding map
Fr:O — Rétl sends p e O to

Fo X, if p=(x,k) € Lg,
kp_{Rx, if p=(x,j)eL;andj#k,

where the reflection operator R was defined in Definition 1.2.

REMARK 2.5. In the definition of the folding map Fy, the leaf Ly is identified
with the subset H C R?*!, by slight abuse of notation (again). The other leaves
L ; are collapsed to the negative half-space H_ c R via the reflection map. All
of these identifications have the same effect on the spine S, which becomes the
hyperplane H = {0} x R? ¢ R?*!. For example, F; takes the picture in Figure 2
to R? as in Figure 3.

The notations Hy and H_ (with no bars) are reserved for the strictly positive
and strictly negative open half-spaces that are the interiors of H and H _, respec-
tively.

LEMMA 2.6. Under the folding map Fy, the measure . pushes forward to a
measure Ly = |4 © Fk_1 on R4 such that, given a Borel subset A C RI+!,

fuc(A) = wipti (AN H ) +wopto(ANS) + D wip (AN H-).
j=1

J#k
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PROOF. Lemma?22.1. O

DEFINITION 2.7 (First moment on a leaf). Let x© x@ be the coordinate
functions on R4*!. The first moment of the measure 1 on the kth leaf Ly is the
real number

mi= [ 7 Odi = [ o) du),
Rd+1 O
where 7o : R4t — R is the orthogonal projection with kernel H = {0} x R,

REMARK 2.8. For any point p € O, the projection o Fy p is positive if p €
L,‘: and negative if p € Lj-r for some j # k. Moreover, |mgFip| = 1x©] is the
distance of p from the spine. The integrability in equation (2.1) guarantees that the
first moments of w are all finite.

THEOREM 2.9. Under integrability (2.1) and nondegeneracy (2.3), either:

(1) mj <O for all indices j € {1,..., K}, or there is exactly one index k €
{1,..., K} such that my > 0, in which case either:

2) mp >0, or

3) mp=0.

PROOF. Fork=1,...,K,let
Vk :/ x© dug(x).
Hy
The nondegeneracy (2.3) implies that vy > 0. Observe that

mk:wkvk—ijvj.
j=1
j#k
Forany j #ke{l,..., K},

mj=w;v; — Z WeVp S WV — WiV = (Z wgvg) — WiV = —my,
>1 £>1
0£) 0k
since the weights wy are nonnegative. Therefore, if m; > 0 for some k, then m; <
—my < Oforall j # k. Also, if m; = 0 for some index k, thenm ; < 0 forall j # k.
Now suppose there are two indices j,k € {1,..., K} suchthat j Zkandm; =0
and my; = 0. Then

O=m;=wjv; — wrvg — Z Wevy
>1
L]k
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and

0=my =wrvg —w;v; — Z Wpvy.
£>1
).k

Adding these two equalities results in

O=mj;+m=-2 Z WpVy.
>1
t#j.k
Since wyevy > 0, it follows that wyv, = 0 for all i # j, k. Consequently, ,u(LZ) =0
for all £ # j, k. However, this contradicts nondegeneracy (2.3) and the fact that
K > 3. Hence at most one of the numbers mj can be nonnegative. [J

Motivated by Theorem 4.3 and Corollary 4.4, we use the following terms to
describe the three mutually-exclusive conditions given in Theorem 2.9.

DEFINITION 2.10. Under integrability (2.1) and nondegeneracy (2.3), we say
that the mean of the measure pu is either:

(1) sticky if m; < O for all indices j € {1, ..., K}, or

(2) nonsticky if my > 0 for some (unique) k € {1, ..., K}, or
(3) partly sticky if my = 0 for some (unique) k € {1, ..., K}.

REMARK 2.11. If square integrability (2.2) also holds, the first moment m
may be identified with the partial derivative

oIy

Mk =727 (x)‘x(o):O

where | k ‘R ! — R is defined by
IN'i(x) = —1 X — zdﬁ
k( ) 2/d 1| Y| k(y)

Observe that —%(x) depends on x©@ butnoton (x, ..., x@),

3. Sample means. For any finite collection of points {pn}ff:l C O, the

Fréchet mean is a natural generalization of the arithmetic mean in Euclidean space:

DEFINITION 3.1. The Fréchet mean, or barycenter, of a set {pn}f;’:] C O of
points is

N
b(p1,...,pN) = argmin(z d(p, Pn)2>-

pEO n=1
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By Lemma 1.3 and [22], Proposition 4.3, the barycenter b(py,..., py) € O
exists and is unique.

DEFINITION 3.2. For fixed k € {1, ..., K}, the point 7,y € R?*! defined by

1 N
(3.1) == Fipn
Nn:l

is the kth folded average: the barycenter of the pushforward under the kth folding
map.

For a set of points {pn}fl\’=1 C O, the condition b(p1,..., py) € Lo does not
necessarily imply ni y € H. Nevertheless, the following lemma establishes an im-
portant relationship between b(py, ..., py) and ng n. Specifically, taking barycen-
ters commutes with the kth folding in two cases: if the barycenter lies off the spine
in L;"; or if the kth folded average lies in the closure of the positive half-space.

LEMMA 3.3. Let {p,}\_, C O and by = b(p1,..., pN). If by € L}, then

n=1 —
kN € Hy and ng y = Fiby. If nk,. v € H4, then by € Ly and Fiby = ng, n (i.e.

by = (i,n, k).

PROOF. Let k,2 € {1,...,K}. If p € Lg, then d(p, pn) = |Fxp — Frpnl.
Therefore, if by € L,‘:, then

N N
by =argmin »_d(p, p,)* =argmin Y _ |Fip — Fipal®.

pGO n=1 pELZ— n=1

Since Fy is continuously bijective from Lj to H , this implies that the function

N
2> Y1z = Fipal?

n=1
attains a local minimum in the open set H. However, this functional has only one
local minimizer, which must be the unique global minimizer 7y,
N
kN =argmin ) |z — Fipy

zeRd+l

2
|~

Consequently, nx vy € Hy and hence Fiby = ni N.
If by ¢ Ly, then by € LZ for some ¢ # k. Hence ny y = Fyby, as we have
shown. In particular, n¢ y € H4 and mone, y > 0. Hence

(B2 Y. moFipn>— Y, moFipn=— Y moFipn= Y, moFipa.
pnely gLy €L Pn€Ly
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Observe that

1 Y 1 1
TOMk.N = > o Fipn < v > moFipa + N > moFpa

n=l1 pn€Ly PnELZ—
1 1
=N > nOkan_N > 70Fepa.
Pn€L PnELZ

Because of equation (3.2), this last expression is negative. Hence, we have shown
that by ¢ Ly implies nx xy € H_. Therefore, if ny y € H it must be that by € L.
Consequently, as above,

N
by = argmin Z d(p, pn)?

pe(’) n=1
N
=argmin ) |Fp — Fipal’
peLr p=1
N
= Fk_1 (argLnin Z |z — kan|2>
zeH{ p=1
= Fk_lnk,N-

Note that F ' v is well defined, since ng y € Hy. O

DEFINITION 3.4. Given a point p = (x, j) = x©@ xD . L x@ j)eO,
Psp = (x(l), .. .,x(d)) es

is the orthogonal projection of p onto the spine S.

The following lemma shows that taking barycenters commutes with projection
to the spine.

LEMMA 3.5. If{p,}\_, Cc O and
| N
v LS poy
YN N’?:l SPn

then YN = Psb(pl, .eesy PN)-

PROOF. Let rg: R4t — R be the orthogonal projection onto the last d co-
ordinates. Let by = b(p1,..., py). If by € L,:r for some k, then ng y = Frby by
Lemma 3.3. Therefore, since Pgp = g Fyp forall p € O,

N |
Y asFipn= v Y Pspa=Jn.

1
Psby =nsFiby =msnie, Ny = —
N

n=1 n=1
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On the other hand, if by € Lg then by definition of by,

N N

by =argmin y_ d(p, p,)*> =argmin Y (Imopal* +|p — Pspal®).
peLo ;1 PES 1

Therefore Psby = argmin,cpa Z,/lvzl ly — Pspal® = % Zrll\':l Psp, =y, as de-
sired. O

4. Random sampling and the law of large numbers. We now consider
points { p”}flv: | sampled independently at random from a Borel probability mea-
sure 1 on O; we wish to understand the statistical behavior of their barycenter for
large N. More precisely, let (2, F, IP) be a probability space, and for each integer
n>1let py(w): Q2 — O for fixed w € Q be a random point in O.

Assume for all n > 1 that py, ..., p, are independent random variables and that
for any Borel set A C O,

P(pn € A) =P({w € Q| pu(w) € A}) = n(A).

The sample space 2 may be constructed as the set of infinite sequences (p1, p2,
p3,...) of points in O endowed with the product measure P = []°° | u(p,)
on the o-algebra F generated by cylinder sets. Observe that the folded points
{Frpn(w)}2, C R?*! are independent, each distributed according to fiy.

DEFINITION 4.1. For any positive integer N, let by (w) = b(py, ..., pn) de-
note the barycenter of the random sample {p;(w), ..., py(®)}. This random point
in O is the empirical mean of the distribution w. Similarly, for k € {1, ..., K},

the random point n v (@) € R?*! denotes the kth folded average of the random
sample {p1(w), ..., py(w)}, as defined by (3.1).

The goal is to understand the statistical behavior of empirical means by as
N — oo.

LEMMA 4.2 (Strong law of large numbers). There is a unique point b € O
such that

Jm o @ =

holds P-almost surely. If the square integrability condition (2.2) also holds, the
limit b is the Fréchet mean (or barycenter) of u,

b= argmin/ d(p, ) du(g).
peO JO
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PROOF. This is a special case of [22], Proposition 6.6, whose generality oc-
curs in the context of distributions on globally nonpositively curved spaces. (An el-
ementary proof from scratch is also possible, using arguments similar to the proof
of Theorem 4.3. In general on metric spaces, there can be more than one Fréchet
mean, and there are corresponding set-valued strong laws [4, 23].) U

THEOREM 4.3 (Sticky LLN). Assume nondegeneracy (2.3).

(1) If the moment m satisfies m; < 0, then there is a random integer N*(w)
such that by (w) ¢ Lj" for all N > N*(w) holds P-almost surely. Furthermore,
beLT.

(2) If the moment my, satisfies my > 0, then there is a random integer N*(w)
such that by (w) € L,j' for all N > N*(w) holds P-almost surely. Furthermore,
belLf.

(3) If the moment my satisfies my = 0, then there is a random integer N*(w)
such that by(w) € Li for all N > N*(w) holds P-almost surely. Furthermore,
b€ Ly.

PROOF. By the usual strong law of large numbers,
Jim e N = ik = wa x d i (x)

holds P-almost surely. Observe that my = mgng. Therefore, if my > 0, g € H; and
nk.N € Hy for all sufficiently large N. In that case, by € LZ“ for all sufficiently
large N by Lemma 3.3. In fact, moby = monr,n > my/2 > 0 for N sufficiently
large, so by virtue of Lemma 4.2, b € L,f. The same argument starting with my >0
proves the case my = 0. On the other hand, if m; < 0, then n; y € H_ for all
sufficiently large N; Lemma 3.3 implies that by ¢ Lj for all sufficiently large N,

andl;¢L;T. U

As a consequence, if the mean of u is sticky then the empirical mean by sticks
to the spine Ly C O for all sufficiently large N, in the following sense.

COROLLARY 4.4. If the mean of  is sticky, then there is a random integer
N*(w) such that by (w) € Lg for all N > N*(w) holds P-almost surely. Moreover,
b € Lo. If the mean of 1 is partly sticky, with my = 0, then then there is a random
integer N*(w) such that by (w) € Ly for all N > N*(w) holds P-almost surely.
Moreover, b € L.

Recall that Pgs is the orthogonal projection onto the spine S. The measure p
pushes forward along the projection to a measure s = o Pg "on s,

us(A)=u(Pg' A)

for any Borel set A C R?. Note that 10(A) < ws(A) for all Borel sets A C S, but
s # o by Assumption 2.3.
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COROLLARY 4.5. In all cases (sticky, nonsticky, partly sticky), the limit b € O
satisfies

@.1) Psh = /S ydus(y).

PROOF. By Lemma 3.5 and Theorem 4.3,
Psb="Ps ngnoobN - ngnooyN

holds almost surely. By the strong law of large numbers for yy € S = R, the last
limitis (4.1). O

5. Central limit theorems. In this section we consider fluctuations of the em-
pirical mean by (w) about the asymptotic limit b, within the tangent cone at b. We
have shown that if the mean is either sticky or partly sticky, then b € S, and the
tangent cone at b is an open book ©. On the other hand, if the mean is nonsticky,
with my > 0, then b is in the interior of the leaf L,j and the tangent cone at b is the
vector space R?T!. We treat these two scenarios separately.

These facts essentially follow from Theorem 4.3 which shows that in the sticky
cases with probability one the fluctuations away from the mean in certain direc-
tions stop as more random variables are added to the empirical mean. In particular,
this implies that the correctly normalized limit of the fluctuation from the mean
cannot, in the sticky case, converge to a Gaussian random variable as one would
have in the standard central limit theorem. Since the fluctuations in some direc-
tions are exactly zero at some point along each sequence of random variables, it is
not all together surprising that limiting measure has mass concentrated on a lower
dimensional set. This is the content of Theorem 5.7 which is the principal result of
this section.

5.1. The sticky central limit theorem. Throughout this section, assume m; <0
for all j € {1,...,K}. Hence b € Lg, and the mean is either sticky or partially
sticky. In the partially sticky case, denote by k the unique index satisfying my = 0.
The central limit theorem involves a centered and rescaled empirical mean.

DEFINITION 5.1 (Rescaled empirical mean). Assume that Pgb =0 (after the
action of —Pgb € S on O as explained in Remark 1.4 if necessary). The rescaled
empirical mean is the random variable V'Nb N € O. Write vy for its induced prob-
ability law on O,

P({w | VNby(w) € A}) = /OM dvn(p)

for all Borel sets A € O.
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Since in sticky settings, we need to collapse fluctuations in some directions back
to the spine, it is convenient to define the following projection.

DEFINITION 5.2. The convex projection P of R4t onto H is

(O,x(l),...,x(d)), if x© <0,

Px=
(x(o),x(l),...,x(d)), if x© >0,

We now define measures which we will see shortly describe the limiting behav-
iors of vy as N — oo. In short, they are the limiting measures in the central limit
theorem given in Theorem 5.7 below.

DEFINITION 5.3. Assume square integrability (2.2) and assume that Psb =
0.

(1) The spinal limit measure gs is the law of a multivariate normal random
variable on the spine § = R¢ with mean zero and covariance matrix

Cs= [, 3" dustn = [ Psp)(Psp)” dua(p).

(2) The kth costal ® limit measure gk 1s the law of a multivariate normal random
variable on R4+ with mean zero and covariance matrix

Co= [ w0 = [ (Fep)Fp) dup).
RA+1 @)
(3) The kth spinocostallo limit measure hy on the closed leaf L; = ﬁ+ is de-
fined by
hi(A) = hQ(Fe(A) N H) + g (Fi(A) N H )
for Borel sets A C L, where the semispinal limit measure hg on L is defined by
h((Ps|Ly) ™' B) = gs(B) — gx((0, 00) x B)
for Borel sets B C S. (A possibly more natural definition of 4y is given in Propo-

sition 5.6 below.)

REMARK 5.4. Square integrability (2.2) implies that the covariance matrices
are finite.

REMARK 5.5. The semispinal limit measure is generally not Gaussian. Al-
though the orthogonal projection to R of any Gaussian measure on R?*! is Gaus-
sian, hg is the projection of only half of a Gaussian; this is implied by Proposi-
tion 5.6, an alternate direct description of Ay interpolating between the first two
parts of Definition 5.3.

9Adjective: of or pertaining to the ribs, in anatomy.
1OAdjective: spanning the ribs and spine, in anatomy.
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PROPOSITION 5.6.  The spinocostal limit measure is the pushforward of the
costal limit measure gy under convex projection: hy = gy o P~ lo Fy.

PROOF. Since the measures agree on Lj; outside of Ly by definition, it is
enough to show that

(5.1) hY((Ps|Ly) ™' B) = ge (P~ o (wslm) ' B)

for any Borel set B C S. For any vectors w, w’ € R4*! that lie on the spine H C
RA+1, considering them as vectors in z = w5(w), 7’ = 7s(w') € S = R results in
quantities z7 Csz’, and w” Cyw’. The integrals in Definition 5.3 directly imply that
1 Csz = wT Crw'. Consequently, the matrix Cg is a submatrix of Cy; the action
of Cy on the subspace H is given by Cs. Thus gs(B) = gx((—00, 00) x B), and
hence by definition

h)(B) = gi((—00, 00) x B) — gx((0, 00) x B) = gi((—00, 0] x B)

= gu(P~! o (wslm) ™' B)
for any Borel set BC S. U

Now we come to the primary result in the paper: as the sample size N becomes
large, the law vy of the rescaled empirical mean converges weakly to the appro-
priate measure from Definition 5.3, according to how sticky the mean is. (We have
included a forward reference to the nonsticky case in Theorem 5.7 to preserve
the numbering of items 1, 2 and 3, which corresponds precisely to the numbering
elsewhere, namely Theorem 2.9, Definition 2.10, Theorem 4.3, and Definition 5.3.)
When the mean is:

(1) sticky, vy converges weakly to the spinal limit measure gg;

(2) nonsticky, vy converges weakly to the costal limit measure g; supported on
the tangent space R?*! to the leaf L ; containing the mean;

(3) partly sticky, vy converges weakly to the spinocostal limit measure g; sup-
ported on the (unique) leaf L with moment my = 0.

As discussed at the start of the section, the fact that the limiting distribution is
supported on the spine S when the mean is sticky follows from Theorem 4.3, since
then the first moments m ; are strictly negative for all ;.

THEOREM 5.7 (Sticky CLT). Let u be a nondegenerate (2.3) probability dis-
tribution on the open book O with finite second moment (2.2).

(1) If the mean of u is sticky, then for any continuous, bounded function
¢:0—>R,

Jim fo $(p)dvy (p) = fg ¢ o (PsiLy) " (¢) dgs(a).
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(2) If the mean of | is nonsticky, then see Theorem 5.11.
(3) If the mean of w is partly sticky, with first moment my = 0, then for any
continuous bounded function ¢ : O — R,

Jim [ o= [ oo F @)

PROOF. The proof works by decomposing the relevant measures—the empiri-
cal mean on the open book and its pushforward to R?*! under folding—into pieces
corresponding to the leaves and the spine.

Suppose that the mean is partly sticky with first moment my = 0. Let ny = nk. n
as in (3.1), and let v, v (x) denote the law of VNny on R*!. By Lemma 3.3,
VN (A) = vy n(FrA) for any Borel set A C Ly, and if ¢ is a continuous and
bounded function, then

[emdm = [ smawp+ [ swranwp)
@] L} ONL}

- H+¢((F;1|H+>‘1<y))dvn,N(y>+ fo L)

The standard CLT in R9H! (e. g., [8], Theorem 11.10) implies that the random vari-
able ~/Nny converges in distribution to a centered Gaussian with covariance Cy.
Therefore,

lim [ o((F7HY) ™ 3)dvy v () = / S((F1HY) ™ () dgr ().

N—oo Hy Hy

LEMMA 5.8. If the jth first moment satisfies mj <0, then vy (L;r) — 0 and
li =0.
Jim [ (B () =0

PROOF. Theorem 4.3(1). O
Resuming the proof of the theorem, consider the term

| edwp = [ smawm+ [_swranwp).
O~Lf Lo L;

where L7 = O\ Ly = Uj Lf, which excludes the spine L. With the pro-

jection Py:O — Lo, (x©, x, j) = (0,x, j) the function p — ¢(Pyp) is again
continuous and bounded, Lemma 5.8 implies that

(5.2) Jim_ /L 9P du(p) =0,
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Therefore,

Jim [ sravnpy=Jim [ g(Bprdvn(p)
= Jim ([_spamr+ [ orpanir)

= Jim ([ ocropraunip) = [ aropram()
Observe that
/ (Pop) dvy (p) = / o (PslLy) ™' () dyn(y),
O S

where yy = vy o PS_1 which is the law of /Ny on S, where yy is the projected
barycenter from Lemma 3.5. Therefore, setting ¢ = ¢ o (Ps| Lo) ! and applying
the usual CLT to /N YN € RY,

Jdim [ sPopydvn(p) = tim [ $)dyn) = [ 90 dssr).

We cannot apply the same argument to
Jim [ o) = tim [ 4 d()

with Ty = vo (Ps| Lk+)_1 because there is no CLT for 7). We have, however, above
derived a CLT for vy o Fk_1 =v,yon Hy = Fk(L,f):

Jim [ o= tim [ Fadx@)=Jin [ 50 ds@.

where 5 =¢oPyoFo P!l In summary, we have shown that

Jdim [ 6 dvn(p)
- f 0 F\(q) dgi(q) + / Sy dgs(y) — / 3(@) dgi(q)
—/ $oF <q>dgk(q)+/ 0 F\ () dn(q)

=ff o F1(q)dhi(q).
Hy

where the second equality uses the fact that é=6¢o Fk_1 on H and the final
equality the fact that g has no mass supported on the spine H, so the integral
of ¢ o F~1dgy over Hy can just as well be taken over H .

The sticky case proceeds in much the same way as the partly sticky case does,
except that instead of equation (5.2), the simpler statement

Jim / ¢ (Pop) dvy (p) =
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holds. From that, the next step results in
tim [ @(pravn(p)=Jim_[ @(Pop)dvy(p),
N—ooJL, N—oo JO
and then the usual CLT applied to v/Nyy € R? proves the desired result. [J

5.2. The nonsticky central limit theorem. If the mean is nonsticky with first
moment my > 0, then the limit b is in the interior of L,f. In this case, the tangent
cone at b is the vector space R4*!, and the fluctuations of by about the limit b are
qualitatively similar to what is described in the classical central limit theorem.

DEFINITION 5.9.  In this section we let Pn be the law on R4+ of the random
variable /N (Fyby — Fib),
P({w|v/N(Fiby — Fyb) € A}) =Ty (A)
for all Borel sets A € R4+1,

DEFINITION 5.10. Assume my > 0. Let g be the law of a multivariate nor-
mal random variable on R4*! with mean zero and covariance matrix

= /R = )= Feb)T dfix(v),

In contrast to the case of a sticky or partly sticky mean, the weak limit of vy is
that of a nondegenerate Gaussian on R?*!:

THEOREM 5.11 (Nonsticky CLT). Assume my > 0. Then for any continuous
bounded function ¢ : R4t — R,

lim Rd+1¢>(x)dm\,(x)= /R d+1¢>(x)d§k(x)-

N—o0

PROOF. Since my > 0, b € L,j and Lemma 3.3 implies Fib = ij =
Jga+1 x dfig(x). Also,

VN(Fiby(@) — Fxb) = N(ien(@) —7) VYN > N*(w)
holds with probability one. Therefore, for any Borel set
[Ty (4) = P({|v/N (kv (@) — 71) € A})| < Ry,

where Ry = P({w|N < N*(w)}). By the classical central limit theorem, the ran-
dom variable /N (nk, N (w) — 1) converges in law to a centered, multivariate Gaus-
sian on RY*! with covariance Cy as N — oo. Consequently,

lim sup
N—o00

L ¢ = [ 6 dg)| <2limsup Ryl =0.

N—o0
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