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FLUID LIMITS TO ANALYZE LONG-TERM FLOW RATES OF A
STOCHASTIC NETWORK WITH INGRESS DISCARDING1

BY JOHN MUSACCHIO AND JEAN WALRAND

University of California, Santa Cruz, and University of California, Berkeley

We study a simple rate control scheme for a multiclass queuing network
for which customers are partitioned into distinct flows that are queued sepa-
rately at each station. The control scheme discards customers that arrive to the
network ingress whenever any one of the flow’s queues throughout the net-
work holds more than a specified threshold number of customers. We prove
that if the state of a corresponding fluid model tends to a set where the flow
rates are equal to target rates, then there exist sufficiently high thresholds that
make the long-term average flow rates of the stochastic network arbitrarily
close to these target rates. The same techniques could be used to study other
control schemes. To illustrate the application of our results, we analyze a net-
work resembling a 2-input, 2-output communications network switch.

1. Introduction. We consider a multiclass queuing network whose customers
are partitioned into F distinct flows. Customers of a flow f ∈ {1, . . . ,F } arrive
according to an independent renewal process and follow a fixed, acyclic sequence
of stations. The service times at each station are also independent. Each flow f

has a weight wf ∈ R+, and each of d stations is equipped with per-flow queues
and serves a flow in proportion to its weight using a weighted round robin or a
similar queueing discipline like weighted fair queueing or generalized head of line
processor sharing.

We consider a simple scheme which we call ingress discarding for admitting
customers. The ingress discarding scheme works as follows. Whenever any of a
flow’s queues exceed a threshold h, that flow’s customers are discarded at the net-
work ingress. There are two main objectives of the scheme: (i) stability when the
arrival rates in the absence of discarding would cause the utilization of some sta-
tions to exceed 1, and (ii) fairness in the long-term average departure rates when
the network cannot accommodate all the incoming flows. The contribution of this
article is a methodology for proving that the long-term average flow rates in such a
network can be made arbitrarily close to those predicted by a fluid model, provided
that the discarding thresholds are sufficiently high.

There are a number of applications of such a control policy. One application
is for service centers such as call centers. It might be acceptable to block incom-
ing customers, but unacceptable to drop customers that have been admitted to the
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FIG. 1. A queueing network with input discarding.

system, hence the appropriateness of ingress discarding. A designer of such a sys-
tem might want to show that the flow rates of various types of customers are fair
in some sense. This work can be used to show that if the system’s fluid model
achieves fair rates, then the system will achieve close to fair rates provided that
the discarding thresholds are sufficiently high. Another application area is in data-
packet switch design. A packet switch typically consists of several line-cards that
transmit and receive the data packets, and a switch-fabric that serves as an inter-
connect. A design requirement might be that any packet discarding occur in the
line-cards rather than in the switch fabric, since the line cards are better equipped
to record statistics about the dropped packets, for instance. The switch fabric can
be thought of as a queuing network, and ingress discarding would be one way
to fulfill the requirement that discarding only occur in the line cards. Again, this
work shows that the flow rates of such a system approach those predicted by a fluid
model if the discarding thresholds are made sufficiently high.

To illustrate our methodology, we consider the simple network in Figure 1. This
network carries a single flow and customers arrive as a renewal process E(t). There
are two queues, each with i.i.d. service times with mean μ−1

i in queue i (i = 1,2).
Designate by Qi(t) the length of queue i (i = 1,2). The ingress discarding scheme
discards the arrivals that occur when one of the two lengths is at least equal to
threshold h. We want to show that if the thresholds are made large enough factor n,
that the flow rates approach min{λ,μ1,μ2}. More precisely, we want to show that
for every ε > 0 there exists some nε such that if threshold scale factor n ≥ nε , then
the average rate of the departure process D(t) exceeds min{λ,μ1,μ2} − ε. Note
that since we scale the thresholds by a factor n, the starting value of the threshold
h is not important, so long as it is positive. Also note that we do not attempt to
derive any result on the speed of convergence—how fast nh must grow to achieve
rates within a smaller and smaller ε of the desired rates.

The analysis approach, which we believe can be extended to control strate-
gies that change admission, service, or routing behavior when queue depths cross
thresholds that can be made large, is based on deriving properties of the stochastic
network using a fluid model. However for clarity of exposition, we limit our fo-
cus in this paper to the ingress discarding policy. As in work by Dai [4] we take
a fluid limit by considering a sequence of larger and larger initial conditions, and
scaling time and space by the size of those initial conditions. However, in order to
consider stochastic networks with larger and larger thresholds, our fluid limit also
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FIG. 2. The fluid process that approximates the stochastic network.

considers a sequence of systems with thresholds scaled by an increasing factor n.
The resulting fluid limit behaves according to a fluid model corresponding to the
vector flow diagram in Figure 2. Since we scale the thresholds in our fluid limit,
the thresholds appear in the fluid model with nonnegligible values h̄. Note that h̄

need not equal h since the fluid limits we consider may scale space and threshold at
different rates. Also as a consequence of scaling the thresholds in taking the fluid
limit, the stochastic system behaves like the fluid model (in terms of flow rates)
only if the stochastic system’s thresholds are sufficiently large.

First consider the case λ > μ1 > μ2. A fluid model corresponding to this case
is illustrated by the vector flow diagram in the left part of Figure 2. This diagram
indicates the rate of change of the vector of queue lengths as a function of its
value. For instance, if the two queue lengths are between 0 and h̄, then fluid enters
queue 1 at rate λ and flows from that queue to queue 2 at rate μ1 while fluid leaves
queue 2 at rate μ2. Accordingly, the length of queue 1 increases at rate λ − μ1
and that of queue 2 at rate μ1 − μ2. The other cases can be understood similarly.
The vector flow diagram shows that, irrespective of their initial values, the queue
lengths converge to the pair of values (0, h̄), which is an absorbing state for the
fluid process. Moreover, when the process is close to the value (0, h̄), the rate of
the departure fluid is close to μ2. To conclude that the stochastic network has a
departure rate close to μ2 when h is large, one notes that the fluid process has one
additional property: the time the process takes to reach the state (0, h̄) is bounded
by a linear function of the distance between the initial condition and (0, h̄). This
property, which can be seen from the vector flow diagram, can be used to show,
roughly, that the stochastic system spends little time far from (0, h̄). The intuition
is that, although fluctuations occasionally move the stochastic network away from
the limiting state, the system tends to follow the fluid process and get back to
that state fairly quickly. This property will allow us to construct a proof that the
stochastic network has a departure rate close to μ2 most of the time.

It turns out that one needs a generalization of the above approach to cover some
interesting cases. To illustrate this generalization, consider once again the network
of Figure 1, but assume that λ > μ1 = μ2 = μ. The vector flow diagram of the
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corresponding fluid process is shown in the middle part of Figure 2. The diagram
shows that the fluid process converges to some point in the set indicated by the two
thicker lines: {h̄} × [0, h̄] ∪ [0, h̄] × {h̄}, depending on the initial condition. While
it is true that the rate of the departure fluid is close to μ for any point close to that
set, it is no longer the case that the time to reach that limiting set is bounded by a
linear function of the initial distance to the set. For instance, if the initial state of
the fluid process is (h̄, h̄ + ε) for some arbitrary ε > 0, the process takes at least
h̄/μ to reach the limiting set. To handle this situation, one considers the set shown
in the right-hand part of Figure 2. That set has the following two key properties:
(1) the departure flow rate is almost μ close to that set, and (2) the time to reach the
set is bounded by a linear function of the initial distance to it, as can be see from
the diagram. Thus, as in the previous example, one can show that the stochastic
network has a departure rate close to μ most of the time.

The main technical contributions of the paper are as follows:

• A technique for scaling time, space and threshold for finding a fluid limit for a
stochastic network with threshold based ingress discarding such as in our exam-
ple;

• Proof of a fluid limit for stochastic networks with thinned processes such as
�(t) in Figure 1;

• Proof of approximation of the rates of the stochastic network by the rates of the
limiting fluid process under the two key properties indicated in our examples.

In the next subsection, we outline the key steps of our analysis. In Section 1.2
we relate our work to other prior work, and in Section 1.3 we review an example
stochastic network with ingress discarding. Section 2 establishes the notation and
initial model description, while Section 3 proves the main results of the article.
In Section 4 we study the fluid model of a network resembling a 2 × 2 network
switch and show that the fluid model has the necessary properties to employ the
main results of the article. Note that Musacchio [22] shows that a more general
network with ingress discarding has a fluid model with the necessary properties.
Section 5 concludes the paper.

1.1. Proof outline. Our goal is to show that the long-term average flow rates
of the stochastic system can be made arbitrarily close to a vector of desired rates
R if the discarding thresholds are made large enough. Moreover, we want to show
that certain properties of the system’s fluid model suffice to reach this conclusion.
In this subsection we outline the arguments detailed in the rest of the paper.

The queuing network we consider has ingress discarding thresholds of nh in
each queue, where h > 0, and n > 0 is a threshold scale factor that is increased
to make the thresholds larger. The network is described by a Markov process
Xn = {Xn(t), t ≥ 0} taking values in the state space X. The superscript empha-
sizes the dependence on n. The state of the Markov process includes the queue
lengths, remaining service times at each queue and the remaining time until the
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next exogenous arrival of each flow f ∈ 1, . . . ,F . We will argue that Xn satisfies
the strong Markov property.

As we discussed in the previous section, we construct fluid limits of the sys-
tem by scaling time, space and threshold scale factor in particular ways that we
describe below. These fluid limits converge (in a sense also described below) to
trajectories of a fluid model. The fluid model, like the original system, also has
ingress discarding thresholds. However, these thresholds need not equal h, since
one of the fluid limits we need to consider can scale space and threshold at different
rates. Therefore when referring to the system’s fluid model, we need to specify h̄,
the discarding thresholds of each queue of the fluid model. (The queues of the fluid
model have a common threshold h̄, just as the queues of the original system have
a common threshold nh.) The fluid model has a state space X̄ similar to that of the
original system, but the queue lengths take values in R

+ rather than Z
+. In what

follows we adopt the notation that if S ⊂ X̄, then the set aS (a ∈ R+) denotes a
“scaled” set such that x̄ ∈ aS iff x̄/a ∈ S . Also let ‖x̄‖S = infe∈S ‖x̄ − e‖ denote
the distance between x̄ and the set S .

Our goal is to show that if there exists a closed, bounded set E ⊂ X̄ and t0 ∈ R
+

such that conditions (C1) and (C2) below hold, then there exists a large enough n

such that the stochastic network achieves long-term average departure rates arbi-
trarily close to R. Conditions (C1) and (C2) are as follows:

(C1) All trajectories of the fluid model with ingress discarding thresholds h̄

and initial condition X̄(0) = x̄ are absorbed by a set h̄E in a time not more than
t0‖x̄‖h̄E ;

(C2) If h̄ > 0, the instantaneous departure rates of the fluid model while its
state is in the set h̄E are equal to the vector of desired rates R.

Note that (C1) requires that h̄E be an absorbing set of the fluid model with thresh-
olds h̄. For example, one can show that a minimal absorbing set of the fluid model
in many cases would be, roughly, the set of states such that at least one of each
flow’s set of “bottleneck” queues is at it’s discarding threshold, and servers with
a utilization below 1 have empty queues. (By “bottleneck queue,” we mean a
queue whose service constrains a flow’s rate in the fluid model.) However, such
a construction might not be sufficient to satisfy (C1), particularly when flows
do not have unique “bottlenecks.” Recall that in the Introduction we studied an
example with two serially-connected queues with the same service rate. This is
an example in which h̄E needs to be made larger than the minimal absorbing
set in order to satisfy (C1). To see this note that even though the two line seg-
ments in the middle panel of Figure 2 constitute an absorbing set for the fluid
model, if we defined E so that h̄E is equal to these two line segments (by making
E = {1} × [0,1] ∪ [0,1] × {1}), condition (C1) would not be met. By defining E in
such a way as to make h̄E have the shape indicated by the shaded area of the right
panel of Figure 2, the time it takes trajectories of the fluid model to reach h̄E can
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be upper bounded by an amount proportional to the distance of the starting point
of the trajectory from h̄E , thus satisfying (C1).

The proof depends on two main steps:

(i) The expected flow rates associated with the process Xn(·), over a finite time
interval of length nt0, and for initial conditions near a set nhE , can be made to be
arbitrarily close to R with a sufficiently large threshold scaling factor n.

(ii) The excursions of the process Xn(·) away from nhE become relatively
shorter with larger threshold scaling factor n. More precisely, the first hitting time
that occurs nt0 after having started in a neighborhood of the set nhE , can be made
to be arbitrarily close to nt0.

In both steps we make use of the fact that a fluid limit of the process Xn(·)
converges to a trajectory of the fluid model, but the different objectives of the two
steps require us to use different fluid limit scalings. In the first step we consider
a sequence of (initial condition, scale factor) pairs {(xj , nj )}. To emphasize the
dependence on initial condition and threshold scale factor we write Xxj (·), where
the superscript xj � (xj , nj ). We require that the sequence has the properties that
xj/nj is no more than a distance ζ < 1 away from the set hE , and nj → ∞. Other-
wise, the sequence is arbitrary. We call such a sequence a near fluid limit sequence.
(Equivalently, the near fluid limit condition has ‖xj‖njhE < njζ and nj → ∞. In
general it is often more intuitive to consider the distance of X/n from the set hE
than to consider the distance of X from nhE , so we will use whichever construction
is more convenient or intuitive for the context.) We demonstrate that the sequence
of scaled processes { 1

nj
Xxj (nj ·)} converges along a subsequence, uniformly over

compact time intervals, to a fluid model trajectory X̄(·). The result largely follows
from the fact that the process describing the cumulative time each server in the
network is busy is Lipschitz continuous, and a sequence of Lipschitz continuous
functions on a compact set converges along a subsequence. Consequently, the con-
vergence to a fluid trajectory only holds on a finite time interval. The thresholds of
the fluid model that X̄(·) satisfies are of size h̄ = h. This is because we scale both
space and threshold by the same amount in this fluid limit, so the two scalings can-
cel out. Moreover, the restrictions we put on the near fluid limit sequence ensure
that the initial condition of the fluid model trajectory X̄(·) is within a distance of
ζ of h̄E . Thus, the fluid model trajectory X̄(t) hits h̄E quickly [in not more than
time ζ t0 by (C1)] and then achieves flow rates of R [by condition (C2)].

At this point, we have only shown convergence along a subsequence to a fluid
trajectory with some desired properties. We need to show convergence along the
original near fluid limit sequence in order to eventually make conclusions about the
stochastic network. To that end, consider a functional F that extracts the difference
between the actual flow throughput and the desired flow throughput over a compact
time interval [ζ t0, t0] (in time scaled by n). Since X̄(t) hits h̄E by time ζ t0, the flow
rates are equal to the desired rates over [ζ t0, t0]. Consequently, F ◦ X̄ = 0. This in
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turn allows us to argue that {F ◦ 1
n
Xxj (n·)} converges to 0 along a subsequence.

Since every near fluid limit sequence of processes (with the functional applied to
them) converges along a subsequence to 0 in this way, it must be that every near
fluid limit sequence also converges to 0 in this way. This fact allows us to show that
the flow rates of the process 1

n
X(n·) can be made arbitrarily close the desired rates,

for a finite time period, from any scaled initial condition x/n near hE , provided
that n is sufficiently large. In the detailed proof the functionals we consider act on
the Markov state trajectory combined with the trajectories of some other associated
processes such as the cumulative service time process. The fact that ζ < 1 was
chosen otherwise arbitrarily is important because it allows us to later make ζ small
so that the desired rates are achieved over most of the interval [0, t0] (in scaled
time).

In the second step, we again consider a sequence of (initial condition, scale
factor) pairs {(xj , nj )}. This sequence must satisfy the properties that the dis-
tance between xj/n and hE is more than a constant ζ for each j , and that
‖xj‖njhE = nj‖xj/nj‖hE → ∞. Otherwise, the sequence is arbitrary. We call
such a sequence a far fluid limit sequence. We show that the sequence of scaled pro-
cesses {Xxj (‖xj‖njhE ·)/‖xj‖njhE } converges along a subsequence of any far fluid
limit sequence, uniformly over compact time intervals, to a fluid model trajectory
X̄(·) satisfying a fluid model with discarding thresholds h̄. The scaled threshold
sequence of the fluid limit is {njh/(nj‖xj/nj‖hE )}, so the choice of sequence and
convergent subsequence determines a value for h̄ that satisfies h̄ ∈ [0, hζ−1]. Also
the scaling of the far fluid limit sequence ensures that the initial condition of the
fluid trajectory have an initial condition that is unit distance from h̄E . This fact
along with our starting assumption (C1), ensure that ‖X̄(t0)‖h̄E = 0. The preced-
ing two facts allow us to argue that the sequence {Xxj (‖xj‖njhE t0)/‖xj‖njhE } has
a distance from njhE that converges to 0 along a subsequence. Moreover since
any far fluid limit sequence has a subsequence that converges to 0 in this sense, it
must be that this convergence property holds for any far fluid limit sequence.

This fact is the basis for constructing an argument that

E
∥∥Xx(

t0‖x‖nhE
)∥∥

nhE ≤ δ‖x‖nhE

for any δ > 0 provided that threshold scale factor n is sufficiently large and
‖x/n‖hE > ζ (equivalently ‖x‖nhE > nζ ). This relation serves as a Lyapunov
function which allows the construction of an argument about the recurrence time
of the scaled process X/n to a neighborhood with distance ζ of hE , and this in
turn allows us to conclude (ii) above.

This recurrence time argument is adapted from [18] while the overall argument
we make with the far fluid limit sequence parallels [4]. The main difference be-
tween our far fluid limit argument and that of [4] is that in [4] the fluid model
and stochastic network are drawn to the origin and neighborhood of the origin,
respectively, whereas in our model the system is attracted to a set of states.



FLOW RATE ANALYSIS USING FLUID LIMITS 1325

1.2. Relation to prior work. Our fluid limit proof techniques borrow heavily
from work by Dai [4]. Dai shows that for networks without discarding, stability
of a corresponding fluid model implies positive Harris recurrence of the stochastic
network. In our work we use the fluid model not only to show positive Harris
recurrence of the stochastic network, but also to find its long term average flow
rates. Specifically, we use two fluid limits: the far fluid limit and the near fluid limit
that correspond to different sequences of initial conditions and threshold pairs.

Dai’s proof considers a sequence of initial states {x} of the Markov process
describing the network, with |x| → ∞, and then obtains a fluid limit by scaling
time and space by |x|. Dai uses this result to construct a Lyapunov function to
show that the expected state of the system contracts, for initial states far enough
from the origin. Our far fluid limit analysis parallels this, but with the difference
that our analysis focuses on the distance of the state from a set of states hE rather
than the distance from the origin. Also, because we are interested in showing the
existence of a sufficiently large threshold scaling factor n, for both the near and
far fluid limits, we consider a sequence of initial condition threshold pairs {x,n}
to obtain our results rather than just a sequence of initial conditions as in [4].

Our fluid limit technique is also very similar to that found in work by Bram-
son [2]. In much the way we do, Bramson takes the fluid limit using a sequence
of pairs, one being the initial condition and the other being a time scaling factor
of both space and time. However, our results do not follow immediately from the
results of Bramson because we require that the fluid model be drawn toward a set
h̄E rather than just to the origin.

Another body of work uses fluid limits to show rate stability rather than showing
that the system state converges to an invariant distribution, or more precisely that
the system is positive Harris recurrent. Rate stability means that the long-term av-
erage departures match the long-term average arrivals. It is a weaker concept than
positive Harris recurrence because a system can be rate stable while internally the
average queue lengths grow unbounded or at least fail to converge to an invariant
distribution. For a treatment see [11], and examples of its application include [3]
and [7]. The rate stability framework is not sufficient for our objectives because in
order to show that our control policy achieves flow rates close to those predicted
by a fluid model, we need to show that the vector of queue lengths settles to an
invariant distribution concentrated near a particular set of lengths, as illustrated in
the example of the Introduction.

Another closely related work to ours is by Mandelbaum, Massey and Reiman
[17]. In [17], the authors study the fluid limit of a queueing network with state
dependent routing, where the function describing the arrivals to each queue can
scale with n and or

√
n, in a manner similar to the scaling of our thresholds. The

authors prove a functional strong law of large numbers and a functional central
limit theorem in the context of their model. However, the authors assume that the
network is driven by Poisson processes, rather than just the renewal assumption
that we make. An earlier work by Konstantopoulos, Papadakis and Walrand derives
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a functional strong law of large numbers and a functional central limit theorem for
networks with state dependent service rates [16].

There are also several other works that use reflected Brownian motion models
to study queueing networks with blocking [5, 13, 14]. Typically the objective of
most such investigations is to approximate the distribution of the queue occupancy
with a diffusion approximation. In contrast with those works, our objective is to
show almost sure convergence using a strong law of large numbers scaling.

1.3. Example network. In this subsection, we introduce an example that moti-
vates the theory developed in this paper. The example will illustrate two important
phenomena—that the long-term rates of the stochastic system get closer to those of
a corresponding fluid model when discarding thresholds are raised, and that when
there are not unique bottlenecks, the vector of queue depths is not attracted to a
unique equilibrium point.

Our example is illustrated in Figure 3. The example is analogous to a two-input
and two-output switch. Two flows enter the network at station 1, the first input
of the switch, and a third flow enters the network at station 2. We concentrate on
flow 2, which shares stations 1 and 4 with flows 1 and 3, respectively. All stations
are served at rate 1, have round-robin service with equal weighting to all queues,
and have service times that are exponentially distributed. The arrival rate of each

FIG. 3. (i) An illustration of the example network. (ii) The queue lengths of queue 2 and 7 when the
discarding threshold parameter h set to 10. (iii) The lengths of queue 2 and 7 when the discarding
threshold parameter h is set to 100. (iv) The average flow rates of each of the three flows for both the
h = 10 and h = 100 simulated sample paths.
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flow is 0.6, with Pareto inter-arrival distributions given by

P
(
ξf (j) > s

) = 1

(0.6s + 1)2 , f ∈ {1,2,3}, s ≥ 0,

where ξf (j) is the inter-arrival time preceding the j th arrival. We choose the
Pareto distribution for this example to emphasize that we are interested in net-
works whose inter-arrival and service times are not necessarily memoryless.

We consider the behavior of the network’s fluid model. Since stations 2 and 3
have a capacity of 1 and each carry one flow with an offered rate of 0.6, the queues
of these stations should never fill. Stations 1 and 4 each carry 2 flows that offer a
load of 0.6 (before considering discarding). The fluid model of the station’s round
robin service is that each station serves both of its queues at rate 0.5 as long as
both flows are offering enough customers to be served at this rate. Consequently,
when flow 1’s queue at station 1 is filled below threshold, this queue grows at a
rate of 0.1. However, if flow 1’s queue at station 1 ever went above its threshold,
ingress discarding would commence, and the queue would immediately decrease.
Therefore, it must be that this queue grows to its threshold, stays at this level and
then flow 1’s “thinned” or post-discarding arrival process is of rate 0.5.

Similar reasoning shows that flow 3’s queue at station 4 behaves in this way, and
also that one of flow 2’s queues must also reach the threshold and “stick” there.
These steps allow us to conclude that after some time, all three flows should have
rates of 0.5 in the system’s fluid model. (We will verify this carefully in Section 4.)

Figure 3 shows the simulated trajectories of flow 2’s queues at both bottleneck
stations in the stochastic network. In the h = 10 case, the simulation shows that
queues 2 and queue 7, which both serve flow 2, are empty for over 100 time units
around time 800. This empty period is significant because when flow 2’s queues are
empty, flow 2 misses opportunities to have its customers served by the bottleneck
stations. Indeed the table included in Figure 3 shows the average rate, averaged
over the last 80% of the simulation time to reduce some of the initial transient
effect, is 0.391. This is substantially below the rate of 0.5 predicted by the fluid
model. Most likely, a string of long interarrival times of flow 2, caused the queues
at the bottleneck stations to starve.

Raising the thresholds should reduce starvation, because larger thresholds
would provide the bottleneck queues a larger backlog to smooth over fluctuations
in the arrival and service processes. To test that intuition, we simulate the network
with discarding thresholds of h = 100. Figure 3 shows the trajectories of flow 2’s
queues for the increased threshold. We note that neither queue spends all of the
time filled to its threshold, but instead at most times at least one of the queues is
near its threshold. For instance, at the beginning of the simulation, queue 7 (the sec-
ond bottleneck) is chattering near the threshold while queue 2 (the first bottleneck)
is below threshold. At some time before the 2000 second mark, the two queues
switch these roles, and around the 6000 second mark the queues switch these roles
again. We also note that flow 2 achieves an average rate of 0.489, which is much
closer to the rate of 0.5 predicted by the fluid model.
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2. Preliminaries. Customers of a given flow f ∈ {1, . . . ,F } follow the same
fixed sequence of distinct stations. The service times are independent. Each flow f

has a weight wf and each station i ∈ {1, . . . , d} is equipped with per-flow queues
and serves each flow in proportion to its weight using a weighted round robin
or a similar queueing discipline. In addition to the notion of flow, each customer
also has a class k ∈ {1, . . . ,K} that is indicative of both the customer’s flow and
the station s(k) it is located. Thus the class of a flow f customer changes as the
customer progresses from station to station, but with the restriction that a flow f

customer must always have a class in the set K(f ). Conversely, each class k is
associated with one and only one flow f(k). We also adopt the numbering conven-
tion that flow f customers enter the network as class k = f , and thus f ∈ K(f ).
The constituency matrix C ∈ {0,1}d×K records which classes are served in each
station: Cik = 1 if class k is served at station i, otherwise Cik = 0. A customer of
class k who completes service becomes a customer of class l if Pkl = 1. Thus
P ∈ {0,1}K×K is a binary incidence matrix with each row containing at most
one 1. Because flows follow loop-free paths, P is nilpotent.

The exogenous arrivals to the network for flow f are described by a renewal
process Ef (·) for which the interarrival times {ξf (j), j ≥ 1} are i.i.d. and αf is
the mean arrival rate. Thus,

Ef (t) = max
{
r :Uf (0) + ξf (1) + · · · + ξf (r − 1) ≤ t

}
, t ≥ 0,

where Uf (t) ∈ R+ is the time after time t until the next flow f customer arrives at
the network ingress. We also need to assume that inter-arrival times are unbounded
and spread-out. More precisely, we assume that for each k ∈ {0, . . . ,F }, there ex-
ists an integer jk and some function pk(x) ≥ 0 on R

+ with
∫ ∞

0 pk(x) dx > 0, such
that

P
[
ξk(1) ≥ x

]
> 0 for any x > 0(1)

and

P

[
a ≤

jk∑
i=1

ξk(i) ≤ b

]
≥

∫ b

a
pk(x) dx for any 0 ≤ a ≤ b.(2)

The service times {ηk(j), j ≥ 1} of each class k are also i.i.d. and have mean
mk = μ−1

k , where μk is the mean service rate. We also define the K × K diagonal
matrix M whose kth diagonal entry is mk . The quantity Vk(t) ∈ R+ denotes the
remaining service time of the class k customer in service, if there is one at time t ,
otherwise Vk(t) = 0. We define a service process Sx

k (·) as

Sk(t) � max
{
j : Ṽk(0) + ηk(1) + · · · + ηk(j − 1) ≤ t

}
, t ≥ 0,

where Ṽk(0) = Vk(0) if Vk(0) > 0; otherwise Ṽk(0) = ηk(0) is a fresh service time
with the same distribution as ηk(1) and independent of all other service times.
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In principle, our assumption that the service times are independent does not
allow for service times that depend on a packet’s size (taking “packets” to be “cus-
tomers”). Dependence on packet size would make the service times of stations
dependent on each other. To model this explicitly would require a much more
complicated model. However we believe that our results in this work would still
hold if this assumption were relaxed.

We define the following right-continuous processes: A : [0,∞) → Z
K+ counts

the arrivals to each class k since time t = 0; D : [0,∞) → Z
K+ counts the departures

of each class; � : [0,∞) → Z
F+, counts the exogenous arrivals of each flow that

make it past the discarding point (“thinned” exogenous arrivals); Q : [0,∞) → Z
K+

is the vector process of queue depths; T : [0,∞) → R
K+ counts the total time each

class k has been served since t = 0; and I : [0,∞) → R
d+ counts the total time

each server has been idle since t = 0. For each t ≥ 0, these processes satisfy the
following relations:

A(t) = P T D(t) + �(t);(3)

Q(t) = Q(0) + A(t) − D(t);(4)

Q(t) ≥ 0;(5)

Tk(t) is nondecreasing and Tk(0) = 0 for k = 1, . . . ,K;(6)

Ii(t) = t − CiT (t) is nondecreasing and Ii(0) = 0 for i = 1, . . . , d;(7) ∫ ∞
0

(
CQ(t)

)
dI (t) = 0;(8)

Dk(t) = Sk

(
Tk(t)

)
for k = 1, . . . ,K.(9)

Relations (3)–(5) describe the relations between the arrival, departure and queue
length processes. Statements (6)–(8) describe basic restrictions on the cumulative
service time and idle time processes, with relation (8) reflecting an assumption that
each station is work conserving. Equation (9) reflects that departures of class k are
determined by the composition of the service time counting process Sk(·) and the
process T (·).

The ingress discarding scheme drops arriving customers of flow f as they arrive
whenever any queue in the set K(f ) exceeds a high threshold nh. Recall that n

is the threshold scaling factor which we will adjust in our analysis. Conversely,
when all of the queues in K(f ) are below a lower threshold nh − o(n), flow f

customers are permitted to enter the network. Note the lower threshold could be
set to be the same as the upper threshold, but in some practical applications it might
be beneficial to have different thresholds so that the switching between admitting
and discarding is less frequent. Thus we permit this difference between upper and
lower thresholds to be any function o(n) that satisfies o(n)/n → 0 and o(n) ≥ 0.
For instance any nonnegative constant may be used. Between these thresholds, the
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system has hysteresis behavior, and we define this behavior as follows. A process
Hk : [0,∞) → {0,1} keeps track of whether discarding has been “turned-on” by
each class k queue. If Qk(t) ≥ nh, then Hk(t) = 1, and if Qk(t) ≤ nh − o(h),
then Hk(t) = 0. For all t such that Qk(t) ∈ (nh − o(h), nh), the evolution of Hk is
determined by the following rules:

• If Hk(t) = 0, then let ts = min{τ ≥ 0 :Qk(t + τ) ≥ nh} [note that ts is well
defined because Qk(·) is right continuous]. Hk(t + τ) = 0 for τ ∈ [0, ts) and
Hk(ts) = 1.

• If Hk(t) = 1, then let ts = min{τ ≥ 0 :Qk(t + τ) < nh − o(n)}. Hk(t + τ) = 1
for τ ∈ [0, ts) and Hk(ts) = 0.

The flow f customers that are allowed into the network beyond the discarding
point depends on all the processes Hk(·) as

�f (t) =
Ef (t)∑
j=1

∏
K(f )

(
1 − Hk(τj−)

)
,(10)

where τj = Uf (0) + ∑j−1
m=1 ξf (m) is the time of the j th arrival to the discarding

point. Here the dependence on Hk(τj−) � limt↑τj
Hk(t) rather than Hk(τj ) is to

avoid problems with causality. For instance a customer arrival that triggers dis-
carding should not be discarded; otherwise the customer will never arrive to the
system, and paradoxically the discarding will never turn on. Our modeling choice
allows such a customer to enter, thus triggering discarding, which will discard fu-
ture customers.

The queueing discipline of a station i serves each flow in proportion to the flow
weights over long time intervals. More precisely, for some constant c > 0 and all
τ > 0,

Dk(t, t + τ)

wf(k)

≥ Dl(t, t + τ)

wf(l)
− c whenever Qk(s) > 0 ∀s ∈ [t, t + τ ](11)

for all k, l ∈ C(i) � {k′ :Cik′ = 1}, where Dk(t, t + τ) � Dk(t + τ) − Dk(t).
We furthermore assume that only the customer at the head of line of each queue

may be served, and that the instantaneous service rate of any queue is a function of
the current state. That is, Ṫk(t) = f (X(t)) for some function f (·) where X(t) =
[Q(t);U(t);V (t);H(t)].

The evolution of the queuing system depends on the particular queuing disci-
pline. Moreover, some queueing disciplines require additional state variables. For
instance, a weighted round robin scheduler visits the queues in a cyclic order, serv-
ing any customers at the head of the line. The order should be chosen so that in each
cycle the number of visits of each queue is proportional to the flow weights (which
is possible if the weights are rational multiples of each other). Other queueing dis-
ciplines could be considered as well, though these disciplines may need additional
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state variables. For instance, deficit round robin (DRR) requires counters for each
class [23]. Also, DRR ensures that the service times given to each class are pro-
portional rather than the number of customers served. Therefore, DRR satisfies
a criterion similar to (11) except that D(·) is replaced by T (·). However, since
the service times are unbounded, the criterion holds only in the limit τ → ∞,
almost surely. Other disciplines require yet more complex state descriptions. For
instance, weighted fair queueing (WFQ) keeps track of each customer’s “virtual
finish time”—the time they would have departed if the service discipline were
weighted processor sharing and no more customers were to arrive [1]. To keep the
presentation simple, we assume that the additional state variables required by the
queueing discipline are described by a bounded vector in Z

d+. We append this to
the H portion of the state description. Treatment of queueing disciplines that re-
quire more elaborate state descriptions requires some modification to the statement
and proof of Theorem 1.

2.1. State description. The dynamics of the queueing network are described
by the Markov process X = {X(t), t ≥ 0}. The state description contains the queue
lengths Q(t) ∈ R

K+ of all the K queues in the network, as well as the residual
arrival and service times U(t) ∈ R

F+ and V (t) ∈ RK+ , respectively. Recall that U(t)

and V (t) are defined to be right-continuous. Finally the state description includes
the state of the discarding hysteresis and any state variables used by the queueing
discipline as described above. We assume that H(t) ∈ {0,1}K × Z

d+. Thus the full
state description is

X(t) = [
Q(t);U(t);V (t);H(t)

]
.

Let X ⊂ Z
K × R

F+K+ × {0,1}K × Z
d+ be the set of all states X can take. A fixed

threshold scaling factor n, an initial condition x = X(0) ∈ X is sufficient to specify
the statistics of the future evolution of the system.

We claim that the process X satisfies the strong Markov property, by the same
argument given by Dai [4]. In turn, Dai’s argument followed from Kaspi and Man-
delbaum [15]. Without repeating all the details of the argument, the basic idea is
that X(·) is a piecewise deterministic Markov (PDM) process—behaving deter-
ministically between the generation of “fresh” inter-arrival or service time. Davis
shows that a PDM process whose expected number of jumps on [0, t] is finite for
each t is strong Markov [9]. As we assume that the inter-arrival and service times
have a positive and finite mean, the expected number of jumps of X(·) in any
closed time interval is finite. Therefore X(·) has the strong Markov property.

The fluid model, whose defining equations will be given in Theorem 1, takes
values in the state space X̄ ⊂ R

F+3K+d+ since integer valued states of the original
system correspond to real valued states of the fluid model.
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3. Fluid limit analysis. In this and subsequent sections, we use the super-
script x � (x, n) to denote the dependence on initial state x and threshold scaling
factor n. As we discussed earlier, we use two different fluid limits in our analy-
sis: the near and far fluid limits that study behavior of the stochastic network for
scaled initial conditions near and far from hE , respectively. Recall that E ⊂ X̄ is a
closed and bounded set. Also recall hE = {x :x/h ∈ E }. At this point we make no
further assumptions on E , but eventually E will have to be chosen so that h̄E is an
absorbing set of the fluid model with thresholds h̄ to apply our final results.

For notational convenience we also define an augmented state vector process

Xx(·) �
[
Xx(·);T x(·);�x(·);nh

]
,

which contains all the functions that we want to show converging in both kinds of
fluid limit.

In this section, we state Theorem 1 which shows convergence to a fluid model
trajectory along a fluid limit. The convergence of the trajectory is uniformly on
compact sets. More precisely, we say that fj (t) → f (t) uniformly on compact
sets (u.o.c.) if for each t ≥ 0,

lim
j→∞ sup

0≤s≤t

∣∣fj (s) − f (s)
∣∣ = 0.

We also use the notation ḟ (t) = d
dt

f (t) where such a derivative exists. If a function
f (·) is differentiable at t , we say that t is a regular point.

The proof, along with four lemmas used in the proof, are given in the Appendix.
One of these lemmas, Lemma 5, is a new result showing that the thinned arrival
process converges u.o.c. to the fluid limit. In Section 1.1 we previewed the two
types of fluid limits, which we call the “near” and “far” fluid limits, that we will use
in our analysis. In both types of fluid limits, time and space is scaled by a factor that
increases. In the development that follows, that scale factor for time and space is
represented by the notation aj . Later on, we will make specific assumptions about
aj that correspond to either the near or far fluid limit. Bramson [2] takes a similar
approach to defining the fluid limit. Both types of fluid limit scale the threshold
no faster than time and space are scaled, and also both consider a sequence of
initial conditions xj , such that after space-scaling, the “relative initial condition”

xj/aj is a bounded distance away from the set njh

aj
E . More precisely, we define

the following property which is common to both near and far fluid limit sequences.
Thus by assuming this property in the statement of Theorem 1, the theorem applies
to both near and far fluid limit sequences.

PROPERTY 1. {(xj , aj )} is a sequence of initial condition xj , threshold factor
nj and scale aj triples for which aj → ∞. Moreover for each j , nj > 0, aj > 0
and some closed, bounded E ∈ X̄,

nj

aj

≤ c1 and
∥∥∥∥xj

aj

∥∥∥∥
njhE/aj

≤ c2 for some c1 > 0 and c2 > 0.
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3.1. Convergence to a fluid limit along a subsequence. The proof of the fol-
lowing theorem parallels the proof of Theorem 4.1 of Dai [4]. However, the proof
of our theorem differs in that we require some specialized treatment for our fluid
limit construction and for the ingress discarding feature of the network. We state
the theorem here and present the proof in the Appendix.

THEOREM 1. Suppose {(xj , aj )} is a sequence satisfying Property 1 (on pa-
ge 1332). Then for almost all ω there exists a subsequence {(xm,am)} ⊆ {(xj , aj )}
for which

Xxm(amt)

am

→ X̄(t) u.o.c.

for some fluid model trajectory X̄(·) with components

X̄(·) �
[
X̄(·); T̄ (·); �̄(·); h̄]

,

where, in turn, the process X̄(·) has components

X̄(·) �
[
Q̄(·); Ū (·); V̄ (·); H̄ (·)],

where H̄ (·) ≡ 0. The process X̄(·) may depend upon ω and the choice of subse-
quence {(xm,am)} but must satisfy the following properties for all t ≥ 0:

Ūf (t) = (
t − Ūf (0)

)+
, V̄k(t) = (

t − V̄k(0)
)+;(12)

T̄k(t) is nondecreasing and starts from zero;(13)

Īi (t) := t − CiT̄ (t) is nondecreasing;(14)

D̄k(t) := μs(k)

(
T̄k(t) − V̄k(0)

)+;(15)

Ā(t) := P �D̄(t) + �̄(t);(16)

Q̄(t) := Q̄(0) + Ā(t) − D̄(t);(17)

Q̄(t) ≥ 0;(18) ∫ ∞
0

(
CQ̄(t)

)
dĪ (t) = 0,(19)

where (12), (13) and (15) hold for each flow f and class k, while (14) holds for
each station i. Assignments (14), (15), (16) and (17) define Ī (t), D̄(t), Ā(t) and
Q̄(t), respectively. Also, the following hold for each flow f for regular t ≥ 0:

˙̄�f (t) = 0 whenever Q̄k(t) > h̄ for some k ∈ C(f ),(20)

˙̄�f (t) = αf 1
(
t ≥ Ūf (0)

)
whenever Q̄k(t) < h̄ for all k ∈ C(f ),(21)

˙̄�f (t) ≤ αf .(22)
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Also, for station i and for any k, l such that {k, l} ∈ C(i) the following properties
are satisfied for all regular t ≥ 0:

w−1
k

˙̄Dk(t) ≥ w−1
l

˙̄Dl(t) whenever Qk(t) > 0,(23)

w−1
k

˙̄Dk(t) = w−1
l

˙̄Dl(t) whenever Qk(t) > 0 and Ql(t) > 0.(24)

See the Appendix for the proof. Next we state precisely the definitions of a near
fluid limit sequence and far fluid limit sequence that we discussed earlier in Sec-
tion 1.1. After defining these sequences, we derive two corollaries to Theorem 1
that apply to each of these types of sequences.

DEFINITION 1 (Near fluid limit sequence). {(xj , aj )} is a near fluid limit se-
quence with respect to a closed, bounded hE ∈ X̄ if aj = nj , nj → ∞ and∥∥∥∥xj

nj

∥∥∥∥
hE

= ‖xj‖njhE

nj

≤ ζ

for each j and for some ζ > 0.

DEFINITION 2 (Far fluid limit sequence). {(xj , aj )} is a far fluid limit se-
quence with respect to a closed, bounded hE ∈ X̄ if aj = nj‖ xj

nj
‖hE , aj → ∞ and∥∥∥∥xj

nj

∥∥∥∥
hE

= ‖xj‖njhE

nj

> ζ

for each j and for some ζ > 0.

As was discussed earlier, the near fluid limit sequence is defined so that the
sequence of scaled initial conditions remains a bounded distance away from the
set hE while the far fluid limit is defined so that the sequence of scaled initial
conditions is bounded away from the set hE .

COROLLARY 1. Suppose that {(xj , aj )} is a near fluid limit sequence with
respect to a closed, bounded hE ∈ X̄. Then for almost all ω there exists a subse-
quence {(xm,am)} ⊆ {(xj , aj )} for which

Xxm(amt)

am

→ X̄(t) u.o.c.,

where X(·) satisfies fluid model equations (12)–(24). Moreover

h̄ = h and
∥∥X̄(0)

∥∥
h̄E ≤ ζ.
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PROOF. The discarding thresholds before scaling are njh, and thus af-
ter scaling they are njh/aj = h for each j . Thus h̄ = h. Also aj → ∞ and
‖xj/aj‖hE ≤ ζ , and thus the sequence {(xj , aj )} satisfies Property 1. By The-
orem 1 there exists a subsequence {(xm,am)} such that Xxm(amt)/am con-
verges u.o.c. to a fluid trajectory satisfying (12)–(24). By Theorem 1, the sub-
sequence xm/am converges to an initial state of the fluid trajectory X̄(0). Since
‖xm/am‖hE ≤ ζ , it must be that ‖X̄(0)‖h̄E ≤ ζ . �

COROLLARY 2. Suppose that {(xj , aj )} is a far fluid limit sequence with re-
spect to a closed, bounded hE ∈ X̄. Then for almost all ω there exists a subsequence
{(xm,am)} ⊆ {(xj , aj )} for which

Xxm(amt)

am

→ X̄(t) u.o.c.,

where X(·) satisfies fluid model equations (12)–(24). Moreover

h̄ ∈ [0, h/ζ ] and
∥∥X̄(0)

∥∥
h̄E = 1.

PROOF. Note that ∥∥∥∥xj

aj

∥∥∥∥
njhE/aj

= nj

aj

∥∥∥∥xj

nj

∥∥∥∥
hE

= 1

for each j . This combined with the fact that aj → ∞ implies that {(xj , aj )}
satisfies Property 1. By Theorem 1 there exists a subsequence {(xm,am)} such
that Xxm(amt)/am converges u.o.c. to a fluid trajectory satisfying (12)–(24). The
above equation also implies that ‖X̄(0)‖h̄E = 1. The subsequence of scaled thresh-
olds satisfies nmh/am = h/‖xm/nm‖hE < h/ζ . By Theorem 1 the subsequence
nmh/am converges, and the convergence must be to a number in the range [0, h/ζ ]
because of the preceding inequality relation. �

3.2. Convergence along subsequences to convergence along sequences. In the
previous section, we showed that for both near and far fluid limit sequences, we
can extract a sample path dependent subsequence that converges to a fluid model
trajectory. The objective of this section is to use this subsequence result to show
convergence of a functional of the original sequence. In particular, we show in
Lemma 1 that if a functional F of any fluid model trajectory goes to zero in a time
not more than a constant times the scaled initial condition’s distance from h̄E ,
then the value of that functional applied to the fluid limit sequence of trajectories
converges almost surely. In later sections, we will invoke Lemma 1 choosing F to
extract the service rates from the fluid model, and later choosing F to extract the
distance from a set hE . Lemma 1 is a generalization of an argument used by Dai
in the proof of Theorem 4.2 of [4].
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LEMMA 1. Suppose that F is a functional that maps R
r × R

+ into R
s × R

+
where r is the dimension of Xx(·) and s is arbitrary. Also suppose that F is con-
tinuous on the topology of uniform convergence on compact sets. If the following
is true:

• The fluid model equations (12)–(24) are such that for any trajectory X̄(·) and
h̄ ≥ 0 that satisfies them, there exists some closed bounded E ∈ X̄ for which

F ◦ [
X̄(·)](t) ≡ 0 ∀t ≥ t0

∥∥X̄(0)
∥∥
h̄E .(25)

Then, for any sequence {(xj , aj )} satisfying Property 1 where the relation
‖xj/aj‖njhE/aj

≤ c of Property 1 is satisfied with constant c > 0,∣∣∣∣F ◦
[

1

aj

Xxj (aj ·)
]
(t)

∣∣∣∣ → 0 a.s.(26)

for each t ≥ ct0.

PROOF. By Theorem 1, for almost all sample paths ω, and for any subse-
quence {(xm,am)} ⊆ {(xj , aj )} there is a sample-path-dependent further-subse-
quence {(xr(ω), ar(ω))} ⊆ {(xm,am)} for which

Xxr(ω)(ar(ω)t,ω)

ar(ω)

→ X̄(t,ω) u.o.c.,

where X̄(t,ω) satisfies (12)–(24) as well as ‖X̄(0)‖h̄E ≤ c since each xj/aj has a

distance from njh

aj
E that is no more than c by the lemma’s assumption. The nota-

tion r(ω) and X̄(t,ω) emphasize that the further-subsequence and fluid trajectory
depend on ω. Now fix an ω for which subsequences have convergent further sub-
sequences as described. For the next few steps we suppress the ω arguments to
simplify notation. Because F is assumed to be continuous on the topology of uni-
form convergence on compact sets, we have

F ◦
[

Xxr (ar ·)
ar

]
(t) → F ◦ [

X̄(·)](t) u.o.c.

Consequently, ∣∣∣∣F ◦
[

Xxr (ar ·)
ar

]
(t)

∣∣∣∣ → 0

for each t ≥ ct0. So for this fixed ω, any subsequence {(xm,am)} ⊆ {(xj , aj )}
has a further subsequence {(xr(ω), ar(ω))} ⊆ {(xm,am)} for which the above holds.
Therefore the original sequence {(xj , aj )} converges for this fixed ω. The same ar-
gument can be used to conclude that this holds for almost all ω. Thus, we have (26).

�
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3.3. Convergence to fluid model rates on a compact time interval. The objec-
tive of this section is to use Lemma 1 to conclude that the rates of the stochastic
system are close to those of the fluid model over a finite time interval. It will remain
to show that the rates are close over the long-term.

THEOREM 2. Suppose there exists t0 > 0, a closed, bounded E ∈ X̄, and rate
vector R ∈ R

K+ such that

M−1 ˙̄T (t) ≡ R ∀t ≥ t0
∥∥X̄(0)

∥∥
h̄E(27)

for any fluid model trajectory X̄(·) and h̄ > 0 that satisfies (12)–(24). Then for any
positive γ < 1 and ζ < 1 there exists L1(ζ, γ ) such that for all n ≥ L1,

inf‖x/n‖hE ≤ζ
E

[
M−1T x(nt0)

] ≥ R(1 − ζ )(1 − γ )nt0.(28)

PROOF. Let {(xj , aj )} be a near fluid limit sequence: a sequence of threshold
scale and initial condition pairs satisfying aj = nj → ∞ and ‖xj/nj‖hE ≤ ζ . We
invoke Lemma 1 by picking F so that

F ◦ [
X̄(·)](t) := T̄

(
ζ−1t

) − T̄ (t) − MR
(
ζ−1 − 1

)
t.

F is easily seen to be continuous on the topology of uniform convergence on com-
pact sets. Also note that F ◦ [X̄(·)](t) = 0 for all t ≥ t0‖X̄(0)‖h̄E by (27). By
Lemma 1,

lim
j→∞

∣∣∣∣T xj (nj t0) − T xj (ζnj t0)

nj (1 − ζ )t0
− MR

∣∣∣∣ = 0 a.s.,

where we have used the fact that ‖xj/nj‖hE ≤ ζ to choose the c of Lemma 1 to be
ζ and selected t = ζ t0. The left-hand side of the above identity is bounded from
above by a constant for all j , and thus by the dominated convergence theorem [10],

lim
j→∞ E

∣∣∣∣T xj (nj t0) − T xj (ζnj t0)

nj (1 − ζ )t0
− MR

∣∣∣∣ = 0.(29)

Also note (29) holds for any sequence {(xj , aj )} with nj = aj → ∞ and
‖xj/nj‖hE ≤ ζ , because these were the only restrictions for our initial choice
of sequence.

Now pick a positive constant γ < 1. Observe that there exists a constant
L1(γ, ζ ) such that whenever n > L1,

inf‖x/n‖hE ≤ζ

E[T x(nt0) − T x(nζ t0)]
n(1 − ζ )t0

≥ MR(1 − γ )

for if otherwise we could construct a sequence {(xj , aj )} that violates (29). By the
monotonicity of T xj (·), we have (28). �
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3.4. Stochastic system attracted to hE . The objective of this section is to show
that the scaled state of the stochastic system is attracted to hE . In particular we
show that the scaled state’s expected distance from hE declines geometrically
(roughly) for starting scaled states outside a neighborhood of hE . Since the proof
technique is similar that of Theorem 3.1 of Dai [4] we choose to provide the proof
in the Appendix.

THEOREM 3. Suppose that there exists t0 > 0 and a closed, bounded E ∈ X̄
such that ∥∥X̄(t)

∥∥
h̄E ≡ 0 ∀t ≥ t0

∥∥X̄(0)
∥∥
h̄E(30)

for any fluid model trajectory X̄(·) and h̄ ≥ 0 that satisfies (12)–(24). Then the
following conclusions are true:

(i) For any ζ > 0, and any positive δ < 1 there exists L2(ζ, δ) such that for all
n ≥ ζ−1L2 and all x :‖x/n‖hE > ζ ,

E
∥∥∥∥1

n
Xx

(
nt0

∥∥∥∥x

n

∥∥∥∥
hE

)∥∥∥∥
hE

≤ δ

∥∥∥∥x

n

∥∥∥∥
hE

.

(ii) For any ζ > 0, and any b > 0 there exists L3(ζ, b) such that for all n ≥ L3
and all x :‖x/n‖hE ≤ ζ ,

E
∥∥∥∥1

n
Xx(nt0)

∥∥∥∥
hE

≤ b.

See the Appendix for the proof.
The objective of the next lemma is to show that the results of Theorem 3 im-

ply that the expected return time of the scaled state to the ζ ball around hE is
small. The proof of Lemma 2 is adapted from the proof of Theorem 2.1(ii) of [20],
which was for a discrete time Markov chain. Since the lemma is an adaptation of
a previous result, we provide the proof in the Appendix.

LEMMA 2. Suppose (1) and (2) are satisfied and for some n > 0, h ≥ 0, and
a closed, bounded E ∈ X̄ we have

E
∥∥∥∥1

n
Xx

(
nt0

∥∥∥∥x

n

∥∥∥∥
hE

)∥∥∥∥
hE

≤ δ

∥∥∥∥x

n

∥∥∥∥
hE

∀x :‖x/n‖hE > ζ,(31)

E
∥∥∥∥1

n
Xx(nt0)

∥∥∥∥
hE

≤ b ∀x :‖x/n‖hE ≤ ζ.(32)

Then X is positive Harris recurrent and

sup
x∈B

Ex

[
τn
B(nt0)

] ≤ nt0

[
1 + ζ + b

1 − δ

]
,(33)

where B � {x :‖x/n‖hE ≤ ζ } and τn
B(nt0) is defined by

τn
B(nt0) � inf

{
t ≥ nt0 :Xn(t) ∈ B

}
.(34)
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See the Appendix for the proof.

3.5. Convergence of long-term rates. The objective of this section is to tie
together all of the preceding results to conclude in Theorem 4 that the long-term
rates of the stochastic system are close to the fluid rates for large enough n. First we
pick n large enough so that the conclusions of Theorems 2, 3 and Lemma 2 apply.
Theorem 2 says that the stochastic system’s rates are close to the fluid rates for
the first nt0 seconds after having started with a scaled initial condition x/n in a ζ -
neighborhood of hE . To make a conclusion about the long-term, we need to show
that stochastic system spends relatively little time away from the neighborhood
in which Theorem 2 applies. Lemma 2 tells us that the expected first return time
of X/n to a ζ -neighborhood of hE that happens after nt0 seconds is no more
than a constant times nt0. Moreover, this constant can be made arbitrarily small
by picking n larger. This argument is illustrated by Figure 4. To formalize the
argument we construct a sequence of stopping times that occur on the first visit
of X/n to the ζ -neighborhood of hE that occurs at least nt0 seconds after the
last stopping time. We define random vectors ρi that track the cumulative service,
divided by average service times, between stopping times and relate these to the
desired rate vector R using Theorem 2. We use ergodicity to argue that the long-
term average rates exist, and that this long-term limit must equal the product of
the expected value of ρi times the lim inf of t/N(t) the inverse of the arrival rate
of stopping times. Due to Lemma 2, this later quantity has an upper bound of nt0
times a constant that can be made small.

FIG. 4. The top half of the figure illustrates the definition of the stopping times σi, σi+1, . . . . The
bottom half illustrates the intuition behind the proof of Theorem 4 by plotting the stopping times on
a time line, and showing the bound on expected throughput between such stopping times.
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THEOREM 4. Suppose for some t0 > 0 and some closed, bounded E ∈ X̄ both
of the following are true:

• For any fluid model trajectory X̄(·) and h̄ ≥ 0 that satisfies (12)–(24),∥∥X̄(t)
∥∥
h̄E ≡ 0 ∀t ≥ t0

∥∥X̄(0)
∥∥
h̄E .(35)

• For any fluid model trajectory X̄(·) and h̄ > 0 that satisfies (12)–(24),

M−1 ˙̄T (t) ≡ R ∀t ≥ t0
∥∥X̄(0)

∥∥
h̄E ,(36)

where R ∈ R
K+ .

Then for any ε > 0, there exists a nc > 0 such that for all n ≥ nc,

lim
t→∞

Dx(t)

t
≥ (1 − ε)R a.s.

PROOF. We observe that equations (36) and (35) are the necessary conditions
to apply Theorems 2 and 3, respectively. Therefore, we may arbitrarily pick the
constants ζ , δ and b of Theorem 3 and the constants ζ and γ of Theorem 2 (using
the same ζ value in Theorems 2 as we use when we apply Theorem 3), and then
fix an n satisfying

n > max
[
L1(ζ, γ ), ζ−1L2(ζ, δ),L3(ζ, b)

]
(37)

so that the conclusions of both Theorems 3 and 2 hold.
In addition, conclusions (i) and (ii) of Theorem 3 allow us to invoke Lemma 2 to

complete (33) where τn
B(nt0) is defined by (34). Because the constants ζ , b, δ can

be chosen arbitrarily, equations (33) and (37) imply that the ratio of the expected
first hitting time of B (nt0 seconds after having started in B) to nt0 can be made to
be close to 1 by choosing n large enough. We collect some of the constants in (33)
in the term t ′0 defined by

nt ′0 = nt0

[
1 + ζ + b

1 − δ

]
.(38)

We have also chosen n large enough so that the following conclusion from The-
orem 2 holds:

inf‖x/n‖hE ≤ζ
E

[
T x(nt0)

] ≥ MR(1 − ζ )(1 − γ )nt0.(39)

Define the stopping times

σ0 = 0, σi+1 = inf
{
t ≥ nt0 + σi :X(t) ∈ B

} ∀i ≥ 0.(40)

Figure 4 illustrates how these stopping times are defined. Note that for any initial
condition x ∈ X (the state space of Xn) and index i ≥ 1,

Ex[σi+1 − σi] ≤ sup
x̃∈B

Ex̃

[
τn
B(nt0)

] ≤ nt ′0.(41)
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This follows from the fact that Xx(σi) ∈ B , the strong Markov property, the stop-
ping time definitions (34) and (40) and expressions (33) and (38). Also, X is pos-
itive Harris recurrent by Lemma 2 and therefore, Ex[σ1] < ∞ for any x ∈ X. We
define a counting process N(t) for the stopping times σi as N(t) = inf{i :σi ≤ t}.
Because X is positive Harris recurrent, σi < ∞ almost surely, and therefore
N(t) → ∞ a.s. We now turn to bounding the expected “arrival” rate of the stop-
ping times σi . By (41) for each i,

Ex[σi]
i

=
∑i−1

j=1 Ex[σj+1 − σj ] + Exσ1

i
≤ nt ′0(1 − 1/i) + Exσ1

i
.(42)

Additionally, along any sample path

t

N(t)
≤ σN(t)+1

N(t) + 1

N(t) + 1

N(t)
.

Thus by taking lim inft→∞ Ex(·) of both sides, and using (42) we have

lim inf
t→∞ Ex

[
t

N(t)

]
≤ nt ′0.

Moreover, by Fatou’s lemma

Ex

[
lim inf
t→∞

t

N(t)

]
≤ lim inf

t→∞ Ex

[
t

N(t)

]
≤ nt ′0.(43)

We define the random vectors ρi = M−1[T n(σi + σi+1) − T n(σi)] to track the
service between stopping times σi . Note that for i ≥ 1 and each x ∈ X,

Ex[ρi] ≥ inf
x̃∈B

Ex̃

[
M−1T x̃,n(nt0)

] ≥ Rnt0(1 − ζ )(1 − γ ).(44)

This follows from the fact that Xx(σi) ∈ B , the strong Markov property, the defi-
nition of σi (40), the definition of ρi , and relation (39). Figure 4 illustrates the fact
that the throughput between stopping times σi and σi+1 is lower-bounded accord-
ing to relation (44).

By [6] the following ergodic property holds for every measurable f on X with
π(|f |) < ∞,

lim
t→∞

1

t

∫ t

0
f

(
Xn(s)

)
ds = π(f ) Px-a.s. for each x ∈ X,

where π is the unique invariant distribution of Xn. Assigning the function f (x) �
M−1Ṫ x(0) to be the instantaneous service rates when the process is in state x

(recall that we assumed the service rates are a function of the state in Section 2),
we have

lim
t→∞

1

t

∫ t

0
f

(
Xx(s)

)
ds = lim

t→∞
1

t
M−1T̃ x(t) = R a.s.(45)

for some constant vector R.
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Consider the random variable N � lim inft→∞ t
N(t)

. The random variable N
is a Pπ invariant random variable, and therefore is a constant. Moreover by (43),

N ≤ nt ′0. A more detailed explanation of this argument is provided in [22].
We observe that for any sample path the following inequalities hold:

t

N(t)

M−1T x(t)

t
≤

∑N(t)
j=0 ρj

N(t)
≤ t

N(t)

σN(t)+1

t

M−1T x(σN(t)+1)

σN(t)+1
.(46)

Taking the lim inft→∞ of both sides and using (45), we have that

lim inf
t→∞

∑N(t)
j=0 ρj

N(t)
= N R a.s.(47)

We note that T x(σN(t)+1)/σN(t)+1 ≤ 1 where 1 is a column vector of 1’s of appro-
priate dimension. This fact combined with (46) yields that for each i > 0,

inf
k≥i

∑k
j=1 ρj

i
≤ lim inf

t→∞
t

N(t)
M−11 ≤ nt ′0M−11.

Thus the random variables {infk≥i i
−1 ∑k

j=1 ρj : i > 0} are dominated by a con-

stant. Consequently, lim infi→∞ E[∑i
j=1 ρj/i] = N R by the dominated conver-

gence theorem. Also for each i > 0, E[∑i
j=1 ρj/i] ≥ Rnt0(1 − γ )(1 − ζ ) by (44).

Thus, N R ≥ Rnt0(1−γ )(1− ζ ). Substituting (43) we have that R ≥ (1−γ )(1−
ζ )

t0
t ′0

R. This implies

lim
t→∞

1

t
M−1T x(t) ≥ (1 − γ )(1 − ζ )

1 + (ζ + b)/(1 − δ)
R a.s.

Recall γ , ζ , b and δ may be chosen arbitrarily small, so long as n is chosen large
enough according to (37). Thus, for any ε > 0 there exisits an n such that

lim
t→∞

1

t
M−1T x(t) ≥ (1 − ε)R a.s.

By the strong law of large numbers for renewal processes [10], 1
t
Sx

k (t) → mk a.s.
Thus by (9), limt→∞ 1

t
Dx(t) ≥ (1 − ε)R a.s. �

4. Analysis of switch example. In this section we apply the results of the pre-
ceding section to the example introduced in Section 1.3. Recall that this example
resembles a 2-input 2-output switch and has 3 flows and is illustrated by Figure 3.
As we discussed in Section 1.3, the max-min fair share rate allocation would be
that all three flows achieve rates of 0.5, so we set R = [0.5,0.5,0.5]T to be the
vector of desired rates.

To fit the framework we have developed, we must show that the fluid model
with thresholds h̄ is drawn to a set h̄E , and that the fluid model rates while in h̄E
are R. Intuition suggests that the dynamics of the fluid model should evolve in the
following way:
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• One of the queues flow 2 passes through (either queue 2 or 7) reaches threshold
and “chatters” there. The other queue can be anywhere at or below its threshold.
By “chatters” we mean that it alternately goes a tiny amount above and below.
However, if the differential inclusions of the fluid model are such that: (i) the
queue grows whenever below threshold or (ii) shrinks when above, then a fluid
model trajectory would go to threshold and stay there.

• Queue 1 fills to threshold, “chatters” there, limiting flow 1’s ultimate rate.
• Queue 7 fills to threshold, “chatters” there, limiting flow 3’s ultimate rate.
• Other queues are not “bottlenecks” and should empty.

This above intuition suggests that the fluid model is drawn to the set h̄Ẽ where Ẽ
is given by

Ẽ �
{
X̄ : Q̄1 = Q̄8 = 1, Q̄3 = Q̄4 = Q̄5 = Q̄6 = 0,

(Q̄2, Q̄7) ∈ {[0,1] × 1
} ∪ {

1 × [0,1]}, Ū = 0, V̄ = 0, H̄ = 0
}
.

As it will turn out, the most critical part of the analysis of this example’s fluid
model is to show that the queues flow 2 passes through, queues 2 and 7, go to
values in h̄Ẽ in a time not more than a constant times their initial values. Intuition
suggests that after a “settling down” period flow 1’s rate through queue 1, as well
as flow 3’s rate through queue 8, settles to 0.5. After flow 1 and flow 3’s rates
settle, the dynamics of (Q̄2(t), Q̄7(t)), the queues of flow 2, follow the relations
outlined by Table 1 and illustrated by Figure 5. The entries of Table 1 are easily
derived by using the observations that:

TABLE 1
Dynamics of (Q̄2(t), Q̄7(t)), after flows 1 and 3 settle to their ultimate rates of 0.5. The rows

numbers correspond to the regions labeled in the phase portrait diagram of Figure 5

Q̄2 Q̄7
˙̄Q2

˙̄Q7 Time to h̄E Time to h̄E
‖X̄‖h̄E

1 [0, h̄) [0, h̄) 0.1 0 if |Q̄7 − h̄| < ah̄ then 10
a

10
a |Q̄7 − h̄|

if |Q̄7 − h̄| ≥ ah̄ then

10|Q̄2 − h̄|
2 (h̄,∞) [0, h̄) −0.5 0 2|Q̄2 − h̄| 2

3 (0,∞) (h̄,∞) −0.5 0 if |Q̄7 − h̄| < ah̄ then 2
a

2
a |Q̄7 − h̄|
if |Q̄7 − h̄| ≥ ah̄ then
2|Q̄2 − h̄| + 2|Q̄7 − h̄ − ah̄|

4 0 (h̄,∞) 0 −0.5 2|Q̄7 − h̄ − a| 2

5 h̄ [0, h̄] [−0.5,0.1] [−0.5,0] 0 N/A

6 [0, h̄] h̄ [−0.5,0.1] [−0.5,0] 0 N/A
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FIG. 5. The evolution of (Q̄2(t), Q̄7(t)). The shaded area indicates the set h̄E .

• The arrival rate to queue 2 is 0.6 when queue 2 and queue 7 are below threshold
while the arrival rate to queue 2 is 0 when one of these queues is above threshold.

• The departure rate from either queue 2 or queue 7 is 0.5 whenever the queue is
nonempty or has sufficient arrivals to maintain this departure rate. (This relies on
our assumption that the flow rates through queues 1 and 8 have “settled down”
to 0.5.)

Figure 5 is a vector flow diagram, showing the dependence of ( ˙̄Q2(·), ˙̄Q7(·)) on
(Q̄2(·), Q̄7(·)). It is evident from the diagram that the time to reach the set{[0, h̄] × h̄

} ∪ {
h̄ × [0, h̄]},

which is the projection of h̄Ẽ on to the subspace on which (Q̄2(·), Q̄7(·)) takes
values, is not always less than or equal to a constant times the initial condition’s
distance from this set. Consider an initial condition of ( h̄

2 , h̄ + ε). This initial con-
dition is only a distance of ε from Ẽ , but the time it takes to reach the set Ẽ is
h̄ + 1

2ε. (Note that we will use the L1 norm throughout this section.) This is the
same phenomenon we observed in the example in the Introduction of the paper.
There, as here, we can fix the problem by slightly enlarging the set Ẽ to a new
set E so that the set is reached in a time not more than a constant times the initial
condition’s starting distance from the set. To this end, we define E according to

E �
{
X̄ : Q̄1 = Q̄8 = 1, Q̄3 = Q̄4 = Q̄5 = Q̄6 = 0,

(Q̄2, Q̄7) ∈ {
(χ,ψ) :χ ∈ [0,1],ψ ∈ [

1 − aχ,1 + a(1 − χ)
]}

∪ {
1 × [0,1]}, Ū = 0, V̄ = 0, H̄ = 0

}
.

Here a is an arbitrary positive constant that should be less than 1. The projection
of this set onto the subspace spanned by (Q2,Q7) is shown as the shaded area in
Figure 5. With this definition, one can show that the set h̄E is reached in a time
not more than a constant times the initial distance from h̄E . The time to reach h̄E ,
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along with the maximum ratio of the time to reach h̄E divided by initial distance
to h̄E are shown in Table 1.

We are now ready to formalize the intuition we have outlined in the preceding
paragraphs. We begin by stating a lemma that the system settles down so that the
behavior flow 2’s queues are as described by Table 1 after a time τsd (mnemonic
for “settle down”) that is in proportion to the initial condition.

LEMMA 3. There exists a time τsd proportional to the initial condition as
described by the relation

τsd = t01
∥∥X̄(0)

∥∥
h̄E

for some positive t01 such that for all regular points t ≥ τsd :

• The value of ( ˙̄Q2(t),
˙̄Q7(t)) is determined by the value of (Q̄2(t), Q̄7(t)) as

specified by Table 1.
• Q̄3(t) = Q̄5(t) = Q̄6(t) = 0, and Q̄8(t) = h̄.
• The time to reach the set h̄E , as well as the maximum ratio between this time

and the distance of (Q̄2(τsd), Q̄7(τsd)) from h̄E |Q̄2,Q̄7
in any of the regions 1

through 4 is as specified in Table 1. [Here h̄E |Q̄2,Q̄7
denotes the projection of

the set h̄E onto the space on which (Q̄2, Q̄7) takes values.]

Lemma 3 is proved by using relations (12)–(24) that describe the evolution of a
fluid model trajectory. The proof is straightforward but slightly lengthy because it
requires analysis for each entry in Table 1. We therefore omit this proof.

We now state and prove the principal result of this section.

THEOREM 5. For any ε > 0, there exists an nc > 0 such that if the discarding
thresholds of the stochastic system in Example 2 are set to nh, n ≥ nc, then

lim
t→∞

D(t)

t
≥ (1 − ε)

1

2
1 a.s.,

where 1 is a vector of ones of dimension K .

PROOF. By Lemma 3 the dynamics of the state variables (Q̄2(t), Q̄7(t)) of the
fluid model trajectory evolve according to Table 1 after a time τsd = t01‖X̄(0)‖h̄E .
From Table 1, the Q̄2 and Q̄7 components of the fluid model trajectory reach
values in the set h̄E ’s projection in, at most, an additional 10

a
‖X̄(τsd)‖h̄E time

units. Because the total arrival rate into the system is less than or equal to 1.8,∥∥X̄(τsd)
∥∥
h̄E ≤ (2t01 + 1)

∥∥X̄(0)
∥∥
h̄E .

Thus after a time t02‖X̄(0)‖h̄E , where t02 = 10
a

(2t01 + 1) + 1, all queues but
queue 1 have been shown to reach values in the projection of the set h̄E . By
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Lemma 3, queue 5 is empty, so either: queue 1 is above threshold, in which
case discarding is on and it will reach threshold in 2(Q̄1(t02‖X̄(0)‖h̄E ) − h̄) time
units, or queue 1 is below threshold in which case it will reach threshold in
10(Q̄1(t02‖X̄(0)‖h̄E ) − h̄) time units. Once Q̄1(t) reaches threshold h̄, it remains
there by the following reasoning. If queue 1 were to move some positive amount
ε above h̄, the discarding would have turned on before the queue grew to ε and
prevented it from getting there. Similarly, if queue 1 were to move some positive
amount ε below h̄, the discarding would have turned off before the queue receded
by ε, and prevented the queue from receding that much. Very loosely, we can
bound the rate of growth of queue 1 before time t02‖X̄(0)‖h̄E by

Q̄1
(
t02

∥∥X̄(0)
∥∥
h̄E

) ≤ 1.6
∥∥X̄(0)

∥∥
h̄.

Thus after a time of length t0‖X̄(0)‖h̄E , where t0 is given by t0 = 10
a

(2t01 +1)+
17, all fluid model trajectories will have reached the set h̄E . The departure rates for
all three flows, as well as the departure rates for each class associated with each
flow, are easily seen to be 0.5 when the fluid model’s state is in h̄E and threshold
h̄ > 0. Thus, by Theorem 4 we have that the asymptotic flow rates approach 0.5.

�

5. Conclusion. In this work we have shown how the analysis of the flow rates
of a stochastic network with a particular flow control scheme may be reduced to
an analysis of a fluid model. While we have focused on a particular flow control
scheme, the same analysis could be carried out for many other control schemes.
The key feature that enabled our approach was that our control scheme has a free
parameter, n, which when increased makes the system look more and more like a
deterministic fluid system. We have demonstrated how to use the theory developed
in this paper to analyze an example network resembling a 2-input, 2-output switch.

APPENDIX

Before proving Theorem 1, we state and prove a number of lemmas. Lemma 4
is a functional form of the strong law of large numbers for renewal processes, and
is taken from [4]. Lemma 5 is a new result showing that the thinned arrivals (the
customers that make it beyond the discarding point) converge to a fluid limit along
a subsequence. Lemma 6 is a result taken from [4] showing that the residual initial
arrival and service times decline to zero at rate 1 in the fluid limit. The lemma also
shows that the sequence of functions we use to take the fluid limit are uniformly
integrable.

Also the lemmas will make use of fluid limits that have well-defined limiting
residual interarrival and service times, as defined by the following property.

PROPERTY 2. {(xj , aj )} is a sequence for which U
xj (0)
aj

→ Ū (0), V
xj (0)
aj

→
V̄ (0), for some Ū (0) ≥ 0 and V̄ (0) ≥ 0.
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LEMMA 4 (Dai, Lemma 4.2 of [4]). Suppose that {(xj , aj )} is a sequence
satisfying Properties 1 and 2 (see pages 1332 and 1346). Then for almost all ω,

E
xj

f (aj t)

aj

→ αf

(
t − Ūf (0)

)+ u.o.c.,

S
xj

k (aj t)

aj

→ μk

(
t − V̄k(0)

)+ u.o.c.

PROOF. See Lemma 4.2 of Dai [4]. The result is an instance of the strong law
of large numbers for renewal processes [10]. �

LEMMA 5 (Thinned arrival convergence). Suppose that {(xj , aj )} is a se-
quence satisfying Properties 1 and 2. Then for almost all ω, there exists a sub-
sequence {(xm,am)} ⊆ {(xj , aj )} such that

�xm(amt)/am → �̄(t) u.o.c.,

where �̄(t) is some Lipschitz continuous process with, for all regular t ≥ 0,

˙̄�f (t) ≤ αf for each flow f .(48)

PROOF. By Lemma 4,

E
xj

f (aj t)/aj → αf

(
t − Ūf (0)

)+ u.o.c.(49)

for each flow f . For notational convenience in the development that follows, we
define

Ēf (t) � αf

(
t − Ūf (0)

)+
, �j (t) � Exj (aj t)/aj − Ē(t).(50)

Pick a compact time interval [s0, s1]. Since the number of admitted customers is
not greater than the number that arrive,

1

aj

[
�xj

(
aj (t + ε)

) − �xj (aj t)
] ≤ 1

aj

[
Exj

(
aj (t + ε)

) − Exj (aj t)
]

(51)

for any positive ε ≤ s1 − s0 and t : s0 ≤ t ≤ s1 − ε. Adding −�j(t + ε) and �j(t)

to both sides and substituting (50), we have

�xj (aj (t + ε))

aj

− �j(t + ε) −
[
�xj (aj t)

aj

− �j(t)

]
≤ Ē(t + ε) − Ē(t) ≤ εα.

Define the family of functions

Lj (s0, t) := sup
s∈[s0,t]

[
�xj (aj s)

aj

− �j(s)

]
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for t ∈ [s0, s1]. Because the argument of the sup function is a vector, sup is taken
component-wise. Note that for any (t, ε) with t ∈ [s0, s1 − ε],

Lj (s0, t + ε) = Lj (s0, t) ∨ Lj (t, t + ε)

and

Lj (t, t + ε) ≤ εα + Lj (t, t) ≤ εα + Lj (s0, t).

Thus Lj (s0, t + ε) − Lj (s0, t) ≤ εα and clearly Lj (s0, t + ε) − Lj (s0, t) ≥ 0 be-
cause Lj (s0, ·) is monotone. Hence the functions Lj (s0, ·) are equicontinuous and
individually Lipschitz continuous. Thus, by Arzela’s theorem, there exists a further
subsequence {(xm,am)} ⊆ {(xj , aj )} such that

Lm(s0, t) → �̄(t)

uniformly on the compact set t ∈ [s0, s1] for some monotone-nondecreasing,
Lipschitz-continuous process �̄(t). But by (49), �j(t) → 0 uniformly on compact
sets. Because of this and the fact that �xj (aj s)/aj is monotone in s, it follows that
Lj (s0, t) approaches �xj (aj t)/aj as j → ∞. Thus

sup
s∈[s0,t]

[
�xj (aj s)

aj

− �j(s)

]
→ �xj (aj t)

aj

→ �̄(t).

Because the choice of [s0, s1] was arbitrary, we have �xm(ams)/am → �̄(t) u.o.c.
Furthermore, (49) and (51) imply that �̄(t) satisfies (48). �

LEMMA 6 (Lemmas 4.3 and 4.5 of Dai [4]). Suppose that {(xj , aj )} is a se-
quence satisfying Properties 1 and 2. Then almost surely

lim
j→∞

U
xj

f (aj t)

aj

= (
Ūf (0) − t

)+ u.o.c.,

lim
j→∞

V
xj

k (aj t)

aj

= (
V̄k(0) − t

)+ u.o.c.

Also, for each fixed t ≥ 0, the sets of functions{
Uxj (aj t)/aj :aj ≥ 1

}
,

{
V xj (aj t)/aj :aj ≥ 1

}
,{

Qxj (aj t)/aj :aj ≥ 1
}

are uniformly integrable.

PROOF. See Lemmas 4.3 and 4.5 of Dai [4]. �

We use the following lemma later to show that because all of the systems we
consider are work-conserving, the fluid limit must also be work-conserving. In
the lemma below, the notation DR[0,∞) denotes the space of right-continuous
functions on R+ having left limits on (0,∞), and endowed with the Skorohod
topology [12]. CR[0,∞) ⊂ DR[0,∞) is the subset of continuous paths.
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LEMMA 7 (Lemma 2.4 of Dai and Williams [8]). Let {(zj ,χj )} be a sequence
in DR[0,∞)×CR[0,∞). Assume that χj is nondecreasing and (zj ,χj ) converges
to (z,χ) ∈ CR[0,∞) × CR[0,∞) u.o.c. Then for any bounded continuous func-
tion f , ∫ t

0
f

(
zj (s)

)
dχj (s) →

∫ t

0
f

(
z(s)

)
dχ(s) u.o.c.

PROOF. See Lemma 2.4 of Dai and Williams [8]. �

We are now ready to prove Theorem 1.

PROOF OF THEOREM 1. Before scaling space, the discarding thresholds for
each j are njh. After scaling space by aj , the scaled thresholds are njh/aj . Prop-
erty 1 insures that nj/aj is upper bounded by a constant. Thus by the Bolzano–
Weierstrass theorem, there exists a subsequence {(xr , ar)} ⊆ {(xj , aj )} for which
nrh/ar → h̄ for some h̄ ≥ 0.

Property 1 insures that ‖xr/ar‖nrh/ar E is upper bounded by a constant. Thus
lim sup‖xr/ar‖h̄E is finite. Consequently, there must be some further subsequence
{(xu, au)} ⊆ {(xr , ar)} for which xu/au → X̄(0) for some finite X̄(0).

The hysteresis variables satisfy H xu(aut)/au → 0 u.o.c. because H xu(aut) is
bounded by a constant by its definition. This fact along with the convergence of
Xxu(0)/au → X̄(0) allows us to use Lemma 6 to conclude Uxu(aut)/au → Ū (t)

and V xu(aut)/au → V̄ (t) u.o.c. where Ū (t) and V̄ (t) satisfy (12).
The cumulative service time process T xu satisfies[

T xu(aut) − T xu(aus)
]
/au ≤ (t − s).(52)

Thus by Arzela’s theorem [21], there exists a further subsequence {(xv, av)} ⊆
{(xu, au)} for which T xv (avt)/av → T̄ (t). Property (13) follows from (6). Prop-
erty (7) implies I xv (avt)/av → Ī (t) u.o.c. where Ī (t) satisfies (14).

By Lemma 4, S
xv

k (avt)/av → (μkt − V̄k(0))+ u.o.c. for each class k. This fact
combined with (9) and (52) gives (15).

We have already shown that Xxv (0) → X̄(0), therefore the Uxv (0) and V xv (0)

components of Xxv (0) converge to a limiting value. This fact allows us to invoke
Lemma 5 to conclude that there is a subsequence {(xm,am)} ⊆ {(xv, av)} for which
�xm(amt)/am → �̄(t) u.o.c. for some Lipschitz continuous process �̄(t) satisfy-
ing (22).

Lemma 4 combined with (3) gives us A
xm

k (amt)/am → Āk(t) u.o.c. for each
class k where Āk(t) is defined by (16). Furthermore, Āk(t) is Lipschitz continuous
because it is equal to a linear combination of functions we have already shown to
be Lipschitz continuous. Thus using (4) we have that

Qxm(amt)/am → Q̄(t) u.o.c.,(53)
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where Q̄(t) is a Lipschitz continuous function given by (17). Property (18) follows
easily from (5).

The next few arguments are similar to the proof of Proposition 4.2 in [6].
Suppose that Q̄k(t) > h̄ for some k ∈ C(f ). By Lipschitz continuity of Q̄k(t),
there exists some small τ > 0 such that mint≤s≤t+τ Q̄k(s) > h̄. By the unifor-
mity of the queue convergence in (53) and that nmh/am → h̄, there exists m∗ such
that for all m > m∗, Q

xm

k (ams) > nmh for all s ∈ [t, t + τ ]. Thus, by (10) one
finds that �

xm

f (ams) − �
xm

f (amt) = 0,∀s ∈ [t, t + τ ]. Therefore, it follows that

�̄f (s) − �̄f (t) = 0,∀s ∈ [t, t + τ ] and consequently, ˙̄�f (t) = 0, which is (20).
Suppose that Q̄k(t) < h̄ for all k ∈ C(f ). First note that in this case h̄ > 0.

By the Lipschitz continuity of Q̄k(t) for each k, there exists some small τ > 0
such that maxk∈C(f ) maxs∈[t,t+τ ] Q̄k(s) < h̄. Because nm → ∞, the uniformity of
the convergence in (53), and that nmh/am → h̄, there exists m′ such that for all
m > m′, Q

xm

k (ams) < nmh. Furthermore there exists a m∗ ≥ m′ such that for all
m > m∗ and k ∈ C(f ), Q

xm

k (ams) < nmh − o(nm)hς . Thus, by (10),

�
xm

f (ams) − �
xm

f (amt) = E
xm

f (ams) − E
xm

f (amt) ∀s ∈ [t, t + τ ]
and consequently we have (21).

Suppose that for some class k, Q̄k(t) > 0. By the Lipschitz continuity of Q̄k(t)

there exists some small τ > 0 such that mint≤s≤t+τ Q̄k(s) > 0. Because of the
uniformity of convergence in (53) there exists m∗ such that for all m > m∗,
Q

xm

k (ams) > 0,∀s ∈ [t, t + τ ]. By (11), for almost all ω, and all classes l we have

w−1
k

[
Dk(ams) − Dk(amt)

] ≥ w−1
l

[
Dl(ams) − Dl(amt)

] ∀s ∈ [t, t + τ ],
and thus we have (23).

If Q̄l(t) > 0 and Q̄k(t) > 0, then (23) is true as written or with the k and l and
indices swapped. This implies (24).

We observe that (8) is equivalent to
∫ ∞

0 f (χm)dzm = 0 where

χm := CiQ
xm(amt)

am

, zm := I
xm

i (amt)

am

, f (·) := (·) ∧ 1.

Noting that χm and zm meet the required conditions for Lemma 7 we have,∫ ∞
0 [CiQ̄(t)] ∧ 1dĪi(t) = 0 which is equivalent to (19). �

PROOF OF THEOREM 3. We first prove conclusion (i). Pick any sequence
of pairs {(xj , aj )} satisfying aj = nj‖xj/nj‖hE → ∞ and ‖xj/nj‖hE > ζ for
some ζ > 0 (a far fluid limit sequence). To invoke Lemma 1, we pick F while
simultaneously defining the process F̄ (·) according to the expression

F̄ (t) � F ◦ [
X̄(·); T̄ (·); �̄(·); h̄]

(t) := ∥∥X̄(t)
∥∥
h̄E ∀t ≥ 0.

Note that F̄ (‖X̄(0)‖h̄E t) = 0 for all t ≥ t0 by (30), and F is easily seen to
be continuous on the topology of uniform convergence on compact sets. Since
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‖xj/aj‖njh/aj
= 1 as argued in Corollary 2, we can set the c of Lemma 1 to 1.

Applying Lemma 1 and taking t = t0 we have that

1

‖xj‖njhE

∥∥Xxj
(‖xj‖njhE t0

)∥∥
njhE → 0 a.s.

By Lemma 6, 1
‖xj‖nj hE

Xxj (‖xj‖njhE t0) is uniformly integrable. Therefore

lim
j→∞

1

‖xj‖njhE
E

∥∥Xxj
(‖xj‖njhE t0

)∥∥
njhE = 0.(54)

Using that the above holds for any far fluid limit sequence, we show by contra-
diction that conclusion (i) of the theorem is true. Suppose conclusion (i) were
not true. Then for some ζ > 0 and some positive δ, we would have that for any
L2 there would exist a pair x = (x, n) with ‖x‖nhE ≥ L2 and ‖x/n‖hE > ζ with

1
‖x‖nhE

E‖Xx(t0‖x‖nhE )‖hE ≤ δ. We therefore could construct a sequence that vio-
lates (54), which is true for any far fluid limit sequence. A special case of a far fluid
limit sequence is when n > L2ζ

−1 and ‖x/n‖hE > ζ . Hence we have conclusion
(i) of the theorem.

We now turn to showing conclusion (ii). Pick an arbitrary sequence of pairs
{(xj , aj )} satisfying aj = nj → ∞ and ‖xj/nj‖hE ≤ ζ for some constant ζ (a near
fluid limit sequence). We again invoke Lemma 1 by taking F to be the same func-
tional as before, that is,

F̄ (t) � F ◦ [
X̄(·); T̄ (·); �̄(·); h̄]

(t) := ∥∥X̄(t)
∥∥
h̄E ∀t ≥ 0.

Using Lemma 1, and the fact that ‖xj/nj‖hE ≤ ζ we have ‖Xxj (nj t)/nj‖hE → 0
a.s. for each t ≥ ζ t0. Now take t = t0, 1

nj
‖Xxj (nj t0)‖njhE → 0 a.s. By Lemma 6,

Xxj (nj t0)/nj is uniformly integrable. Therefore

lim
j→∞ E

[
1

nj

∥∥Xxj (nj t0)
∥∥
njhE

]
= 0.(55)

We claim that the above implies conclusion (ii) is true by contradiction. Sup-
pose (ii) were not true. Then for some choice ζ and b, we would have that for
every constant L3, there would exist an n ≥ L3 and x :‖x/n‖hE ≤ ζ satisfy-
ing E‖ 1

n
Xx(nt0)‖hE > b. This would allow us to construct a sequence that vio-

lates (55), which is a contradiction. �

PROOF OF LEMMA 2. The argument that follows is adapted from the proof of
Theorem 2.1(ii) of Meyn and Tweedie [20]. We use the following fact taken from
Theorem 14.2.2 of [18]:

FACT 1 (Meyn and Tweedie [18]). Suppose a discrete time Markov chain � =
{�k, k ∈ Z

+} is defined on a general state space X with transition kernel P(x,A) =
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Px(�1 ∈ A), where A ∈ B(X), the Borel subsets of X. If V and f are nonnegative
measurable functions satisfying∫

P(x, dy)V (y) ≤ V (x) − f (x) + b̃1B(x), x ∈ X,

then

Ex

[
τB−1∑
k=0

f (�k)

]
≤ V (x) + b̃,

where τB = inf{k ≥ 1 :�k ∈ B}.

The above fact is a form of Dynkin’s formula and is shown by using the
first inequality to sum bounds of the increments ExV (�k) − ExV (�k+1) for
k ∈ {0, . . . , τB − 1}. Since 1B(�k) is 1 at most once for k ∈ {0, . . . , τB − 1} on
each sample path, b̃ appears once in the final expression.

We define the set B � {x :‖x/n‖hE ≤ ζ }. Next, we define the following func-
tions, the first mapping each x ∈ X to a time m(x), and the second a Lyapunov
function mapping each x to a value:

m(x) �
{

n‖x/n‖hE t0, if x /∈ B,
nt0, if x ∈ B,

(56)

V (x) � nt0

1 − δ
‖x/n‖hE .(57)

Substituting m(x) for time in relation (31), and adding a term to that relation’s
right-hand side so that the relation holds for x both inside and outside B , we have

Ex

∥∥∥∥1

n
Xn(

m(x)
)∥∥∥∥

hE
≤ δ‖x/n‖hE +

(
sup
x̃∈B

Ex̃

∥∥∥∥1

n
Xn(nt0)

∥∥∥∥
hE

)
1B(x)

≤ ‖x/n‖hE + b1B(x)

≤ ‖x/n‖hE − 1 − δ

nt0
m(x) + (1 − δ + b)1B(x),

where the middle step follows from (32). By multiplying both sides by nt0/(1−δ),
we have

Ex

[
V

(
Xn(

m(x)
))] ≤ V (x) − m(x) + b̃1B(x),(58)

where

b̃ = nt0 + nt0

1 − δ
b.(59)

The transition kernel Pt for the Markov process Xn is defined by Pt (x,A) =
Px(X

n(t) ∈ A) where A is any set in B(X), the Borel subsets of the state space X.
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We define the discrete time “embedded” Markov chain �̂ = {�̂k, k ∈ Z+} with
transition kernel P̂ given by P̂(x,A) = Pm(x)(x,A). Note that∫

P̂(x, dz)V (z) =
∫

Pm(x)(x, dz)V (z) = Ex

[
V

(
Xn(

m(x)
))]

.

Combining this with (58) we have∫
P̂(x, dz)V (z) ≤ V (x) − m(x) + b̃1B(y).

Thus by fact 1,

Ex

[
τ̂B−1∑
k=0

m(�̂k)

]
≤ V (x) + b̃,(60)

where τ̂B = inf{k ≥ 1 : �̂k ∈ B}. If the embedded chain hits B in τ̂B discrete steps,
then the original chain must also hit B in a time less than or equal to the sum of
the embedded times. Thus

inf
{
t ≥ 0 :Xx,n(t) ∈ B

} ≤
τ̂B−1∑
k=0

m(�̂k) Px-a.s.

for each x ∈ X. Furthermore, whenever the initial condition x ∈ B , the first em-
bedded time is nt0 seconds by (56). Consequently, the time of the first hitting of B

after nt0 seconds expire satisfies

inf
{
t ≥ nt0 :Xx,n(t) ∈ B

} ≤
τ̂B−1∑
k=0

m(�̂k) Px-a.s.

for each x ∈ B . Substituting definition (34), taking the expectation and using (60),
we have

Ex

[
τn
B(nt0)

] ≤ V (x) + b̃ for all x ∈ B.

Taking the supx∈B of both sides and substituting (57) and (59), we have (33). Since
B is closed and bounded, and arrivals are from an unbounded distribution (1) and
spread-out (2), B is a petite set; see [18] for a discussion of petite sets. Therefore
(33) implies X is positive Harris recurrent by Theorem 4.1 of [19]. �
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