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ROBUST MAXIMIZATION OF ASYMPTOTIC GROWTH UNDER
COVARIANCE UNCERTAINTY

BY ERHAN BAYRAKTAR1 AND YU-JUI HUANG

University of Michigan

This paper resolves a question proposed in Kardaras and Robertson [Ann.
Appl. Probab. 22 (2012) 1576–1610]: how to invest in a robust growth-
optimal way in a market where precise knowledge of the covariance structure
of the underlying assets is unavailable. Among an appropriate class of admis-
sible covariance structures, we characterize the optimal trading strategy in
terms of a generalized version of the principal eigenvalue of a fully nonlinear
elliptic operator and its associated eigenfunction, by slightly restricting the
collection of nondominated probability measures.

1. Introduction. In this paper, we consider the problem of how to trade op-
timally in a market when the investing horizon is long and the dynamics of the
underlying assets are uncertain. For the case where the uncertainty lies only in
the instantaneous expected return of the underlying assets, this problem has been
studied by Kardaras and Robertson [16]. They identify the optimal trading strat-
egy using a generalized version of the principle eigenfunction for a linear elliptic
operator which depends on the given covariance structure of the underlying assets.
We intend to generalize their results to the case where even the covariance struc-
ture of the underlying assets is not known precisely, which is suggested in [16],
Discussion. More precisely, we would like to determine a robust trading strategy
under which the asymptotic growth rate of one’s wealth, defined below, can be
maximized no matter which admissible covariance structure materializes.

Uncertainty in variance (or, equivalently, in covariance) has been drawing in-
creasing attention. The main difficulty lies in the absence of one single dominating
probability measure among �, the collection of all probability measures induced
by variance uncertainty. In their pioneering works, Avellaneda, Levy and Paras
[2] and Lyons [19] introduced the uncertain volatility model (UVM), where the
volatility process is only known to lie in a fixed interval [¯σ, σ̄ ]. Under the Marko-
vian framework, they obtained a duality formula for the superhedging price of
(nonpath-dependent) European contingent claims. Under a generalized version of
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the UVM, Denis and Martini [11] extended the above duality formula, by using
the capacity theory, to incorporate path-dependent European contingent claims.
For the capacity theory to work, they required some continuity of the random vari-
ables being hedged. Taking a different approach based on the underlying partial
differential equations, Peng [25] derived results very similar to [11]. The connec-
tion between [11] and [25] was then elaborated and extended in Denis, Hu and
Peng [10]. On the other hand, instead of imposing some continuity assumptions
on the random variables being hedged, Soner, Touzi and Zhang [31] chose to re-
strict slightly the collection of nondominated probability measures, and derived
under this setting a duality formulation for the superhedging problem. With all
these developments, superhedging under volatility uncertainty has then been fur-
ther studied in Nutz and Soner [24] and Nutz [23], among others. Also notice that
Fernholz and Karatzas [12] characterized the highest return relative to the market
portfolio under covariance uncertainty. Moreover, a controller-and-stopper game
with controlled drift and volatility was considered in [3], which can be viewed as
an optimal stopping problem under volatility uncertainty.

While we also take covariance uncertainty into account, we focus on robust
growth-optimal trading, which is different by nature from the superhedging prob-
lem. Here, an investor intends to find a trading strategy such that her wealth pro-
cess can achieve maximal growth rate, in certain sense, uniformly over all possible
probability measures in �, or at least in a large enough subset �∗ of �. Previ-
ous research on this problem can be found in [16] and the references therein. It
is worth noting that this problem falls under the umbrella of ergodic control, for
which the dynamic programming heuristic cannot be directly applied; see, for ex-
ample, Arapostathis, Borkar and Ghosh [1] and Borkar [6], where they consider
ergodic control problems with controlled drift.

Following the framework in [16], we first observe that the associated differential
operator under covariance uncertainty is a variant of Pucci’s extremal operator. We
define the “principal eigenvalue” for this fully nonlinear operator, denoted by λ∗,
in some appropriate sense, and then investigate the connection between λ∗ and the
generalized principal eigenvalue in [16] where the covariance structure is a priori
given. This connection is first established on smooth bounded domains, thanks to
the theory of continuous selection in Michael [22] and Brown [7]. Next, observ-
ing that a Harnack inequality holds under current context, we extend the result
to unbounded domains. Finally, as a consequence of this connection, we general-
ize [16], Theorem 2.1, to the case with covariance uncertainty: we characterize the
largest possible asymptotic growth rate as λ∗ (which is robust among probabili-
ties in a large enough subset �∗ of �) and identify the optimal trading strategy in
terms of λ∗ and the corresponding eigenfunction; see Theorem 3.3.

The structure of this paper is as follows. In Section 2, we introduce the frame-
work of our study and formulate the problem of robust maximization of asymptotic
growth under covariance uncertainty. In Section 3, we first introduce several differ-
ent notions of the generalized principal eigenvalue and then investigate the relation
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between them. The main technical result we obtain is Theorem 3.2, using which we
resolve the problem of robust maximization of asymptotic growth in Theorem 3.3.

1.1. Notation. We collect some notation and definitions here for readers’ con-
venience:

• | · | denotes the Euclidean norm in Rn, and Leb denotes Lebesgue measure
in Rn.

• Bδ(x) denotes the open ball in Rn centered at x ∈ Rn with radius δ > 0.
• D̄ denotes the closure of D, and ∂D denotes the boundary of D.
• Given x ∈ Rn and D1,D2 ⊂ Rn, d(x,D1) := inf{|x − y| | y ∈ D1} and

d(D1,D2) := inf{|x − y| | x ∈ D1, y ∈ D2}.
• Given D ⊂ Rn, C(D) = C0(D) denotes the set of continuous functions on D.

If D is open, Ck(D) denotes the set of functions having derivatives of order
≤ k continuous in D, and Ck(D̄) denotes the set of functions in Ck(D) whose
derivatives of order ≤ k have continuous extension on D̄.

• Given D ⊂ Rn, Ck,β(D) denotes the set of functions in Ck(D) whose deriva-
tives of order ≤ k are Hölder continuous on D with exponent β ∈ (0,1]. More-
over, Ck,β

loc (D) denotes the set of functions belonging to Ck,β(K) for every com-
pact subset K of D.

• We say D ⊂ Rn is a domain if it is an open connected set. We say D is a smooth
domain if it is a domain whose boundary is of C2,β for some β ∈ (0,1].

• Given D ⊂ Rn and u :D �→ R, oscD := sup{|u(x) − u(y)| | x, y ∈ D}.

2. The set-up. Fix d ∈ N. Consider an open connected set E ⊆ Rd , and two
functions θ,	 :E �→ (0,∞). The following assumption will be in force through-
out this paper.

ASSUMPTION 2.1. (i) θ and 	 are of C
0,α
loc (E) for some α ∈ (0,1], and θ < 	

in E.
(ii) There exists a sequence {En}n∈N of bounded open convex subsets of E

such that ∂En is of C2,α′
for some α′ ∈ (0,1], Ēn ⊂ En+1 for all n ∈ N and E =⋃∞

n=1 En.

Let Sd denote the space of d × d symmetric matrices, equipped with the norm

‖M‖ := max
i=1,...,d

∣∣ei(M)
∣∣, M ∈ Sd,(2.1)

where ei(M)’s are the eigenvalues of M . In some cases, we will also consider the
norm ‖M‖max := max |mij |, for M = {mij }i,j ∈ Sd . These two norms are equiva-
lent with ‖ · ‖max ≤ ‖ · ‖ ≤ d‖ · ‖max.

DEFINITION 2.1. Let C be the collection of functions c :E �→ Sd such that:
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(i) for any x ∈ E, θ(x)|ξ |2 ≤ ξ ′c(x)ξ ≤ 	(x)|ξ |2,∀ξ ∈ Rd \ {0};
(ii) cij (x) is of C

1,α
loc (E), 1 ≤ i, j ≤ d .

Let Ê := E ∪ � be the one-point compactification of E, where � is identified
with ∂E if E is bounded with ∂E plus the point at infinity if E is unbounded.
Following the set-up in [16], Section 1, or [26], page 40, we consider the space
C([0,∞), Ê) of continuous functions ω : [0,∞) �→ Ê, and define for each ω ∈
C([0,∞), Ê) the exit times

ζn(ω) := inf{t ≥ 0 | ωt /∈ En}, ζ(ω) := lim
n→∞ ζn(ω).

Then, we introduce � := {ω ∈ C([0,∞), Ê) | ωζ+t = � for all t ≥ 0, if ζ(ω) <

∞}. Let X = {Xt }t≥0 be the coordinate mapping process for ω ∈ �. Set {Bt }t≥0
to be the natural filtration generated by X, and denote by B the smallest σ -algebra
generated by

⋃
t≥0 Bt . Similarly, set (Ft )t≥0 to be the right-continuous enlarge-

ment of (Bt )t≥0, and denote by F the smallest σ -algebra generated by
⋃

t≥0 Ft .

REMARK 2.1. For financial applications, X = {Xt }t≥0 represents the (rela-
tive) price process of certain underlying assets, and each c ∈ C represents a possible
covariance structure that might eventually materialize. In view of Definition 2.1(i),
the extent of the uncertainty in covariance is captured by the functions θ and 	:
they act as the pointwise lower and upper bounds uniformly over all possible co-
variance structures c ∈ C .

2.1. The generalized martingale problem. For any M = {mij }i,j ∈ Sd , define
the operator LM which acts on f ∈ C2(E) by

(
LMf

)
(x) := 1

2

d∑
i,j=1

mij

∂2f

∂xi ∂xj

(x) = 1

2
Tr

[
MD2f (x)

]
, x ∈ E.

For each c ∈ C , we define similarly the operator Lc(·) as

(
Lc(·)f

)
(x) := 1

2

d∑
i,j=1

cij (x)
∂2f

∂xi ∂xj

(x) = 1

2
Tr

[
c(x)D2f (x)

]
, x ∈ E.

Given c ∈ C , a solution to the generalized martingale problem on E for the operator
Lc(·) is a family of probability measures (Qc

x)x∈Ê on (�, B) such that Qc
x[X0 =

x] = 1 and

f (Xs∧ζn) −
∫ s∧ζn

0

(
Lc(·)f

)
(Xu)du

is a (�, (Bt )t≥0,Qc
x)-martingale for all n ∈ N and f ∈ C2(E).

The following result, taken from [26], Theorem 1.13.1, states that Assump-
tion 2.1 guarantees the existence and uniqueness of the solutions to the generalized
martingale problem on E for the operator Lc(·), for each fixed c ∈ C .
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PROPOSITION 2.1. Under Assumption 2.1, for each c ∈ C , there is a unique
solution (Qc

x)x∈Ê to the generalized martingale problem on E for the opera-
tor Lc(·).

REMARK 2.2. For each c ∈ C , as mentioned in [16], Section 1,

f (Xs∧ζn) −
∫ s∧ζn

0

(
Lc(·)f

)
(Xu)du

is also a (�, (Ft )t≥0,Qc
x)-martingale for all n ∈ N and f ∈ C2(E), as f and Lc(·)f

are bounded in each En. Now, by taking f (x) = xi , i = 1, . . . , d and f (x) = xixj

with i, j,= 1 · · ·d , we get Xt∧ζn is a (�, (Ft )t≥0,Qc
x)-martingale with quadratic

covariation process
∫ ·

0 1{t≤ζn}c(Xt) dt , for each n ∈ N and x ∈ Ê.

2.2. Asymptotic growth rate. For any fixed x0 ∈ E, we will simply write Qc =
Qc

x0
for all c ∈ C , when there is no confusion on the initial value x0 of X. Let us

denote by � the collection of probability measures on (�, F ) which are locally
absolutely continuous with respect to Qc (written P �loc Qc) for some c ∈ C , and
for which the process X does not explode. That is,

� := {
P ∈ P(�, F ) | ∃c ∈ C s.t. P|Ft � Qc|Ft for all t ≥ 0, and P[ζ < ∞] = 0

}
,

where P(�, F ) denotes the collection of all probability measures on (�, F ). As
observed in [16], Section 1, for each P ∈ �, X is a (�, (Ft )t≥0,P)-semimartingale
such that P[X ∈ C([0,∞),E)] = 1. Moreover, if we take c ∈ C such that
P �loc Qc, then X admits the representation

X· = x0 +
∫ ·

0
bP
t dt +

∫ ·
0

σ(Xt) dWP
t ,

where WP is a standard d-dimensional Brownian motion on (�, (Ft )t≥0,P), σ

is the unique symmetric strictly positive definite square root of c, and bP is a d-
dimensional {Ft }t≥0-progressively measurable process.

Let (Zt )t≥0 be an adapted process. For P ∈ �, define

P- lim inf
t→∞ Zt := ess supP

{
χ is F -measurable

∣∣ lim
t→∞P[Zt ≥ χ ] = 1

}
.

For any d-dimensional predictable process π which is X-integrable under Qc for
all c ∈ C , we can define the process V π· := 1 + ∫ ·

0 π ′
t dXt under Qc for all c ∈ C .

Let V denote the collection of all such processes π which in addition satisfy the
following: for each c ∈ C , Qc[V π

t > 0] = 1,∀t ≥ 0. Here, π ∈ V represents an
admissible trading strategy and V π represents the corresponding wealth process.
Now, for any π ∈ V , we define the asymptotic growth rate of V π under P ∈ � as

g(π;P) := sup
{
γ ∈ R

∣∣ P- lim inf
t→∞

(
t−1 logV π

t

) ≥ γ,P-a.s.
}
.
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2.3. The problem. The problem we consider in this paper is how to choose a
trading strategy π∗ ∈ V such that the wealth process V π∗

attains the robust max-
imal asymptotic growth rate under all possible probabilities in �, or at least, in
a large enough subset of � which readily contains all “nonpathological” cases.
More precisely, in Theorem 3.3 below, we will construct a large enough suitable
subset �∗ of �, and determine

sup
π∈V

inf
P∈�∗ g(π;P),

the robust maximal asymptotic growth rate (robust in �∗). Moreover, we will find
π∗ ∈ V such that V π∗

attains (or surpasses) the maximal growth rate no matter
which P ∈ �∗ materializes. This generalizes [16], Theorem 2.1, to the case with
covariance uncertainty.

3. The min–max result. In this section, we will first introduce generalized
versions of the principal eigenvalue for the linear operator Lc(·) and a fully non-
linear operator F defined below. Then, we will investigate the relation between
them on smooth bounded domains, and eventually extend the result to the entire
domain E. The main technical result we obtain is Theorem 3.2. Finally, by us-
ing Theorem 3.2, we are able to resolve in Theorem 3.3 the problem proposed in
Section 2.3.

Let us first recall the definition of Pucci’s extremal operators. Given 0 < λ ≤ �,
we define for any M ∈ Sd the following matrix operators:

M+
λ,�(M) := �

∑
ei(M)>0

ei(M) + λ
∑

ei(M)<0

ei(M),

(3.1)
M−

λ,�(M) := λ
∑

ei(M)>0

ei(M) + �
∑

ei(M)<0

ei(M).

From [9], page 15, we see that these operators can be expressed as

M+
λ,�(M) = sup

A∈A(λ,�)

Tr(AM), M−
λ,�(M) = inf

A∈A(λ,�)
Tr(AM),

where A(a, b) denotes the set of matrices in Sd with eigenvalues lying in [a, b] for
some real numbers a ≤ b. For general properties of Pucci’s extremal operators, see,
for example, [28] and [9], Section 2.2. Now, let us define the operator F :E×Sd �→
R by

F(x,M) := 1

2
M+

θ(x),	(x)(M) = 1

2
sup

A∈A(θ(x),	(x))

Tr(AM).(3.2)

Let D be an open connected subset of E. Fixing c ∈ C , we consider, for any
given λ ∈ R, the cone of positive harmonic functions with respect to Lc(·) + λ as

Hc
λ(D) := {

η ∈ C2(D) | Lc(·)η + λη = 0 and η > 0 in D
}

(3.3)
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and set

λ∗,c(D) := sup
{
λ ∈ R | Hc

λ(D) �= ∅
}
.(3.4)

Note that if D is a smooth bounded domain, λ∗,c(D) coincides with the principal
eigenvalue for Lc(·) on D; see, for example, [26], Theorem 4.3.2. In our case, since
we do not require the boundedness of D, λ∗,c(D) is a generalized version of the
principal eigenvalue for Lc(·) on D, which is also used in [16]. On the other hand,
for any λ ∈ R, we define

Hλ(D) := {
η ∈ C2(D) | F (

x,D2η
) + λη ≤ 0 and η > 0 in D

}
(3.5)

and set

λ∗(D) := sup
{
λ ∈ R | Hλ(D) �= ∅

}
,(3.6)

which is a generalized version of the principal eigenvalue for the fully nonlinear
operator F on D. For auxiliary purposes, we also consider, for any λ ∈ R, the set

H+
λ (D) := {

η ∈ C(D̄) | F (
x,D2η

) + λη ≤ 0 and η > 0 in D
}
,(3.7)

where the inequality holds in the viscosity sense. From this, we define

λ+(D) := sup
{
λ ∈ R | H+

λ (D) �= ∅
}
.(3.8)

For the special case where D is a smooth bounded domain, λ+(D) is the principal
half-eigenvalue of the operator F on D that corresponds to positive eigenfunctions;
see, for example, [29].

LEMMA 3.1. Given a smooth bounded domain D ⊂ E, there exists ηD ∈
C(D̄) such that ηD > 0 in D and satisfies in the viscosity sense the equation{

F
(
x,D2ηD

) + λ+(D)ηD = 0, in D,
ηD = 0, on ∂D.

(3.9)

Moreover, for any pair (λ, η) ∈ R × C(D̄) with η > 0 in D which solves{
F

(
x,D2η

) + λη = 0, in D,
η = 0, on ∂D,

(3.10)

(λ, η) must be of the form (λ+(D),μηD) for some μ > 0.

PROOF. Let us introduce some properties of F . By definition, we see that

F(x,μM) = μF(x,M) for any x ∈ E and μ ≥ 0;(3.11)

F is convex in M.(3.12)

Also, by [9], Lemma 2.10(5), for any x ∈ E and M,N ∈ Sd , we have

1
2 M−

θ(x),	(x)(M − N) ≤ F(x,M) − F(x,N) ≤ 1
2 M+

θ(x),	(x)(M − N).(3.13)
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Finally, we observe from (3.1) that F can be expressed as

F(x,M) = 1

2
M+

θ(x),	(x)(M) = 1

2

{
	(x)

∑
ei (M)>0

ei(M) + θ(x)
∑

ei(M)<0

ei(M)

}
.

From the continuity of θ and 	 in x, and the continuity of ei(M) in M for each i

(see, e.g., [21], page 497), we conclude that

F is continuous in E × Sd .(3.14)

Now, thanks to (3.11)–(3.14) and [29], Lemma 1.1, this lemma follows from [29],
Theorems 1.1, 1.2. �

3.1. Regularity of ηD . In this subsection, we will show that, for any smooth
bounded domain D ⊂ E, the continuous viscosity solution ηD given in Lemma 3.1
is actually smooth up to the boundary ∂D.

Let us consider the operator J : D̄ × Sd �→ R defined by

J (x,M) := F(x,M) + λ+(D)ηD(x).

LEMMA 3.2. ηD belongs to C0,β(D̄), for any β ∈ (0,1).

PROOF. For any x ∈ D̄ and M,N ∈ Sd with M ≥ N , we deduce from (3.13)
and (3.1) that

θD

2
Tr(M − N) ≤ θ(x)

2
Tr(M − N) = 1

2
M−

θ(x),	(x)(M − N)

≤ F(x,M) − F(x,N) ≤ 1

2
M+

θ(x),	(x)(M − N)(3.15)

= 	(x)

2
Tr(M − N) ≤ 	D

2
Tr(M − N),

where θD := minx∈D̄ θ(x) and 	D := maxx∈D̄ 	(x). On the other hand, recall that
under Assumption 2.1, θ,	 ∈ C0,α(D̄). Let K be a Hölder constant for both θ and
	 on D̄. By (3.2) and (3.1), for any x, y ∈ D̄ and M ∈ Sd ,∣∣F(x,M) − F(y,M)

∣∣
≤ 1

2

{∣∣	(x) − 	(y)
∣∣ ∑
ei(M)>0

ei(M) + ∣∣θ(x) − θ(y)
∣∣ ∑
ei (M)<0

∣∣ei(M)
∣∣}(3.16)

≤ Kd‖M‖|x − y|α.

Under (3.11), (3.15) and (3.16), [4], Proposition 6, states that every bounded non-
negative viscosity solution to

J
(
x,D2η

) = 0 in D, η = 0 on ∂D(3.17)
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is of the class C0,β(D̄) for all β ∈ (0,1). Thanks to Lemma 3.1, ηD is indeed a
bounded nonnegative viscosity solution to the above equation, and thus the lemma
follows. �

LEMMA 3.3. ηD is the unique continuous viscosity solution to (3.17).

PROOF. By Lemma 3.1, we immediately have the viscosity solution property.
To prove the uniqueness, it suffices to show that a comparison principle holds for
J (x,D2η) = 0. For any x ∈ D̄ and M,N ∈ Sd with M ≥ N , we see from the
definition of J and (3.15) that

θD

2
Tr(M − N) ≤ J (x,M) − J (x,N) ≤ 	D

2
Tr(M − N).(3.18)

Thanks to this inequality, we conclude from [17], Theorem 2.6, that a comparison
principle holds for J (x,D2η) = 0. �

The following regularity result is taken from [30], Theorem 1.2.

LEMMA 3.4. Suppose H :D × Sd �→ R satisfies the following conditions:

(a) H is lower convex in M ∈ Sd ;
(b) there is a ν ∈ (0,1] s.t. ν|ξ |2 ≤ H(x,M + ξξ ′) − H(x,M) ≤ ν−1|ξ |2 for

all ξ ∈ Rd ;
(c) there is a K1 > 0 s.t. |H(x,0)| ≤ K1 for all x ∈ D;
(d) there are K2,K3 > 0 and β ∈ (0,1) s.t. 〈H(·,M)〉(β)

D ≤ K2
∑

i,j |mij |+K3

for all M = {mij }i,j ∈ Sd , where 〈u〉(β)
D := supx∈D,ρ>0 ρ−β oscD∩Bρ(x) u, for any

u :D �→ R.

Then

H
(
x,D2η

) = 0 in D, η = 0 on ∂D

has a unique solution in the class C2,β(D̄) if β ∈ (0, ᾱ), where the constant ᾱ ∈
(0,1) depends only on d and ν.

PROPOSITION 3.1. ηD belongs to C2,β(D̄) for any β ∈ (0, α ∧ ᾱ), where ᾱ is
given in Lemma 3.4. This in particular implies λ+(D) = λ∗(D), and thus we have{

F
(
x,D2ηD

) + λ∗(D)ηD = 0, in D,
ηD = 0, on ∂D.

(3.19)

PROOF. Let us show that the operator J satisfies conditions (a)–(d) in Lem-
ma 3.4. It is obvious from (3.12) that J satisfies (a). Since ξξ ′ ≥ 0 and Tr(ξξ ′) =
|ξ |2 for all ξ ∈ Rd , we see from (3.18) that J satisfies (b). By the continu-
ity of ηD on D̄, (c) is also satisfied as |J (x,0)| = 0 + λ+(D)ηD(x) ≤ K1 :=
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λ+(D)maxD̄ ηD . To prove (d), let us first observe that: for any β ∈ (0,1) and u ∈
C0,β(D) with a Hölder constant K , we have oscD∩Bρ(x) u ≤ Kρβ , which yields

〈u〉(β)
D ≤ K . Recall that θ,	 ∈ C0,α(D) (Assumption 2.1) and ηD ∈ C0,β(D̄) for

all β ∈ (0,1) (Lemma 3.2). Now, for any β ∈ (0, α ∧ ᾱ), we have θ,	,ηD ∈
C0,β(D). Let K ′ be a Hölder constant for all the three functions. Then, from
the definition of J , the calculation (3.16) and the fact that ‖M‖ ≤ d‖M‖max ≤
d

∑
i,j |mij | for any M = {mij }i,j ∈ Sd , we conclude that J (·,M) ∈ C0,β(D) with

a Hölder constant d2(
∑

i,j |mij |)K ′ + λ+(D)K ′. It follows that 〈J (·,M)〉(β)
D ≤

d2(
∑

i,j |mij |)K ′ + λ+(D)K ′. Thus, (d) is satisfied for all β ∈ (0, α ∧ ᾱ), with
K2 := d2K ′ and K3 := λ+(D)K ′. Now, we conclude from Lemma 3.4 that there
is a unique solution in C2,β(D̄) to (3.17) for all β ∈ (0, α ∧ ᾱ). However, in view
of Lemma 3.3, this unique C2,β(D̄) solution can only be ηD .

The fact that ηD is of the class C2,β(D̄) and solves (3.9) implies that λ+(D) ≤
λ∗(D). Since we have the opposite inequality just from the definitions of λ+(D)

and λ∗(D), we conclude that λ+(D) = λ∗(D). Then (3.9) becomes (3.19). �

3.2. Relation between λ∗(D) and λ∗,c(D). In this subsection, we will show
that λ∗(D) = infc∈C λ∗,c(D) for any smooth bounded domain D.

Let us first state a maximum principle on small domains for the operator
Gδ :E × R × Sd �→ R defined by

Gδ(x,u,M) := −F(x,−M) − δ|u| = 1
2 M−

θ(x),	(x)(M) − δ|u|,
where δ can be any nonnegative real number.

LEMMA 3.5. For any smooth bounded domain D ⊂ E, there exists ε0 > 0,
depending on D, such that if a smooth bounded domain U ⊂ D satisfies
Leb(U) < ε0, then if η ∈ C(Ū) is a viscosity solution to{

Gδ

(
x,η,D2η

) ≤ 0, in U ,
η ≥ 0, on ∂U ,

then η ≥ 0 in U .

PROOF. Consider the operator F̄ :E ×R×Sd �→ R defined by F̄ (x, u,M) :=
F(x,M) + δ|u|. For any x ∈ E, u, v ∈ R and M,N ∈ Sd , we see from (3.13) that

1
2 M−

θ(x),	(x)(M − N) − δ|u − v| ≤ F̄ (x, u,M) − F̄ (x, v,N)
(3.20)

≤ 1
2 M+

θ(x),	(x)(M − N) + δ|u − v|.
Moreover, by (3.14), we immediately have

F̄ (x,0,M) = F(x,M) is continuous in E × Sd .(3.21)
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Noting that Gδ(x,u,M) = −F̄ (x,−u,−M), we have Gδ(x,u,M) − Gδ(x, v,

N) = F̄ (x,−v,−N) − F̄ (x,−u,−M). Then, by using (3.20), we get

Gδ(x,u − v,M − N) = 1
2 M−

θ(x),	(x)(M − N) − δ|u − v|
≤ Gδ(x,u,M) − Gδ(x, v,N)

(3.22)
≤ 1

2 M+
θ(x),	(x)(M − N) + δ|u − v|

= F̄ (x, u − v,M − N),

which implies that the operator Gδ satisfies the (DF ) condition in [29], pa-
ge 107 (with F replaced by F̄ ). Now, thanks to (3.20)–(3.22), this lemma follows
from [29], Theorem 3.5. �

PROPOSITION 3.2. For any smooth bounded domain D ⊂ E, λ∗(D) ≤
infc∈C λ∗,c(D).

PROOF. Assume the contrary that λ∗(D) > infc∈C λ∗,c(D). Then there exists
c̄ ∈ C such that λ∗(D) > λ∗,c̄(D). Take η̄ ∈ C2(D) with η̄ > 0 in D such that{

Lc̄(·)η̄ + λ∗,c̄(D)η̄ = 0, in D,
η̄ = 0, on ∂D.

From the definition of F , we see that η̄ is a viscosity subsolution to

F
(
x,D2η

) + λ∗,c̄(D)η = 0 in D.(3.23)

On the other hand, the function ηD , given in Lemma 3.1, is a viscosity super-
solution to (3.23) as it solves (3.19) and λ∗(D) > λ∗,c̄(D). We claim that there
exists � > 0 such that η̄ ≤ �ηD in D. We will show this by following an argument
used in the proof of Theorem 4.1 in [29]. Take a compact subset K of D such
that Leb(D \ K) < ε0, where ε0 is given in Lemma 3.5. By the continuity of η̄

and ηD , there exists � > 0 such that �ηD − η̄ > 0 on K . Consider the function
f� := �ηD − η̄. By (3.13) and (3.11),

Gλ∗,c̄(D)

(
x,f�,D

2f�

) = −F
(
x,−D2f�

) − λ∗,c̄(D)|f�|
≤ −F

(
x,−D2f�

) + λ∗,c̄(D)f�

≤ �F
(
x,D2ηD

) − F
(
x,D2η̄

) + λ∗,c̄(D)(�ηD − η̄)

≤ 0 in D,

where the last inequality follows from the supersolution property of ηD and the
subsolution property of η̄ to (3.23). Since f� ≥ 0 on ∂(D \ K), we obtain from
Lemma 3.5 that f� ≥ 0 on D \ K . Thus, we conclude that η̄ ≤ �ηD in D. Now,
by Perron’s method we can construct a continuous viscosity solution v to (3.23)
on D such that η̄ ≤ v ≤ �ηD . This in particular implies v > 0 in D and the pair
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(λ∗,c̄(D), v) solves (3.10). Recalling that λ+(D) = λ∗(D) from Proposition 3.1,
we see that this is a contradiction to Lemma 3.1 as λ∗,c̄(D) < λ∗(D) = λ+(D).

�

To prove the opposite inequality λ∗(D) ≥ infc∈C λ∗,c(D) for any smooth
bounded domain D ⊂ E, we will make use of the theory of continuous selection
pioneered by [22], and follow particularly the formulation in [7]. For a brief intro-
duction to this theory and its adaptation to the current context, see Appendix A.

PROPOSITION 3.3. Let D ⊂ E be a smooth bounded domain. If D is convex,
then λ∗(D) ≥ infc∈C λ∗,c(D).

PROOF. We will construct a sequence {c̄′
m}m∈N ⊂ C such that

lim sup
m→∞

λ∗,c̄′
m(D) ≤ λ∗(D),

which gives the desired result.
Step 1: Constructing {c̄′

m}m∈N. Recall that ηD ∈ C2(D̄) by Proposition 3.1.
Then, we deduce from (3.1) that there exists κ > 0 such that

max
{∣∣λ − λ′∣∣, ∣∣� − �′∣∣} < κ

(3.24)
⇒ ∣∣M+

λ,�

(
D2ηD(x)

) − M+
λ′,�′

(
D2ηD(x)

)∣∣ < 2/m for all x ∈ D̄.

Also, since ‖ · ‖max ≤ ‖ · ‖, the map (M,x) �→ LMηD(x) is continuous in M , uni-
formly in x ∈ D̄. It follows that there exists β > 0 such that

‖N − M‖ < β ⇒ ∣∣LNηD(x) − LMηD(x)
∣∣ < 1/m for all x ∈ D̄.(3.25)

Set ξ := minx∈D̄(	 − θ)(x) > 0 (recall that 	 > θ in E under Assumption 2.1).
Now, by taking γ := θ + κ∧ξ

4 and � := 	− κ∧ξ
4 in Proposition A.3, we obtain that

there is a continuous function cm : D̄ �→ Sd such that

cm(x) ∈ A
(
γ (x),�(x)

)
and

(3.26)
Fγ,�

(
x,D2ηD

) ≤ Lcm(·)ηD(x) + 1/m for all x ∈ D̄,

where Fγ,�(x,M) is defined in (A.2). By mollifying the function cm, we can con-
struct a function c̄m : D̄ �→ Sd such that c̄m ∈ C∞(D̄) and ‖c̄m(x) − cm(x)‖max <

(β ∧ κ∧ξ
4 )/d for all x ∈ D̄ (more precisely, cm ∈ C(D̄) implies that for any open

set D′ containing D̄, there is a function c̃m ∈ C(D′) such that c̃m = cm on D̄;
see, e.g., [15], Lemma 6.37. Then by mollifying c̃m, we get a sequence of smooth
functions converging uniformly to c̃m on D̄). It follows that∥∥c̄m(x) − cm(x)

∥∥ ≤ d
∥∥c̄m(x) − cm(x)

∥∥
max

(3.27)

< β ∧ κ ∧ ξ

4
for all x ∈ D̄.
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Combining (3.24)–(3.27), for each x ∈ D̄, we see that c̄m(x) ∈ A(θ(x),	(x)) and

F
(
x,D2ηD

) = 1

2
M+

θ(x),	(x)

(
D2ηD(x)

)
<

1

2
M+

γ (x),�(x)

(
D2ηD(x)

) + 1

m

= Fγ,�

(
x,D2ηD

) + 1

m
≤ Lcm(·)ηD(x) + 2

m
(3.28)

≤ Lc̄m(·)ηD(x) + 3

m
.

Now, take some c̄′
m ∈ C such that c̄′

m and c̄m coincide on D̄. Then (3.28) and the
fact that F(x,D2ηD) + λ∗(D)ηD = 0 in D (Proposition 3.1) imply

|hm| < 3/m in D where hm := Lc̄′
m(·)ηD + λ∗(D)ηD.(3.29)

Step 2: Showing lim supm→∞ λ∗,c̄′
m(D) ≤ λ∗(D). In the following, we will use

the argument in [14], Section 3, starting from (3.3). Let ηm be the eigenfunction
associated with the eigenvalue problem{

Lc̄′
m(·)η + λ∗,c̄′

m(D)η = 0, in D,
η = 0, on ∂D.

Pick x0 ∈ D. We define the normalized eigenfunction η̃m := ηD(x0)
ηm(x0)

ηm. By [27],
lemma on page 789, there exist k1, k2 > 0, independent of m, such that

k1d(x, ∂D) ≤ η̃m(x) ≤ k2d(x, ∂D) for all x ∈ D.(3.30)

Also, thanks to (3.11) and (3.15), we may apply [4], Proposition 1, and obtain
some δ > 0 and C > 0 such that ηD(x) ≤ Cd(x, ∂D) if d(x, ∂D) < δ. Thus, we
conclude that

1 ≤ tm := sup
x∈D

ηD(x)

η̃m(x)
< ∞.(3.31)

By setting sm := tmλ∗(D)/λ∗,c̄′
m(D), we deduce from the definitions of tm and sm

that

Lc̄′
m(·)(smη̃m − ηD) + hm = −tmλ∗(D)η̃m + λ∗(D)ηD ≤ 0 in D.(3.32)

Let wm be the unique solution of the class C2,α(D) ∩ C(D̄) to the equation

Lc̄′
m(·)wm = hm in D, wm = 0 on ∂D.(3.33)

Note that by [14], Remark 3.1, the convexity of D and (3.29) guarantee the exis-
tence of a constant M > 0, independent of m, such that

∣∣wm(x)
∣∣ ≤ Md(x, ∂D)

m
for all x ∈ D.(3.34)
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Combining (3.32) and (3.33), we get{
Lc̄′

m(·)(smη̃m − ηD + wm) ≤ 0, in D,
smη̃m − ηD + wm = 0, on ∂D.

We then conclude from the maximum principle that smη̃m − ηD + wm ≥ 0 in D.
From the definition of sm, this inequality gives

λ∗(D)

λ∗,c̄′
m(D)

≥ ηD(x)

tmη̃m(x)
− wm(x)

tmη̃m(x)
≥ ηD(x)

tmη̃m(x)
− M

k1m
for all x ∈ D,

where the last inequality follows from (3.34), (3.31) and (3.30). Now, take a se-
quence {xk}k∈N in D such that ηD(xk)

ηm(xk)
→ tm. By plugging xk into the above in-

equality and taking limit in k, we get

λ∗(D)

λ∗,c̄′
m(D)

≥ 1 − M

k1m
,

which implies λ∗(D) ≥ lim supm→∞ λ∗,c̄′
m(D). �

Combining Propositions 3.2 and 3.3, we have the following result:

THEOREM 3.1. Let D ⊂ E be a smooth bounded domain. If D is convex,
λ∗(D) = infc∈C λ∗,c(D).

3.3. Relation between λ∗(E) and λ∗,c(E). In this subsection, we will first
characterize λ∗(E) in terms of λ∗(En), and then generalize Theorem 3.1 from
bounded domains to the entire space E.

Let us first consider some Harnack-type inequalities. Note that for any D ⊂ Rd

and p ∈ [1,∞), we will denote by Lp(D) the space of measurable functions f

satisfying (
∫
D |f (x)|p dx)1/p < ∞.

LEMMA 3.6. Let D ⊂ E be a smooth bounded domain. Let H :E × Sd �→ R

be such that

∃0 < λ ≤ � s.t. M−
λ,�(M) ≤ H(x,M) ≤ M+

λ,�(M)
(3.35)

for all (x,M) ∈ D × Sd .

If {un}n∈N is sequence of continuous nonnegative viscosity solutions to

H
(
x,D2un

) + δnun = fn in D,(3.36)

where {δn}n∈N is a bounded sequence in [0,∞) and fn ∈ Ld(D), then we have:

(i) for any compact set K ⊂ D, there is a constant C > 0, depending only on
D, K , d , λ, �, supn δn, such that

sup
K

un ≤ C
{
inf
K

un + ‖fn‖Ld (D)

}
.(3.37)
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(ii) Suppose H satisfies (3.11). Given x0 ∈ D and R0 > 0 such that BR0(x0) ⊂
D, there exists a constant C > 0, depending only on R0, d , λ, �, supn δn, such that
for any 0 < R < R0,

sup
B̄R(x0)

un ≤ C
{

inf
B̄R(x0)

un + R2‖fn‖Ld (BR0 (x0))

}
.(3.38)

As a consequence, if we assume further that {un}n∈N is uniformly bounded, and
{fn}n∈N is bounded in Ld(D), then for any compact connected set K ⊂ D and
β ∈ (0,1), un ∈ C0,β(K) for all n ∈ N, with one fixed Hölder constant.

PROOF. (i) Set δ∗ := supn δn < ∞. By (3.35), we have

M+
λ,�

(
D2un

) + δ∗un ≥ H
(
x,D2un

) + δnun ≥ M−
λ,�

(
D2un

) − δ∗un in D.

In view of (3.36), we obtain M+
λ,�(D2un) + δ∗un ≥ fn ≥ M−

λ,�(D2un) − δ∗un

in D. Thanks to this inequality, estimate (3.37) follows from [29], Theorem 3.6.
(ii) Thanks to estimate (3.37) and [15], Lemma 8.23, we can prove part (ii) by

following the argument in the proof of Corollary 3.2 in [5]. For a detailed proof,
see Appendix B. �

PROPOSITION 3.4. λ∗(E) =↓ limn→∞ λ∗(En) and there exists some η∗ ∈
Hλ∗(E)(E) such that

F
(
x,D2η∗) + λ∗(E)η∗ = 0 in E.(3.39)

PROOF. It is obvious from the definition that λ∗(En) is decreasing in n and
λ∗(E) ≤ λ∗(En) for all n ∈ N. It follows that λ∗(E) ≤ λ0 :=↓ limn→∞ λ∗(En). To
prove the opposite inequality, it suffices to show that Hλ0(E) �= ∅. To this end, we
take ηn as the eigenfunction given in Lemma 3.1 with D = En. Pick an arbitrary
x0 ∈ E1, and define η̃n(x) := ηn(x)

ηn(x0)
such that η̃n(x0) = 1 for all n ∈ N.

Fix n ∈ N. In view of Proposition 3.1, {η̃m}m>n is a sequence of positive smooth
solutions to

F
(
x,D2η̃m

) + λ∗(Em)η̃m = 0 in En+1.(3.40)

From the definition of F , we see that F satisfies (3.35) in En with λ =
minx∈Ēn

θ(x) and � = maxx∈Ēn
	(x). Thus, by Lemma 3.6(i), there is a constant

C > 0, independent of m, such that

sup
Ēn

η̃m ≤ C inf
Ēn

η̃m ≤ C,

which implies {η̃m}m>n is uniformly bounded in Ēn. On the other hand, given β ∈
(0,1), Lemma 3.6(ii) guarantees that η̃m ∈ C0,β(Ēn) for all m > n, with a fixed
Hölder constant. Therefore, by using the Arzela–Ascoli theorem, we conclude that
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η̃m converges uniformly, up to some subsequence, to some function η∗ on Ēn.
Thanks to the stability result of viscosity solutions (see, e.g., [13], Lemma II.6.2),
we obtain from (3.40) that η∗ is a nonnegative continuous viscosity solution in En

to

F
(
x,D2η∗) + λ0η

∗ = 0.(3.41)

Furthermore, since η∗(x0) = limm→∞ ηm(x0) = 1, we conclude from [4], Theo-
rem 2, a strict maximum principle for eigenvalue problems of fully nonlinear op-
erators, that η∗ > 0 in En. Finally, noting that for any β ∈ (0,1), η∗ ∈ C0,β(Ēn)

with its Hölder constant same as η̃m’s, we may use Lemma 3.4, as in the proof of
Proposition 3.1, to show that η∗ ∈ C2(Ēn).

Since the results above hold for each n ∈ N, we conclude that η∗ belongs to
C2(E), takes positive values in E and satisfies (3.41) in E. It follows that η∗ ∈
Hλ0(E), which yields λ0 ≤ λ∗(E). Therefore, we get λ∗(E) = λ0, and then (3.41)
becomes (3.39). �

Now, we are ready to present the main technical result of this paper.

THEOREM 3.2. λ∗(E) = infc∈C λ∗,c(E).

PROOF. Thanks to Theorem 4.4.1(i) in [26], Theorem 3.1 and Proposition 3.4,
we have

inf
c∈C

λ∗,c(E) = inf
c∈C

inf
n∈N

λ∗,c(En) = inf
n∈N

inf
c∈C

λ∗,c(En) = inf
n∈N

λ∗(En) = λ∗(E). �

REMARK 3.1. For the special case where θ and 	 are merely two positive
constants, the derivation of Theorem 3.2 can be much simpler. Since the operator
F(x,M) = 1

2 M+
θ,	(M) is now Pucci’s operator with elliptic constants θ and 	,

we may apply [5], Theorem 3.5, and obtain a positive Hölder continuous viscosity
solution η∗ to

F
(
x,D2η∗) + λ̄(E)η∗ = 0 in E,

where λ̄(E) := inf{λ+(D) | D ⊂ E is a smooth bounded domain}. Then, Lem-
ma 3.4 implies η∗ is actually smooth, and thus λ̄(E) ≤ λ∗(E). Since λ̄(E) ≥
λ∗(E) by definition, we conclude that λ̄(E) = λ∗(E). Now, thanks to [26], Theo-
rem 4.4.1(i), and the standard result λ+(En) = infc∈C λ∗,c(En) for Pucci’s operator
(see, e.g., [8], Proposition 1.1(ii), and [27], Theorem I), we get

inf
c∈C

λ∗,c(E) = inf
c∈C

inf
n∈N

λ∗,c(En) = inf
n∈N

inf
c∈C

λ∗,c(En)

= inf
n∈N

λ+(En) = λ̄(E) = λ∗(E).

However, as pointed out in [16], Discussion, it is not reasonable for financial
applications to assume that each c ∈ C is both continuous and uniformly elliptic
in E. Therefore, we consider in this paper the more general setting where θ and 	

are functions defined on E, which includes the case without uniform ellipticity.
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3.4. Application. By Theorem 3.2 and mimicking the proof of Theorem 2.1
in [16], we have the following result. Note that, for simplicity, we will write λ∗ =
λ∗(E).

THEOREM 3.3. Take η∗ ∈ Hλ∗(E) and normalize it so that η∗(x0) = 1. Define
π∗

t := eλ∗t∇η∗(Xt) for all t ≥ 0, and set

�∗ :=
{
P ∈ �

∣∣ P- lim inf
t→∞

(
t−1 logη∗(Xt)

) ≥ 0,P-a.s.
}
.

Then, we have π∗ ∈ V and g(π∗;P) ≥ λ∗ for all P ∈ �∗. Moreover,

λ∗ = sup
π∈V

inf
P∈�∗ g(π;P) = inf

P∈�∗ sup
π∈V

g(π;P).(3.42)

PROOF. Set V ∗
t := V π∗

t = 1 + ∫ t
0 eλ∗s∇η∗(Xs)

′ dXs , t ≥ 0. By applying Itô’s
rule to the process eλ∗t η∗(Xt) we see that V ∗

t ≥ eλ∗t η∗(Xt) > 0 P-a.s. for all
P ∈ �. This already implies π∗ ∈ V . Also, by the construction of �∗, we have P-
lim inft→∞(t−1 log(V ∗

t )) ≥ λ∗ P-a.s. for all P ∈ �∗. It follows that g(π∗;P) ≥ λ∗
for all P ∈ �∗, which in turn implies λ∗ ≤ supπ∈V infP∈�∗ g(π;P).

Now, for any c ∈ C and n ∈ N, set λ∗,c
n = λ∗,c(En), take η∗,c

n ∈ Hc
λ

∗,c
n

(En)

with η∗,c
n (x0) = 1 and define the process Ṽ c

n (t) := eλ
∗,c
n tη∗,c

n (Xt ). Note that un-
der any P ∈ � such that P �loc Qc, we have Ṽ c

n (t) = 1 + ∫ t
0 (π∗,c

n )′s dXs with

(π∗,c
n )t := eλ

∗,c
n t∇η∗,c

n (Xt). This, however, may not be true for general P ∈ �. As
shown in the proof of Theorem 2.1 in [16], for any fixed c ∈ C and n ∈ N, we
have the following: (1) there exists a solution (P∗,c

x,n)x∈En to the generalized mar-

tingale problem for the operator Lc(·),η∗,c
n := Lc(·) + c∇ logη∗,c

n · ∇; (2) the co-
ordinate process X under (P∗,c

x,n)x∈En is recurrent in En; (3) P∗,c
x,n �loc Qc (note

that we conclude from the previous two conditions that P∗,c
x,n ∈ �∗); (4) the pro-

cess V π/Ṽ c
n is a nonnegative P∗,c

x,n-supermartingale for all π ∈ V . We therefore
have the analogous result g(π;P∗,c

n ) ≤ g(π∗,c
n ;P∗,c

n ) ≤ λ∗,c
n for all π ∈ V , which

yields infP∈�∗ supπ∈V g(π;P) ≤ λ∗,c
n . Now, thanks to Theorem 4.4.1(i) in [26] and

Theorem 3.2, we have

inf
P∈�∗ sup

π∈V
g(π;P) ≤ inf

c∈C
lim

n→∞λ∗,c
n = λ∗. �

REMARK 3.2. Note that the normalized eigenfunction η∗ in the statement of
Theorem 3.3 may not be unique. It follows that the set of measures �∗ and the
min–max problem in (3.42) may differ with our choice of η∗. In spite of this, we
would like to emphasize the following:

(i) No matter which η∗ we choose, the robust maximal asymptotic growth rate
λ∗ stays the same.
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(ii) At the first glance, it may seem restrictive to work with �∗. However, by
the same calculation in [16], Remark 2.2, we see that: no matter which η∗ we
choose, �∗ is large enough to contain all the probabilities in � under which X is
tight in E, and thus corresponds to those P ∈ � such that X is stable.

APPENDIX A: CONTINUOUS SELECTION RESULTS NEEDED FOR
PROPOSITION 3.3

The goal of this Appendix is to state and prove Proposition A.3, which is used
in the proof of Proposition 3.3. Before we do that, we need some preparations
concerning the theory of continuous selection in [22] and [7].

DEFINITION A.1. Let X be a topological space.

(i) We say X is a T1 space if for any distinct points x, y ∈ X, there exist open sets
Ux and Uy such that Ux contains x but not y, and Uy contains y but not x.

(ii) We say X is a T2(Hausdorff) space if for any distinct points x, y ∈ X, there
exist open sets Ux and Uy such that x ∈ Ux , y ∈ Uy and Ux ∩ Uy = ∅.

(iii) We say X is a paracompact space if for any collection {Xα}α∈A of open sets
in X such that

⋃
α∈A Xα = X, there exists a collection {Xβ}β∈B of open sets

in X satisfying:
(1) each Xβ is a subset of some Xα ;
(2)

⋃
β∈B Xβ = X;

(3) given x ∈ X, there exists an open neighborhood of x which intersects
only finitely many elements in {Xβ}β∈B .

DEFINITION A.2. Let X,Y be topological spaces. A set-valued map φ :X �→
2Y is lower semicontinuous if, whenever V ⊂ Y is open in Y , the set {x ∈ X |
φ(x) ∩ V �= ∅} is open in X.

The main theorem in [22], Theorem 3.2′′, gives the following result for contin-
uous selection.

PROPOSITION A.1. Let X be a T1 paracompact space, Y be a Banach space
and φ :X �→ 2Y be a set-valued map such that φ(x) is a closed convex subset of
Y for each x ∈ X. Then, if φ is lower semicontinuous, there exists a continuous
function f :X �→ Y such that f (x) ∈ φ(x) for all x ∈ X.

Since the lower semicontinuity of φ can be difficult to prove in general, one may
wonder whether there is a weaker condition sufficient for continuous selection.
Brown [7] worked toward this direction and characterized the weakest possible
condition (it is therefore sufficient and necessary). For the special case where X is a
Hausdorff paracompact space and Y is a real linear space with finite dimension n∗,
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given a set-valued map φ :X �→ 2Y , a sequence {φ(n)}n∈N of set-valued maps was
introduced in [7] via the following iteration:

φ(1)(x) := {
y ∈ φ(x) | Given V open in Y s.t. y ∈ V,

there is a neighborhood U of x s.t. ∀x′ ∈ U,∃y′ ∈ φ
(
x′) ∩ V

};(A.1)

φ(n)(x) := (
φ(n−1))(1)

(x) for n ≥ 2.

The following result, taken from [7], Theorem 4.3, characterizes the possibility of
continuous selection using φ(n∗).

PROPOSITION A.2. Let X be a Hausdorff paracompact space, Y be a real
linear space with finite dimension n∗ and φ :X �→ 2Y be a set-valued map such
that φ(x) is a closed convex subset of Y for each x ∈ X. Then, there exists a
continuous function f :X �→ Y such that f (x) ∈ φ(x) for all x ∈ X if and only if
φ(n∗)(x) �= ∅ for all x ∈ X.

In this paper, we would like to take X = D̄ and Y = Sd , where D ⊂ E is a
smooth bounded domain. Note that D̄ is Hausdorff and paracompact as it is a
metric space in Rd (see, e.g., [18], Corollary 5.35), and Sd is a real linear space
with dimension n∗ := d(d +1)/2. Fix two continuous functions γ,� :E �→ (0,∞)

with γ ≤ �, we consider the operator Fγ,� :E × Sd �→ R defined by

Fγ,�(x,M) := 1

2
M+

γ (x),�(x)(M) = 1

2
sup

A∈A(γ (x),�(x))

Tr(AM).(A.2)

Observe that Fγ,� also satisfies (3.11)–(3.14), and in particular Fθ,	 = F . Given
m ∈ N, we intend to show that there exists a continuous function cm : D̄ �→ Sd such
that for all x ∈ D̄, cm(x) ∈ A(γ (x),�(x)) and Fγ,�(x,D2ηD) ≤ Lcm(·)ηD(x) +
1/m, with ηD given in Lemma 3.1. Note that since ηD ∈ C2(D̄) by Proposition 3.1,
D2ηD is well defined on ∂D. Also, see Proposition 3.3 for the purpose of finding
such a function cm. We then define the set-valued map ϕ :D �→ Sd by

ϕ(x) := {
M ∈ Sd | M ∈ A

(
γ (x),�(x)

)
and

(A.3)
Fγ,�

(
x,D2ηD

) ≤ LMηD(x) + 1/m
}
.

For any x ∈ D̄, we see from the definition of Fγ,� that ϕ(x) �= ∅. Moreover, ϕ(x)

is by definition a closed convex subset of Sd . Then, we define ϕ(n) inductively as
in (A.1) for all n ∈ N. In view of Proposition A.2, such a function cm exists if
ϕ(n∗)(x) �= ∅ for all x ∈ D̄. We claim that this is true. Actually, we will prove a
stronger result in the next lemma: given x ∈ D̄, ϕ(n)(x) �= ∅ for all n ∈ N.

Recall that Bδ(x) denotes the open ball in Rd centered at x ∈ Rd with radius
δ > 0. In the following, we will denote by BD̄

δ (x) the corresponding open ball in D̄

under the relative topology, that is, BD̄
δ (x) := Bδ(x)∩ D̄. Similarly, we will denote
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by BSd

δ (M) the corresponding open ball in Sd under the topology induced by ‖ · ‖
in (2.1).

LEMMA A.1. Fix a smooth bounded domain D ⊂ E, two continuous func-
tions γ,� :E �→ (0,∞) with γ ≤ �, and m ∈ N. Let ηD be given as in Lemma 3.1.
Then, given x ∈ D̄, if M ∈ ϕ(x) satisfies

Fγ,�

(
x,D2ηD

)
< LMηD(x) + 1/m,(A.4)

then M ∈ ϕ(n)(x) for all n ∈ N.

PROOF. Fix M ∈ ϕ(x) such that (A.4) holds. We will first show that M ∈
ϕ(1)(x), and then complete the proof by an induction argument. Take 0 ≤ ζ <

1/m such that Fγ,�(x,D2ηD) = LMηD(x) + ζ . Set ν := 1/m − ζ > 0. Re-
call that ηD ∈ C2(D̄) from Proposition 3.1. By the continuity of the maps x �→
Fγ,�(x,D2ηD(x)) [thanks to (3.14)] and x �→ LMηD(x), we can take δ1 > 0 small

enough such that the following holds for any x′ ∈ BD̄
δ1

(x):

Fγ,�

(
x′,D2ηD

)
< Fγ,�

(
x,D2ηD

) + ν

3
= LMηD(x) + ζ + ν

3
(A.5)

< LMηD

(
x′) + ζ + 2ν

3
.

Since ‖ · ‖max ≤ ‖ · ‖, the map (M,y) �→ LMηD(y) is continuous in M , uniformly
in y ∈ D̄. It follows that there exists β > 0 such that

‖N − M‖ < β ⇒ ∣∣LNηD(y) − LMηD(y)
∣∣ <

ν

3
for all y ∈ D̄.(A.6)

Now, by the continuity of γ and � on D̄, we can take δ2 > 0 such that
max{|γ (x′)−γ (x)|, |�(x′)−�(x)|} < β for all x′ ∈ BD̄

δ2
(x). For each x′ ∈ BD̄

δ2
(x),

we pick M ′ ∈ Sd satisfying

ei

(
M ′) =

⎧⎪⎨
⎪⎩

γ
(
x′), if ei(M) < γ

(
x′),

ei(M), if ei(M) ∈ [
γ

(
x′),�(

x′)],
�

(
x′), if ei(M) > �

(
x′).

By construction, M ′ ∈ A(γ (x′),�(x′)) and ‖M ′ − M‖ ≤ max{|γ (x′) − γ (x)|,
|�(x′) − �(x)|} < β , which implies∣∣LM ′

ηD(y) − LMηD(y)
∣∣ <

ν

3
for all y ∈ D̄.(A.7)

Finally, set U := BD̄
δ (x) with δ := δ1 ∧δ2. Then by (A.5) and (A.7), for any x′ ∈ U

there exists M ′ ∈ BSd

β (M) such that M ′ ∈ A(γ (x′),�(x′)) and

Fγ,�

(
x′,D2ηD

)
< LM ′

ηD

(
x′) + 1/m,(A.8)
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which shows that M ′ ∈ ϕ(x′). Given any open set V in Sd such that M ∈ V , since
we may take β > 0 in (A.6) small enough such that BSd

β (M) ⊂ V , we conclude

that M ′ ∈ V also. It follows that M ∈ ϕ(1)(x).
Notice that what we have proved is the following result: for any x ∈ D̄, if M ∈

ϕ(x) satisfies (A.4), then M ∈ ϕ(1)(x). Since M ′ ∈ ϕ(x′) satisfies (A.8), the above
result immediately gives M ′ ∈ ϕ(1)(x′). We then obtain a stronger result: for any
x ∈ D̄, if M ∈ ϕ(x) satisfies (A.4), then M ∈ ϕ(2)(x). But this stronger result, when
applied again to M ′ ∈ ϕ(x′) satisfying (A.8), gives M ′ ∈ ϕ(2)(x′). We, therefore,
obtain that: for any x ∈ D̄, if M ∈ ϕ(x) satisfies (A.4), then M ∈ ϕ(3)(x). We can
then argue inductively to conclude that M ∈ ϕ(n)(x) for all n ∈ N. �

PROPOSITION A.3. Fix a smooth bounded domain D ⊂ E and two continu-
ous functions γ,� :E �→ (0,∞) with γ ≤ �. Let ηD be given as in Lemma 3.1.
For any m ∈ N, there exists a continuous function cm : D̄ �→ Sd such that

cm(x) ∈ A
(
γ (x),�(x)

)
and Fγ,�

(
x,D2ηD

) ≤ Lcm(·)ηD(x) + 1/m

for all x ∈ D̄.

PROOF. Fix m ∈ N. As explained before Lemma A.1, D̄ is a Hausdorff para-
compact space, Sd is a real linear space with dimension n∗ := d(d +1)/2 and ϕ(x)

is a closed convex subset of Sd for all x ∈ D̄. For each x ∈ D̄, by the definition of
Fγ,� in (A.2), we can always find some M ∈ ϕ(x) satisfying (A.4). By Lemma A.1,
this implies ϕ(n)(x) �= ∅ for all n ∈ N. In particular, we have ϕ(n∗)(x) �= ∅ for all
x ∈ D̄. Then the desired result follows from Proposition A.2. �

APPENDIX B: PROOF OF LEMMA 3.6(ii)

PROOF OF (3.38). Pick x0 ∈ D and R0 > 0 such that BR0(x0) ⊂ D. For any
0 < R < R0, define

vn(x) := un(x0 + Rx) and H̄ (x,M) := H(x0 + Rx,M).

Then we deduce from (3.11) and (3.36) that

H̄
(
x,D2vn(x)

) + R2δnvn(x) = H
(
x0 + Rx,D2vn(x)

) + R2δnvn(x)

= R2fn(x0 + Rx) in BR0/R(0).

Since H̄ (x,M) satisfies (3.35) in BR0/R(0), we can apply the estimate (3.37) to vn

and get

sup
B̄R(x0)

un = sup
B̄1(0)

vn ≤ C
{

inf
B̄1(0)

vn + R2‖fn‖Ld (BR0 (x0))

}

= C
{

inf
B̄R(x0)

un + R2‖fn‖Ld (BR0 (x0))

}
,
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where C > 0 depends only on R0, d , λ, �, supn δn. �

PROOF OF THE HÖLDER CONTINUITY. Now, fix a compact connected set
K ⊂ D. Set R0 := 1

2d(∂K, ∂D) > 0. By [20], Lemma 2, there exists some k∗ ∈ N

such that the set K ′ := {x ∈ Rd | d(x,K) ≤ R0} ⊂ D has the following property:
any two points in K ′ can be joined by a polygonal line of at most k∗ segments
which lie entirely in K ′. Fix x0 ∈ K ′. By the definition of R0, we have BR0(x0) ⊂
D. For each n ∈ N, we consider the nondecreasing function wn : (0,R0] �→ R de-
fined by

wn(R) := Mn
R − mn

R where Mn
R := max

B̄R(x0)
un,m

n
R := min

B̄R(x0)
un.

For each R ∈ (0,R0], we obtain from (3.36) that {un − mn
R}n∈N is sequence of

nonnegative continuous viscosity solution to

H
(
x,D2(

un − mn
R

)) + δn

(
un − mn

R

) = fn − δnm
n
R in BR(x0).

By the estimate (3.38), there is a constant C > 0, independent of n and x0, such
that

Mn
R/4 − mn

R = sup
B̄R/4(x0)

(
un(x) − mn

R

) ≤ C inf
B̄R/4(x0)

(
un(x) − mn

R

) + AR2

(B.1)
= C

(
mn

R/4 − mn
R

) + AR2,

where A > 0 is a constant that depends on C and R0, but not n [thanks to the uni-
form boundedness of {un}n∈N and the boundedness of {fn}n∈N in Ld(D)]. Define
H̄ (x,M) := −H(x,−M). Then we deduce again from (3.36) that {Mn

R − un}n∈N

is a sequence of nonnegative continuous viscosity solutions to

H̄
(
x,D2(

Mn
R − un

)) + δn

(
Mn

R − un

) = −H
(
x,D2un

) + δn

(
Mn

R − un

)
= −fn + δnM

n
R in BR(x0).

Observe that H̄ also satisfies (3.11) and (3.35). Thus, we can apply estimate (3.38)
and get

Mn
R − mn

R/4 = sup
B̄R/4(x0)

(
Mn

R − un(x)
) ≤ C inf

B̄R/4(x0)

(
Mn

R − un(x)
) + AR2

(B.2)
= C

(
Mn

R − Mn
R/4

) + AR2,

where C and A are as above. Summing (B.1) and (B.2), we get

wn(R/4) = Mn
R/4 − mn

R/4 ≤ C − 1

C + 1

(
Mn

R − mn
R

) + A′R2 = C − 1

C + 1
wn(R) + A′R2,

where A′ > 0 depends on C and R0, and is independent of R and n. By apply-
ing [15], Lemma 8.23, to the above inequality, for any β ∈ (0,1), we can find some



ROBUST MAXIMIZATION OF ASYMPTOTIC GROWTH 1839

C̃ > 0 (depending on C, R0 and A′, but not n) such that wn(R) ≤ C̃Rβ , for all
R ≤ R0. This implies the following result: for any x, y ∈ K ′ with |x −y| ≤ R0, we
can take x0 = x in the above analysis and obtain |un(x) − un(y)| ≤ wn(|x − y|) ≤
C̃|x − y|β for all n ∈ N. For the case where |x − y| > R0, recall that x and y can
be joined by a polygonal line of k segments which lie entirely in K ′, for some
k ≤ k∗. On the j th segment, pick points x

j
1 , x

j
2 , . . . , x

j
�j

along the segment such

that x
j
1 , x

j
�j

are the two endpoints, |xj
i − x

j
i+1| = R0 for i = 1, . . . , �j − 2 and

|xj
�j−1 − x

j
�j

| ≤ R0. Since K ′ is bounded, there must be a uniform bound �∗ > 0
such that �j ≤ �∗ for all j . Then, for all n ∈ N, we have

∣∣un(x) − un(y)
∣∣ ≤

k∑
j=1

�j−1∑
i=1

∣∣un

(
x

j
i

) − un

(
x

j
i+1

)∣∣ ≤
k∑

j=1

�j−1∑
i=1

C̃
∣∣xj

i − x
j
i+1

∣∣β
≤ k∗�∗C̃|x − y|β. �
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