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SYSTEMS WITH LARGE FLEXIBLE SERVER POOLS:
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We consider general large-scale service systems with multiple customer
classes and multiple server (agent) pools, mean service times depend both on
the customer class and server pool. It is assumed that the allowed activities
(routing choices) form a tree (in the graph with vertices being both customer
classes and server pools). We study the behavior of the system under a nat-
ural (load balancing) routing/scheduling rule, Longest-Queue Freest-Server
(LQFS-LB), in the many-server asymptotic regime, such that the exogenous
arrival rates of the customer classes, as well as the number of agents in each
pool, grow to infinity in proportion to some scaling parameter r . Equilib-
rium point of the system under LQBS-LB is the desired operating point, with
server pool loads minimized and perfectly balanced.

Our main results are as follows. (a) We show that, quite surprisingly (given
the tree assumption), for certain parameter ranges, the fluid limit of the sys-
tem may be unstable in the vicinity of the equilibrium point; such insta-
bility may occur if the activity graph is not “too small.” (b) Using (a), we
demonstrate that the sequence of stationary distributions of diffusion-scaled
processes [measuring O(

√
r) deviations from the equilibrium point] may be

nontight, and in fact may escape to infinity. (c) In one special case of interest,
however, we show that the sequence of stationary distributions of diffusion-
scaled processes is tight, and the limit of stationary distributions is the sta-
tionary distribution of the limiting diffusion process.

1. Introduction. Large-scale service systems (such as call centers) with het-
erogeneous customer and server (agent) populations bring up the need for efficient
dynamic control policies that match arriving (or waiting) customers and available
servers. In this setting, two goals are desirable. On the one hand, customers should
not be kept waiting, if this is possible. On the other hand, idle time should be dis-
tributed fairly among the servers. For example, one would like to avoid the situa-
tion in which one of the server pools is fully busy while another one has significant
numbers of idle agents.

Consider a general system, where the arrival rate of class i customers is �i ,
the service rate of a class i customer by type j agent is μij , and the server pool
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sizes are Bj . Another very desirable feature of a dynamic control is insensitivity
to parameters �i and μij . That is, the assignment of customers to server pools
should, to the maximal degree possible, depend only on the current system state,
and not on prior knowledge of arrival rates or mean service times, because those
parameters may not be known in advance and, moreover, they may be changing in
time.

If the system objective is to minimize the maximum average load of any server
pool, a “static” optimal control can be obtained by solving a linear program, called
static planning problem (SPP), which has Bj ’s, μij ’s and �i’s as parameters. An
optimal solution to the SPP will prescribe optimal average rates �ij at which ar-
riving customers should be routed to the server pools. Typically (in a certain sense)
the solution to SPP is unique and the basic activities, that is, routing choices (ij)

for which �ij > 0, form a tree; let us assume this is the case. It is possible to design
a dynamic control policy, which achieves the load balancing objective without a
priori knowledge of input rates �i—the Shadow Routing policy in [11, 12] does
just that, and in the process it “automatically identifies” the basic activity tree.
Shadow Routing policy, however, does need to “know” the service rates μij .

The key question we address in this paper is as follows. Suppose a control policy
does not know the service rates μij , but “somehow” it does know the structure of
the basic activity tree, and restrict routing to this tree only. [E.g., all feasible activi-
ties, i.e., those (ij)’s for which μij > 0, may form a tree simply by the structure of
the system. Another example: if Shadow Routing has some estimates of μij , this
will not be sufficient for it to identify the optimal routing rates, but may very well
be sufficient to correctly identify the basic activity tree.] What is an efficient load
balancing policy in this case?

If routing is restricted to a tree, it is very natural to conjecture that simple poli-
cies of the type considered by Gurvich and Whitt [6], Atar, Shaki and Shwartz
[2] and Armony and Ward [1], which are of the “serve longest queue” and “join
least loaded pool” type, should “typically be good enough.” Some of the results in
these (and other) papers, in fact, prove optimal behavior of simple load balancing
schemes on a finite time interval; which further supports the above informal con-
jecture. One of the main contributions of our work is to show that, surprisingly, the
above conjecture is not correct for a general parameter setting. The key reason is
that a “natural” load balancing, even if it is done along an a priori given optimal
tree, may render the system unstable in the vicinity of equilibrium point.

The specific control rule we analyze in this paper can be seen as a special case
of the Queue-and-Idleness Ratio rule considered in [6]. Within the given (basic)
activity tree, if an arriving customer sees multiple available servers, it will choose
the server pool with the smallest load; while if a server sees several customers
waiting in queues, it will take a customer from the longest queue. We call this rule
Longest-Queue Freest-Server (LQFS-LB).

We consider a many-server asymptotic regime, such that �i = λir [or some-
times �i = λir +O(

√
r)], Bj = βj r , where λi and βj are some positive constants,
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r → ∞ is a scaling parameter and μij remain constant. Our key results show that
the fluid limit of the system process (obtained via space-scaling by 1/r) can be
unstable in the vicinity of the equilibrium point. This is very counterintuitive, be-
cause it would be reasonable to expect the contrary: that a simple load balancing
in a system with activity graph free of cycles would be “well behaved.”

Using the fluid limit local instability (when such occurs), we prove that the se-
quence of stationary distributions of diffusion-scaled processes [measuring O(

√
r)

deviations from the equilibrium point] may be nontight, and in fact may escape to
infinity. This of course means, in particular, that the behavior of the diffusion limit
in the vicinity of equilibrium point on a finite time interval, may not be relevant to
the system behavior in steady state, because the system “does not spend any time”
in the O(

√
r)-vicinity of the equilibrium point.

In addition to the instability examples, we prove that in several cases the fluid
limit will be (at least locally) stable. We demonstrate that fluid limit of any under-
loaded system with at most two customer classes, or critically loaded system with
at most four customer classes, is always locally stable. We also demonstrate local
stability in the case when the service rate depends only on the customer type (but
not server pool, as long as it can serve it). In the case when the service rate de-
pends only on the server type (but not customer type, as long as it can be served),
we show more—the global stability of the fluid limit.

General results on the asymptotics of stationary distributions (most impor-
tantly—their tightness), especially in the many-server systems’ diffusion limit, are
notoriously difficult to derive; for recent results in this direction see [3, 5]. In the
special case when the service rate depends only on the server type, we prove that
under the LQFS-LB policy the sequence of stationary distributions of diffusion-
scaled processes is tight, and the limit of stationary distributions is the stationary
distribution of the limiting diffusion process.

The structure of the paper is as follows. In Section 2 we present the model,
define the static planning problem and related notions and define the LQFS-LB
policy. In Section 3 we define fluid models of the system, derive their basic prop-
erties in the vicinity of an equilibrium point, and define local stability. Section 4
contains fluid model stability results in the two special cases when the service rate
depends on server class only or on customer type only. Our key results on local
instability of fluid models are presented in Section 5. In Section 6 we consider an
underloaded system (with optimal average utilization being 1 − ε < 1), and prove
possible evanescence of stationary distributions of the diffusion scaled processes.
Finally, Section 7 considers the so-called Halfin–Whitt asymptotic regime [where
the optimal average utilization is 1 − O(1/

√
r)], and contains two main results

on the asymptotics of stationary distributions of the diffusion scaled processes:
(a) possible evanescence under certain parameters and (b) tightness (and “limit in-
terchange”) result for the case when the service rate depends only on the server
type.
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2. Model.

2.1. The model; static planning (LP) problem. Consider the model in which
there are I customer classes, or types, labeled 1,2, . . . , I , and J server (agent)
pools, or classes, labeled 1,2, . . . , J (generally, we will use the subscripts i, i ′
for customer classes, and j , j ′ for server pools). The sets of customer classes and
server classes will be denoted by I and J , respectively.

We are interested in the scaling properties of the system as it grows large. The
meaning of “grows large” is as follows. We consider a sequence of systems in-
dexed by a scaling parameter r . As r grows, the arrival rates and the sizes of the
service pools, but not the speed of service, increase. Specifically, in the r th system,
customers of type i enter the system as a Poisson process of rate λr

i = rλi + o(r),
while the j th server pool has rβj individual servers. (All λi and βj are positive
parameters.) Customers may be accepted for service immediately upon arrival, or
enter a queue; there is a separate queue for each customer type. Customers do not
abandon the system. When a customer of type i is accepted for service by a server
in pool j , the service time is exponential of rate μij ; the service rate depends
both on the customer type and the server type, but not on the scaling parameter r .
If customers of type i cannot be served by servers of class j , the service rate is
μij = 0.

We would like to balance the proportion of busy servers across the server pools,
while keeping the system operating efficiently. Let λr

ij be the average rates at which
type i customers are routed to server pools j . We would like the system state to be
such that λr

ij are close to λij r , where {λij } is an optimal solution to the following
static planning problem (SPP), which is the following linear program:

min
λij ,ρ

ρ,(2.1)

subject to

λij ≥ 0 ∀i, j,(2.2) ∑
j

λij = λi ∀i,(2.3)

∑
i

λij

/
(βjμij ) ≤ ρ ∀j.(2.4)

We assume that the SPP has a unique optimal solution {λij , i ∈ I, j ∈ J }, ρ;
and it is such that the basic activities, that is, those pairs, or edges, (ij) for
which λij > 0, form a (connected) tree in the graph with vertices set I ∪ J .
The set of basic activities is denoted E . These assumptions constitute the com-
plete resource pooling (CRP) condition, which holds “generically;” see [12], The-
orem 2.2. For a customer type i, let S(i) = {j : (ij) ∈ E }; for a server type j , let

C(j) = {i : (ij) ∈ E }.
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Note that under the CRP condition, all (“server pool capacity”) constraints (2.4)
are binding; in other words, the optimal solution to SPP minimizes and “perfectly
balances” server pool loads. Optimal dual variables νi, i ∈ I and αj , j ∈ J , cor-
responding to constraints (2.3) and (2.4), respectively, are unique and all strictly
positive; νi is interpreted as the “workload” associated with one type i customer,
and αj is interpreted as the (scaled by 1/r) maximum rate at which server pool j

can process workload. The following relations hold:

αj = max
i

νiβjμij , νi = min
j

αj/(βjμij ),

∑
j

αj = 1,
∑
i

λiνi = ρ
∑
j

αj = ρ.

If ρ < 1, the system is called underloaded; if ρ = 1, the system is called criti-
cally loaded. In this paper we consider both cases.

In this paper, we assume that the basic activity tree is known in advance, and
restrict our attention to the basic activities only. Namely, we assume that a type
i customer service in pool j is allowed only if (ij) ∈ E . [Equivalently, we can a
priori assume that E is the set of all possible activities, i.e., μij = 0 when (ij) /∈ E ,
and E is a tree. In this case CRP requires that all feasible activities are basic.]

Let ψ∗
ij = λij /μij . Continuing our interpretation of the optimal operating point

of the system, let 
r
ij (t) be the number of servers of type j serving customers

of type i at time t . It is desirable to have 
r
ij (t) = rψ∗

ij + o(r). Later on we will
be also interested in the question of whether or not the o(r) term can in fact be
O(

√
r).

2.2. Longest-Queue, Freest-Server load balancing algorithm (LQFS-LB). For
the rest of the paper, we analyze the performance of the following intuitive load
balancing algorithm.

We introduce the following notation (for the system with scaling parameter r):


r
ij (t) the number of servers of type j serving customers of type i at time t ;


r
j (t) = ∑

i 

r
ij (t) the total number of busy servers of type j at time t ;


r
i (t) = ∑

j 
r
ij (t) the total number of servers serving type i customers at

time t ;
�r

j (t) = 
r
j (t)/βj the instantaneous load of server pool j at time t ;

Qr
i (t) the number of customers of type i waiting for service at time t ;

Xr
i (t) = 
r

i (t) + Qr
i (t) the total number of customers of type i in the system at

time t .

The algorithm consists of two parts: routing and scheduling. “Routing” deter-
mines where an arriving customer goes if it sees available servers of several dif-
ferent types. “Scheduling” determines which waiting customer a server picks if it
sees customers of several different types waiting in queue.
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Routing: If an arriving customer of type i sees any unoccupied servers in server
classes in S(i), it will pick a server in the least loaded server pool, that is, j ∈
arg minj∈S(i) �

r
j (t). (Ties are broken in an arbitrary Markovian manner.)

Scheduling: If a server of type j , upon completing a service, sees a customer of
a class in C(j) in queue, it will pick the customer from the longest queue, that is,
i ∈ arg maxj∈C(j) Q

r
i . (Ties are broken in an arbitrary Markovian manner.)

By [6], Remark 2.3, the LQFS-LB algorithm described here is a special case of
the algorithm proposed by Gurvich and Whitt, with constant probabilities pi = 1

I

(queues “should” be equal), vj = βj∑
βj

(the proportion of idle servers “should” be
the same in all server pools).

2.3. Basic notation. Vector (ξi, i ∈ I), where ξ can be any symbol, is of-
ten written as (ξi) or ξI ; similarly, (ξj , i ∈ J ) = (ξj ) = ξJ and (ξij , (ij) ∈
E ) = (ξij ) = ξE . We will treat (ξij ) = ξE as a vector, even though its elements
have two indices. Unless specified otherwise,

∑
i ξij = ∑

i∈C(j) ξij and
∑

j ξij =∑
j∈S(i) ξij . For functions (or random processes) (ξ(t), t ≥ 0) we often write ξ(·).

(And similarly for functions with domain different from [0,∞).) So, for example,
(ξi(·)) and ξI (·) both signify ((ξi(t), i ∈ I), t ≥ 0). The indicator function of a set
A is denoted 1A; that is, 1A(ω) = 1 if ω ∈ A and 0 otherwise.

The symbol �⇒ denotes convergence in distribution of either random variables
in the Euclidean space R

d (with appropriate dimension d), or random processes in
the Skorohod space Dd [η,∞) of RCLL (right-continuous with left limits) func-
tions on [η,∞), for some constant η ≥ 0. (Unless explicitly specified otherwise,
η = 0.) The symbol

w→ denotes the weak convergence of probability measures
on R

d , or its one-point compactification R
d = R

d ∪ {∗}, where ∗ is the “point at
infinity.” We always consider the Borel σ -algebras on R

d and R
d .

Standard Euclidean norm of a vector x ∈ R
d is denoted |x|. The symbol →

denotes ordinary convergence in R
d or R

d . Abbreviation u.o.c. means uniform
on compact sets convergence of functions, with the argument (usually in [0,∞))
which is clear from the context; w.p.1 means convergence with probability 1; ḟ (t)

means (d/dt)f (t). Transposition of a matrix H is denoted H †; in matrix expres-
sions vectors are understood as column-vectors.

3. Fluid model.

3.1. Definition. We now consider the behavior of fluid models associated with
this system. A fluid model is a set of trajectories that w.p.1 contains any limit of
fluid-scaled trajectories of the original stochastic system. (We postpone proving
this relationship between the fluid models and fluid limits until Section 3.4, in
order to not interrupt the main content of Section 3; for now, we just formally
define fluid models.)
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The term fluid model denotes a set of Lipschitz continuous functions
{(

ai(·)), (
xi(·)), (

qi(·)), (
ψij (·)), (

ρj (·))},
which satisfy the equations below. [Here ai(·) = (ai(t), t ≥ 0), and similarly for
other components.] The last two equations involving derivatives are to be satisfied
at all regular points t , when the derivatives in question exist. The interpretation of
the components is as follows: ai(t) is the total number (actually, “amount,” i.e., the
number, scaled by 1/r) of arrivals of type i customers into the system by time t ,
xi(t) is the number (“amount”) of customers of type i in the system at time t , qi(t)

is the number (“amount”) of customers of type i waiting in queue at time t , ψij (t)

is the number (“amount”) of customers of type i being served by servers of type j

at time t , and ρj (t) is the instantaneous load [proportion of busy servers, the limit
of �r

j (t)/r] in server pool j .

ai(t) = λit ∀i ∈ I,(3.1a)

xi(t) = qi(t) + ∑
j

ψij (t) ∀i ∈ I,(3.1b)

xi(t) = xi(0) + ai(t) − ∑
j

∫ t

0
μijψij (s) ds ∀i ∈ I,(3.1c)

ρj (t) = 1

βj

∑
i

ψij (t) ∀j ∈ J ,(3.1d)

ρj (t) = 1 if qi(t) > 0 for any i ∈ C(j) ∀j ∈ J .(3.1e)

For any set of server types J ∗ ⊆ J and any set of customer types I ∗ ⊆ I such
that qi(t) > 0 for all i ∈ I ∗, and qi(t) > qi′(t) whenever i ∈ I ∗, i′ /∈ I ∗ and S(i)∩
S(i ′) ∩ J ∗ �= ∅,∑

i∈I∗

∑
j∈S(i)∩J ∗

ψ̇ij (t)

(3.1fa)
= ∑

j∈⋃
i∈I∗ S(i)∩J ∗

∑
i′∈C(j)

μi′jψi′j (t) − ∑
i∈I∗

∑
j∈S(i)∩J ∗

μijψij (t).

For any sets of customer types I∗ ⊆ I , and any set of server types J∗ ⊆ J such
that ρj (t) < 1 for all j ∈ J∗, and ρj (t) < ρj ′(t) whenever j ∈ J∗, j ′ /∈ J∗, and
C(j) ∩ C(j ′) ∩ I∗ �= ∅,∑

j∈J∗

∑
i∈C(j)∩I∗

ψ̇ij (t) = ∑
i∈⋃

j∈J∗ C(j)∩I∗
λi − ∑

j∈J∗

∑
i∈C(j)∩I∗

μijψij (t).(3.1fb)

The meaning of (3.1fa) is as follows. Consider a set of server types J ∗. If a set
of customer types I ∗ consists of the “longest queues for J ∗” (we will make this
more precise), then servers in pools j∗ ∈ J ∗, whenever they finish serving some
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customer, will immediately replace her with someone from a queue in I ∗. In this
case, the total number of customers of types I ∗ in service by servers of types J ∗
will be increasing at the total rate of servicing all customers by servers in J ∗, less
the rate of servicing customers of types I ∗ by servers in J ∗. The requirements
that I ∗ needs to satisfy for this to be the case are, that there be no customer types
outside I ∗ with longer queues that servers in J ∗ can serve. For example, a one-
element set I ∗ = {i∗} is a valid choice for a one-element set J ∗ = {j∗} if and only
if the customer type i∗ ∈ C(j∗) has the (strictly) longest queue among all of the
customer types that can be served by j∗.

The second equation, (3.1fb), describes the fact that if a set of server pools J∗
consists of the “least loaded server pools available to I∗,” then servers in pools
j∗ ∈ J ∗, whenever they finish serving some customer, will immediately replace
her with someone from queue i∗. For example, a one-element set J∗ = {j∗} is a
valid choice for a one-element set I∗ = {i∗} if and only if the server pool j∗ ∈ S(i∗)
has the (strictly) smallest load ρj∗ among all of the server pools that can serve i∗.

3.2. Behavior in the vicinity of equilibrium point. We define the equilibrium
(invariant) point of the underloaded (ρ < 1) fluid model to be the state ψij = ψ∗

ij

and qi = q = 0 for all i ∈ I , j ∈ J . [All other components of the fluid model
are also constant and uniquely defined by (ψ∗

ij ) and q .] Clearly, ψij (t) ≡ ψ∗
ij and

qi(t) ≡ q is indeed a stationary fluid model. Desirable system behavior would be
to have (ψij (t)) → (ψ∗

ij ) as t → ∞.
Note that if the initial system state is in the vicinity of the equilibrium point

(with ρ < 1), then there is no queueing in the system, and we can describe the
system with just the variables (ψij (t)). This will be true for at least some time
(depending on ρ and the initial distance to the equilibrium point), because the
fluid model is Lipschitz.

The following is a “state space collapse” result for the underloaded fluid model
in the neighborhood of the equilibrium point.

THEOREM 3.1. Let ρ < 1. There exists a sufficiently small ε > 0, depending
only on the system parameters, such that for all sufficiently small δ the following
holds. There exist T1 = T1(δ) and T2 = T2(δ), 0 < T1 < T2, such that if the initial
system state (ψij (0)) satisfies

∣∣(ψij (0)
) − (

ψ∗
ij

)∣∣ < δ,

then for all t ∈ [T1, T2] the system state satisfies
∣∣(ψij (t)

) − (
ψ∗

ij

)∣∣ < ε, ρj (t) = ρj ′(t) for all j, j ′ ∈ J .

Moreover, T1 ↓ 0 and T2 ↑ ∞ as δ ↓ 0. The evolution of the system on [T1, T2] is
described by a linear ODE, specified below by (3.5).
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If the fluid system is critically loaded (ρ = 1), it may have queues at equilib-
rium, and the equilibrium is nonunique. Namely, the definition of an equilibrium
(invariant) point for ρ = 1 is the same as for the underloaded system, except the
condition on the queues becomes qi = q for some constant q ≥ 0. In the next The-
orem 3.2 we will only consider the case of positive queues (q > 0) for the critically
loaded fluid model.

THEOREM 3.2. Let ρ = 1, and consider an equilibrium point with q > 0.
There exists a sufficiently small ε > 0, depending only on the system parameters,
such that for all sufficiently small δ > 0 the following holds. There exist T1 = T1(δ)

and T2 = T2(δ), 0 < T1 < T2, such that if the initial system state satisfies∣∣(ψij (0)
) − (

ψ∗
ij

)∣∣ < δ,
∣∣qi(0) − q

∣∣ < δ for all i ∈ I,

then for all t ∈ [T1, T2] the system state satisfies∣∣(ψij (t)
) − (

ψ∗
ij

)∣∣ < ε,
∣∣qi(t) − q

∣∣ < ε for all i ∈ I,

qi(t) = qi′(t) for all i, i ′ ∈ I.

Moreover, T1 ↓ 0 and T2 ↑ ∞ as δ ↓ 0. The evolution of the system on [T1, T2] is
described by a linear ODE specified below by (3.6).

In the rest of this section and the paper, the values associated with a station-
ary fluid model, “sitting” at an equilibrium point, are referred to as nominal. For
example, ψ∗

ij is the nominal occupancy (of pool j by type i), λi is the nominal
arrival rate, λij is the nominal routing rate [along activity (ij)], ψ∗

ijμij = λij is
the nominal service rate (of type i in pool j ),

∑
j ψ∗

ijμij = λi is the nominal total
service rate (of type i), ρ is the nominal total occupancy (of each pool j ), etc.

PROOF OF THEOREM 3.1. Let us choose a suitably small ε > 0 (we will
specify how small later). Because the fluid model trajectories are continuous,
we can always choose some T2 > 0 such that, for all sufficiently small δ > 0, if
|(ψij (0)) − (ψ∗

ij )| < δ, then |(ψij (t)) − (ψ∗
ij )| < ε for all t ≤ T2. We will show

that ρj (t) = ρj ′(t) for all j, j ′ ∈ J , in [T1, T2] for some T1 depending on δ.
Consider ρ∗(t) = minj ρj (t), ρ∗(t) = maxj ρj (t) and assume ρ∗(t) < ρ∗(t).

Let J∗(t) = {j :ρj (t) = ρ∗(t)}. As long as ρ∗(t) < ρ∗(t), J∗(t) is of course a strict
subset of J . The total arrival rate to servers of type j ∈ J∗(t) is

∑
i∈⋃

j∈J∗(t) C(j) λi .

By the assumption of the connectedness of the basic activity tree, this is strictly
greater (by a constant) than the nominal arrival rate

∑
i∈C(j),j∈J∗(t) λij . The total

rate of departures from those servers is
∑

i∈C(j),j∈J∗(t) μijψij (t). For small ε, the
assumption |(ψij (t)) − (ψ∗

ij )| < ε implies that this is close to the nominal depar-
ture rate, so the arrival rate exceeds the service rate by at least a constant. (This
determines what “suitably small” means for ε in terms of the system parameters.)



2108 A. L. STOLYAR AND E. YUDOVINA

Consequently, as long as ρ∗(t) < ρ∗(t), the minimal load ρ∗(t) is increasing at a
rate bounded below by a constant. Similarly, as long as ρ∗(t) < ρ∗(t), the max-
imal load ρ∗(t) is decreasing at a rate bounded below by a constant. Therefore,
the difference ρ∗(t) − ρ∗(t) is decreasing at a rate bounded below by a constant
whenever it is positive. Thus, in finite time T1 = T1(δ) we will arrive at a state
ρ∗(t) = ρ∗(t). [Clearly, T1(δ) → 0 as δ → 0.] Since the function ρ∗(·) − ρ∗(·) is
Lipschitz (hence absolutely continuous), bounded below by 0 and (for t ≤ T2) has
nonpositive derivative whenever it is differentiable, the condition ρ∗(t) = ρ∗(t)
will continue to hold for T1 ≤ t ≤ T2.

It remains to derive the differential equation, and to show that T2 can be chosen
depending on δ so that T2 ↑ ∞ as δ ↓ 0.

Once we are confined to the manifold ρj (t) = ρj ′(t) = ρ(t) for all t , the sys-
tem evolution is determined in terms of only I independent variables. Decreasing
ε if necessary to ensure that there is no queueing while |(ψij (t)) − (ψ∗

ij )| < ε,
we can take the I variables to be ψi(t) := ∑

j ψij (t). Given (ψi(t)) we know
ρ(t) as (

∑
i ψi(t))/(

∑
j βj ). Consequently, we know

∑
i ψij (t) = ρ(t)βj and∑

j ψij (t) = ψi(t). On a tree, this allows us to solve for ψij (t); the relationship
will clearly be linear, that is, (

ψij (t)
) = M

(
ψi(t)

)
(3.2)

for some matrix M . For future reference, we define the (“load balancing”) linear
mapping M from y ∈ R

I to z = (zij , (ij) ∈ E ) ∈ R
I+J−1 as follows: z = My is

the unique solution of

η =
∑

i yi∑
j βj

; ∑
i

zij = ηβj ∀j ; ∑
j

zij = yi ∀i.(3.3)

The evolution of ψi(t) is given by

ψ̇i(t) = λi − ∑
j

μijψij (t) ∀i.(3.4)

[This follows from (3.1c) and the fact that qi(t) = 0.] Then, by the above argu-
ments we see that this entails (in matrix form)(

ψ̇i(t)
) = (λi) + Au

(
ψi(t)

)
,(3.5)

where Au is an I × I matrix, Au = GM . Here, G is a I × (I + J − 1) matrix with
entries Gi,(kj) = −μij if i = k, and Gi,(kj) = 0 otherwise.

It remains to justify the claim that T2(δ) ↑ ∞ as δ ↓ 0. This follows from the
fact that, as long as t ≥ T1 and |(ψij (t)) − (ψ∗

ij )| < ε, the evolution of the system
is described by the linear ODE above. The solutions have the general form

ψI (t) − ψ∗
I = exp

(
Au(t − T1)

)(
ψI (T1) − ψ∗

I
)
,

ψE (t) − ψ∗
E = M

(
ψI (t) − ψ∗

I
)
,
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where M and Au are constant matrices depending on the system parameters.
Therefore, if |ψI (T1) − ψ∗

I | ≤ δ is sufficiently small, then the time it takes
for ψE (t) to escape the set |ψE (t) − ψ∗

E | < ε can be made arbitrarily large.
Since as δ ↓ 0 we have T1(δ) ↓ 0, and the system trajectory is Lipschitz, taking
|ψE (0) − ψ∗

E | < δ for small enough δ will guarantee that |ψI (T1) − ψ∗
I | is small,

and hence we can choose T2(δ) ↑ ∞. �

The proof of Theorem 3.2 proceeds similarly; we outline only the differences.

PROOF OF THEOREM 3.2. First, since we assume that ε > 0 is sufficiently
small and |qi(t) − q| < ε, i ∈ I , for all t ≤ T2, we clearly have ρj (t) = 1, j ∈ J ,
for all t ≤ T2. The equality of queue lengths in [T1, T2] is shown analogously to
the proof of ρ∗(t) = ρ∗(t) for in the underloaded case. Namely, the smallest queue
must increase and the largest queue must decrease [as long as not all qi(t) are
equal], because it is getting less (resp., more) service than nominal [we choose ε

small enough for this to be true provided |(ψij (t)) − (ψ∗
ij )| < ε]. Thus, in [T1, T2]

we will have qi(t) = qi′(t) for all i, i′ ∈ I .
The linear equation is modified as follows. We have

ẋi (t) = λi − ∑
j

μijψij (t),

where xi(t) = ψi(t) + qi(t). Since we know that all qi(t) are equal and positive,
we have qi(t) = q(t) = 1

I
(
∑

xk(t) − ∑
βj ), and therefore

ψ̇i(t) = ẋi (t) − 1

I

∑
k

ẋk(t).

The rest of the arguments proceed as above to give

(
ψ̇i(t)

) =
(
λi − 1

I

∑
i

λi

)
+ Ac

(
ψi(t)

)
(3.6)

for the appropriate matrix Ac which can be computed explicitly from the basic
activity tree. (Of course, in [T1, T2], the trajectory (ψij (·)) uniquely determines
(ψi(·)), (xi(·)) and (qi(·)).)

Just as above, the existence of the linear ODE, together with the fact that T1 ↓ 0
as δ ↓ 0, implies that T2 ↑ ∞ as δ ↓ 0. �

To compute the matrix M , and therefore the matrices Au and Ac, we will find
the following observation useful. If (ψij (t)) = M(ψi(t)), then the common value
ρ(t) = ρj (t),∀j , is

ρ(t) = ∑
i

ψi(t)
/∑

j

βj .
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FIG. 1. Example for calculation of the matrix M .

This allows us to find the values (ψij (t)) from (ψi(t)) as follows: if i is a customer-
type leaf, then ψij (t) = ψi(t); if j is a server-type leaf, then ψij (t) = ρ(t)βj ; we
now remove the leaf and continue with the smaller tree. Inductively, for an activity
i0j0 we find

ψi0j0(t) = ∑
i�(i0,j0)

ψi(t) − ∑
j�(i0,j0)

ρ(t)βj

(3.7)

= 1∑
βj

( ∑
i�(i0,j0)

∑
j�(j0,i0)

ψi(t)βj − ∑
i�(j0,i0)

∑
j�(i0,j0)

ψi(t)βj

)
.

Here, the relation � is defined as follows. Suppose we disconnect the basic activity
tree by removing the edge (i0, j0). Then for any node k (either customer type or
server type), we say k � (i0, j0) if it falls in the same component as i0; otherwise,
k � (j0, i0).

For example, consider the network in Figure 1. For it, we obtain

⎛
⎝ψA1

ψA2
ψB2

⎞
⎠ =

⎛
⎜⎜⎜⎜⎝

β1

β1 + β2

β1

β1 + β2

1 − β1

β1 + β2
− β1

β1 + β2
0 1

⎞
⎟⎟⎟⎟⎠

(
ψA

ψB

)
.

Since in the underload we have

ψ̇i(t) = λi − ∑
j

μijψij (t),

we obtain an expression for Au, given in Lemma 3.3(i) just below.

LEMMA 3.3. (i) The entries (Au)ii′ of the matrix Au (for the underload case,
ρ < 1) are as follows. The coefficient of ψi in ψ̇i is

(Au)ii = − 1∑
j βj

∑
j∈S(i)

μij

∑
j ′�(j,i)

βj ′ .
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The coefficient of ψi′ in ψ̇i is

(Au)ii′ = 1∑
j βj

[
− ∑

j∈S(i),j �=jii′
μij

∑
j ′�(j,i)

βj ′ + μijii′
∑

j ′�(i,jii′ )
βj ′

]

= (Au)ii + μijii′ .

Here, jii′ ∈ S(i) is the neighbor of i such that, after removing the edge (i, jii′) from
the basic activity tree, nodes i and i ′ will be in different connected components.
(Such a node is unique, since there is a unique path along the tree from i to i ′.)

(ii) The matrix Au is nonsingular.
(iii) The matrix Au depends only on (βj ), (μij ) and the basic activity tree struc-

ture E , and does not depend on (λi) and (ψ∗
ij ).

PROOF. (i) In the proof of Theorem 3.1 we showed Au = GM , where G is a
I × (I +J −1) matrix with entries Gi,(kj) = −δikμij , where δik is the Kronecker’s
delta function and M is the I × (I + J − 1) load-balancing matrix whose entries
are determined from the expression (3.7). The form of the entries for Au now
follows. The equality between the two expressions for the off-diagonal entries is a
consequence of the fact that, for all j ′, exactly one of j ′ � (ij), j ′ � (j i) holds.

(ii) In the case ρ < 1, in the vicinity of the equilibrium point, the derivative
(ψ̇i) = (λi) + Au(ψi) (which can be any real-valued I -dimensional vector, within
a small neighborhood of the origin) uniquely determines (ψij ), and then (ψi) as
well. Indeed, we have the system of I +J linear equations λi −∑

j μijψij = ψ̇i,∀i

and
∑

i ψij = ρ̂βj ,∀j , for the I + J variables ρ̂, (ψij ). This system has unique
solution, because ρ̂ is uniquely determined by the workload derivative condition∑

i

νiψ̇i = ∑
i

νiλi − ∑
j

ρ̂αj ,

and then the values of ψij are determined by sequentially “eliminating” leaves of
the basic activity tree.

(iii) Follows from (i). �

LEMMA 3.4. (i) The entries (Ac)ii′ of the matrix Ac (for the critical load
case, ρ = 1) are as follows:

(Ac)ii′ = (Au)ii′ − 1

I

∑
k

(Au)ki′ .(3.8)

(ii) The matrix Ac has rank I − 1. The (I − 1)-dimensional subspace L =
{y|∑i yi = 0} is invariant under the transformation Ac, that is, AcL ⊆ L. Letting
π denote the matrix of the orthogonal projection [along (1, . . . ,1)†] onto L, we
have Ac = πAu. Restricted to L, the transformation Ac is invertible.

(iii) The linear transformation Ac, restricted to subspace L, depends only on
(μij ) and the basic activity tree structure E , and does not depend on (βj ), (λi)

and (ψ∗
ij ).
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PROOF. (i) The fluid model here is such that there are always nonzero queues,
which are equal across customer types. We can write

ψ̇i(t) = ẋi(t) − 1

I

∑
k

ẋk(t)

(3.9)

=
(
λi − ∑

j

μijψij (t)

)
− 1

I

∑
k

(
λk − ∑

j

μkjψkj (t)

)
,

which implies (3.8).
(ii) First of all, it is not surprising that Ac does not have full rank: the linear

ODE defining Ac is such that
∑

i ψi(t) = ∑
j βj at all times, so there are at most

(I − 1) degrees of freedom in the system. Also, it will be readily seen that (3.8)
asserts precisely that Ac = πAu. Since Au is invertible and π has rank I − 1, their
composition has rank I − 1. Since the image of Ac is contained in L, the image of
Ac (as a map from R

I ) must be equal to all of L.
It remains to check that Ac restricted to L still has rank I − 1. To see this,

we observe that the simple eigenvalue 0 of Ac has as its unique right eigenvector
the vector A−1

u (1,1, . . . ,1)†. We will be done once we show that this eigenvector
does not belong to L. Suppose instead that Auv = (1,1, . . . ,1)† for some v ∈ L,∑

i vi = 0. Then, for a small ε > 0, the state ψ∗
I − εv (with balanced pool loads,

all equal to the optimal ρ) would be such that the derivatives of all components ψi

would be strictly negative. This is, however, impossible because the total rate at
which the system workload is served must be zero,

d

dt

∑
i

νiψi = ∑
i

νiλi − ∑
j

ραj = 0.

(iii) The specific expression (3.8) for Ac may depend on the pool sizes (βj ).
However, Ac is a singular I × I matrix, and our claim is only about the transfor-
mation of the (I −1)-dimensional subspace L that Ac induces; this transformation
does not depend on (βj ), as the following argument shows.

Pick any (ij) ∈ E . Modify the original system by replacing βj by βj + δ and λi

by λi + δμij ; this means that the nominal ψ∗
ij is replaced by ψ∗

ij + δ. Then, using
notation γi(t) = ψi(t) − ψ∗

i , the linear ODE(
γ̇i(t)

) = A
(
γi(t)

)
,(3.10)

which we obtain from the ODE (3.9) for the original and modified systems, has
exactly the same matrix A, which implies A = Ac. Thus, the transformation Ac

must not depend on βj .
An alternative argument is purely analytic. Recall that to compute (Au)ij we

used (3.7). In critical load, we have ρ(t) ≡ 1, so the (left) equation (3.7) for ψi0j0(t)

simplifies to

ψi0j0(t) = ∑
i�(i0,j0)

ψi(t) − ∑
j�(i0,j0)

βj .(3.11)
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If we substitute this in the right-hand side of (3.9), we will obtain a different ex-
pression for ψ̇i(t). While its constant term will depend on βJ , the linear term will
not, since the linear term of (3.11) does not depend on βJ . That is, we have found
a way of writing down a matrix for Ac which clearly does not depend on the βJ .

�

3.3. Definition of local stability. We say that the (fluid) system is locally sta-
ble, if all fluid models starting in a sufficiently small neighborhood of an equilib-
rium point (which is unique for ρ < 1; and for ρ = 1 we consider any equilibrium
point with equal queues q > 0) are such that, for fixed constant C > 0,∣∣(ψij (t)

) − (
ψ∗

ij

)∣∣ ≤ �0e
−Ct ,

where �0 = |(ψij (0))−(ψ∗
ij )|+|(qi(0))−(q, . . . , q)†|. Note that in the case ρ = 1

it is not required that qi(t) → q , for q associated with the chosen equilibrium
point. However, local stability will guarantee convergence of queues qi(t) → q ,
with some q > 0 possibly different from q . Indeed, the exponentially fast conver-
gence ψE (t) → ψ∗

E of the occupancies to the nominal, guarantees that for some
fixed constant C1 > 0, any i and any s ≥ t ≥ 0,

∣∣xi(s) − xi(t)
∣∣ ≤

∫ s

t

∣∣∣∣λi − ∑
j

μijψij (ξ)

∣∣∣∣dξ ≤ C1�0e
−Ct .

Therefore, each xi(t), and then each qi(t), also converges exponentially fast. Then
we can apply Theorem 3.2 to show that all qi(t) must be equal starting some time
point; therefore they converge to the same value q , which is such that that |q −q| ≤
C0�0 for some constant C0 > 0 depending only on the system parameters. In other
words, local stability guarantees convergence to an equilibrium point not too far
from the “original” one. (We omit further detail, which are rather straightforward.)

By Theorems 3.1 and 3.2 we see that the local stability is determined by the
stability of a linear ODE, which in turn is governed by the eigenvalues of the
matrix Au or Ac. We will call matrix Au stable if all its eigenvalues have negative
real part. We call matrix Ac stable if all its eigenvalues have negative real part,
except one simple eigenvalue 0.2 In this terminology, the local stability of the
system is equivalent to the stability of the matrix A in question (either Au or Ac).
On the other hand, if A has an eigenvalue with positive real part, the ODE has
solutions diverging from equilibrium (ψ∗

i ) exponentially fast; if A has (a pair of
conjugate) pure imaginary eigenvalues, the ODE has oscillating, never converging
solutions.

2A matrix A with all eigenvalues having negative real part is usually called Hurwitz. So, Au sta-
bility is equivalent to Au being Hurwitz; while Ac stability definition is slightly different, due to Ac

singularity. A symmetric matrix A is Hurwitz if and only if it is negative definite, but neither Au nor
Ac is, in general, symmetric.
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3.4. Fluid model as a fluid limit. In this section we show that the set of fluid
models defined in Section 3.1 contains (in the sense specified shortly) all possible
limits of “fluid scaled” processes. We consider a sequence of systems indexed
by r , with the input rates being λr

i = rλi + o(r), server pool sizes being βj r and
the service rates μij unchanged with r . Recall the notation in Section 2.2. We also
add the following notation:

Ar
i (t) the number of customers of type i who have entered the system by time t

(a Poisson process of rate λr
i );

Sr
ij (t) the number of customers of type i who have been served by servers of

type j if a total time rt has been spent on these services (a Poisson process of rate
μij r).

Let �
(a)
i (·), i ∈ I , and �

(s)
ij (·), (ij) ∈ E , be independent unit-rate Poisson pro-

cesses. We can assume that, for each r ,

Ar
i (t) = �

(a)
i

(
λr

i t
)
, Sr

ij (t) = �
(s)
ij (μij rt).

Then, by the functional strong law of large numbers, with probability 1, uniformly
on compact subsets of [0,∞),

1

r
Ar

i (t) → λit,
1

r
Sr

ij (t) → μij t.(3.12)

We consider the following scaled processes:

xr
i (t) = 1

r
Xr

i (t), qr
i (t) = 1

r
Qr

i (t), ψr
ij (t) = 1

r

r

ij (t),

ρr
j (t) = 1

r
�r

j (t), ar
i (t) = 1

r
Ar

i (t).

THEOREM 3.5. Suppose{(
xr
i (0)

)
,
(
qr
i (0)

)
,
(
ψr

ij (0)
)
,
(
ρr

j (0)
)} → {(

xi(0)
)
,
(
qi(0)

)
,
(
ψij (0)

)
,
(
ρj (0)

)}
.

Then w.p.1 any subsequence of {r} contains a further subsequence along which
u.o.c., {(

ar
i (·)

)
,
(
xr
i (·)

)
,
(
qr
i (·)

)
,
(
ψr

ij (·)
)
,
(
ρr

j (·)
)}

→ {(
ai(·)), (

xi(·)), (
qi(·)), (

ψij (·)), (
ρj (·))},

where the limiting trajectory (on the right-hand side) is a fluid model.

PROOF. Given property (3.12), the probability 1, u.o.c., convergence along a
subsequence to a Lipschitz continuous set of functions easily follows. The only
nontrivial properties of a fluid model that need to be verified for the limit are
(3.1f). Let us consider a regular time t : namely, such that all the components of
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a limit trajectory have derivatives, and moreover the minimums and maximums
over any subset of components have derivatives as well. Consider a sufficiently
small interval [t, t + �t], and consider the behavior of the (fluid-scaled) pre-limit
trajectory in this interval. Then, it is easy to check that the conditions (3.1f) on the
derivatives must hold; the argument here is very standard—we omit details. �

4. Special cases in which fluid models are stable. In this section we analyze
two special cases of the system parameters, for which we demonstrate convergence
results. In Section 4.1 we consider the case when there exists a set of positive
μj , j ∈ J , such that μij = μj for (ij) ∈ E [i.e., the service rate μij is constant
across all i ∈ C(j)]; we show global convergence of fluid models to equilibrium. In
Section 4.2 we consider the case when there exists a set of positive μi , i ∈ I , such
that μij = μi for (ij) ∈ E [i.e., the service rate μij is constant across all j ∈ S(i)];
we show local stability of the fluid model (i.e., stability of Au and Ac).

4.1. Global stability in the case μij = μj , (ij) ∈ E . We call the system glob-
ally stable if any fluid model, with arbitrary initial state, converges to an equi-
librium point as t → ∞. [This of course implies ρj (t) → ρ for all j ∈ J and
ψij (t) → ψ∗

ij for all i ∈ I , j ∈ J . Note that, in the underload, the definition neces-
sarily implies qi(t) → 0 for all i ∈ I , while in the critical load it requires qi(t) → q

for all i ∈ I and some q ≥ 0.]

THEOREM 4.1. The system with μij = μj , (ij) ∈ E , is globally stable both
for ρ < 1 and for ρ = 1. In addition, the system is locally stable as well (i.e., the
matrices Au and Ac are stable).

PROOF. Consider the underloaded system, ρ < 1, first. First, we show that
the lowest load cannot stay too low. Suppose the minimal load ρ∗(t) ≡ minj ρj (t)

is smaller than ρ, and let J∗(t) ≡ {j :ρj (t) = ρ∗(t)}. Then all customer types in
C(J∗(t)) ≡ ⋃

j∈J∗(t) C(j) are routed to server pools in J∗(t), so the total arrival
rate “into” J∗(t) is no less than nominal; on the other hand, since μij = μj and
server occupancy is lower than nominal, the total departure rate “from” J∗(t) is
smaller than nominal. This shows that if ρ∗ < ρ − ε < ρ, then ρ̇∗ > δ > 0, where
δ ≥ cε for some constant c > 0 (depending on the system parameters). That is,
if ρ∗(t) < ρ, then ρ̇∗(t) ≥ c(ρ − ρ∗(t)), so ρ∗(t) is bounded below by a function
converging exponentially fast to ρ.

Consider a fixed, sufficiently small ε > 0; we know that ρ∗(t) ≥ ρ − ε for all
large times t . If some customer class i has a queue qi(t) > 0, then all server classes
j ∈ S(i) have ρj (t) = 1. It is now easy to see that the system is serving customers
faster than they arrive (because ρ < 1 and ε is small). This easily implies that all
qi(t) = 0 after a finite time.

In the absence of queues, we can analyze ρ∗(t) = maxj ρj (t) similarly to the
way we treated ρ∗(t); namely, we show that ρ∗(t) is bounded above by a function
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converging exponentially fast to ρ, which tells us that ρj (t) → ρ for all j . Once
all ρj (t) are close enough to ρ, we can use the argument essentially identical to
that in the proof of Theorem 3.1 to conclude that, after a further finite time, we will
have ρj (t) = ρj ′(t) for all j , j ′. [The argument is even simpler, because, unlike
in Theorem 3.1, where it was required that (ψij (t)) were close to nominal, here
it suffices that (ρj (t)) are close to nominal, because of the μij = μj assumption.]
With ρ(t) = ρj (t),∀j , we then have for the total amount of “fluid” in the system

(d/dt)
∑
j

βjρ(t) = ∑
i

λi − ∑
j

βjρ(t)μj .

This is a simple linear ODE for ρ(t), which implies that (after a finite time)
ρ(t) − ρ = c1 exp(−c2t), with constant c2 > 0 and c1. This in particular means
that ρ̇j (t) = ρ̇(t) → 0. Denote by λ̂ij (t) the rate at which fluid i arrives at pool j ,
namely

λ̂ij (t) = μjψij (t) + ψ̇ij (t);(4.1)

at any large t we have
∑

j λ̂ij (t) = λi . Then, for each j ,

∑
i

λ̂ij (t) = ∑
i

μjψij (t) + ∑
i

ψ̇ij (t) = βjμjρj (t) + βj ρ̇j (t)

→ βjμjρ = ∑
i

λij .

This is only possible if each λ̂ij (t) → λij . But then the ODE (4.1) implies
ψij (t) → ψ∗

ij .
Now, consider a critically loaded system, ρ = 1. Essentially same argument as

above tells us that, as long as not all queues qi(t) are equal, each of the longest
queues gets more service than the arrival rate into it, and so q∗(t) = maxqi(t)

has strictly negative, bounded away from 0 derivative. If all qi(t) are equal and
positive, then q̇∗(t) = 0. We see that q∗(t) is nonincreasing, and so q∗(t) ↓ q ≥ 0.
We also have ρ∗(t) → ρ = 1 exponentially fast. (Same proof as above applies.)
These facts easily imply convergence to an equilibrium point. We omit further
detail.

Examination of the above proof shows that it implies the following property,
for both cases ρ < 1 and ρ = 1. For any fixed equilibrium point (with q > 0 if
ρ = 1), there exists a sufficiently small ε > 0 such that for all sufficiently small
δ > 0, any fluid model starting in the δ-neighborhood of the equilibrium point, first,
never leaves the ε-neighborhood of the equilibrium point and, second, converges
to an equilibrium point (possibly different from the “original” one, if ρ = 1). This
property cannot hold, unless the system is locally stable; see Section 3.3. �
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4.2. Local stability in the case μij = μi , (ij) ∈ E .

THEOREM 4.2. Assume ρ < 1 and μij = μi for (ij) ∈ E . Then the system is
locally stable (i.e., Au is stable).

PROOF. We have

ψ̇i(t) = λi − μiψi(t)

and Au is simply a diagonal matrix with entries −μi . �

THEOREM 4.3. Assume ρ = 1 and μij = μi for (ij) ∈ E . Then the system is
locally stable (i.e., Ac is stable).

PROOF. As seen in the proof of Theorem 4.2, the matrix Au in this case is di-
agonal with entries −μi . By Lemma 3.4, Ac has off-diagonal entries (Ac)ii′ =
μi′/I and diagonal entries −μi(1 − 1/I). That is, its off-diagonal entries are
strictly positive. Therefore, Ac + ηI for some large enough constant η > 0 (where
I is the identity matrix) is a positive matrix. By the Perron–Frobenius theorem ([9],
Chapter 8), Ac + ηI has a real eigenvalue p + η with the property that any other
eigenvalue of Ac + ηI is smaller than p + η in absolute value (and in particular
has real part smaller than p + η). Moreover, the associated left eigenvector w is
strictly positive, and is the unique (up to scaling) strictly positive left eigenvector
of Ac +ηI . Translating these statements to Ac, we get: Ac has a real eigenvalue p;
all other eigenvalues of Ac have real part smaller than p; Ac has unique (up to
scaling) strictly positive left eigenvector w; and the eigenvalue of w is p.

Now, Ac has a positive left eigenvector with eigenvalue 0, namely (1,1, . . . ,1).
Therefore, we must have p = 0, and we conclude that all other (i.e., nonzero)
eigenvalues of Ac have real part smaller than 0, as required. �

5. Fluid models for general μij : Local instability examples. In Sec-
tions 4.1, 4.2 we have shown that the matrices Au and Ac are stable in the cases
μij = μj , (ij) ∈ E and μij = μi , (ij) ∈ E . Since the entries of Au, Ac depend
continuously on μij via Lemmas 3.3, 3.4 and the eigenvalues of a matrix depend
continuously on its entries, we know that the matrices will be stable for all pa-
rameter settings sufficiently close to those special cases. Therefore, there exists a
nontrivial parameter domain of local stability. One might consider it to be a reason-
able conjecture that local stability holds for any parameters. It turns out, however,
that this conjecture is false. We will now construct examples to demonstrate that,
in general, the system can be locally unstable.

REMARK 5.1. In the examples below, we will specify the parameters μE and
sometimes βJ , but not λI . It is easy to construct values of λI which will make all
of the activities in E basic; simply pick a strictly positive vector ψE , such that all
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FIG. 2. System with three customer types whose underload equilibrium is unstable.

loads
∑

i ψij /βj are equal, and set λi = ∑
j ψijμij . Lemmas 3.3(iii) and 3.4(iii)

guarantee that the specific values of λI do not affect the matrices Au, Ac. In critical
load, we also do not need to specify βJ .

Local instability example 1. Consider a system with 3 customer types A, B , C

and 4 server types 1 through 4, connected 1−A−2−B −3−C −4. Set β1 = 0.97
and β2 = β3 = β4 = 0.01. Set μA1 = μB2 = μC3 = 1 and μA2 = μB3 = μC4 =
100. (See Figure 2.) On the other hand, we compute by Lemma 3.3

Au =
⎛
⎝−1.99 −0.99 −0.99

97.02 −2.98 −1.98
96.03 96.03 −3.97

⎞
⎠

with eigenvalues {−17.8,4.45 ± 23.4i}. Therefore by Theorem 3.1, the system
with these parameters is described by an unstable ODE in the neighborhood of its
equilibrium point.

We now show that this is a minimal instability example, in the sense made
precise by the following:

LEMMA 5.2. Consider an underloaded system, ρ < 1.

(i) Let I ≥ 2. Any customer type i that is a leaf in the basic activity tree, does
not affect the local stability of the system. Namely, let us modify the system by
removing type i, and then modifying (if necessary) input rates λk of the remaining
types k ∈ I \ i so that the basic activity tree of the modified system is E \ (ij),
where (ij) is the (only) edge in E adjacent to i. Then, the original system is locally
stable if and only if the modified one is.

(ii) A system with two (or one) nonleaf customer types is locally stable.

PROOF. (i) If type i is a leaf, the equation for ψi(t) is simply ψ̇i(t) = λi −
μijψi(t). This means (setting i = 1) that (1,0, . . . ,0)† is an eigenvector of Au

with eigenvalue −μij . Further, it is easy to see that: (a) the rest of the eigenvalues

of Au are those of matrix A
(−i)
u obtained from Au by removing the first row and

first column; and (b) A
(−i)
u is exactly the “Au-matrix” for the modified system.
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(ii) We can assume that there are no customer-type leaves. The case I = 1 is
trivial (and is covered by Theorem 4.1), so let I = 2. Throughout the proof, the
pool sizes βj are fixed. From Theorem 4.1 we know that for a certain set of service
rate values [namely, μij = μj , (ij) ∈ E ], the matrix Au is stable. Suppose that we
continuously vary the parameters μij from those initial values to the values of
interest, without ever making μij = 0. If we assume that the final matrix Au is not
stable, then as we change μij the (changing) matrix Au acquires at some point two
purely imaginary eigenvalues. If the eigenvalues of Au are purely imaginary, we
must have trace(Au) = 0. However, as seen from the form of Au in Lemma 3.3,
the diagonal entries of Au are always negative, and therefore trace(Au) < 0. The
contradiction completes the proof. �

An argument similar to the above proof also allows us to explain how the in-
stability example 1 was found. In degree 3, let the characteristic polynomial of
Au be x3 − c2x

2 + c1x − c0. A necessary and sufficient condition for all roots
of the polynomial to have negative real parts is: −c2, c1,−c0 > 0 and c2c1 < c0;
see [10], Theorem 6. A necessary and sufficient condition for the “boundary case”
between stability and instability (i.e., the condition for a pair of conjugate purely
imaginary roots) is c2c1 = c0. Using Lemma 3.3 we can evaluate the characteristic
polynomial symbolically and use the resulting expression to find parameters for
which c2c1 = c0 will hold. See [13] online for the computations.

It is possible to construct an instability example with more reasonable values
of βj , μij , although it will be bigger. Figure 3 shows the diagram. The associated
matrix Au and its eigenvalues can also be found online [13].

We do not have an explicit characterization of the local instability domain, be-
yond the necessity of I ≥ 3.

We now analyze the critically loaded system ρ = 1 with queues, that is, the
stability of the matrix Ac. Recall that the transformation Ac, restricted to subspace
{y|∑i yi = 0}, and then the stability of Ac, does not depend on the values of βj ,
so it suffices to specify the values μij .

FIG. 3. System with βj = 1 and μij ∈ {1/3,1,3} whose underload equilibrium is unstable. There
are 21 customer types.
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FIG. 4. System with five customer types whose critical load equilibrium is unstable.

Local instability example 2. Consider the network of Figure 4, which has 5
customer types A through E and 4 server types 1 through 4, connected A − 1 −
B − 2 − C − 3 − D − 4 − E, with the following parameters:

μA1 = 1, μB1 = 100, μB2 = 1, μC2 = 100,

μC3 = 1, μD3 = 100, μD4 = 10,000, μE4 = 100.

The matrix Ac, computed from Lemma 3.4 will be given by

Ac = 1

20

⎛
⎜⎜⎜⎜⎝

9389 9805 10,201 10,597 −29,003
10,894 9290 9706 10,102 −29,498
10,399 10,795 9191 9607 −29,993

−40,091 −39,695 −39,299 −40,903 119,497
9409 9805 10,201 10,597 −31,003

⎞
⎟⎟⎟⎟⎠

and the eigenvalues of Ac are {0,−16.88,−2190.05,2.565 ± 23.23i}.
Again, the above example 2 is in a sense minimal:

LEMMA 5.3. Consider a critically loaded system, ρ = 1.

(i) Let J ≥ 2. Any server type j that is a leaf in the basic activity tree does not
affect the local stability of the system. Namely, let us modify the system by removing
type j , and then replacing λi for the unique i adjacent to j by λi − βjμij . Then,
the original system is locally stable if and only if the modified one is.

(ii) Consider a system labeled S. We say that a system S ′ is an expansion of
system S if it is obtained from S by the following modification. We pick one server
type j and one customer type i adjacent to it in E ; we “split” type j into two types
j ′ and j ′′; we “connect” type i to both j ′ and j ′′; each of the remaining types
i ′ ∈ C(j) \ i we connect to either j ′ or j ′′ (but not both); if (i ′j ′) [resp., (i′j ′′)] is a
new edge, we set μi′j ′ = μi′j (resp., μi′j ′′ = μi′j ). Then, S is locally stable if and
only if S′ is.

(iii) A system with four or fewer customer types is locally stable.

PROOF. (i) The argument here is a “special case” of the one used to show the
independence of transformation Ac [restricted to (I − 1)-dimensional invariant
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subspace] from (βj ) in the proof of Lemma 3.4. Namely, it is easy to check that
the original system and the modified system share exactly same ODE (3.10).

(ii) Again, it is easy to see that the two systems share the same ODE (3.10).
(iii) We can assume that there are no server-type leaves, so that the tree E has

only customer-type leaves, of which it can have two, three, or four.
If it has four customer-type leaves, then the tree has a total of four edges, hence

five nodes, that is, a single server pool, to which all the customer types are con-
nected.

If the tree has three customer-type leaves, then letting k be the number of edges
from the fourth customer type, we have k + 3 total edges, so k + 4 nodes, of which
k are server types. That is, the nonleaf customer type is connected to all of the
server types. Since there are no server-type leaves, we must have k ≤ 3; since we
are assuming the fourth customer type is not a leaf, we must have k ≥ 2; thus,
k = 2 or k = 3.

The last case is of two customer-type leaves. Letting k, l be the number of edges
coming out of the other customer types, we have k + l + 2 edges. On the other
hand, since each server type has at least 2 edges coming out of it, we have at most
(k + l + 2)/2 server types, so at most (k + l + 2)/2 + 4 nodes. Thus, we have
(k + l + 2) + 1 ≤ (k + l + 2)/2 + 4, or k + l + 2 ≤ 6, giving k = l = 2 (since they
must both be ≥ 2).

We summarize the possibilities in Figure 5. Note that the bottom-left system can
be obtained by a sequence of expansions from each of the top-left systems, and so
this is the only system we need to consider to establish local stability for all 3- and
4-leaf cases. Thus, in total, the only two systems that need to be considered are
bottom-left and right. In both of the resulting cases, we can use Lemma 3.4 to write
out Ac and its characteristic polynomial explicitly. The characteristic polynomial
will have degree 4, but one of its roots is 0, so we can reduce it to degree 3. We
then symbolically verify that the cited above stability criterion ([10], Theorem 6)
for degree 3 polynomials, is satisfied. See [13] online for the details. �

FIG. 5. Possible arrangements of four customer types.
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An argument similar to that in the above proof allows us to explain how the
instability example 2 was found. We seek a condition satisfied by the coefficients
of a degree 4 polynomial with two imaginary roots. Letting the polynomial be
x4 − c1x

3 + c2x
2 − c3x + c4, and letting the roots be η1, η2, ±iz (where η1 and

η2 may be real or complex conjugates, and z ∈ R), we see that c1 = η1 + η2,
c2 = η1η2 + z2, c3 = (η1 + η2)z

2 and c4 = η1η2z
2. This implies the relation

c4c
2
1 + c2

3 − c1c2c3 = 0, and we can find the parameters for which this is true. (The
symbolic calculation will involve rather a lot of terms.) We remark that, whereas
for degree 3 polynomials the condition c2c1 −c0 = 0 is necessary and sufficient for
the existence of two imaginary roots ([10], Theorem 6), the condition we derive
here for degree 4 polynomials is necessary, but not sufficient. [E.g., the polyno-
mial (x − 1)2(x + 1)2 has c1 = c3 = 0, so c4c

2
1 + c2

3 − c1c2c3 = 0, but it has no
imaginary roots.] Thus, checking the sign of the corresponding expression alone
is insufficient to determine whether the system is unstable, but is a useful way of
narrowing down the parameter ranges.

Finally, it is possible to construct a single system which will be unstable both for
ρ < 1 and for ρ = 1 with positive queues. For the local stability of the underloaded
system, the leaves of the basic activity tree corresponding to customer types are ir-
relevant (the corresponding occupancy on the sole available server class converges
to nominal exponentially). On the other hand, for the critically loaded system, the
leaves corresponding to server pools are irrelevant, since the corresponding server
is fully occupied by its unique available customer type. This observation allows
us to merge the above two systems into a single one which is unstable both in
underloaded and in the critically loaded case.

Consider a system with 5 customer types A through E and 5 server types 0
through 4 connected as 0 − A − 1 − B − 2 − C − 3 − D − 4 − E, with μA0 =
100 and the remaining μij as in the critically loaded case. Set β3 = 0.96 while
β0, β1, β2, β4 = 0.01; see Figure 6. By the above discussion, this system must be
unstable for ρ = 1 and positive queues. We therefore need to consider only the first
4 customer types (E is a customer-type leaf and does not matter) in underload. We

FIG. 6. System with five customer types whose underload and critical load equilibrium points are
both unstable.
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compute

Au =

⎛
⎜⎜⎝

−1.99 −0.99 −0.99 −0.99
97.02 −2.98 −1.98 −1.98
96.03 96.03 −3.97 −2.97
−99 −99 −99 −199

⎞
⎟⎟⎠

and eigenvalues are {−14.6,−201.1,3.91 ± 18.1i}.
While we showed above that sufficiently small systems are at least locally sta-

ble, we will show now that, in the underload case, any sufficiently large system is
locally unstable for some parameter settings.

LEMMA 5.4. In underload (ρ < 1), any shape of basic activity tree that in-
cludes a locally unstable system (i.e., with Au having an eigenvalue with positive
real part) as a subset will, with some set of parameters (βj ), (μij ), become locally
unstable. In particular, any shape of basic activity tree that includes instability
example 1 (Figure 2) above (for ρ < 1) will be locally unstable for some set of
parameters βj , μij .

PROOF. Let U be any system whose underload (ρ < 1) equilibrium is locally
unstable, for example, one of the examples given above, with the associated fixed
set of parameters μij , βj and λi . Let S be a system including U as a subset,
namely: the activity tree of S is a superset of that of U ; the μij and βj in U

are preserved in S; the μij in S are fixed. Consider a sequence of systems Sε in
which βj = ε → 0 for all j not in U . For each ε, take λε

i so that all of the activities
are indeed basic, and such that, as ε → 0, λε

i → λi for i in U , and λε
i → 0 for i

not in U ; see Remark 5.1. Order the ψi so that the customer types i in U come
first. Suppose there are I customer types in U , and I + k customer types in S. Let
Aε

u be the (I + k) × (I + k) matrix associated with Sε , and let Au be the I × I

matrix associated with U considered as an isolated system. Then as ε → 0 the
top left I × I entries of Aε

u converge to Au, while the bottom left k × I entries
of Aε

u converge to 0 (i.e., the effect of U on the stability of the rest of the system
vanishes—this is due to the fact that pool size parameters βj in U remain constant,
while βj → 0 in the rest of the system). Consequently, each eigenvalue of Au is a
limit of eigenvalues of Aε

u. Since Au had an eigenvalue with positive real part, for
sufficiently small ε the matrix Aε

u will have at least one eigenvalue with positive
real part as well, so the system Sε will be locally unstable. �

6. Diffusion scaled process in an underloaded system. Possible evanescence
of invariant distributions. Above we have shown that on a fluid scale, around
the equilibrium point, the system converges to a subset of its possible states,
on which it evolves according to a differential equation, possibly unstable. This
strongly suggests that, when the differential equation is unstable, the stochastic
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system is in fact “never” close to equilibrium. Our goal in this section is to demon-
strate that it is the case at least on the diffusion scale. More precisely, we consider
the system in underload, ρ < 1, and look at diffusion-scaled stationary distribu-
tions (centered at the equilibrium point and scaled down by

√
r); we show that,

when the associated fluid model is locally unstable, this sequence of stationary
distributions is such that the measure of any compact set vanishes.

6.1. Transient behavior of diffusion scaled process. State space collapse. In
this section we cite the diffusion limit result (for the process transient behavior)
that we will need from [6]. Again, we consider a sequence of systems indexed by r ,
with the input rates being λr

i = rλi , server pool sizes being βj r , and the service
rates μij unchanged with r . [Here we drop the o(r) terms in λr

i = rλi + o(r),
because, when ρ < 1, considering these terms does not make sense.] The notation
for the unscaled processes is the same as in the previous section; however, we are
now interested in a different—diffusion—scaling. We define


̂r
ij (t) = 
r

ij (t) − rψ∗
ij√

r
, 
̂r

i (t) = ∑
j


̂r
ij (t),

(6.1)


̂r
j (t) = ∑

i


̂r
ij (t) = 
r

j (t) − ρrβj√
r

.

We will denote by M ′ the linear mapping from z = (zij , (ij) ∈ E ) ∈ R
I+J−1 to

y = (yi) ∈ R
I , given by

∑
j zij = yi . [So, (
̂r

i (t)) ≡ M ′(
̂r
ij (t)).] There is the

obvious relation between M ′ and the operator M defined by (3.3): M ′My = y for
any y ∈ R

I . Let us define M := {My|y ∈ R
I }, an I -dimensional linear subspace

of R
I+J−1; equivalently, M = {z ∈ R

I+J−1|z = MM ′z}.

THEOREM 6.1 (Essentially a corollary of Theorems 3.1 and 4.4 in [6]). Let
ρ < 1. Assume that as r → ∞, 
̂r

E (0) → 
̂E (0) where 
̂E (0) is deterministic and
finite. [Consequently, 
̂r

I (0) → 
̂I (0) = M ′
̂E (0).] Then,


̂r
I (·) �⇒ 
̂I (·) in DI [0,∞)(6.2)

and for any fixed η > 0,


̂r
E (·) �⇒ M
̂I (·) in DI+J−1[η,∞),(6.3)

where 
̂I (·) is the unique solution of the SDE


̂i(t) = 
̂i(0) − ∑
j∈S(i)

μij

∫ t

0

(
M
̂I (s)

)
ij ds + √

2λiBi(t), i ∈ I,(6.4)

and the processes Bi(·) are independent standard Brownian motions.
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Recalling the definition of matrix Au [see (3.5)], (6.4) can be written as


̂I (t) = 
̂I (0) +
∫ t

0
Au
̂I (s) ds + (√

2λiBi(t)
)
.(6.5)

The meaning of Theorem 6.1 is simple: the diffusion limit of the process 
̂r
I (·)

is such that, at initial time 0, it “instantly jumps” to the state MM ′
̂E (0) on the
manifold M [where MM ′
̂E (0) = 
̂E (0) only if 
̂E (0) ∈ M]; after this initial
jump, the process stays on M and evolves according to SDE (6.5). Theorem 6.1
is “essentially a corollary” of results in [6], because the setting in [6] is such that
ρ = 1, while we assumed ρ < 1. However, our Theorem 6.1 can be proved the
same way, and in a sense is easier, because when ρ < 1, the queues vanish in the
limit (which is why the queue length process is not even present in the statement
of Theorem 6.1).

6.2. Evanescence of invariant measures. In this section we show that if the
matrix Au has eigenvalues with positive real part, the stationary distribution of the
(diffusion scaled) process 
̂r

E (·) escapes to infinity as r → ∞. Namely, we prove
the following:

THEOREM 6.2. Suppose ρ < 1. Consider a sequence of systems as defined
in Section 6.1, and denote by μr the stationary distribution of the process 
̂r

E (·),
a probability measure on R

I+J−1. Let bK = {|z| ≤ K} ⊂ R
I+J−1. Suppose the

matrix Au has eigenvalues with positive real parts and no pure imaginary eigen-
values.3 Then for any K , μr(bK) → 0 as r → ∞.

Before we proceed with the proof, let us introduce more notation and one
auxiliary result. Let CI be the submanifold of convergence (stability) of ODE
(d/dt)y = Auy on R

I ; namely, CI is the (real) subspace of R
I spanned by the Jor-

dan basis vectors for matrix Au corresponding to all eigenvalues with negative real
parts. Given assumptions of the theorem on Au, the solutions to (d/dt)y = Auy

converge to 0 exponentially fast if y(0) ∈ CI , and go to infinity exponentially
fast if y(0) ∈ R

I \ CI . Let C = MCI denote the corresponding submanifold of
convergence (stability) of the linear ODE (d/dt)z = (MAuM

′)z on z ∈ M. This
ODE is just the M-image of ODE (d/dt)y = Auy. Therefore, a solution z(t) con-
verges to 0 exponentially fast if z(0) ∈ C , and goes to infinity exponentially fast
if z(0) ∈ M \ C . Let us denote bK(δ1, δ2) := bK ∩ {d(z, M) ≤ δ1, d(z, C) ≥ δ2},
where d(·, ·) is Euclidean distance.

3The requirement of “no pure imaginary eigenvalues” is made for convenience of differentiating
between strict convergence and strict divergence. It holds for generic values of βj , μij : that is, any

set of values βj , μij has a small perturbation β̃j , μ̃ij with for which Au has no pure imaginary
eigenvalues.
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LEMMA 6.3. Solutions to SDE (6.5) have the following properties:

(i) For any T > 0 and any 
I (0),

P
{
M
̂I (T ) ∈ M \ C

} = 1;
(ii) For any K > 0, δ2 > 0 and ε > 0, there exist sufficiently large TK and

K ′ > K , such that, uniformly on M
̂I (0) ∈ bK(0, δ2),

P
{
M
̂I (TK) ∈ bK ′ \ b2K

} ≥ 1 − ε.

PROOF. Statement (i) follows from the fact that, regardless of the (determin-
istic) initial state 
I (0), the solution to SDE (6.5) is such that the distribution of

I (T ) is Gaussian with nonsingular covariance matrix. (See [7], Section 5.6. In
our case the matrix of diffusion coefficients is diagonal with entries

√
2λi .) There-

fore, the probability that 
I (T ) is in a subspace of lower dimension is zero.
Statement (ii) follows from the fact (again, see [7], Section 5.6) that the expec-

tation m(t) = E
̂I (t) evolves according to ODE

ṁ(t) = Aum(t).

Since d(M
̂I (0), C) ≥ δ2 [and thus 
̂I (0) is also separated by a positive distance
from CI ], we have ∣∣m(t)

∣∣ ≥ a1 exp(at)

for some fixed a1, a > 0 and all large t . [Here a1 depends on the minimum length
of the projection of 
̂I (0) along CI onto the (real) span of the Jordan basis vectors
of Au corresponding to eigenvalues with positive real part, and a is the smallest
positive real part of an eigenvalue of Au.] It is easy to check that if the mean
of a Gaussian distribution goes to infinity, then (regardless of how the covari-
ance matrix changes) the measure of any bounded set goes to zero. On the other
hand, both m(t) and the covariance matrix remain bounded for all t ∈ [0, TK ],
with any TK ; then, for any TK , we can always choose K ′ large enough so that
P{M
̂I (TK) ∈ bK ′ } is arbitrarily close to 1. �

PROOF OF THEOREM 6.2. We will consider measures μr as measures on the
one-point compactification R

n = R
n ∪ {∗} of the space R

n, where n = I + J − 1.
In this space, any subsequence of {μr} has a further subsequence, along which
μr w→ μ for some probability measure μ on R

n. We will show that the entire
measure μ is concentrated on the infinity point ∗, that is, μ(Rn) = 0. Suppose not,
that is, μ(Rn) > 0. The proof proceeds in two steps.

Step 1. We prove that μ(Rn) = μ(M \ C). Indeed, let us choose any ε > 0, and
K large enough so that μ(bK/2) > (1 − ε)μ(Rn). Then, for all large r , μr(bK) >

(1 − ε)μ(Rn). Choose δ1 > 0 and T > 0 arbitrary. From the properties of the
limiting diffusion process (Lemma 6.3), we see that we can choose a sufficiently
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small δ2 > 0 and sufficiently large K ′ such that, uniformly on the initial states

̂r

E (0) ∈ bK ,

lim inf
r→∞ P

{

̂r

E (T ) ∈ bK ′(δ1, δ2)
}
> 1 − ε.

This implies that for all large r ,

μr(bK ′(δ1, δ2)
)
> (1 − ε)2μ

(
R

n)
,

and then μ(bK ′(δ1, δ2)) ≥ (1 − ε)2μ(Rn). Since ε and δ1 were arbitrary, we con-
clude that μ(Rn) ≤ μ(M \ C), and then, obviously, the equality must hold.

Step 2. We show that, for any K > 0, μ(Rn \ bK) = μ(Rn). [This is, of course,
impossible when μ(Rn) > 0, and thus we obtain a contradiction.] It suffices to
show that for any ε > 0, we can choose a sufficiently large K , such that μ(Rn \
bK) ≥ (1 − ε)2μ(Rn). Let us choose (using step 1) a large K and a small δ2 > 0,
such that μ(bK/2(δ1/2,2δ2)) > (1 − ε)μ(Rn) for any δ1 > 0. Then, for any fixed
δ1 > 0, for all large r , μr(bK(δ1, δ2)) > (1 − ε)μ(Rn). Now, using Lemma 6.3(ii),
we can choose K ′ and TK sufficiently large, and then δ1 sufficiently small, so that,
uniformly on the initial states 
̂r

E (0) ∈ bK(δ1, δ2),

lim inf
r→∞ P

{

̂r

E (TK) ∈ bK ′ \ b2K

} ≥ 1 − ε.

Therefore,

μr(bK ′ \ b2K) > (1 − ε)2μ
(
R

n)
for all large r , and then for the limiting measure μ we must have μ(Rn \ bK) ≥
(1 − ε)2μ(Rn). �

7. Diffusion scaled process in a critically loaded system in Halfin–Whitt
asymptotic regime. In this section we consider the following asymptotic regime.
The system is critically loaded, that is, the optimal solution to SPP (2.1) is such
that ρ = 1. As scaling parameter r → ∞, assume that the server pool sizes are rβj

(same as throughout the paper), and the input rates are λr
i = rλi + √

rli , where
the parameters (finite real numbers) {li} are such that

∑
liνi = −C < 0. Denote

by ρr, {λr
ij } the optimal solution of SPP (2.1), with βj ’s and λi ’s replaced by rβj

and λr
i , respectively. (This solution is unique, as can be easily seen from the CRP

condition.) Then, it is easy to check that ρr = 1+(
∑

liνi)/
√

r = 1−C/
√

r , which
in turn easily implies that, for any r , the system process is stable with the unique
stationary distribution.

We use the definitions of (6.1) for the diffusion scaled variables, and add to
them the following ones: X̂r

i (t) = (Xr
i (t) − ψ∗

i r)/
√

r for the (diffusion-scaled)
number of type i customers; Q̂r

i (t) = Qr
i (t)/

√
r for the type i queue length;

Ẑr
j (t) = Zr

j (t)/
√

r , where Zr
j (t) = 
r

j (t) − rβj ≤ 0 is the number of idle servers
of type j (with the minus sign). Note that, although the optimal average occupancy
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of pool j is at ρrrβj , the quantity Ẑr
j (t) measures the deviation from full occu-

pancy rβj . Our choice of signs is such that Q̂r
i ≥ 0 while Ẑr

j ≤ 0. We will use the

vector notations, such as X̂r
I (t), as usual.

Two main results of this section are as follows: (a) it is possible for the invari-
ant distributions to escape to infinity under certain system parameters and (b) in
the special case when service rate depends on the server type only, the invariant
distributions are tight.

7.1. Example of evanescence of invariant measures. Recall that π denotes the
(matrix of) orthogonal projection on the subspace L = {y ∈ R

I |∑i yi = 0} in R
I ;

this is the projection “along” the direction of vector (1, . . . ,1)†. Also recall the
relation between matrices Au and Ac,

Ac = πAu.

One more notation: for y ∈ R
I ,

F [y] =

⎧⎪⎪⎨
⎪⎪⎩

πy, if
∑
i

yi > 0,

y, if
∑
i

yi ≤ 0.

Analogously to Theorem 6.1, the following fact is a corollary (this time—direct)
of Theorems 3.1 and 4.4 in [6].

THEOREM 7.1. Assume that as r → ∞, X̂r
I (0) → X̂I (0) and 
̂r

E (0) →

̂E (0), where X̂I (0) and 
̂E (0) are deterministic and finite. Then,

X̂r
I (·) �⇒ X̂I (·) in DI [0,∞)(7.1)

and for any fixed η > 0,


̂r
E (·) �⇒ MF

[
X̂I (·)] in DI+J−1[η,∞),(7.2)

where X̂I (·) is the unique solution of the SDE

X̂I (t) = X̂I (0) +
∫ t

0
AuF

[
X̂I (s)

]
ds + (√

2λiBi(t)
)
,(7.3)

and the processes Bi(·) are independent standard Brownian motions.

Next we establish the following fact.

LEMMA 7.2. There exists a system and a parameter setting such that the fol-
lowing hold.

(i) Matrix Ac is unstable;
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(ii) Matrix Au has (1, . . . ,1)† as a right eigenvector, with real nonzero eigen-
value c,

Au(1, . . . ,1)† = c(1, . . . ,1)†.(7.4)

PROOF. Let us start with the system in the local instability example 2 (see
Figure 4) for the critical load. We will modify it as follows. We will change μD3
from 100 to 100 − ε with sufficiently small positive ε, so that Ac remains unsta-
ble. (The reason for this change will be explained shortly.) We will add two new
server pools, 0 and 5, on the left and on the right, respectively, and set μA0 = 100,
μE5 = 1; such addition of server-leaves does not change the instability of Ac. So,
(i) holds.

Now, suppose all λi are equal, say λi = 1. We can choose ψ∗
ij such that all ψ∗

i =∑
j ψ∗

ij are equal, and
∑

j μijψ
∗
ij = λi = 1 for all i. Namely, we do the following.

The reason for changing μD3 from 100 to 100 − ε is to make it possible to choose
ψ∗

D3 > 0 and ψ∗
D4 > 0, such that

∑
j μDjψ

∗
Dj = 1 and ψ∗

D = ψ∗
D3 +ψ∗

D4 > 1/100.
We choose ψ∗

A0 = 1/100 − δ, ψ∗
A1 = 100δ (which guarantees

∑
j μAjψ

∗
Aj = 1)

with δ > 0 small enough so that ψ∗
A = 1/100 + 99δ < 1/(100 − ε). The values of

pairs (ψ∗
B1,ψ

∗
B2), (ψ∗

C2,ψ
∗
C3), (ψ∗

E4,ψ
∗
E5), are chosen to be equal to (ψ∗

A0,ψ
∗
A1).

Finally, we choose ψ∗
D3 = (1 − δ1)/(100 − ε) and ψ∗

D4 = δ1/104 (which ensures∑
j μDjψ

∗
Dj = 1) with δ1 > 0 satisfying

ψ∗
D = (1 − δ1)/(100 − ε) + δ1/104 = 1/100 + 99δ = ψ∗

A.

This completes the choice of ψ∗
ij .

We set βj = ∑
i ψ

∗
ij . We see that (ψ∗

ij ) is the equilibrium point. It follows from

the construction that (7.4) will hold for Au. Indeed, if ψI − ψ∗
I = c1(1, . . . ,1)†,

then ψI = c2ψ
∗

I , which in turn means that ψE = c2ψ
∗

E ; therefore, the correspond-
ing service rates are

∑
j μijψij = c2

∑
j μijψ

∗
ij = c2λi = c2 for all i; therefore,

ψ̇I = (1 − c2)(1, . . . ,1)†. �

THEOREM 7.3. Suppose we have a system with parameters satisfying Lem-
ma 7.2, in the Halfin–Whitt regime, described in this section. Then, the sequence
of stationary distributions of X̂r

I (and of 
̂r
I ) escapes to infinity: the measure of

any compact set vanishes.

PROOF. Since (1, . . . ,1)† is an eigenvector of Au, for any y ∈ R
I we have

πAuF [y] = πAuπy = Acπy.

Then, taking the π -projection of equation (7.3), we see that πX̂I satisfies the fol-
lowing linear SDE

πX̂I (t) = πX̂I (0) +
∫ t

0
AcπX̂I (s) ds + π

(√
2λiBi(t)

)
.(7.5)
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Given instability of linear equation (7.5), we can repeat the argument of Section 6.2
to show that the sequence of projections of the stationary distributions of X̂r

I on L

escapes to infinity. �

7.2. Tightness of stationary distributions in the case when service rate depends
on the server type only. In this section we consider a special case when there
exists a set of positive rates {μj }, such that μij = μj as long as (ij) ∈ E . We
demonstrate tightness of invariant distributions. (An analogous result holds for
the underload system, ρ < 1, as sketched out at the end of this section.) This, in
combination with the transient diffusion limit results, allows us to claim that the
limit of invariant distributions is the invariant distribution of the limiting diffusion
process.

THEOREM 7.4. Suppose μij = μj , (ij) ∈ E and ρ = 1. Consider a system
under the LQFS-LB rule in the asymptotic regime defined above in this section.
Then, for any real

θ < θ0 := 2 mini λi∑
i λi + (maxj μj )

∑
j βj

,

the stationary distributions are such that

lim sup
r

E

[∑
i

exp
(
θQ̂r

i

) + ∑
j

βj exp
(
θẐr

j /βj

)]
< ∞.

PROOF. Note that the statement is trivial for θ = 0. Also, for θ > 0 each
term exp(θẐr

j /βj ) is bounded so has finite expectation, while for θ < 0 each term

exp(θQ̂r
i ) is bounded so has finite expectation.

Our method is related to that in [4]. (The exposition below is self-contained.)
Step 1: Preliminary bounds. Consider the embedded Markov chain taken at

the instants of (say, right after) the transitions. We will use uniformization, that
is, we keep the total rate of all transitions from any state constant at αrr =∑

i λ
r
i + ∑

j rβjμ
∗, where μ∗ = maxμj ; note that, as r → ∞, αr → α∗ =∑

i λi + ∑
j βjμ

∗. The transitions are of three types: arrivals, departures and vir-
tual transitions, which do not change the state of the system. The rate of a transi-
tion due to a type i arrival is λr

i ; for the service completion at pool j the rate is
μj(rβj +Zr

j ) (recall Zr
j ≤ 0); and a virtual transition occurs at the complementary

rate αrr − ∑
i λ

r
i − ∑

j μj (rβj + Zr
j ). (Obviously, the probability that a transition

occurring at a transition instant has a given type is the ratio of the corresponding
rate and αrr .) The stationary distribution of the embedded Markov chain is the
same as that of the original, continuous-time chain.

In the rest of the proof, τ ∈ {0,1,2, . . .} refers to the discrete time of the em-
bedded Markov chain.
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We will work with the following Lyapunov function:

L(τ ) := ∑
i

exp
(
θQ̂r

i (τ )
) + ∑

j

βj exp
(
θẐr

j (τ )/βj

)
.(7.6)

Throughout, we use the bound

exp(θy) ≤ exp(θx)
(
1 + θ(y − x) + 1

2θ2(y − x)2 exp
(
θ |y − x|)),(7.7)

which arises from the second-order Taylor expansion of exp(θy).
A priori we do not know that E[L(τ )] exists for θ > 0. Indeed, while Ẑr

j (t) is

bounded for any r (above by 0 and below by −βj

√
r), the scaled queue size Q̂r

i (t)

is unbounded. To deal with this, we also consider the truncated Lyapunov function
LK = min{L,K}.

In the equation below, let x denote the variable of interest (either Q̂r
i or Ẑr

j /βj ),
and let S(τ) denote the state of the embedded Markov chain at time τ . From (7.7)
we obtain

E
[
exp

(
θx(τ + 1)

) − exp
(
θx(τ )

)|S(τ)
]

≤ exp
(
θx(τ )

)(
θE

[
x(τ + 1) − x(τ)|S(τ)

]

+ 1
2θ2

E
[(

x(τ + 1) − x(τ)
)2 exp

(
θ
∣∣x(τ + 1) − x(τ)

∣∣)|S(τ)
])

.

Since for both Ẑr
j and Q̂r

i the change in a single transition is bounded by 1/
√

r ,
we conclude

E
[
exp

(
θQ̂r

i (τ + 1)
) − exp

(
θQ̂r

i (τ )
)|S(τ)

]

≤ exp
(
θQ̂r

i (τ )
)(

θE
[
Q̂r

i (τ + 1) − Q̂r
i (τ )|S(τ)

]
(7.8)

+
(

1

2
θ2 exp(θ/

√
r)

)
1

r

)
,

E
[
βj exp

(
θẐr

j (τ + 1)/βj

) − βj exp
(
θẐr

j (τ )/βj

)|S(τ)
]

≤ exp
(
θẐr

j (τ )/βj

)(
θE

[
Ẑr

j (τ + 1) − Ẑr
j (τ )|S(τ)

]
(7.9)

+
(

1

βj

1

2
θ2 exp(θ/

√
r)

)
1

r

)
.

Clearly, as long as values of θ are bounded, for any fixed C2 > 1 and all suffi-
ciently (depending on C2) large r , the second summands in (7.8) and (7.9) are up-
per bounded by C2

1
2θ2 1

r
and 1

β∗ C2
1
2θ2 1

r
, respectively, where β∗ = minj βj . Note

that the second bound is independent of j .
Next, we will obtain an upper bound on the drift

E
[

L(τ + 1) − L(τ )|S(τ)
]
.
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To do that, we introduce an artificial scheduling/routing rule, which acts only
within one time step, and is such that the increment L(τ +1)− L(τ ) under this rule
is “almost” a (pathwise, w.p.1) upper bound on this increment under the actual—
LQFS-LB—rule. [It is important to keep in mind that the artificial rule is not a rule
that is applied continuously. It is limited to one time step, and its sole purpose is to
derive a pathwise upper bound on the increment L(τ + 1) − L(τ ) within one time
step.]

Step 2: Artificial scheduling/routing rule. We will use the following notation:
I+ = I+(τ ) := {i : Q̂r

i (τ ) > 0}, I0 = I0(τ ) := {i : Q̂r
i (τ ) = 0}, J− = J−(τ ) :=

{j : Ẑr
j (τ ) < 0}, J0 = J0(τ ) := {j : Ẑr

j (τ ) = 0}.
Scheduling: Departures from servers j ∈ J− are processed normally, that is, re-

duce the corresponding Zr
j (τ ) by 1. Whenever there is a departure from a server

pool j ∈ J0, the server takes up a customer of type i with probability λr
ij /

∑
i λ

r
ij ,

keeping Zr
j (τ + 1) = 0 and reducing Qr

i (τ + 1) = Qr
i (τ ) − 1. However, if it

happens that the chosen i is such that Qr
i (τ ) = 0, that is, i ∈ I0, then we keep

Qr
i (τ + 1) = Qr

i (τ ) = 0 and instead allow Zr
j (τ + 1) = −1.

Routing: Arrivals to customer types i ∈ I+ are processed normally, that is, the
corresponding Qr

i (τ ) is increased by 1. Whenever there is an arrival to a customer
type i ∈ I0, it is routed to server pool j with probability λr

ij /λ
r
i , keeping Qr

i (τ +
1) = Qr

i (τ ) = 0 and increasing Zr
j (τ + 1) = Zr

j (τ ) + 1. However, if it happens
that the chosen j is such that Zr

j (τ ) = 0, that is, j ∈ J0, then we keep Zr
j (τ +1) =

Zr
j (τ ) = 0 and instead allow Qr

i (τ + 1) = 1.
Step 3: One time-step drift under the artificial rule. For i ∈ I+,

E
[
Q̂r

i (τ + 1) − Q̂r
i (τ )|S(τ)

] = 1

αrr

1√
r

(
λr

i − ∑
j

(μj rβj )
λr

ij∑
k λr

kj

)

or, recalling that ∑
k

λr
kj = μjβj rρ

r = μjβj r(1 − C/
√

r),(7.10)

we obtain

E
[
Q̂r

i (τ + 1) − Q̂r
i (τ )|S(τ)

] = −Cλi

α∗
1 + o(1)

r
, i ∈ I+,(7.11)

where o(1) is a fixed function, vanishing as r → ∞.
If Q̂r

i (τ ) = 0 (i.e., i ∈ I0), and a new type i arrival is routed to pool j with
Ẑr

j (τ ) < 0 (i.e., j ∈ J−), then of course Q̂r
i stays at 0 and Q̂r

i (τ +1)− Q̂r
i (τ ) = 0.

However, if a new type i arrival has to be routed to j ∈ J0, then (by the definition
of artificial rule) Q̂r

i (τ + 1) − Q̂r
i (τ ) = Q̂r

i (τ + 1) = 1/
√

r . Thus, we can write

E
[
Q̂r

i (τ + 1) − Q̂r
i (τ )|S(τ)

] = ∑
j∈J0

λr
ij

αrr

1√
r
, i ∈ I0.(7.12)



LOAD BALANCING INSTABILITY 2133

Note that the right-hand side of (7.12) is of order 1/
√

r , not 1/r . However, we will
see shortly that order 1/

√
r terms in E[L(τ + 1)− L(τ )|S(τ)] cancel out, and this

expected drift is in fact of order 1/r .
The treatment of the drift of Ẑr

j is similar [and again makes use of (7.10)]. We
obtain

E
[
Ẑr

j (τ + 1) − Ẑr
j (τ )|S(τ)

] = − 1

αr
μj

(
Ẑr

j (τ ) + βjC
)1

r
, j ∈ J−,(7.13)

E
[
Ẑr

j (τ + 1) − Ẑr
j (τ )|S(τ)

] = − 1√
r

∑
i∈I0

rμjβj

αrr

λr
ij∑

k λr
kj

(7.14)

= − 1

1 − C/
√

r

∑
i∈I0

λr
ij

αrr

1√
r
, j ∈ J0.

We can rewrite (7.14) as

E
[
Ẑr

j (τ + 1) − Ẑr
j (τ )|S(τ)

]
(7.15)

= − ∑
i∈I0

λr
ij

αrr

1√
r

− C
∑

i∈I0
λij

α∗
1 + o(1)

r
, j ∈ J0,

where o(1) is a fixed function, vanishing as r → ∞.
Note that if L(τ ) ≥ K , then LK(τ + 1) − LK(τ) ≤ 0, and if L(τ ) < K , then

LK(τ + 1) − LK(τ) ≤ L(τ + 1) − L(τ ). Putting together this observation and
equations (7.8), (7.9), (7.11)–(7.15), we obtain

E
[

LK(τ + 1) − LK(τ)|S(τ)
]

(7.16a)

≤ 1{L(τ )≤K}
( ∑

i∈I+
exp

(
θQ̂r

i (τ )
)
θ

[
−Cλi(1 + o(1))

α∗
]

1

r
(7.16b)

+ ∑
i∈I0,j∈J0

θλr
ij

1

αrr

1√
r

(7.16c)

+ ∑
j∈J−

exp
(
θẐr

j (τ )/βj

)
θ

[
−μj

αr

][
Ẑr

j (τ ) + βjC
]1

r
(7.16d)

+ ∑
j∈J0,i∈I0

θ

[
−λr

ij

1

αrr

1√
r

− Cλi(1 + o(1))

α∗
1

r

]
(7.16e)

+ ∑
i∈I

exp
(
θQ̂r

i (τ )
)(C2

2
θ2

)
1

r
(7.16f)

+ ∑
j∈J

1

β∗
exp

(
θẐr

j (τ )/βj

)(C2

2
θ2

)
1

r

)
.(7.16g)
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Note that the O(1/
√

r) terms in (7.16c) and (7.16e) cancel each other as promised,
so there are no O(1/

√
r) terms in the final bound.

Step 4: One time-step drift under the LQFS-LB rule. We now explain in what
sense the increment L(τ + 1) − L(τ ) under the artificial rule is “almost” an up-
per bound on this increment under LQFS-LB. To illustrate the idea, suppose first
that all βj are equal. Then, it is easy to observe that for any fixed S(τ), the in-
crement L(τ + 1) − L(τ ) under the artificial rule is (with probability 1) an upper
bound of this increment under LQFS-LB. Indeed, suppose first that a transition of
the Markov chain is associated with a service completion in server pool j with
Ẑr

j = 0. (If Ẑr
j < 0, there is no difference in what the two rules do.) The only case

of interest is when the LQFS-LB “takes” a new customer for service from queue
i with Q̂r

i > 0, while the artificial rule tries to take a customer from a different
queue i′. Then Q̂r

i ≥ Q̂r
i′ must hold, with Q̂r

i > Q̂r
i′ being the nontrivial case. If

Q̂r
i′ > 0, then the LQFS-LB will decrease the larger queue, and so the increment

L(τ + 1) − L(τ ) under the LQFS-LB is smaller (which is true for both positive
and negative θ ). If Q̂r

i′ = 0, then the LQFS-LB will still decrease queue Q̂r
i , while

the artificial rule will instead decrease Ẑr
j ; using convexity of eθx , we verify that,

again, the increment L(τ + 1) − L(τ ) under the LQFS-LB is smaller (for both
positive and negative θ ). If transition of the Markov chain is associated with a new
customer arrival, we use an analogous argument to show that, again, the increment
L(τ + 1) − L(τ ) under the LQFS-LB cannot be greater than that under the arti-
ficial rule. We conclude that when all βj are equal, the key estimate (7.16) of the
espected drift holds, in exactly same form, for LQFS-LB rule as well.

Now consider the case of general βj . In the event of a service completion (and
then possibly taking a customer for service from one of the nonzero queues), the
increment L(τ + 1) − L(τ ) under LQFS-LB is still no greater than under the arti-
ficial rule. (Verified similarly to the case of all βj being equal.) The only situation
when LQFS-LB can possibly cause a greater increment than the artificial rule is
as follows. There is an arrival of a type i customer, which the artificial rule routes
to pool j with Ẑr

j < 0, but the LQFS-LB will instead route it to pool k such that

Ẑr
j /βj ≥ Ẑr

k/βk . Given convexity of function eθx , the “worst case,” that is, the

largest increment of L(τ + 1) − L(τ ), occurs when Ẑr
k is such that the equality

holds, Ẑr
j /βj = Ẑr

k/βk . (If θ > 0 the positive increment gets larger, if we were to

increase Ẑr
k ; if θ < 0 the negative increment gets smaller in absolute value, if we

were to increase Ẑr
k . Note also that here we allow Ẑr

k , determined by the equality,
to be such that Zr

k = Ẑr
k

√
r is possibly noninteger, because we only use this value

of Ẑr
k to estimate the increment of a function.) Thus, as we replace the artificial

rule by LQFS-LB, in the “worst case,” the increment

βj exp
(
θ
[
Ẑr

j (τ ) + r−1/2]
/βj

) − βj exp
(
θẐr

j (τ )/βj

)



LOAD BALANCING INSTABILITY 2135

may need to be replaced by

βk exp
(
θ
[
Ẑr

k(τ ) + r−1/2]
/βk

) − βk exp
(
θẐr

k(τ )/βk

)

with Ẑr
k(τ ) satisfying Ẑr

j (τ )/βj = Ẑr
k(τ )/βk . In this case we obtain

βk exp
(
θẐr

k(τ + 1)/βk

) − βk exp
(
θẐr

k(τ )/βk

)

≤ exp
(
θẐr

k(τ )/βk

)(
θr−1/2 +

(
1

βk

1

2
θ2 exp(θ/

√
r)

)
1

r

)
(7.17)

≤ exp
(
θẐr

j (τ )/βj

)(
θr−1/2 +

(
1

β∗
1

2
θ2 exp(θ/

√
r)

)
1

r

)
,

This means that, under LQFS-LB rule, the estimate (7.16) still holds.
Step 5: Exponential moments estimates. Next, note that for each fixed K > 0

and each fixed parameter r , the values of exp(θQ̂r
i (τ )) are uniformly bounded

over all states S(τ) satisfying condition L(τ ) ≤ K ; the values of exp(θẐr
j (τ )/βj )

are “automatically” uniformly bounded (for a fixed r). We take the expected values
of both parts of (7.16) with respect to the invariant distribution. The expectation
of the left-hand side is of course 0, and so we get rid of the factor 1/r from the
right-hand side expectation. The resulting estimates we will write separately for
the cases θ > 0 and θ < 0 (with the case θ = 0 being trivial).

Case θ > 0. For a fixed θ > 0, the expected value of the sum of all terms not
containing exp(θQ̂r

i (τ )) is bounded (uniformly in r). Indeed, this follows from
the facts that Ẑr

j (τ ) ≤ 0 and 0 ≤ −θẐr
j (τ ) exp(θẐr

j (τ )/βj ) ≤ βj/e (because 0 ≥
xex ≥ −1

e
for x ≤ 0). Then, we obtain

E

[
1{L(τ )≤K}

∑
i∈I+

exp
(
θQ̂r

i (τ )
)(Cλi(1 + o(1))

α∗ θ −
(

C2

2
θ2

))]
≤ C1(7.18)

for some constant C1 = C1(θ) > 0, uniformly on all sufficiently large r . Now let
us fix a sufficiently small positive θ , so that all coefficients of exp(θQ̂r

i (τ )) are at
least some ε > 0 (for all large r). Recalling that C2 > 1 can be arbitrarily close
to 1, it suffices that θ < θ0 = 2(mini λi)/α

∗. Then,

E

[
1{L(τ )≤K}

∑
i∈I+

exp
(
θQ̂r

i (τ )
)] ≤ C1/ε,

from where, letting K → ∞, by monotone convergence, we obtain

E

[ ∑
i∈I+

exp
(
θQ̂r

i (τ )
)] ≤ C1/ε < ∞,(7.19)

uniformly on all large r .
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Case θ < 0. Fix arbitrary θ < 0. In this case, the expected value of the sum of
all terms not containing exp(θẐr

j (τ )), is bounded (uniformly on r). We can write

E

[
1{L(τ )≤K}

∑
j∈J−

exp
(
θẐr

j (τ )/βj

)

(7.20)

×
(
θ

[
μj

αr

][
Ẑr

j (τ ) + βjC
] −

(
1

β∗
C2

2
θ2

))]
≤ C′

1

for some constant C′
1 = C′

1(θ) > 0, uniformly on all sufficiently large r . Let us
choose sufficiently large K1 > 0, such that the condition Ẑr

j (τ ) ≤ −K1 implies
that (

θ

[
μj

αr

][
Ẑr

j (τ ) + βjC
] −

(
1

β∗
C2

2
θ2

))
≥ ε

for some ε > 0 (and all large r). Then, from (7.20),

E

[
1{L(τ )≤K}

∑
j∈J−

1{Ẑr
j (τ )≤−K1} exp

(
θẐr

j (τ )/βj

)] ≤ C′
1/ε

from where, letting K → ∞, by monotone convergence, we obtain

E

[ ∑
j∈J−

1{Ẑr
j (τ )≤−K1} exp

(
θẐr

j (τ )/βj

)] ≤ C′
1/ε < ∞,

uniformly on all large r , which implies the required result. �

COROLLARY 7.5. The sequence of stationary distributions of the processes
((Q̂r

i (·)), (Ẑr
j (·))) has a weak limit, which is the unique stationary distribution of

the limiting process ((Q̂i(·)), (Ẑj (·))), described as follows:

Q̂i(t) = max
{
Ŷ (t)/I,0

} ∀i, Ẑj (t) = min
{

βj∑
k βk

Ŷ (t),0
}

∀j,

where Ŷ (·) is a one-dimensional diffusion process with constant variance param-
eter 2

∑
i λi and piece-wise linear drift, equal at point x to

−
[∑

j

μj

][
C + min{x,0}].

The invariant distribution density is then a continuous function, which is a “con-
catenation” at point 0 of exponential (for x ≥ 0) and Gaussian (for x ≤ 0) distri-
bution densities.

PROOF. Theorem 7.4 of course implies tightness of stationary distributions
of ((Q̂r

i (·)), (Ẑr
j (·))). Then it follows from [8], Theorem 8.5.1 (whose conditions
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are easily verified in our case), that as r → ∞, any weak limit of the sequence
of stationary distributions of the processes ((Q̂r

i (·)), (Ẑr
j (·))) is a stationary dis-

tribution of the limit process, described in [6], Theorem 4.4, and therefore is the
one-dimensional diffusion specified in the statement of the corollary. �

Finally, we remark that a tightness result analogous to Theorem 7.4 holds for
the underloaded system, ρ < 1, and can be proved essentially the same way.

The asymptotic regime in this case is such that λr
i = rλi [there is no point in

considering O(
√

r) terms in λr
i when ρ < 1]. We denote Zr

j (t) = 
r
j (t) − rβjρ

(which is consistent with the definition given earlier in this section for ρ = 1), and
keep notation Qr

i (t) for the queue length. We work with the following Lyapunov
function:

L := ∑
i

[
exp

(
θ(1 − ρ)

√
r + θQ̂r

i

) − exp
(
θ(1 − ρ)

√
r
)] + ∑

j

βj exp
(
θẐr

j /βj

)
.

The same approach as in the proof of Theorem 7.4 leads to the following result:
for any real θ ,

lim sup
r

E

[∑
j

exp
(
θẐr

j

)]
< ∞.

The limiting process for (Ẑr
j (·)) is (Ẑj (·)) = (

βj∑
k βk

Ŷ (·)), with Ŷ (·) being a one-

dimensional Ornstein–Uhlenbeck process, with Gaussian stationary distribution.
The limit of stationary distributions of (Ẑr

j (·)) is the stationary distribution of

(Ẑj (·)).
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