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We consider transient nearest-neighbor random walks in random envi-
ronment on Z. For a set of environments whose probability is converging to 1
as time goes to infinity, we describe the fluctuations of the hitting time of a
level n, around its mean, in terms of an explicit function of the environment.
Moreover, their limiting law is described using a Poisson point process whose
intensity is computed. This result can be considered as the quenched analog
of the classical result of Kesten, Kozlov and Spitzer [Compositio Math. 30
(1975) 145–168].

1. Introduction. Random walks in a one-dimensional random environment
were first introduced in the late sixties as a toy model for DNA replication. The
recent development of micromanipulation techniques such as DNA unzipping has
raised a renewed interest in this model in genetics and biophysics; cf., for instance,
[2] where it is involved in a DNA sequencing procedure. Its mathematical study
was initiated by Solomon’s 1975 article [20] characterizing the transient and recur-
rent regimes and proving a strong law of large numbers. A salient feature emerg-
ing from this work was the existence of an intermediary regime where the walk
is transient with a zero asymptotic speed, in contrast with the case of simple ran-
dom walks. Shortly after, Kesten, Kozlov and Spitzer [14] precised this result by
giving limit laws in the transient regime. When suitably normalized, the (properly
centered) hitting time of site n by the random walk was proved to converge toward
a stable law as n tends to infinity, which implies a limit law for the random walk
itself. In particular, this entailed that the ballistic case (i.e., with positive speed)
further decomposes into a diffusive and a subdiffusive regime.

Note that these results, except when they deal with almost sure statements, con-
cern only the annealed behavior. When dealing with applications, what we call the
medium is usually fixed during the experiment (e.g., the DNA sequence), and we
are naturally led to consider the quenched behavior of the walk. The first results in
this direction by Peterson and Zeitouni [17] and Peterson [15] were unfortunately
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negative results, saying that, for almost all environment, the laws of the fluctua-
tions of the walk along the time have several accumulation points. However, it was
shown by three of the authors in [9], that, in the case of transient walks having 0
asymptotic speed, one can get some quenched localization result by slightly relax-
ing the point of view. Namely, for a set of media whose probability converges to 1
as time goes to infinity, the law of the (suitably normalized) position of the walk
is getting close to a discrete probability measure whose weights and support are
expressed in terms of the environment. In the same spirit, we focus in this work
on the quenched fluctuations of hitting times in the case of a general transient
subdiffusive random walk in random environment.

Adopting Sinai’s now famous description of the medium by a potential [19],
we introduce a notion of valley. We then prove that the fluctuations of the hitting
time of x around its expectation mainly come from the times spent crossing a
very small number of deep potential wells. Since these wells are well apart, their
crossing times are almost independent. Moreover, it is shown that the laws of these
crossing times are well approximated by exponential variables whose expectations
are functions of the environment, functions which in turn happen to be closely
related to the classical Kesten renewal series.

Thus, our main result states that the law of the difference of a hitting time with
its expectation is close to the law of a sum of centered exponential variables which
are weighted by heavy-tailed functions of the environment. This makes it possi-
ble to describe their law in terms of a Poisson point process whose intensity is
explicitly computed.

To make the exposition clearer, we first present the main results and notation
(Section 2) and defer to Section 3 the more precise description of the organization
of the paper along with a sketch of the proof.

2. Notation and main results. Let ω := (ωx, x ∈ Z) be a family of i.i.d. ran-
dom variables taking values in (0,1), which stands for the random environment.
Let � := (0,1)Z and denote by P the distribution of ω (on �) and by E the cor-
responding expectation. Conditioning on ω (i.e., choosing an environment), we
define the random walk in random environment X := (Xt , t ∈ N) starting from
x ∈ Z as a nearest-neighbor random walk on Z with transition probabilities given
by ω: if we denote by Px,ω the law of the Markov chain (Xt , t ≥ 0) defined by
Px,ω(X0 = x) = 1 and

Px,ω(Xt+1 = z|Xt = y) :=
⎧⎨⎩

ωy, if z = y + 1,

1 − ωy, if z = y − 1,

0, otherwise,
then the joint law of (ω,X) is Px(dω,dX) := Px,ω(dX)P (dω). For convenience,
we let P := P0. We refer to [21] for an overview of results on random walks in
random environment. An important role is played by the sequence of variables

ρx := 1 − ωx

ωx

, x ∈ Z.(2.1)
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We will make the following assumptions in the rest of this paper.

ASSUMPTIONS.

(a) There exists 0 < κ < 2 for which E[ρκ
0 ] = 1 and E[ρκ

0 log+ ρ0] < ∞;
(b) The distribution of logρ0 is nonlattice.

Let us recall here that, under assumptions (a) and (b), Kesten, Kozlov and
Spitzer [14] proved a limit theorem toward a stable law of index κ, whose scaling
parameter is obtained in [8] for the sub-ballistic case and in [6] for the ballisitic
case.

We now introduce the hitting time τ(x) of site x for the random walk (Xt , t ≥
0),

τ (x) := inf{t ≥ 0 :Xt = x}, x ∈ Z,

and the inter-arrival time τ(x, y) between sites x and y by

τ(x, y) := inf{t ≥ 0 :Xτ(x)+t = y}, x, y ∈ Z.

Following Sinai [19] (in the recurrent case), and more recently the study of the
case 0 < κ < 1 in [8], we define a notion of potential that enables us to visualize
where the random walk spends most of its time.

The potential, denoted by V = (V (x), x ∈ Z), is a function of the environment ω

defined by V (0) = 0 and ρx = eV (x)−V (x−1) for every x ∈ Z, that is,

V (x) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑
1≤y≤x

logρy, if x ≥ 1,

0, if x = 0,

−
0∑

x<y≤0

logρy, if x ≤ −1,

where the ρy’s are defined in (2.1). Under hypothesis (a), Jensen’s inequality gives
E[logρκ

0 ] ≤ logE[ρκ
0 ] = 0, and hypothesis (b) excludes the equality case ρ0 = 1

a.s., hence, E[logρ0] < 0 and thus V (x) → ∓∞ a.s. when x → ±∞.
The potential is subdivided into pieces, called “excursions,” by its weak de-

scending ladder epochs (ep)p≥0 defined by e0 := 0 and

ep+1 := inf
{
x > ep :V (x) ≤ V (ep)

}
, p ≥ 0.(2.2)

The number of excursions before x > 0 is

n(x) := max{p : ep ≤ x}.(2.3)

Moreover, let us introduce the constant CK describing the tail of Kesten’s re-
newal series R :=∑x≥0 ρ0 · · ·ρx =∑x≥0 eV (x) (see [13]) that plays a crucial role
in this work:

P(R > t) ∼ CKt−κ , t → ∞.
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Note that at least two probabilistic representations are available to compute CK

numerically, which are equally efficient. The first one was obtained by Goldie [10]
and a second one was obtained in [7].

Finally, recall the definition of the Wasserstein metric W 1 between probability
measures μ,ν on R:

W 1(μ, ν) := inf
(X,Y ):

X∼μ,Y∼ν

E
[|X − Y |],

where the infimum is taken over all couplings (X,Y ) with marginals μ and ν. We
will denote by W 1

ω(X,Y ) the W 1 distance between the laws of random variables X

and Y conditional to ω, that is, between the “quenched distributions” of X and Y .
Let us emphasize that the following results, which describe the quenched law of

τ(x) in terms of the environment, can be stated in different ways, depending on the
applications we have in mind, either practical or theoretical. We give two variants
and mention that the following results hold for any κ ∈ (0,2) (so that the sub-
ballistic regime is also included, even though a finer study was led for κ ∈ (0,1)

in [9]).

THEOREM 1. Under assumptions (a) and (b) we have

W 1
ω

(
τ(x) − Eω[τ(x)]

x1/κ
,

1

x1/κ

n(x)−1∑
p=0

Eω

[
τ(ep, ep+1)

]
ēp

)
P -probability−→

x
0,

with ēp := ep − 1, where (ep)p are i.i.d. exponential random variables of parame-
ter 1 independent of ω; the terms Eω[τ(ep, ep+1)] can be made explicit [see (4.4)

in the Preliminaries], and n(x) may be replaced by 	 x
E[e1] 
.

THEOREM 2. Under assumptions (a) and (b), for every δ > 0 and ε > 0, if x

is large enough, we may enlarge the probability space so as to introduce i.i.d.
random variables Ẑ = (Ẑp)p≥0 such that

P(Ẑp > t) ∼ 2κCU t−κ , t → ∞,(2.4)

where CU := E[ρκ
0 logρ0]E[e1](CK)2, and

P

(
W 1

(ω,Ẑ)

(
τ(x) − Eω[τ(x)]

x1/κ
,

1

x1/κ

	x/E[e1]
∑
p=1

Ẑp ēp

)
> δ

)
< ε,

with ēp := ep − 1, where (ep)p are i.i.d. exponential random variables of param-
eter 1 independent of Ẑ, and W 1

(ω,Ẑ)
(X,Y ) denotes the W 1 distance between the

law of X given ω and the law of Y given Ẑ.
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By a classical result (cf. [5], page 152, or [18], page 138, for a general state-
ment), the set {n−1/κ Ẑp|1 ≤ p ≤ n} converges toward a Poisson point process of
intensity 2κCUκx−(κ+1) dx. It is therefore natural to expect the following corol-
lary.

COROLLARY 1. Under assumptions (a) and (b) we have

L

(
τ(x) − Eω[τ(x)]

x1/κ

∣∣∣ω) W 1−→
x

L

( ∞∑
p=1

ξp ēp

∣∣∣(ξp)p≥1

)
in law,

where the convergence is the convergence in law on the W 1 metric space of prob-
ability measures on R with finite first moment, and (ξp)p≥1 is a Poisson point
process of intensity λκu−(κ+1) du where

λ := 2κCU

E[e1] = 2κκE
[
ρκ

0 logρ0
]
C2

K,

ēp := ep − 1 where (ep)p are i.i.d. exponential random variables of parame-
ter 1, and the two families are independent of each other. In the case κ = 1,
λ = 2

E[ρ0 logρ0] , and in the case where ω0 has a distribution Beta(α,β), with
0 < α − β < 2,

λ = 2α−β �(α) − �(β)

(α − β)B(α − β,β)2 ,

where � denotes the classical digamma function �(z) := (log�)′(z) = �′(z)
�(z)

and

B(α,β) := ∫ 1
0 xα−1(1 − x)β−1 dx = �(α)�(β)

�(α+β)
.

REMARKS.

(1) Since the topology of convergence in W 1-distance is finer than the topology
of weak convergence restricted to probability measures with finite first moment, we
may replace W 1 by the topology of the convergence in law in the above limit.

(2) For every ε > 0, the mass of (ε,+∞) for the measure μ = λκ du
uκ+1 is finite

so that it makes sense to consider a decreasing ordering (ξ (k))k≥1 of the Poisson
process of intensity μ. A change of variable then shows that

ξ (p) = λ1/κ(f1 + · · · + fp)−1/κ , p ≥ 1,(2.5)

(fp)p being i.i.d. exponential random variables of parameter 1. In particular, by
the law of large numbers,

ξ (p) ∼ λ1/κp−1/κ , p → ∞, a.s.,(2.6)

hence,
∑

p(ξp)2 =∑p(ξ (p))2 < ∞ a.s. Thus, the random series
∑

p ξp ēp con-
verges a.s. Furthermore, since its characteristic function is also an absolutely con-
vergent product, its law does not depend on the ordering of the points.
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Corollary 1 can be easily deduced from the previous theorems. We give a short
proof of this result in Section 9.

While finishing writing the present article, we learned about the article [16]
by Peterson and Samorodnitsky giving a result close to Corollary 1. Another arti-
cle [4] by Dolgopyat and Goldsheid was also submitted, that establishes a similar
result (under the ellipticity condition). Our statement, however, gives the conver-
gence in W 1 instead of the weak convergence and especially specifies the value of
the constant λ that appears in the intensity of the limiting Poisson point process.
Furthermore, the three proofs are rather different.

In the following, the constant C stands for a positive constant large enough,
whose value can change from line to line.

3. Sketch of the proof. Along the sequence (ep)p≥0, hitting times decompose
into crossing times of a linear number of excursions,

τ(x) = ∑
0≤p<n(x)

τ (ep, ep+1) + τ(en(x), x).

Although these terms are very correlated, the core of the proof consists of the fact
that, as far as fluctuations are concerned, the main contribution only comes from a
logarithmic subfamily of asymptotically i.i.d. terms which correspond to so-called
“high excursions” (or “deep valleys”). This property (stemming from the fact that
the random variables Eω[τ(ep, ep+1)] are heavy-tailed) enables the proof to be
divided into two parts detailed below.

3.1. Exit time from a deep valley (Section 5). The crossing time of the excur-
sion [ep, ep+1] will mainly depend on its height

Hp := max
ep≤x<ep+1

(
V (x) − V (ep)

)
.

As p grows, the law of the potential V viewed from ep converges to P ≥0 :=
P(·|∀x ≤ 0,V (x) ≥ 0), and therefore the time τ(ep, ep+1) converges in law to
τ(e1) under P ≥0 which we have now to study. A classical Markov chain compu-
tation gives (cf. Section 4.2)

Eω

[
τ(e1)
]= ∑

0≤y<e1

∑
x≤y

(2 − 1{x=y})eV (y)−V (x).

When H := H0 is large, factorizing by the largest term 2eH leads to

Eω

[
τ(e1)
] 2eH

∑
x

e−V (x)
∑
y

e−(H−V (y)),

where in the sums the significant terms are those indexed by values x close to 0
and values y close to TH ; cf. Figure 1. In particular, we have

Eω

[
τ(e1)
] 2eHM1M2,
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FIG. 1. Height of an excursion.

where M1, M2 are defined by (4.12). Due to the “locality” of M1 and M2, a key fact
from [7] is that, when H is large, M1, M2 and H are asymptotically independent
and M1, M2 have the same law. Now, Iglehart’s tail estimate on eH [see (4.10)]
yields

P ≥0(Eω

[
τ(e1)
]≥ t
)∼ 2κCIE

[
Mκ]2t−κ , t → ∞,

where CI is given by (4.11). This is an important result of [7], rephrased in
Lemma 2.

To complete the description of the law of the crossing time of a “high ex-
cursion,” we furthermore prove in Section 5 that, for large H , the law of τ(e1),
given ω, is close to an exponential law with mean Eω[τ(e1)]. This follows from
the fact that the number of returns to 0 before reaching e1 follows a geometric law.

3.2. Deep and shallow valleys (Sections 6 and 7). As mentioned at the be-
ginning of the section, we try to focus the study on the crossing times of high
excursions. To this aim, we introduce a critical height hn, adapted to the space
scale n, defined by

hn := 1

κ
logn − log logn.

Then, let (σ (i))i≥1 be the sequence of the indices of the successive excursions
whose heights are greater than hn. More precisely,

σ(1) := inf{p ≥ 0 :Hp ≥ hn},
σ (i + 1) := inf

{
p > σ(i) :Hp ≥ hn

}
, i ≥ 1.

The high excursions (see Figure 2) are defined as the restriction of the potential to
[bi, di], where

bi := eσ(i), di := eσ(i)+1.
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FIG. 2. High excursions (in bold) among the n first excursions.

Note that by Iglehart’s estimate, the probability P(H ≥ hn) is asymptotically equal
to CI e−κhn , hence, the number of high excursions among the n first ones,

Kn := #{0 ≤ i ≤ n − 1 :Hi ≥ hn},
is of order (logn)κ .

It turns out that the crossing time τ(bi, di) involves mainly the environment
between ai and di where ai is defined as

ai := eσ(i)−Dn

and Dn is chosen in such a way that V (ai) − V (bi) is slightly greater than hn, that
is,

Dn :=
⌈

1 + γ

Aκ
logn

⌉
,(3.1)

γ > 0 being arbitrary and A being equal to E[−V (e1)] if this expectation is finite,
and otherwise being an arbitrary positive real number. The deep valleys are defined
as the restriction of the potential to [ai, di].

We successively prove that:

(1) deep valleys are asymptotically disjoint and their exit times τ(bi, di) are
asymptotically i.i.d. (Section 6);

(2) the contribution to fluctuations of the crossing times of low excursions is
negligible (Section 7).

This second point constitutes a novelty with respect to previous works in that the
contribution of the crossing times of the numerous small excursions is not negligi-
ble with respect to τ(x) (for 1 ≤ κ < 2) but only their fluctuations are, and for this
reason we have to control their covariances.
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The behavior summarized above is emphasized in the following formulation
which lies at the core of the proof: under assumptions (a) and (b),

W 1
ω

(
τ(x) − Eω[τ(x)]

x1/κ
,

1

x1/κ

K(x)∑
i=1

Eω

[
τ(bi, di)

]
ēi

)
P -probability−→

x
0,(3.2)

with ēi := ei −1 where (ei )i are i.i.d. exponential random variables of parameter 1,
independent of ω, and K(x) := Kn(x) where n(x) is defined by (2.3).

Note that the terms Eω[τ(bi, di)] can be made explicit [see (4.4)]. Hence, this
formula is well suited to derive practical information about τ(x) which, for in-
stance, appears as an unzipping time in [2].

4. Preliminaries. This section is divided into three independent parts. The
first part quickly recalls a stationarity property of the potential when suitably con-
ditioned on Z−, which is used throughout the paper. The second one recalls usual
formulas about random walks in a one-dimensional potential. Finally, the last part
adapts the main results from [7] in the present context.

4.1. Environment on the left of 0. It will be convenient to extend the sequence
(ep)p≥0 to negative indices by letting

ep−1 := sup
{
x < ep :∀y < x,V (y) ≥ V (x)

}
, p ≤ 0.(4.1)

The structure of the sequence (ep)p∈Z will be better understood after Lemma 1.
We accordingly extend the sequence (Hp)p≥0 of heights

Hp := max
ep≤x≤ep+1

(
V (x) − V (ep)

)
, p ∈ Z.

Note that the excursions (V (ep + x) − V (ep))0≤x<ep+1−ep , p ≥ 0, are i.i.d. Also,
the intervals (ep, ep+1],p ∈ Z, stand for the excursions of the potential above its
past minimum, provided V (x) ≥ 0 when x ≤ 0.

By definition, the distribution of the environment is translation invariant. How-
ever, the distribution of the “environment seen from ep ,” that is, of (ωep+x)x∈Z,
depends on p ∈ Z. When suitably conditioning the environment on Z−, this prob-
lem vanishes.

Let us define the conditioned probabilities

P ≥0 := P
(·|∀x ≤ 0,V (x) ≥ 0

)
and P

≥0 := Pω × P ≥0(dω).

Then the definition of ep for p < 0 classically implies the following useful prop-
erty.

LEMMA 1. Under P ≥0, the sequence (V (ep + x) − V (ep))0≤x≤ep+1−ep , p ∈
Z, of excursions is i.i.d. In particular, the sequence (V (ep +x)−V (ep))x∈Z of po-
tentials [and thus the sequence (ωep+x)x∈Z, p ∈ Z, of environments] is stationary
under P ≥0.
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4.2. Quenched formulas. We recall here a few Markov chain formulas that are
of repeated use in the paper.

Quenched exit probabilities. For any a ≤ x ≤ b (see [21], formula (2.1.4))

Px,ω

(
τ(b) < τ(a)

)= ∑a≤y<x eV (y)∑
a≤y<b eV (y)

.(4.2)

In particular,

Pa+1,ω

(
τ(a) = ∞)= (∑

y≥a

eV (y)−V (a)

)−1

.(4.3)

Thus, P0,ω(τ (1) = ∞) = (
∑

x≤0 eV (x))−1 = 0, P -a.s. because V (x) → +∞ a.s.
when x → −∞, and P1,ω(τ (0) = ∞) = (

∑
x≥0 eV (x))−1 > 0, P -a.s. by the root

test (using E[logρ0] < 0). This means that X is transient to +∞, P-a.s.
Quenched expectation. For any a < b, P -a.s. (cf. [21])

Ea,ω

[
τ(b)
]= ∑

a≤y<b

∑
x≤y

αxyeV (y)−V (x),(4.4)

where αxy = 2 if x < y, and αyy = 1. Thus, we have

Ea,ω

[
τ(b)
]≤ 2

∑
a≤y<b

∑
x≤y

eV (y)−V (x)(4.5)

and, in particular,

Ea,ω

[
τ(a + 1)

]= 1 + 2
∑
x<a

eV (a)−V (x) ≤ 2
∑
x≤a

eV (a)−V (x).(4.6)

Quenched variance. For any a < b, P -a.s. (cf. [1] or [11])

Vara,ω

(
τ(b)
)= 4

∑
a≤y<b

∑
x≤y

eV (y)−V (x)(1 + eV (x−1)−V (x))
(4.7)

×
(∑

z<x

eV (x)−V (z)

)2

,

from where we get, after expansion, change of indices and addition of a few terms,

Vara,ω

(
τ(b)
)≤ 16

∑
a≤y<b

∑
z′≤z≤x≤y

eV (y)+V (x)−V (z)−V (z′).(4.8)

4.3. Renewal estimates. In this section we recall and adapt results from [7],
which are very useful to finely bound the expectations of exponential functionals
of the potential.

Let us first observe that hypothesis (a) implies that e1 is exponentially in-
tegrable. Indeed, for all x ∈ N, for any λ > 0, P(e1 > x) ≤ P(V (x) > 0) =
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P(eλV (x) > 1) ≤ E[eλV (x)] = E[ρλ
0 ]x , and E[ρλ

0 ] < 1 for any 0 < λ < κ by con-
vexity of s �→ E[ρs

0].
Let R− :=∑x≤0 e−V (x). Then, Lemma 3.2 from [7] proves that

E≥0[R−] < ∞,(4.9)

and that more generally all the moments of R− are finite under P ≥0.
The study of “high excursions” involves the following key result of Iglehart [12]

which gives the tail probability of H (recall H := H0), namely,

P(H ≥ h) ∼ CI e−κh, h → ∞,(4.10)

where

CI := (1 − E[eκV (e1)])2

κE[ρκ
0 logρ0]E[e1] .(4.11)

Let us define

TH := min
{
x ≥ 0 :V (x) = H

}
and

M1 := ∑
x<TH

e−V (x), M2 := ∑
0≤x<e1

eV (x)−H .(4.12)

Let Z := M1M2eH . Theorem 2.2 (together with Remark A.1) of [7] proves that

P ≥0(Z > t,H = S) ∼ CUt−κ , t → ∞,(4.13)

where CU was defined after (2.4); cf. also the sketch in Section 4.3 for heuristics.
While the condition {H = S} was natural in the context of [7], we will need to
remark that we may actually drop it.

LEMMA 2. We have

P ≥0(Z > t) ∼ CUt−κ , t → ∞.

The proof of this lemma is postponed to Appendix A.1. We will often need
moments involving

M ′
1 := ∑

x<e1

e−V (x),

instead of M1(≤ M ′
1). The next result is an adaptation of Lemma 4.1 from [7] to the

present situation, together with (4.10), with a novelty coming from the difference
between M ′

1 and M1.
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LEMMA 3. For any α,β, γ ≥ 0, there is a constant C such that, for large
h > 0,

E≥0[(M ′
1
)α

(M2)
βeγH |H < h

]≤
⎧⎪⎨⎪⎩

C, if γ < κ,

Ch, if γ = κ,

Ce(γ−κ)h, if γ > κ,

(4.14)

and, if γ < κ ,

E≥0[(M ′
1
)α

(M2)
βeγH |H ≥ h

]≤ Ceγ h.(4.15)

The proof of this lemma is technical and therefore postponed to Appendix A.1.
Let us now give an important application of Lemma 3.

LEMMA 4. We have, for all h > 0, if 0 < κ < 1,

E≥0[Eω

[
τ(e1)
]
1{H<h}

]≤ Ce(1−κ)h(4.16)

and, if 0 < κ < 2,

E≥0[Eω

[
τ(e1)
]21{H<h}

]≤ Ce(2−κ)h.(4.17)

PROOF. Since, by (4.5), we have Eω[τ(e1)] ≤ 2M ′
1M2eH , the result follows

directly from Lemma 3. �

5. Exit time from a deep valley. This section aims at proving that the
quenched law of the crossing time

τ := τ(e1)

of an excursion is close to that of Eω[τ ]e, where e is an exponential random vari-
able independent of ω, when the height H of the excursion is high. Let us give a
precise statement. Define the critical height

ht := log t − log log t, t ≥ ee.

Heuristics suggest (and it would follow from later results) that when H > ht , τ

is on the order of eH > t
log t

. Proposition 1 shows that the distance between τ and

Eω[τ ]e (for a suitable coupling) is no larger than tβ � t
log t

in quenched average
when H > ht , in agreement with our aim.

PROPOSITION 1. We may enlarge the probability space in order to introduce
an exponential random variable e of parameter 1, independent of ω, such that, for
some β < 1, as t → ∞,

P ≥0(Eω

[∣∣τ − Eω[τ ]e∣∣]> tβ,H ≥ ht

)= o
(
t−κ).(5.1)

This proposition can equivalently be phrased, using (4.10), as

P ≥0(W 1
ω

(
τ,Eω[τ ]e)> tβ |H ≥ ht

)= o

(
1

log t

)
,

where e is an exponential random variable of parameter 1 independent of ω.
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5.1. “Good” environments. The proof relies on a precise control of the geom-
etry of a typical valley, namely, that it is not too wide and smooth enough. Let us
define the maximal “increments” of the potential in a window [x, y] by

V ↑(x, y) := max
x≤u≤v≤y

(
V (v) − V (u)

)
, x < y,

V ↓(x, y) := min
x≤u≤v≤y

(
V (v) − V (u)

)
, x < y.

Then, we introduce the following events:

�
(1)
t := {e1 ≤ C log t},

�
(2)
t := {max

{−V ↓(0, TH ),V ↑(TH , e1)
}≤ α log t

}
,

�
(3)
t := {R− ≤ (log t)4tα

}
,

where max{0,1 − κ} < α < min{1,2 − κ} is arbitrary, and R− is defined by

R− :=
−1∑

x=−∞

(
1 + 2

0∑
y=x+2

eV (y)−V (x+1)

)(
e−V (x+1) + 2

x−1∑
y=−∞

e−V (y+1)

)
.

We define the set of “good” environments at time t by

�t := �
(1)
t ∩ �

(2)
t ∩ �

(3)
t .(5.2)

By the following result, “good” environments are asymptotically typical on {H ≥
ht }.

LEMMA 5. The event �t satisfies

P ≥0(�c
t ,H ≥ ht

)= o
(
t−κ), t → ∞.

The proof of this result is easy but technical and therefore postponed to Ap-
pendix A.2.

5.2. Preliminary results. In order to finely estimate the time spent in a deep
valley, we decompose the passage from 0 to e1 into the sum of a random geo-
metrically distributed number, denoted by N , of unsuccessful attempts to reach e1
from 0 (i.e., excursions of the particle from 0 to 0 which do not hit e1), followed
by a successful attempt. More precisely, N is a geometrically distributed random
variable with parameter 1 − p satisfying

1 − p = ω0∑e1−1
x=0 eV (x)

= ω0

M2eH
,(5.3)

and we can write τ(e1) =∑N
i=1 Fi + G, where the Fi’s are the durations of the

successive i.i.d. failures and G that of the first success. The accurate estimation of
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the time spent by each (successful and unsuccessful) attempt leads us to consider
two h-processes where the random walker evolves in two modified potentials, one
corresponding to the conditioning on a failure (this potential is denoted by V̂ in [8],
page 2494) and the other to the conditioning on a success (denoted by V̄ in [8],
page 2497). Note that this approach was first introduced by three of the authors
in [8] to estimate the quenched Laplace transform of the occupation time of a
deep valley in the case 0 < κ < 1. We refer to [8] for more details on these two
h-processes. Moreover, using the properties of “good” environments introduced
above, we can prove the following useful lemmata, whose proofs are postponed to
Appendix A.2.

LEMMA 6. For all t ≥ 1, we have on �t ,

Varω(F ) ≤ C(log t)4tα,(5.4)

M2 ≤ C log t,(5.5)

|M̂1 − M1| ≤ o
(
t−δ)M1,(5.6)

with δ ∈ (0,1 − α) and where M̂1 is defined by the relation Eω[F ] = 2ω0M̂1.

LEMMA 7. For all t ≥ 1, we have on �t ,

Eω[G] ≤ C(log t)4tα.

5.3. Definition of the coupling. We recall here the coupling from [9] between
the quenched distribution of the random walk before time τ and an exponential
random variable e of parameter 1 independent of ω. Given ω and e, let us define

N :=
⌊
− 1

log(1 − p(ω))
e
⌋
,

where p(ω) = P0,ω(τ (0) < τ(e1)); cf. (5.3). Note that, conditionally on ω, N is a
geometric random variable of parameter 1 −p, just like the number of returns to 0
before the walk reaches e1.

Given ω and e (and hence, N ), the random walk is sampled as usual as a Markov
chain, except that the number of returns to 0 is conditioned on being equal to N ,
which amounts to saying that when the walk reaches 0 for the first N times, it is
conditioned on coming back to 0 before reaching e1 (this is still a Markov chain,
namely, the h-process associated to V̂ ; see Section 5.2), while on the (N + 1)th
visit of 0 it is conditioned on reaching e1 first (this is the h-process associated
to V̄ ). Due to the definition of N , the distribution of the walk given ω only is P0,ω.
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5.4. Proof of Proposition 1. We consider the same decomposition as in Sec-
tion 5.2, that is, τ = F1+· · ·+FN +G. By Wald identity, Eω[τ ] = Eω[N ]Eω[F ]+
Eω[G]. Thus, we have∣∣τ − Eω[τ ]e∣∣≤ ∣∣F1 + · · · + FN − NEω[F ]∣∣+ Eω[F ]∣∣N − Eω[N ]e∣∣

+ G + Eω[G]e.
Let us consider each term, starting with the last two (with same Pω-expectation).
If we choose β such that α < β < 1, then by Lemmas 7 and 5 we have, for large t ,

P ≥0
(
Eω[G] ≥ tβ

4
,H ≥ ht

)
≤ P ≥0((�t)

c,H ≥ ht

)= o
(
t−κ).(5.7)

We turn to the first one. Conditioning first on N [which is independent of (Fi)i]
and then applying the Cauchy–Schwarz inequality, we have

Eω

[∣∣F1 + · · · + FN − NEω[F ]∣∣] ≤ Eω

[
Varω(F1 + · · · + FN |N)1/2]

= Eω

[
N1/2]Varω(F )1/2.

Furthermore, Eω[N1/2] ≤ Eω[N ]1/2 = ((1 − p)−1 − 1)1/2 ≤ (M2)
1/2eH/2ω

−1/2
0

and ω0 ≥ 1
2 , P ≥0-almost surely. Thus, using Lemma 6 to bound Varω(F ), we get

P ≥0
(
Eω

[∣∣F1 + · · · + FN − NEω[F ]∣∣]> tβ

4
,H ≥ ht

)

≤ P ≥0((�t)
c,H ≥ ht

)+ P ≥0
(
(M2)

1/2eH/2 ≥ tβ−α/2

C(log t)2 ,H ≥ ht

)
.

As before, the first term is o(t−κ). And the second one is less than

P
(
M2 ≥ (log t)2,H ≥ ht

)+ P

(
eH/2 ≥ tβ−α/2

C(log t)3

)

≤ P(H ≥ ht )

(log t)2 E[M2|H ≥ ht ] + P

(
eH ≥ t2β−α

C2(log t)6

)
.

Each term is o(t−κ) if we additionally impose 1+α
2 < β < 1, due to (4.15)

and (4.10).
Finally, we have

∣∣N − Eω[N ]e∣∣= ∣∣∣∣⌊ 1

− log(1 − p)
e
⌋

−
(

1

p
− 1
)

e
∣∣∣∣

≤
(

1 +
∣∣∣∣− 1

log(1 − p)
− 1

p

∣∣∣∣)e + 1,
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and the function x �→ − 1
log(1−x)

− 1
x

extends continuously on [0,1] and is thus
bounded by a constant C, hence,

P ≥0
(
Eω[F ]Eω

[∣∣N − Eω[N ]e∣∣]≥ tβ

4
,H ≥ Pt

)

≤ P ≥0
(
Eω[F ] ≥ tβ

4C
, H ≥ ht

)
≤ P ≥0((�t)

c,H ≥ ht

)+ 8CP(H ≥ ht )

tβ
E≥0[M1|H ≥ ht ]

for large t , due to (5.6), recalling that Eω[F ] = 2ω0M̂1 (see Lemma 6). We con-
clude as before that this is negligible compared to t−κ .

Therefore, gathering all these estimates gives Proposition 1.

6. Independence of the deep valleys. The independence between deep val-
leys goes through imposing these valleys to be disjoint (i.e., ai > di−1 for all i)
and neglecting the time spent on the left of a valley while it is being crossed (i.e.,
the time spent on the left of ai before di is reached).

NB. All the results and proofs from this section hold for any parameter κ > 0.
For any integers x, y, z, let us define

τ̃ (z)(x, y) := #
{
τ(x) ≤ k ≤ τ(y) :Xk ≤ z

}
,

the time spent on the left of z between the first visit to x and the first visit to y, and

τ̃ (z) := #
{
k ≥ τ(z) :Xk ≤ z

}
,

the total time spent on the left of z after the first visit to z.
Let us consider the event

NO(n) := {0 < a1} ∩
Kn−1⋂
i=1

{di < ai+1},

which means that the large valleys before en lie entirely on Z+ and do not overlap.
The following two propositions will enable us to reduce to i.i.d. deep valleys.

PROPOSITION 2. We have

P
(
NO(n)

)−→
n

1.

PROOF. Choose ε > 0 and define the event

AK(n) := {Kn ≤ (1 + ε)CI (logn)κ
}
.

Since Kn is a binomial random variable of mean nqn ∼n CI (logn)κ , it follows
from the law of large numbers that P(AK(n)) converges to 1 as n → ∞. On the
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other hand, if the event NO(n)c occurs, then there exists 1 ≤ i ≤ Kn such that there
is at least one high excursion among the first Dn excursions to the right of di−1

(with d0 = 0). Thus,

P
(
NO(n)c

)≤ P
(
AK(n)c

)+ (1 + ε)CI (logn)κ
(
1 − (1 − qn)

Dn
)

≤ o(1) + (1 + ε)CI (logn)κqnDn = o(1).

Indeed, for any 0 < u < 1 and α > 0, we have 1 − (1 − u)α ≤ αu by concavity of
u �→ 1 − (1 − u)α . �

PROPOSITION 3. Under P ≥0,

1

n1/κ

Kn∑
i=1

Eω

[
τ̃ (ai)(bi, di)

]= 1

n1/κ

n−1∑
p=0

Eω

[
τ̃ (ep−Dn)(ep, ep+1)

]
1{Hp≥hn}

(p)−→
n

0.

PROOF. The equality is trivial from the definitions. Note that the terms in the
second expression have the same distribution under P ≥0 because of Lemma 1. As
Eω[τ̃ (e−Dn)(0, e1)]1{H≥hn} is not integrable for 0 < κ ≤ 1, we introduce the event

An := {for i = 1, . . . ,Kn,Hσ(i) ≤ V (ai) − V (bi)
}

=
n−1⋂
p=0

{Hp < hn} ∪ {hn ≤ Hp ≤ V (ep−Dn) − V (ep)
}
.

Let us prove that our choice of Dn ensures P ≥0((An)
c) = on(1). By Lemma 1, we

have P ≥0((An)
c) ≤ nP ≥0(H ≥ hn,H > V (e−Dn)). Then, let us choose 0 < γ ′ <

γ ′′ < γ [cf. (3.1)] and define ln := 1+γ ′
κ

logn. We get

P ≥0((An)
c)≤ n

(
P(H ≥ ln) + P(H ≥ hn)P

≥0(V (e−Dn) < ln
))

.(6.1)

Equation (4.10) gives P(H ≥ ln) ∼n CI e−κln = CIn
−(1+γ ′), and P(H ≥ hn) ∼n

CIn
−1(logn)κ . Under P ≥0, V (e−Dn) is the sum of Dn i.i.d. random variables

distributed like −V (e1). Therefore, for any λ > 0,

P ≥0(V (e−Dn) < ln
)≤ eλlnE

[
e−λ(−V (e1))

]Dn.

Since 1
λ

logE[e−λ(−V (e1))] → −E[−V (e1)] ∈ [−∞,0) as λ → 0+, we can choose

λ > 0 such that logE[e−λ(−V (e1))] < −λA
1+γ ′′
1+γ

[where A was defined after (3.1)],

hence, E[e−λ(−V (e1))]Dn ≤ n−λ(1+γ ′′)/κ . This gives the bound P ≥0(V (e−Dn) <

ln) ≤ n−λ(γ ′′−γ ′)/κ . Using these estimates in (6.1) concludes the proof that
P ≥0((An)

c) = on(1).
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Let us now prove the proposition itself. By the Markov inequality, for all δ > 0,

P ≥0

(
1

n1/κ

n−1∑
p=0

Eω

[
τ̃ (ep−Dn)(ep, ep+1)

]
1{Hp≥hn} > δ

)

≤ P ≥0((An)
c)+ 1

δn1/κ
E≥0

[
n−1∑
p=0

Eω

[
τ̃ (ep−Dn)(ep, ep+1)

]
1{Hp≥hn}1An

]
(6.2)

≤ on(1) + n

δn1/κ
E≥0[Eω

[
τ̃ (e−Dn)(0, e1)

]
1{H≥hn,H<V (e−Dn)}

]
.

Note that we have Eω[τ̃ (e−Dn)(0, e1)] = Eω[N ]Eω[T1], where N is the number of
crossings from e−Dn + 1 to e−Dn before the first visit at e1, and T1 is the time for
the random walk to go from e−Dn to e−Dn +1 (for the first time, e.g.); furthermore,
these two terms are independent under P ≥0. Using (4.2), we have

Eω[N ] = P0,ω(τ (e−Dn) < τ(e1))

Pe−Dn+1,ω(τ (e1) < τ(e−Dn))
= ∑

0≤x<e1

eV (x)−V (e−Dn)

= M2eH−V (e−Dn),

hence, on the event {H < V (e−Dn)}, Eω[N ] ≤ M2.
The length of an excursion to the left of e−Dn is computed as follows, due

to (4.6):

Eω[T1] = Ee−Dn,ω

[
τ(e−Dn + 1)

]≤ 2
∑

x≤e−Dn

e−(V (x)−V (e−Dn)).

The law of (V (x) − V (e−Dn))x≤e−Dn
under P ≥0 is P ≥0 because of Lemma 1.

Therefore,

E≥0[Eω[T1]]≤ 2E≥0
[∑
x≤0

e−V (x)

]
= 2E≥0[R−] < ∞,

with (4.9). Then, we conclude that the right-hand side of (6.2) is less than
on(1) + 2δ−1n1−1/κE≥0[R−]E[M21{H≥hn}]. Since Lemma 3 gives the bound
E[M21{H≥hn}] ≤ CP(H ≥ hn) ∼n C′e−κhn = C′n−1(logn)κ , this whole expres-
sion converges to 0, which concludes the proof of the proposition. �

7. Fluctuation of interarrival times. For any x ≤ y, recall that the inter-
arrival time τ(x, y) between sites x and y is defined by τ(x, y) := inf{n ≥
0 :Xτ(x)+n = y}. Then, let

τIA :=
Kn∑
i=0

τ(di, bi+1 ∧ en) =
n−1∑
p=0

τ(ep, ep+1)1{Hp<hn}

(with d0 = 0) be the time spent at crossing small excursions before τ(en). The aim
of this section is the following bound on the fluctuations of τIA.
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PROPOSITION 4. For any 0 < κ < 2, under P ≥0,

1

n1/κ
Eω

[∣∣τIA − Eω[τIA]∣∣] (p)−→
n

0.(7.1)

This proposition holds for 0 < κ < 1 in a simple way: we have, in this case,
using Lemmas 1 and 4,

E≥0[Eω[τIA]]= nE≥0[Eω

[
τ(e1)
]
1{H<hn}

]≤ nE≥0[2M ′
1M2eH 1{H<hn}

]
≤ Cne(1−κ)hn = o

(
n1/κ),

hence, n−1/κEω[τIA] itself converges to 0 in L1(P ≥0)-norm and thus in probabil-
ity.

We now consider the case 1 ≤ κ < 2. The proposition will directly follow from
the fact that, under P ≥0,

1

n2/κ
Varω(τIA)

(p)−→
n

0,

which in turn will come from Lemma 9 proving E≥0[Varω(τIA)] = o(n2/κ). How-
ever, a specific caution is necessary in the case κ = 1; indeed, Varω(τIA) is not
integrable in this case, because of the rare but significant fluctuations originating
from the time spent by the walk when it backtracks into deep valleys. Our proof in
this case consists of first proving that we may neglect in probability (using a first-
moment method) the time spent backtracking into these deep valleys; and then
that this brings us to the computation of the variance of τIA in an environment
where small excursions have been substituted for the high ones (thus removing the
nonintegrability problem).

Section 7.1 is dedicated to this reduction to an integrable setting, which is only
involved in the case κ = 1 of Proposition 4 and of the theorems (but holds in
greater generality), while Section 7.2 states and proves the bounds on the variance,
implying Proposition 4.

7.1. Reduction to small excursions (required for the case κ = 1). Let h > 0.
Let us denote by d− the right end of the first excursion on the left of 0 that is higher
than h:

d− := max{ep :p ≤ 0,Hp−1 ≥ h}.
Remember τ̃ (d−)(0, e1) is the time spent on the left of d− before the walk
reaches e1.

LEMMA 8. There exists C > 0, independent of h, such that

E
≥0[τ̃ (d−)(0, e1)1{H<h}

]≤ C

⎧⎪⎨⎪⎩
e−(2κ−1)h, if κ < 1,

he−h, if κ = 1,

e−κh, if κ > 1.

(7.2)
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PROOF. Let us decompose τ̃ (d−)(0, e1) into the successive excursions to the
left of d−:

τ̃ (d−)(0, e1) =
N∑

m=1

Tm,

where N is the number of crossings from d− + 1 to d− before τ(e1), and Tm is
the time for the walk to go from d− to d− + 1 on the mth time. Under Pω, the
times Tm, m ≥ 1, are i.i.d. and independent of N [i.e., more properly, the sequence
(Tm)1≤m≤N can be prolonged to an infinite sequence with these properties]. We
have, using the Markov property and then (4.2),

Eω[N ] = P0,ω(τ (d−) < τ(e1))

Pd−+1,ω(τ (e1) < τ(d−))
= ∑

0≤x<e1

eV (x)−V (d−)

and, from (4.6), Eω[T1] = Ed−,ω[τ(d− + 1)] ≤ 2
∑

x≤d− e−(V (x)−V (d−)). There-
fore, by Wald identity and Lemma 1,

E
≥0[τ̃ (d−)(0, e1)1{H<h}

]
= E≥0[Eω[N ]Eω[T1]1{H<h}

]
(7.3)

≤ 2E

[ ∑
0≤x<e1

eV (x)1{H<h}
]
E≥0[e−V (d−)]E[∑

x≤0

e−V (x)
∣∣∣�(h)

]
,

where �(h) := {∀x ≤ 0,V (x) ≥ 0}∩{H−1 ≥ h}. The first expectation can be writ-
ten as E[M2eH 1{H<h}]. For the second one, note that d− = e−W , where W is
a geometric random variable of parameter q := P(H ≥ h); and, conditional on
{W = n}, the distribution of (V (x))e−W ≤x≤0 under P ≥0 is the same as that of
(V (x))e−n≤x≤0 under P ≥0(·|for p = 0, . . . , n − 1,H−p < h). Therefore,

E≥0[e−V (d−)]= E≥0[E[e−V (e1)|H < h
]W ]= q

1 − (1 − q)E[eV (e1)|H < h] ,

and (1 − q)E[eV (e1)|H < h] converges to E[eV (e1)] < 1 when h → ∞ [the in-
equality comes from assumption (b)], hence, this quantity is uniformly bounded
from above by c < 1 for large h. In addition, (4.10) gives q ∼ CI e−κh when
h → ∞, hence, E≥0[e−V (d−)] ≤ Ce−κh, where C is independent of h.

Finally, let us consider the last term of (7.3). We have

E

[∑
x≤0

e−V (x)
∣∣∣�(h)

]

= E

[ ∑
e−1<x≤0

e−V (x)
∣∣∣H−1 ≥ h

]
+ E≥0

[ ∑
x≤e−1

e−(V (x)−V (e−1))

]
E
[
e−V (e−1)

]
≤ E
[
M ′

1|H ≥ h
]+ E≥0[R−]E[eV (e1)

]
,
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hence, using Lemma 3, (4.9) and V (e1) ≤ 0, this term is bounded by a constant.
The statement of the lemma then follows from the application of Lemma 3 to the
expectation E[M2eH 1{H<h}]. �

The part of the interarrival time τIA spent at backtracking in high excursions can
be written as follows:

τ̃IA := τ̃ (d−)(0, b1 ∧ en) +
Kn∑
i=1

τ̃ (di)(di, bi+1 ∧ en)

=
n−1∑
p=0

τ̃ (d(ep))(ep, ep+1)1{Hp<hn},

where, for x ∈ Z, d(x) := max{ep :p ∈ Z, ep ≤ x,Hp−1 ≥ hn}. In particular,
d(0) = d− in the previous notation with h = hn.

Note that under P
≥0, because of Lemma 1, the terms of the above sum have the

same distribution as τ̃ (d(0))(0, e1)1{H<hn}, hence,

E
≥0[τ̃IA] = nE

≥0[τ̃ (d(0))(0, e1)1{H<hn}
]
.

Thus, for E
≥0[τ̃IA] to be negligible with respect to n1/κ , it suffices that the expec-

tation on the right-hand side be negligible with respect to n1/κ−1. In particular, for
κ = 1, it suffices that it converges to 0, which is readily seen from (7.2). Thus, for
κ = 1,

n−1/κ
E

≥0[τ̃IA]−→
n

0,(7.4)

hence, in particular, n−1/κEω[τ̃IA] → 0 in probability under P
≥0. Note that (7.4)

actually holds for any κ ≥ 1.
Let us introduce the modified environment, where independent small excursions

are substituted for the high excursions. In order to avoid obfuscating the redaction,
we will only introduce little notation regarding this new environment.

Let us enlarge the probability space in order to accommodate a new family of
independent excursions indexed by N

∗ ×Z such that for all n, k the excursion with
index (n, k) has the same distribution as (V (x))0≤x≤e1 under P(·|H < hn). Thus
we are given, for every n ∈ N

∗, a countable family of independent excursions lower
than hn. For every fixed n, we define the modified environment of height less than
hn by replacing all the excursions of V that are higher than hn by new independent
ones that are lower than hn. Because of Lemma 1, this construction is especially
natural under P ≥0, where it has stationarity properties.

In the following, we will denote by P ′ the law of the modified environment
relative to the height hn given in the context [hence, also a definition of (P ≥0)′,
e.g.].
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REMARK. Repeating the proof done under P ≥0 for (P ≥0)′, we see that
R− still has all finite moments in the modified environment, and that these
moments are bounded uniformly in n. In particular, the bound for the quan-
tity E≥0[(M ′

1)
α(M2)

βeγH 1{H<hn}] given in Lemma 3 is unchanged for (E≥0)′
[writing M ′

1 = R− +∑0≤x<e1
e−V (x) and using (a + b)α ≤ 2α(aα + bα)]. On the

other hand,

E′[R] =
∞∑

p=0

E′[eV (ep)]E′
[ ∑
ep≤x<ep+1

eV (x)−V (ep)

]

=
∞∑

p=0

E
[
eV (e1)|H < hn

]p
E
[
M2eH |H < hn

]
,

and E[eV (e1)|H < hn] ≤ c for some c < 1 independent of n because this expecta-
tion is smaller than 1 for all n and it converges toward E[eV (e1)] < 1 as n → ∞.
Hence, by Lemma 3,

if κ = 1 E′[R] ≤ Chn.(7.5)

This is the only difference that will appear in the following computations.

Assuming that d(0) keeps being defined with respect to the usual heights, (7.2)
(with h = hn) is still true for the walk in the modified environment. Indeed, the
change only affects the environment on the left of d(0), hence, the only differ-
ence in the proof involves the times Tm; in (7.3), one should substitute (E≥0)′ for
E[·|�(h)], and this factor is uniformly bounded in both cases because of the above
remark about R−.

We deduce that the time τ̃ ′
IA, defined as similar to τ̃IA except that the excursions

on the left of the points d(ei) (i.e., the times similar to Tm in the previous proof)
are performed in the modified environment, still satisfies, for κ = 1,

n−1/κ
E

≥0[τ̃ ′
IA
]−→

n
0.(7.6)

Now note that

τ ′
IA := τIA − τ̃IA + τ̃ ′

IA(7.7)

is the time spent at crossing the (original) small excursions, in the environment
where the high excursions have been replaced by new independent small excur-
sions. Indeed, the high excursions are only involved in τIA during the backtracking
of the walk to the left of d(ei) for some 0 ≤ i < n. Assembling (7.4) and (7.4), it
is equivalent (for κ = 1) to prove (7.1) or

n−1/κEω

[∣∣τ ′
IA − Eω

[
τ ′

IA
]∣∣] (p)−→

n
0,

and it is thus sufficient to prove E≥0[Varω(τ ′
IA)] = on(n

2/κ).
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7.2. Bounding the variance of τIA. Because of the previous subsection, Propo-
sition 4 will follow from the next lemma.

LEMMA 9. We have, for 1 < κ < 2,

E≥0[Varω(τIA)
]= on

(
n2/κ),(7.8)

and, for 1 ≤ κ < 2,

E≥0[Varω
(
τ ′

IA
)]= on

(
n2/κ).

We recall that the second bound is only introduced to settle the case κ = 1;
it would suffice for 1 < κ < 2 as well, but introduces unnecessary complication.
The computations being very close for τIA and τ ′

IA, we will write below the proof
for τIA and indicate line by line where changes happen for τ ′

IA. Let us stress that,
when dealing with τ ′

IA, all the indicator functions 1{H·<hn} (which define the small
valleys) would refer to the original heights, while all the potentials V (·) appearing
along the computation (which come from quenched expectations of times spent by
the walk) would refer to the modified environment.

PROOF OF LEMMA 9. We have

τIA =
n−1∑
p=0

τ(ep, ep+1)1{Hp<hn},(7.9)

and by the Markov property, the above times are independent under Po,ω. Hence,

Varω(τIA) =
n−1∑
p=0

Varω
(
τ(ep, ep+1)

)
1{Hp<hn}.

Under P ≥0, the distribution of the environment seen from ep does not depend
on p, hence,

E≥0[Varω(τIA)
]= nE≥0[Varω

(
τ(e1)
)
1{H<hn}

]
.(7.10)

We use formula (4.8):

Varω
(
τ(e1)
)
1{H<hn} ≤ 16

∑
z′≤z≤x≤y≤e1,0≤y

eV (y)+V (x)−V (z)−V (z′)1{H<hn}.(7.11)

Let us first consider the part of the sum where x ≥ 0. By noting that the indices
satisfy z′ ≤ x and z ≤ y, this part is seen to be less than (M ′

1M2eH )21{H<hn}.
Lemma 3 shows that its expectation is smaller than Ce(2−κ)hn . For τ ′

IA: The same
holds, because of the remark on page 1169.

It remains to deal with the indices x < 0. This part rewrites as∑
z′,z≤x<0

eV (x)−V (z)−V (z′) · ∑
0≤y<e1

eV (y)1{H<hn}.(7.12)
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Since V|Z+ and V|Z− are independent under P , so are the two above factors. The
second one equals eHM21{H<hn}. Let us split the first one according to the excur-
sion [ep−1, ep) containing x; it becomes

∑
p≤0

e−V (ep−1)
∑

ep−1≤x<ep

eV (x)−V (ep−1)

(∑
z≤x

e−(V (z)−V (ep−1))

)2

.(7.13)

We have by definition V (ep−1) ≥ V (ep) and, under P ≥0, V (ep) is independent of
(V (ep + x) − V (ep))x≤0 and thus of (V (ep−1 + x) − V (ep−1))x≤ep−ep−1 , which
has same distribution as (V (x))x≤e1 . Therefore, the expectation of (7.13) with re-
spect to P ≥0 is less than∑

p≤0

E≥0[e−V (ep)]E≥0
[ ∑

0≤x<e1

eV (x)

(∑
z≤x

e−V (z)

)2]

≤ (1 − E
[
eV (e1)

])−1
E≥0[eH (M ′

1
)2

M2
]
.

Thus the expectation of (7.12) with respect to P ≥0 is bounded by(
1 − E

[
eV (e1)

])−1
E≥0[eH (M ′

1
)2

M2
]
E≥0[eHM21{H<hn}

]
.

From Lemma 3, we conclude that this term is less than a constant if κ > 1. The
part corresponding to x ≥ 0 therefore dominates; this finishes the proof of (7.8).
For τ ′

IA: The first factor is (1 − E[eV (e1)|H < hn])−1, which is uniformly bounded
because it converges to (1−E[eV (e1)])−1 < ∞ and, using Lemma 3, the two other
factors are each bounded by a constant if κ > 1 and by Chn if κ = 1; cf. again the
remark page 1169. Thus, the part corresponding to x ≥ 0 still dominates in this
case.

We have proved E≥0[Varω(τIA)] ≤ Cne(2−κ)hn . Since ne(2−κ)hn = n2/κ

(logn)2−κ ,
this concludes the proof of (7.8). �

7.3. A subsequent lemma. The proof of (7.8) entails the following bound for
the crossing time of one low excursion.

LEMMA 10. For all h > 0 we have, if 1 < κ < 2,

E≥0[Eω

[
τ(e1)

2]1{H<h}
]≤ Ce(2−κ)h,

and similarly for (E≥0)′ if 1 ≤ κ < 2.

PROOF. We have Eω[τ(e1)
2] = Varω(τ(e1)) + Eω[τ(e1)]2. Equation (7.10)

and the remainder of the proof of (7.8) give

E≥0[Varω
(
τ(e1)
)
1{H<h}

]≤ Ce(2−κ)h.

Together with Lemma 4, this concludes the proof. �
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8. Proof of Theorems 1 and 2. Note that we first prove the results under P ≥0.
We will also prove (3.2) as a tool.

8.1. Joint coupling. Extending what we did in Section 5.3, we introduce an
i.i.d. family (ei )i≥1 of exponential random variables of parameter 1 and define, for
i ≥ 1,

Ni :=
⌊
− 1

log(1 − pi(ω))
ei

⌋
,

where pi(ω) = Pbi,ω(τ (bi) < τ(di)). Since, by the Markov property, the numbers
of returns to bi before the walk reaches di are independent given ω, conditioning
these numbers to be equal to Ni realizes a coupling, as in Section 5.3.

8.2. Reduction to one valley. The above coupling enables us to give the fol-
lowing bound:

W 1
ω

(
τ(en) − Eω

[
τ(en)
]
,

Kn∑
i=1

Eω

[
τ(bi, di)

]
ēi

)

≤ Eω

[∣∣∣∣∣τ(en) − Eω

[
τ(en)
]− Kn∑

i=1

Eω

[
τ(bi, di)

]
ēi

∣∣∣∣∣
]

≤ Eω

[∣∣τIA − Eω[τIA]∣∣]+ Kn∑
i=1

Eω

[∣∣τ(bi, di) − Eω

[
τ(bi, di)

]
ei

∣∣],
where τIA is defined in Section 7 (note that for the Kn high excursions the center-
ings simplify). We deduce, for all δ > 0,

P ≥0

(
W 1

ω

(
τ(en) − Eω

[
τ(en)
]
,

Kn∑
i=1

Eω

[
τ(bi, di)

]
ēi

)
> δn1/κ

)

≤ P ≥0
(
Eω

[∣∣τIA − Eω[τIA]∣∣]> δ

2
n1/κ

)

+ P ≥0

(
n−1⋃
p=0

{
Eω

[∣∣τ(ep, ep+1) − Eω

[
τ(ep, ep+1)

]
ep

∣∣]1{Hp≥hn}

≥ δ

2Kn

n1/κ

})
.

By Proposition 4, the first term is known to converge to 0 as n → ∞ (using for
κ = 1 the same reduction as in Section 7). By Lemma 1, the last term is bounded
by

P
(
Kn ≥ 2(logn)κ

)+ nP ≥0
(
Eω

[∣∣τ − Eω[τ ]e∣∣]≥ δ

4(logn)κ
n1/κ ,H ≥ hn

)
,
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where τ and e stand for τ(e1) (= τ(b1, d1) on {H ≥ hn}) and e1. By the proof of
Proposition 2, the first probability goes to 0, when n tends to infinity. As for the
other probability, it follows from Proposition 1 with t = n1/κ that it is o(n−1).

This yields, under P ≥0,

W 1
ω

(
τ(en) − Eω[τ(en)]

n1/κ
,

1

n1/κ

Kn∑
i=1

Eω

[
τ(bi, di)

]
ēi

)
(p)−→
n

0,(8.1)

which is the statement of (3.2) along the random subsequence x = en, and under
P ≥0 instead of P . Before proceeding to the interpolation from en to any x, let us
show how the statements of Theorems 1 and 2 can be quickly deduced from (8.1),
modulo the same restriction.

8.3. Addition of small excursions and independence of the high ones. More
specifically, if (with a convenient abuse of notation) we extend the i.i.d. sequence
(ēi )i≥1 to an i.i.d. sequence (ēp)p≥0 such that ēi = ēp for p = σ(i), the only addi-
tion in Theorem 1 is the following term which we shall prove is negligible:

1

n1/κ

n−1∑
p=0

Zp1{Hp<hn}ēp,(8.2)

where we define

Zi := Eω

[
τ(ei, ei+1)

]
, i ≥ 0.

Note that (Zi)i≥0 is a stationary sequence under P ≥0; cf. Lemma 1.
For 0 < κ < 1, it suffices to note that the L1(Pω)-norm of this term is bounded

by n−1/κEω[τIA] (since Eω[|ēp|] = 2/e < 1), which converges to 0 in L1(P ) and
thus in probability in this case; cf. after Proposition 4.

For 1 < κ < 2, let us write that the L1(Pω)-norm of (8.2) is bounded, using the
Cauchy–Schwarz inequality, by

1

n1/κ
Varω

(
n−1∑
p=0

Zp1{Hp<hn}ēp

)1/2

= 1

n1/κ

(
n−1∑
p=0

Z2
p1{Hp<hn}

)1/2

,

hence,

P ≥0

(
Eω

[∣∣∣∣∣ 1

n1/κ

n−1∑
p=0

Zp1{Hp<hn}ēp

∣∣∣∣∣
]

≥ δ

)
≤ 1

δ2n2/κ
nE≥0[Eω[τ ]21{H<hn}

]
.

Lemma 4 shows that the last expectation is less than Cn
2
κ
−1(logn)−(2−κ) so that

the right-hand side converges to 0.
For κ = 1, we do the same as for κ > 1, by means of the reduction to the modi-

fied environment (cf. Section 7.1): the decomposition τIA = τ ′
IA − τ̃IA + τ̃ ′

IA of (7.7)
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induces a decomposition similar to (8.2) (with the only addition of quenched ex-
pectations and weights). The terms corresponding to τ̃IA and τ̃ ′

IA are neglected
using their first moment by the results (7.4) and (7.6) in Section 7.1, thus reducing
the problem to the modified environment, where Lemma 10 applies. This would
conclude the proof of Theorem 1, up to the previous restrictions.

To deduce Theorem 2 (along the random subsequence x = en and under P ≥0)
from (8.1), we have to replace Zσ(i) = Eω[τ(bi, di)], i = 1, . . . ,Kn, by indepen-
dent terms having the same distribution, and to add new terms corresponding to
small excursions, just like above but independent of each other. Note that the new
independent terms Ẑp will depend on n, even though their distribution does not,
which explains the wording of Theorem 2.

To this aim, let us enlarge the probability space (�×Z
N, B,P

≥0) in order to in-
troduce a sequence (ω(p), (X

(p)
t )t∈N)p≥0 of environments and random walks cou-

pled with ω in the following way, for p ≥ 0:

(1) if Hp < hn, then ω(p) is an independent environment sampled according to
the distribution P ≥0(·|H < hn);

(2) if Hp ≥ hn, that is, p = σ(i) for some i ≥ 1, then ω(p) is built from the piece
of ω from di−1 +1 to di , translated so that bi is now at 0, and bordered by indepen-
dent environments with law P on the right and law P ≥0(·|H−1 ≥ hn,V|Z− ≥ −Ai)

on the left where Ai := V (di−1) − V (bi) (function of ω);
(3) for all p ≥ 0, conditionally on ω(p), (X

(p)
t )t∈N has law Pω(p) .

Due to the independence between the excursions of ω under P ≥0, the sequence
(ω(p))p≥0 is seen to be independent. Furthermore, for every p ≥ 0, the construc-
tion ensures that ω(p) follows the law P ≥0. We will denote with a superscript (p)

the quantities relative to ω(p) instead of ω.
We may thus introduce

Ẑp := Eω

[
τ (p)(e(p)

1

)]
, p ≥ 0,

which is defined as Z1(:= Eω[τ(e1)]) but relative to (ω(p),X(p)) instead of
(ω,X). By the previous claims, (Ẑp)p≥0 is a sequence of i.i.d. random variables
distributed as Z1 under P ≥0.

For i ≥ 1, to compare Zσ(i) with Ẑσ(i), we further decompose

Zσ(i) =: Z̃σ(i) + Z∗
σ(i) and Ẑσ(i) =: ̂̃Zσ(i) + Ẑ∗

σ(i),

where we let Z̃σ(i) := Eω[τ̃ (ai)(bi, di)] and similarly, ̂̃Zσ(i) is defined as
Eω[τ̃ (e−Dn)(0, e1)] with respect to ω(σ(i)) instead of ω, so that Z∗

σ(i) is the
quenched expectation of the time to go from bi to di for a random walk reflected
at ai and thus only depends on the environment between ai and di . Using this last
remark, it is important to note that, on the event NO(n) (cf. Proposition 2), Z∗

σ(i)
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and Ẑ∗
σ(i) are equal for i = 1, . . . ,Kn. Indeed, since P(NO(n)) →n 1, this gives

us directly

W 1
ω

(
1

n1/κ

Kn∑
i=1

Z∗
σ(i)ēσ(i),

1

n1/κ

Kn∑
i=1

Ẑ∗
σ(i)ēσ(i)

)
(p)−→
n

0.(8.3)

In addition, Proposition 3 and the triangular inequality give

W 1
ω

(
1

n1/κ

Kn∑
i=1

Z̃σ(i)ēσ(i),0

)
(p)−→
n

0.(8.4)

It remains to prove that the same holds for ̂̃Zσ(i) in order to get (8.1) with Ẑ(σ (i))

in place of Z(σ(i)). And finally, Theorem 2 will be proved (under the above-
mentioned restrictions) if, furthermore, the small independent excursions may be
harmlessly introduced, that is, if

W 1
ω

(
1

n1/κ

n−1∑
p=0

Ẑp ēp1{H(p)<hn},0

)
(p)−→
n

0.(8.5)

These two facts are given by the following lemma.

LEMMA 11. We have, under P ≥0,

1

n1/κ

n−1∑
p=0

̂̃Zp1{H(p)≥hn}
(p)−→
n

0

and

1

n1/κ

n−1∑
p=0

Ẑp1{H(p)<hn}ēp
(p)−→
n

0.(8.6)

PROOF. These results follow, respectively, from the proofs of Proposition 3
and (8.2), made easier by the independence of the random variables Ẑ0, . . . , Ẑn−1.
More precisely, the proof of Proposition 3 holds in this i.i.d. context almost with-
out a change, while the above derivation of (8.2) did not involve the correlation
between Z0, . . . ,Zn−1 in any way, hence, the proof may as well be conducted for
independent copies. �

8.4. Interpolation from τ(en) to τ(x). We now replace the subsequence τ(en)

by the whole sequence τ(x). We write the proof in the setting of Theorem 1, from
which the other cases follow, up to very minor modifications.

Choose 1
2 < α < min{1, 1

κ
}. For x ∈ N, we define the following event about the

environment:

Ax := {e	(x−xα)/(E[e1])
 < x < e	(x+xα)/(E[e1])
}.(8.7)
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Since α > 1
2 , it follows from the central limit theorem, applied to the i.i.d. sequence

(en+1 − en)n, that

P(Ax) → 1, x → ∞.(8.8)

Starting from the version of Theorem 1 we have obtained so far, that is, for every
δ > 0,

P ≥0

(∣∣∣∣∣τ(en) − Eω

[
τ(en)
]− n−1∑

p=0

Eω

[
τ(ep, ep+1)

]
ēp

∣∣∣∣∣> δn1/κ

)
−→

n
0,

the limit still holds along the deterministic subsequences

n−
x :=
⌊
x − xα

E[e1]
⌋

and n+
x :=
⌊
x + xα

E[e1]
⌋
,

and according to (8.8) it is legitimate to restrict to the event Ax in the above prob-
ability for n = n±

x . From that remark and n±
x ∼x

x
E[e1] , we conclude that the result

of Theorem 1 will follow from (under P ≥0)

1

x1/κ
Eω

[∣∣τ(x) − τ(en+
x
)
∣∣] (p)−→

x
0,

1

x1/κ

∣∣Eω

[
τ(x)
]− Eω

[
τ(en+

x
)
]∣∣ (p)−→

x
0,

the corresponding limits for n−
x and

1

x1/κ

∑
n−

x ≤p≤n+
x

Eω

[
τ(ep, ep+1)

]
ēp

(p)−→
x

0.

Of course, the second limit will follow from the first one. Furthermore, on Ax we
have

Eω

[∣∣τ(x) − τ(en±
x
)
∣∣]≤ Eω

[
τ(en+

x
) − τ(en−

x
)
]= ∑

n−
x ≤p<n+

x

Eω

[
τ(ep, ep+1)

]
,

so that the three limits will come as a consequence of the following application of
the Markov inequality:

P ≥0
( ∑

n−
x ≤p≤n+

x

Eω

[
τ(ep, ep+1)

]
> δx1/κ

)

≤ P
(∃n−

x ≤ p ≤ n+
x ,Hp ≥ hx

)+ n+
x − n−

x + 1

δx1/κ
E≥0[Eω

[
τ(e1)
]
,H < hx

]
≤ 2xα

E[e1]P(H ≥ hx) + 2xα + 1

δx1/κ
E≥0[2M ′

1M2eH ,H < hx

]
.

By (4.10) and α < 1, the first term goes to 0. By Lemma 3 and since α < 1
κ

, the
second term goes to 0 as well. This proves Theorem 1, under P ≥0.



QUENCHED LIMITS FOR TRANSIENT RWRE 1177

8.5. Conclusion. Let us finally discuss the change of probability from P ≥0

to P . In fact, it suffices to note that the quenched expectation of the time spent
on Z− is finite a.s. under P and P ≥0, which follows from (4.3) and (4.6) (and
E[logρ] < 0) since this expectation is seen to be equal to E0,ω[τ(1)]P1,ω(τ (0) =
∞)−1. This ends the proof of (3.2) and Theorems 1 and 2.

Note that the tail estimate (2.4) of Ẑi (i.e., of Eω[τ(e1)] under P ≥0) given
in Theorem 2, while not being exactly a consequence of Lemma 2, follows
simply from it. Indeed, the expression Eω[τ(e1)] = Eω[N ]Eω[F ] + Eω[G] =
2eHM̂1M2 + Eω[G], together with (5.6) and Lemma 7, gives the following lower
and upper bounds, for some α < 1 and δ > 0:

P ≥0
(

2Z ≥ t

1 + o(t−δ)

)
≤ P ≥0(Eω

[
τ(e1)
]≥ t
)

≤ P ≥0(�c
t

)+ P ≥0
(

2Z ≥ t − C(log t)4tα

1 + o(t−δ)

)
,

and P ≥0(�c
t ) = o(t−κ) by Lemma 5, hence, with Lemma 2,

P ≥0(Eω

[
τ(e1)
]≥ t
)∼ 2κCU t−κ , t → ∞.(8.9)

9. Proof of Corollary 1. We show here how Corollary 1 follows from Theo-
rem 2. With the notation of this theorem, it suffices to prove

L

(
1

x1/κ

x∑
p=1

Ẑp ēp

∣∣∣(Ẑp)p≥1

)
W1−→
x

L

( ∞∑
p=1

ξp ēp

∣∣∣(ξp)p≥1

)
in law,

where (Ẑp)p≥1 are i.i.d., independent of (ēp)p≥1, such that P(Ẑ1 > t) ∼
2κCU t−κ , and (ξp)p≥1 is a Poisson point process of intensity 2κCUκu−(κ+1) du,
independent of (ēp)p≥1. This reduction comes from the following easy property.

LEMMA 12. If random variables (Xn)n, (Yn)n and Y take values in a metric
space (E,d), d(Xn,Yn) →n 0 in probability and Yn →n Y in law imply Xn →n Y

in law.

Let us recall a simple result about order statistics of heavy-tailed random vari-
ables.

PROPOSITION 5. Let (Zi)i≥1 be i.i.d. copies of a random variable Z ≥ 0 such
that

P(Z > t) ∼ CZt−κ , t → ∞,(9.1)

for some constant CZ > 0. For all n ≥ 1, denote by Z
(1)
n ≥ · · · ≥ Z

(n)
n an ordering

of the finite subsequence (Z1, . . . ,Zn). Then we have, for every k ≥ 1,

1

n1/κ

(
Z(1)

n , . . . ,Z(k)
n

) law−→
n

(
ξ (1), . . . , ξ (k)),
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where ξ (k) = C
1/κ
Z (f1 + · · · + fk)−1/κ for k ≥ 1, (fk)k being i.i.d. exponential ran-

dom variables of parameter 1; cf. (2.5).

PROOF. Let Y
(i)
n := nCZ(Z

(i)
n )−κ , and Yn = nCZ(Z1)

−κ . From (9.1) we de-
duce nP (Yn ∈ [a, b]) →n b − a for all 0 < a < b. Then, for all t1, . . . , tk > 0,

P
(
t1 < Y(1)

n < t2 < Y(2)
n < · · · < tk < Y (k)

n

)
= n(n − 1) · · · (n − (k − 1) + 1

)
P
(
Yn ∈ [t1, t2]) · · ·P (Yn ∈ [tk−1, tk])

× P
(
Yn /∈ [0, tk])n−k

→n (t2 − t1) · · · (tk − tk−1)e
−tk

= P(t1 < f1 < t2 < f1 + f2 < · · · < tk < f1 + · · · + fk),

by a simple computation, from where the proposition follows. �

Thanks to the previous lemma and Skorohod’s representation theorem, there
exists a copy (̃ξ (p))p≥1 of (ξ (p))p≥1 and, for all k ≥ 1, there exist random variables

(Z̃
(1)
k,n, . . . , Z̃

(k)
k,n)n≥k such that (borrowing notation from the lemma) for every n ≥ k

(Z̃
(1)
k,n, . . . , Z̃

(k)
k,n) is a copy of (Ẑ

(1)
n , . . . , Ẑ

(k)
n ) and

1

n1/κ

(
Z̃

(1)
k,n, . . . , Z̃

(k)
k,n

) (p)−→
n

(̃
ξ (1), . . . , ξ̃ (k)).

We chose (̃ξ (p))p≥1 not depending on k to ease notation but this is unessential

since we only need to understand the convergences in probability Xn
(p)−→
n

X as

properties of the law of (Xn,X) for every n, no matter on which space �n this
couple is defined.

We may also introduce additional random variables (Z̃
(k+1)
k,n , . . . , Z̃

(n)
k,n)n≥1 such

that for every n (Z̃
(1)
k,n, . . . , Z̃

(n)
k,n) is a copy of (Ẑ

(1)
n , . . . , Ẑ

(n)
n ).

Then, by a diagonal argument, we can define (Z̃
(p)
n )1≤p≤n such that, for every

n, (Z̃
(p)
n )1≤p≤n is a copy of (Z

(1)
n , . . . ,Z

(n)
n ) and, for every k,

1

n1/κ

(
Z̃(1)

n , . . . , Z̃(k)
n

) (p)−→
n

(̃
ξ (1), . . . , ξ̃ (k)).(9.2)

Indeed, there is an increasing sequence (N(k))k such that for all k ≥ 1, for n ≥
N(k),

P

(∥∥∥∥ 1

n1/κ

(
Z̃

(1)
k,n, . . . , Z̃

(k)
k,n

)− (̃ξ (1), . . . , ξ̃ (k))∥∥∥∥
1
>

1

k

)
<

1

k

(hence, the same bound also holds for the first k′ ≤ k components) and then we
define, for n ≥ N(1) and 1 ≤ p ≤ n, Z̃

(p)
n = Z̃

(p)
k,n, where k is given by N(k) ≤ n <
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N(k + 1); and, for instance, Z̃
(p)
n = Z̃

(p)
1,n when 1 ≤ p ≤ n < N(1). This is easily

seen to satisfy (9.2).
We have, for all n ≥ k,

W 1
Z̃,̃ξ

(
n∑

p=1

Z̃
(p)
n

n1/κ
ēp,

∞∑
p=1

ξ̃ (p)ēp

)

≤ EZ̃,̃ξ

[∣∣∣∣∣
n∑

p=1

Z̃
(p)
n

n1/κ
ēp −

∞∑
p=1

ξ̃ (p)ēp

∣∣∣∣∣
]

≤ EZ̃

[∣∣∣∣∣
n∑

p=k+1

Z̃
(p)
n

n1/κ
ēp

∣∣∣∣∣
]

+ EZ̃,̃ξ

[∣∣∣∣∣
k∑

p=1

(
Z̃

(p)
n

n1/κ
− ξ̃ (p)

)
ēp

∣∣∣∣∣
]

(9.3)

+ Eξ̃

[∣∣∣∣∣
∞∑

p=k+1

ξ̃ (p)ēp

∣∣∣∣∣
]

≤
√√√√√ n∑

p=k+1

(
Z̃

(p)
n

n1/κ

)2

+
k∑

p=1

∣∣∣∣ Z̃(p)
n

n1/κ
− ξ̃ (p)

∣∣∣∣+
√√√√ ∞∑

p=k+1

(̃
ξ (p)
)2

,

using E[|ēp|] = 2/e ≤ 1 and the inequality E[|W |]2 ≤ E[W 2] = Var(W) for any
centered random variable W . Let εk > 0 be such that k−1/κ � εk � 1, when k →
∞. Since Ẑ

(k)
n ≥ Ẑ

(p)
n for p ≥ k,

P

(√√√√√ n∑
p=k+1

(
Ẑ

(p)
n

n1/κ

)2

≥ δ

3

)

≤ P

(
Ẑ

(k)
n

n1/κ
≥ εk

)
+ P

(
n∑

p=1

(
Ẑp

n1/κ

)2

1{Ẑp/n1/κ<εk} ≥
(

δ

3

)2
)

≤ P

(
Ẑ

(k)
n

n1/κ
≥ εk

)
+ 9

δ2 nE

[(
Ẑ1

n1/κ

)2

1{Ẑ1/n
1/κ<εk}

]
,

hence, using (9.2) and (2.4), for all δ > 0,

lim sup
n

P

(√√√√√ n∑
p=k+1

(
Ẑ

(p)
n

n1/κ

)2

≥ δ

3

)
≤ P
(
ξ (k) ≥ εk

)+ 9

δ2

2C

2 − κ
ε

1−κ/2
k =: ϕδ(k),

where C > CZ := 2κCU is arbitrary. Note that ϕδ(k) →k 0 due to the choice of εk

and to (2.6). We also have, respectively, because of (9.2) and of
∑

p(ξ (p))2 < ∞
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a.s. [cf. (2.6)],

P

(
k∑

p=1

∣∣∣∣ Z̃(p)
n

n1/κ
− ξ̃ (p)

∣∣∣∣≥ δ

3

)
−→

n
0 and P

(√√√√ ∞∑
p=k+1

(
ξ (p)
)2 ≥ δ

3

)
−→

k
0.

Denote by ψδ(k) the latter probability. Thus, from (9.3), for all δ > 0,

lim sup
n

P

(
W 1

Z̃,̃ξ

(
n∑

p=1

Z̃
(p)
n

n1/κ
ēp,

∞∑
p=1

ξ̃ (p)ēp

)
≥ δ

)
≤ ϕδ(k) + ψδ(k) →k 0.

Thanks to our diagonal argument, the left-hand side does not depend on k. Thus,

L

(
n∑

p=1

Z̃
(p)
n

n1/κ
ēp

∣∣∣(Z̃(p)
n

)
1≤p≤n

)
W 1−→
n

L

( ∞∑
p=1

ξ̃ (p)ēp

∣∣∣̃ξ) in probability,

and therefore in law. Since the convergence in law only deals with the laws of
Z̃n for n ≥ 1 and of ξ̃ (and not on their coupling), this concludes the proof of
Corollary 1.

Finally, we mention that the expression of the parameter λ obtained for Dirichlet
environments [i.e., when ω0 follows a distribution Beta(α,β) with 0 < α −β < 2]
can be easily deduced from a computation of CK by Chamayou and Letac [3]
(see [8] for more details).

APPENDIX

A.1. Proofs of Lemmas 2 and 3.

PROOF OF LEMMA 2. Compared to (4.13), it appears sufficient to prove that
P ≥0(Z > t, S > H) = o(t−κ), which is understood as follows: when Z is large, the
height H of the first excursion tends to be large as well, while the other excursions
are independent of Z, hence, H is likely to be the maximum S of V over all of
Z+. More precisely: first, for �t > 0,

P ≥0(Z > t,H < �t) ≤ P ≥0(M1M2 > te−�t
)≤ E≥0[(M1M2)

2]
(te−�t )2 ,

and all moments of M1M2 are finite under P ≥0 [indeed we have M2 ≤ e1, M1 ≤
e1 + R− and the random variables e1 and R− have all moments finite under P ≥0;
cf. Section 4.3 and (4.9)]. Thus, if (recalling that κ < 2) we choose �t such that
�t → ∞ and tκ = o(t2e−2�t ) as t → ∞, we have P ≥0(Z > t,H < �t) = o(t−κ).
On the other hand, Z is independent of S′ := supx≥e1

(V (x) − V (e1)) which is
larger than S on the event {H < S}, hence,

P ≥0(Z > t,H < S) = P ≥0(Z > t,H ≥ �t ,H < S) + o
(
t−κ)

≤ P ≥0(Z > t)P ≥0(S′ > �t

)+ o
(
t−κ)

= P ≥0(Z > t)o(1) + o
(
t−κ),
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as t → ∞, such that, using (4.13),

P ≥0(Z > t) = P ≥0(Z > t,H = S) + P ≥0(Z > t,H < S)

= CUt−κ + o
(
t−κ)+ P ≥0(Z > t)o(1) + o

(
t−κ),

which implies the lemma. �

PROOF OF LEMMA 3. The very first bound results simply, by monotone con-
vergence, from E≥0[(M ′

1)
α(M2)

βeγH ] < ∞ when γ < κ , which is a consequence,
via Hölder inequality, of the fact that all the moments of M ′

1 and M2 are finite un-
der P ≥0 (because M ′

1 ≤ R− + e1 and M2 ≤ e1), and of the fact that, due to (4.10),
eH has moments up to order κ (not included). Let us turn to the other bounds.

Note that, if M ′
1 and M2 were positive constants, then the bounds would fol-

low by an elementary computation from the tail estimate (4.10) and the classical
formulas

E
[
eγH 1{H≥h}

]= eγ hP (H ≥ h) +
∫ ∞
h

γ eγ uP (H ≥ u)du

and E[eγH 1{H<h}] = 1 − eγ hP (H ≥ h) + ∫ h0 γ eγ uP (H ≥ u)du.
As recalled in Section 3, it was proved in [7] that indeed M1 and M2 depend

little on H , in that (Lemma 4.1 of [7]) for any integer r > 0 there is a constant C

such that

E≥0[(M1)
r |	H
,H = S

]≤ C,(A.1)

and similarly for M2 (due to a symmetry property under P ≥0(·|H = S); see
Lemma 3.4 in [7]). Admitting that furthermore,

E≥0[(M ′
1
)r |	H
,H = S

]≤ C,(A.2)

we would first get by the Cauchy–Schwarz inequality that, with M := (M ′
1)

α(M2)
β ,

E≥0[M|	H
,H = S
]

≤ E≥0[(M ′
1
)2α|	H
,H = S

]1/2
E≥0[(M2)

2β |	H
,H = S
]1/2

≤ C,

and, using conditioning on 	H
, conclude that

E≥0[MeγH 1{H<h}|H = S
]≤ C′E

[
eγ (	H
+1)1{	H
<h}

]≤ C′′E
[
eγH 1{H<h+1}

]
,

and similarly E≥0[MeγH 1{H≥h}|H = S] ≤ C′′E[eγH 1{H≥h−1}] which brings us
back to the situation where M ′

1 and M2 would be constants. Thus, it remains to
prove (A.2) and, first, justify why introducing the convenient condition {H = S} is
harmless.
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As in Lemma 2, the condition {H = S} is typically satisfied when H is large;
thus it suffices to note that the contribution to the expectations of small values of H

is not too significant. Let � = �(h) := 1
γ

logh. We have

E≥0[MeγH 1{H<h}
]≤ E≥0[M]h + E≥0[MeγH 1{H<h,H>�}

]
.(A.3)

Since M and H are independent of S′ := supx≥e1
V (x) − V (e1), and also {S >

H > �} ⊂ {S′ > �}, we have on the other hand

E≥0[MeγH 1{H<h,H>�}1{S>H }
]≤ E≥0[MeγH 1{H<h}

]
P
(
S′ > �

)
and P(S′ > �) = o(1) when h → ∞, hence, substracting this quantity to (A.3)
gives

E≥0[MeγH 1{H<h}
](

1 + o(1)
)≤ E≥0[M]h + E≥0[MeγH 1{H<h}1{H=S}

]
.

Given that P(H = S) > 0, and h ≤ e(γ−κ)h for large h when γ > κ , it thus suf-
fices to prove the last two bounds of (4.14) with the left-hand side replaced by
E≥0[MeγH |H < h,H = S]. As for (4.15), the introduction of � is useless to sim-
ilarly prove [skipping (A.3)] that we may condition by {H = S}.

Let us finally prove (A.2). Let r > 0. We have M ′
1 = M1 +∑TH <x<e1

e−V (x). It
results from Lemma 3.4 of [7] that (H,

∑
TH ≤x<e1

e−V (x)) has the same distribu-
tion under P ≥0(·|H = S) as (H,

∑
T −

H <x≤0 eV (x)−H) where

T −
H := sup

{
x ≤ 0 :V (x) > H

}
,

and we claim that there is C′
r > 0 such that, for all N ∈ N,

E

[( ∑
T −

N <x≤0

eV (x)

)r]
≤ C′

rerN .(A.4)

Before we prove this inequality, let us use it to conclude that

E≥0[(M ′
1
)r |	H
,H = S

]
(A.5)

≤ 2r(E≥0[(M1)
r |	H
,H = S

]+ e−r	H
Cer(	H
+1))≤ C′.
For readability reasons, we write the proof of (A.4) when r = 2, the case of higher
integer values being exactly similar and implying the general case (if 0 < r < s,
E[Xr ] ≤ E[Xs]r/s for any positive X). We have

E

[( ∑
T −

N <x≤0

eV (x)

)2]
(A.6)

≤ ∑
0≤m,n<N

en+1em+1E
[
ν
([n,n + 1)

)
ν
([m,m + 1)

)]
,

where ν(A) := #{x ≤ 0 :V (x) ∈ A} for all A ⊂ R. For any n ∈ N, applying the
Markov property at time sup{x ≤ 0 :V (x) ∈ [n,n + 1)} gives us that E[ν([n,n +
1))2] ≤ E[ν([−1,1))2]. This latter expectation is finite because V (1) has a nega-
tive mean and is exponentially integrable; more precisely, ν([−1,1)) is exponen-



QUENCHED LIMITS FOR TRANSIENT RWRE 1183

tially integrable as well: for λ > 0, for all x ≥ 0, P(V (−x) < 1) ≤ eλE[eλV (1)]x =
eλE[ρλ]x hence, choosing λ > 0 small enough so that E[ρλ] < 1 [cf. Assumption
(a)], we have, for all p ≥ 0,

P
(
ν
([−1,1

))
> p) ≤ P

(∃x ≥ p s.t. V (−x) < 1
)

≤∑
x≥p

P
(
V (−x) < 1

)≤ eλ(1 − E
[
ρλ])−1

E
[
ρλ]p.

Thus, using the Cauchy–Schwarz inequality to bound the expectations uni-
formly, the right-hand side of (A.6) is less than Ce2N for some constant C. This
proves (A.4) and therefore concludes the proof of Lemma 3. �

A.2. Proofs of Lemmas 5, 6 and 7.

PROOF OF LEMMA 5. By the union bound the proof of Lemma 5 boils down
to showing that for i = 1,2,3,

P
((

�
(i)
t

)c
,H ≥ ht

)= o
(
t−κ), t → ∞.

The case i = 1 is trivial. Indeed, the fact that e1 has some finite exponential mo-
ments (see Section 4.3) implies that P((�

(1)
t )c) = o(t−κ) when t tends to infinity

(for C large enough). The case i = 2 can be proved by a minor adaptation of the
proof of Lemma 5.5 in [8].

Let us consider the last case i = 3. Since R− depends only on the variables
V (x), x ≤ 0, and P(H > ht ) ∼ CI t

−κ(log t)κ when t → ∞, it suffices to prove
P ≥0(R− > (log t)4tα) = o((log t)−κ). This would follow (for any α > 0) from the
Markov property if E≥0[R−] < ∞. We have (changing indices and incorporating
the single terms into the sums)

R− =∑
x≤0

(
1 + 2

∑
x<y≤0

eV (y)−V (x)

)(
e−V (x) + 2

∑
z≤x−1

e−V (z)

)
(A.7)

≤ 4
∑

z≤x≤y≤0

eV (y)−V (x)−V (z),

and this latter quantity was already seen to be integrable under P ≥0, after (7.12),
when 1 < κ < 2. In order to deal with the case 0 < κ ≤ 1, let us introduce the event

At =
∞⋂

p=1

{
H−p <

1

κ
logp2 + log t + log log t

}
.

On one hand, by (4.10), P((At)
c) ≤ ∑∞

p=1
C

p2(t log t)κ
= (
∑∞

p=1
C
p2 ) t−κ

(log t)κ
=

o(t−κ). On the other hand, proceeding as after (7.12),

E≥0[R−1At

]
≤ 4
∑
p≤0

E≥0[e−V (ep)]E≥0[(M ′
1
)2

M2eH 1{H<(1/κ) logp2+log t+log log t}
]
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and E≥0[e−V (ep)] = E[eV (e1)]p hence, using Lemma 3, when 0 < κ < 1,

E≥0[R−1At

]≤ 4
(∑

p≤0

E
[
eV (e1)

]p 1

(p2)(1−κ)/κ

)
(t log t)1−κ ≤ C(t log t)1−κ ,

and when κ = 1,

E≥0[R−1At

]≤ 4
∑
p≤0

E
[
eV (e1)

]p(1

κ
logp2 + log t + log log t

)
≤ C log t.

Finally, by the Markov inequality,

P ≥0(R− > tα(log t)4)≤ P ≥0((At )
c)+ 1

tα(log t)4 E≥0[R−1At

]
is negligible with respect to (log t)−κ for any α ≥ 1 − κ when 0 < κ < 1, and for
any α > 0 when κ = 1. �

PROOF OF LEMMA 6. Since Varω(F ) ≤ Eω[F 2], the proof of (5.4) is a con-
sequence of (5.10) in [8] together with a minor adaptation of equation (5.26) in [8]
and the definition of �t. The proof of (5.5) is a direct consequence of the defini-
tions of M2 [see equation (4.12)] and �t [see equation (5.2)]. Finally, the proof
of (5.6) is straightforward by looking at the expression of Eω[F ] = 2ω0M̂1 in
terms of the modified potential V̂ (see Lemma 5.2 in [8]) together with the prop-
erties of good environments ω in �t. �

PROOF OF LEMMA 7. The proof of Lemma 7 can be deduced from Lemma 5.4
in [8] (which gives an upper bound for Eω[G] in terms of the modified poten-
tial V̄ ), the definition of the modified potential V̄ (see equation (5.15) in [8]) and
the definition of good environments ω in �t. �

A.3. An annealed result. The techniques of this paper enable us to prove the
following annealed counterpart to (8.9) which has its own interest.

PROPOSITION 6. The tail distribution of the hitting time of the first negative
record e1 satisfies

tκP
≥0(τ(e1) ≥ t

)−→CT , t → ∞,(A.8)

where the constant CT is given by

CT := 2κ�(κ + 1)CU .(A.9)

Let us write τ for τ(e1) in this section. The idea of the proof is the following. We
first show that, on the event {τ ≥ t}, the height of the first excursion is typically
larger than the function ht [of order log t , defined in (5)]. We may then invoke
Proposition 1 to reduce the tail of τ to that of Eω[τ ]e and conclude.

LEMMA 13. We have

P
≥0(τ(e1) ≥ t,H < ht

)= o
(
t−κ), t → ∞.
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PROOF. Let us first assume that 0 < κ < 1. Then, by the Markov inequality,
we get

P
≥0(τ ≥ t,H < ht ) = E≥0[Pω(τ ≥ t)1{H<ht }

]≤ 1

t
E≥0[Eω[τ ]1{H<ht }

]
≤ 1

t
E≥0[2M ′

1M2eH 1{H<ht }
]≤ 1

t
Ce(1−κ)ht ,

where the last inequality follows from Lemma 3. Since we have t−1e(1−κ)ht =
t−κ(log t)−(1−κ), this settles this case.

Let us now assume 1 < κ < 2. By the Markov inequality, we get

P
≥0(τ ≥ t,H < ht ) ≤ 1

t2 E≥0[Eω

[
τ 2]1{H<ht }

]
.

Applying Lemma 10 yields P
≥0(τ ≥ t,H < ht ) ≤ Ct−2e(2−κ)ht , which concludes

the proof of Lemma 13 when κ �= 1.
For κ = 1, neither of the above techniques works; the first one is too rough,

and Varω(τ) is not integrable hence, the second does not make sense as is. We
shall modify τ so as to make Varω(τ) integrable. To this end, let us refer to Sec-
tion 7.1 and denote by d− the right end of the first excursion on the left of 0 that
is higher than ht , and by τ̃ := τ̃ (d−)(0, e1) the time spent on the left of d− before
reaching e1. By Lemma 8 we have E

≥0[τ̃1{H<ht }] ≤ Chte−ht ≤ C(log t)2t−1. Let
us also introduce τ̃ ′, which is defined like τ̃ but in the modified environment, that
is, by replacing the high excursions (on the left of d−) by small ones; cf. after
Lemma 8. Then we have

P
≥0(τ ≥ t,H < ht )

≤ P
≥0(τ̃ ≥ (log t)3,H < ht

)+ P
≥0(τ − τ̃ ≥ t − (log t)3,H < ht

)
≤ 1

(log t)3 E
≥0[τ̃1{H<ht }] + P

≥0(τ − τ̃ + τ̃ ′ ≥ t − (log t)3,H < ht

)
= o
(
t−1)+ (P≥0)′(τ ≥ t − (log t)3,H < ht

)
≤ o
(
t−1)+ 1

(t − (log t)3)2

(
E≥0)′[Eω

[
τ 2]1{H<ht }

]
,

and Lemma 10 allows us to conclude just like in the case 1 < κ < 2. �

PROOF OF PROPOSITION 6. From the tail of Eω[τ ] [cf. (8.9)], a simple com-
putation gives

P ≥0(Eω[τ ]e ≥ t
)∼ CT t−κ , t → ∞.(A.10)

Let us prove that this is also the tail of τ .
For any function t �→ ut we have, using, respectively, the previous lemma for

the first bound and Proposition 1 and the Markov inequality (with respect to Pω)
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for the second,

P
≥0(τ − Eω[τ ]e ≥ ut , τ > t

) ≤ P
≥0(τ − Eω[τ ]e ≥ ut ,H ≥ ht

)+ o
(
t−κ)

≤ tβ

ut

P(H ≥ ht ) + o
(
t−κ)

= t−κ

(
tβ log t

ut

(
1 + o(1)

)+ o(1)

)
.

If we choose ut such that tβ(log t)κ � ut � t then we get, assembling this
with (A.10),

P
≥0(τ > t) = P

≥0(τ − Eω[τ ]e ≥ ut , τ > t
)+ P

≥0(τ − Eω[τ ]e < ut, τ > t
)

≤ o
(
t−κ)+ P

≥0(Eω[τ ]e ≥ t − ut

)∼ CT t−κ .

The lower bound is identical, starting with

P
≥0(τ > t) ≥ P

≥0(Eω[τ ]e ≥ t + ut

)− P
≥0(τ − Eω[τ ]e ≤ −ut , τ > t

)
.

This concludes the proof of Proposition 6. �
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