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EXACT AND HIGH-ORDER DISCRETIZATION SCHEMES FOR
WISHART PROCESSES AND THEIR AFFINE EXTENSIONS1

BY ABDELKODDOUSSE AHDIDA AND AURÉLIEN ALFONSI

Université Paris-Est

This work deals with the simulation of Wishart processes and affine dif-
fusions on positive semidefinite matrices. To do so, we focus on the splitting
of the infinitesimal generator in order to use composition techniques as did
Ninomiya and Victoir [Appl. Math. Finance 15 (2008) 107–121] or Alfonsi
[Math. Comp. 79 (2010) 209–237]. Doing so, we have found a remarkable
splitting for Wishart processes that enables us to sample exactly Wishart dis-
tributions without any restriction on the parameters. It is related but extends
existing exact simulation methods based on Bartlett’s decomposition. More-
over, we can construct high-order discretization schemes for Wishart pro-
cesses and second-order schemes for general affine diffusions. These schemes
are, in practice, faster than the exact simulation to sample entire paths. Nu-
merical results on their convergence are given.

Introduction. This paper focuses on simulation methods for Wishart pro-
cesses and more generally for affine diffusions on positive semidefinite matrices.
Before explaining our motivations and our main results, we start with a short in-
troduction to these processes. Even though we use rather standard notation for
matrices, they are recalled at the end of the Introduction, and we invite the reader
to first give a quick look at it. Wishart processes have been initially introduced by
Bru [4, 5]. They are also named because their marginal laws follow Wishart dis-
tributions. Very recently, Cuchiero et al. [7] have introduced a general framework
for affine processes on positive semidefinite matrices S +

d (R) that embeds Wishart
processes and includes possible jumps. In this paper, we only consider continuous
processes of this kind. Such processes solve the following SDE:

Xx
t = x +

∫ t

0

(
ᾱ + B(Xx

s )
)
ds +

∫ t

0

(√
Xx

s dWsa + aT dWT
s

√
Xx

s

)
.(1)

Here, and throughout the paper, (Wt , t ≥ 0) denotes a d-by-d square matrix made
of independent standard Brownian motions and

x, ᾱ ∈ S +
d (R), a ∈ Md(R) and B ∈ L(Sd(R))(2)
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is a linear mapping on Sd(R). Wishart processes correspond to the case where

∃α ≥ 0, ᾱ = αaT a and
(3)

∃b ∈ Md(R),∀x ∈ Sd(R) B(x) = bx + xbT .

When d = 1, (1) is simply the SDE of the Cox–Ingersoll–Ross (CIR) process that
has been broadly studied, and we will implicitly assume that d ≥ 2 throughout
the paper. Weak and strong uniqueness of SDE (1) has been studied by Bru [5],
Cuchiero et al. [7] and Mayerhofer, Pfaffel and Stelzer [22]. Here we sum up their
results.

THEOREM 1. If x ∈ S +
d (R), ᾱ − (d − 1)aT a ∈ S +

d (R) and B satisfies the
following condition:

∀x1, x2 ∈ S +
d (R) Tr(x1x2) = 0 �⇒ Tr(B(x1)x2) ≥ 0,(4)

there is a unique weak solution to the SDE (1) in S +
d (R). We denote by

AFFd(x, ᾱ,B, a) the law of (Xx
t )t≥0 and AFFd(x, ᾱ,B, a; t) the marginal law

of Xx
t . If we assume, moreover, that ᾱ − (d + 1)aT a ∈ S +

d (R) and x ∈ S +,∗
d (R),

there is a unique strong solution to the SDE (1).
Under the parametrization of Wishart processes (3), condition (4) is satisfied

and weak uniqueness holds as soon as α ≥ d − 1. In that case, we denote by
WISd(x,α, b, a) the law of the Wishart process (Xx

t )t≥0 and WISd(x,α, b, a; t)
the law of Xx

t .

Throughout the paper, when we use the notation AFFd(x, ᾱ,B, a) or AFFd(x,
ᾱ,B, a; t) [resp., WISd(x,α, b, a) or WISd(x,α, b, a; t)], we implicitly assume
that ᾱ − (d − 1)aT a ∈ S +

d (R) (resp., α ≥ d − 1) and B satisfies (4) so that weak
uniqueness holds.

In her Ph.D. thesis [4], Bru introduced Wishart processes and used them in
biology to study perturbed experimental data. Recently, great attention has been
paid to Wishart processes for applications in finance. Namely, Gourieroux and Su-
fana [14] and Da Fonseca, Grasselli and Tebaldi [8] have suggested the use of these
processes to model the instantaneous covariance matrix of d assets. It naturally ex-
tends stochastic volatility models for only one asset like the Heston model [16].
Obviously, processes on positive semidefinite matrices are really interesting to
model the evolution of a dependence structure because they can describe a co-
variance matrix. However, when dealing with applications, it is, in general, crucial
to be able to sample paths of such processes and make Monte Carlo algorithms.

To the best of our knowledge, there is minimal literature on simulation meth-
ods for Wishart and general affine processes (1). Wishart distributions have been
intensively studied in statistics when α ∈ N. In this case, exact simulation meth-
ods have been proposed by Odell and Feiveson [25], Smith and Hocking [26] and
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Gleser [12], to mention a few. Concerning discretization schemes, the usual Euler–
Maruyama scheme is not well defined because of the square-root. This already
happens for the CIR process (d = 1). One has then to find specific schemes. Re-
cently, Benabid et al. [3] and Gauthier and Possamai [10] have proposed numerical
approximations for Wishart processes that are well defined under some restrictions
on the parameters. However, there is no result on the accuracy of their methods.
Currently, Teichmann [29] is working on dedicated schemes for general affine pro-
cesses by approximating their characteristic functions. Our study here is only ded-
icated to the diffusion (1).

Initially, our goal was to find high-order discretization schemes for Wishart pro-
cesses by splitting operators and using scheme compositions. Indeed, this approach
has already proved to be very efficient for other affine diffusions (see [2]). The
main difficulty here was to find a splitting that involves infinitesimal generators
of diffusions that are well defined on S +

d (R) and that can be simulated. Doing
so, we incidentally have found a remarkable splitting for some canonical Wishart
processes: the infinitesimal generator of WISd(x,α,0, I n

d ) is the sum of commut-
ing operators that are associated to elementary SDEs that can be sampled exactly.
With the help of a simple but useful law identity, this enables us to sample exactly
Wishart processes for any admissible parameter. In particular, our result extends
the Bartlett’s decomposition that is commonly used to sample central Wishart dis-
tributions. This splitting is not only interesting for the exact simulation method. It
is also useful to construct high-order discretization schemes for Wishart processes
that are, in practice, faster to generate full paths. In fact, it allows us to get a high-
order scheme that preserves the domain S +

d (R). We provide a rigorous analysis of
the weak error in this framework. Still, by using the splitting technique, we also
get a second-order scheme for any affine diffusion (1) without any restriction on
the parameters.

This paper is structured as follows. First, we present some general results on
affine diffusions. We calculate their infinitesimal generator and obtain interesting
identities in law that are intensively used next for the different simulation methods.
Section 2 is devoted to the exact simulation of Wishart processes. It exhibits the
remarkable splitting of the infinitesimal generator and shows how it can be used to
sample exactly any Wishart distribution. Section 3 deals with high-order schemes
for affine diffusions. Thanks to the remarkable splitting, we are able to construct
a third-order scheme for Wishart processes and second-order schemes for affine
diffusions. Last, we give numerical illustrations of our convergence results in Sec-
tion 4. We compare the time required by each method and also give a possible
application of our results in finance.

Notation for real matrices.

• For d, d ′ ∈ N
∗, Md(R) denotes the real d square matrices and Md×d ′(R) the

real matrices with d rows and d ′ columns.
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• Sd(R), S +
d (R), S +,∗

d (R) and Gd(R) denote, respectively, the set of symmetric,
symmetric positive semidefinite, symmetric positive definite and nonsingular
matrices.

• For x ∈ Md(R), xT , adj(x), det(x), Tr(x) and Rk(x) are, respectively, the trans-
pose, the adjugate, the determinant, the trace and the rank of x.

• For x ∈ S +
d (R),

√
x denotes the unique symmetric positive semidefinite matrix

such that (
√

x)2 = x.
• The identity matrix is denoted by Id and we set for n ≤ d , In

d = (1i=j≤n)1≤i,j≤d

and en
d = (1i=j=n)1≤i,j≤d , so that In

d = ∑n
i=1 ei

d . We also set for 1 ≤ i, j ≤ d ,

e
i,j
d = (1k=i,l=j )1≤k,l≤d .

• For x ∈ Sd(R), we denote by x{i,j} the value of xi,j , so that

x = ∑
1≤i≤j≤d

x{i,j}(ei,j
d + 1i �=j e

j,i
d ).

We use both notation in the paper: notation (xi,j )1≤i,j≤d is more convenient for
matrix calculations while (x{i,j})1≤i≤j≤d is preferred to emphasize that we work
on symmetric matrices.

• For λ1, . . . , λd ∈ R, diag(λ1, . . . , λd) denotes the diagonal matrix such that
diag(λ1, . . . , λd)i,i = λi .

1. Some properties of affine processes on positive semidefinite matrices.

1.1. The infinitesimal generator on Md(R) and Sd(R). We start with a simple
lemma. It is useful to calculate the infinitesimal generator of processes on matrices.

LEMMA 2. Let (Ft )t≥0 denote the filtration generated by (Wt , t ≥ 0). We con-
sider continuous (Ft )-adapted processes (At )t≥0, (Bt )t≥0 and (Ct )t≥0, respec-
tively, valued in Md(R), Md(R) and Sd(R), and a process (Yt )t≥0 that admits
the following semimartingale decomposition:

dYt = Ct dt + Bt dWtAt + AT
t dWT

t BT
t .(5)

Then, for i, j,m,n ∈ {1, . . . , d}, the quadratic covariation of (Yt )i,j and (Yt )m,n is

d〈(Yt )i,j , (Yt )m,n〉
= [(BtB

T
t )i,m(AT

t At )j,n + (BtB
T
t )i,n(A

T
t At )j,m(6)

+ (BtB
T
t )j,m(AT

t At )i,n + (BtB
T
t )j,n(A

T
t At )i,m]dt.

It is worth noticing that the quadratic covariation given by (5) depends on At

and Bt only through the matrices AT
t At and BtB

T
t . Lemma 2 enables us to easily

calculate the infinitesimal generator for the affine process (1) which is defined by

x ∈ S +
d (R), LMf (x) = lim

t→0+
E[f (Xx

t )] − f (x)

t

for f ∈ C 2(Md(R),R) with bounded derivatives.
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In fact, we get that the generator of AFFd(x, ᾱ,B, a) is given by

LM = Tr([ᾱ + B(x)]DM)

+ 1
2{2 Tr(xDMaT aDM) + Tr(x(DM)T aT aDM)(7)

+ Tr(xDMaT a(DM)T )},
where DM = (∂i,j )1≤i,j≤d . Since we know that the affine process (Xx

t )t≥0 takes
values in S +

d (R) ⊂ Sd(R), we can also look at the infinitesimal generator of this
diffusion on Sd(R), which is defined by

x ∈ S +
d (R), LS f (x) = lim

t→0+
E[f (Xx

t )] − f (x)

t

for f ∈ C 2(Sd(R),R) with bounded derivatives.

For x ∈ Sd(R), we denote by x{i,j} = xi,j = xj,i the value of the coordinates (i, j)

and (j, i), so that x = ∑
1≤i≤j≤d x{i,j}(ei,j

d +1i �=j e
j,i
d ). For f ∈ C 2(Sd(R),R), we

then denote by ∂{i,j}f its derivative with respect to x{i,j}. For x ∈ Md(R), we set
π(x) = (x + xT )/2. It is such that π(x) = x for x ∈ Sd(R), and we have

LS f (x) = LMf ◦ π(x).

By the chain rule, we have for x ∈ Sd(R), ∂i,j f ◦π(x) = (1i=j + 1
21i �=j )∂{i,j}f (x)

and get from (7) the following result.

PROPOSITION 3. The infinitesimal generator on Sd(R) associated to AFFd(x,
ᾱ,B, a) is given by

LS = Tr
([ᾱ + B(x)]DS) + 2 Tr(xDS aT aDS ),(8)

where DS is defined by DS
i,j = (1i=j + 1

21i �=j )∂{i,j}, for 1 ≤ i, j ≤ d .

Of course, the generators LM and LS are equivalent; one can be deduced from
the other. However, LS already embeds the fact that the process lies in Sd(R),
which reduces the dimension from d2 to d(d + 1)/2 and gives, in practice, shorter
formulas. This is why we will mostly work in the sequel with infinitesimal gener-
ators on Sd(R). Unless it is necessary to make the distinction with LM, we will
simply denote L = LS .

1.2. The characteristic function of Wishart processes. As for other affine pro-
cesses, the characteristic function of affine processes on positive semidefinite ma-
trices can be obtained by solving two ODEs. In the case of Wishart processes, it
is possible to solve explicitly these ODEs by solving a matrix Riccati equation
(see Levin [20]). Here, we give the closed formula for the Laplace transform and
a precise description of its set of convergence.
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PROPOSITION 4. Let Xx
t ∼ WISd(x,α, b, a; t), qt = ∫ t

0 exp(sb)aT a exp(s ×
bT ) ds and mt = exp(tb). We introduce the set of convergence of the Laplace
transform of Xx

t , Db,a;t = {v ∈ Sd(R),E[exp(Tr(vXx
t ))] < ∞}. This is a convex

open set that is given explicitly by

Db,a;t = {v ∈ Sd(R),∀s ∈ [0, t], Id − 2qsv ∈ Gd(R)}.(9)

Besides, the Laplace transform of Xx
t is well defined for v = vR + ivI with vR ∈

Db,a;t , vI ∈ Sd(R) and is given by

E[exp(Tr(vXx
t ))] = exp(Tr[v(Id − 2qtv)−1mtxmT

t ])
det(Id − 2qtv)α/2 .(10)

The characteristic function corresponds to the case vR = 0 that clearly belongs
to Db,a;t . The proof of this result is given in Appendix B.1. The formula (10) is
well known in the literature, and our contribution is to characterize precisely the
set of convergence. In particular, let us observe that ρId ∈ Db,a;t when ρ > 0 is
small enough, which will help us to study the Cauchy problem (Proposition 14).

Last, let us remark here that for X̃x
t ∼ WISd(x,α,0, I n

d ; t), the formula above
becomes even simpler and we have for v = vR + ivI such that vR ∈ Db,a;t , vI ∈
Sd(R),

E[exp(Tr(vX̃x
t ))] = exp(Tr[v(Id − 2tI n

d v)−1x])
det(Id − 2tI n

d v)α/2 .(11)

1.3. Some identities in law for affine processes. This section gives simple but
interesting identities in law for affine processes. First, we observe that their in-
finitesimal generator (8) only depends on a through aT a and get

AFFd(x, ᾱ,B, a) =
Law

AFFd

(
x, ᾱ,B,

√
aT a

)
.(12)

Also, it is natural to look at linear transformations of affine processes. Let q ∈
Gd(R) and define Bq ∈ L(Sd(R)) by Bq(x) = (qT )−1B(qT xq)q−1. One easily
has that B satisfies (4) iff Bq satisfies (4), and we get

AFFd(x, ᾱ,B, a) =
Law

qT AFFd((q−1)T xq−1, (q−1)T ᾱq−1,Bq, aq−1)q,(13)

since both processes solve the same martingale problem. An interesting conse-
quence is given in the following proposition: any affine process can be obtained as
a linear transformation of an affine process for which ᾱ is a diagonal matrix and
a = In

d . Since our main goal here is to sample paths of such processes, this says to
us that it is sufficient to focus on this special case.

PROPOSITION 5. Let n = Rk(a) be the rank of aT a. Then, there exist a di-
agonal matrix δ̄ and a nonsingular matrix u ∈ Gd(R) such that ᾱ = uT δ̄u and
aT a = uT In

d u and we have

AFFd(x, ᾱ,B, a) =
Law

uT AFFd((u−1)T xu−1, δ̄,Bu, I
n
d )u,
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where ∀y ∈ Sd(R),Bu(y) = (u−1)T B(uT yu)u−1.

The proof of this result consists of algebraic arguments and is found in Ap-
pendix B.2. It gives, in particular, a general way to compute u and δ̄. Let us notice,
however, that in the case of Wishart processes, u can directly be obtained by using
a single extended Cholesky decomposition (Lemma 23).

Up to now, we have stated identities for the law of affine processes. Thanks to
the explicit characteristic function of Wishart processes, we are also able to get
another interesting identity on the marginal laws.

PROPOSITION 6. Let t > 0, a, b ∈ Md(R) and α ≥ d − 1. Let mt = exp(tb),
qt = ∫ t

0 exp(sb)aT a exp(sbT ) ds and n = Rk(qt ). Then there is θt ∈ Gd(R) such
that qt = tθt I

n
d θT

t , and we have

WISd(x,α, b, a; t) =
Law

θt WISd(θ−1
t mtxmT

t (θ−1
t )T , α,0, I n

d ; t)θT
t .(14)

This proposition plays a crucial role for the exact simulation of Wishart pro-
cesses. Thanks to (14), we can sample any Wishart distribution if we are able to
simulate exactly the distribution WISd(x,α,0, I n

d ; t) for any x ∈ S +
d (R). In Sec-

tion 2, we focus on this and give a way to sample exactly WISd(x,α,0, I n
d ; t). Let

us stress here that we can compute the matrix θt by using the extended Cholesky
decomposition of qt/t , as it is explained in the proof below.

PROOF OF PROPOSITION 6. We apply Lemma 23 to qt/t ∈ S +
d (R) and

consider (p, cn, kn) an extended Cholesky decomposition of qt/t . We set θt =
p−1( cn

kn

0
Id−n

)
. Then θt is invertible and it is easy to check that qt = tθt I

n
d θT

t . Now,
let us observe that for v ∈ Sd(R),

det(Id − 2iqtv) = det
(
θt (θ

−1
t − 2itI n

d θT
t v)

) = det(Id − 2itI n
d θT

t vθt ),

Tr[iv(Id − 2iqtv)−1mtxmT
t ]

= Tr[i(θ−1
t )T θT

t v(θt θ
−1
t − 2itθt I

n
d θT

t vθt θ
−1
t )−1mtxmT

t ]
= Tr[iθT

t vθt (Id − 2itI n
d θT

t vθt )
−1θ−1

t mtxmT
t (θ−1

t )T ].
Let Xx

t ∼ WISd(x,α, b, a; t) and X̃x
t ∼ WISd(x,α,0, I n

d ; t). Then, from (10) and
(11), we get that

E[exp(i Tr(vXx
t ))] = E

[
exp

(
i Tr

(
θT
t vθt X̃

θ−1
t mt xmT

t (θ−1
t )T

t

))]
= E

[
exp

(
i Tr

(
vθt X̃

θ−1
t mt xmT

t (θ−1
t )T

t θT
t

))]
. �

Last, let us mention that (14) extends a usual identity between CIR and squared
Bessel distribution. It gives when d = 1,

WIS1(x,α, b, a; t) =
Law

a2 e2bt − 1

2bt
WIS1

(
2btx

a2(1 − e−2bt )
, α,0,1; t

)
.
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In that case, this identity can also be obtained directly from the SDE. Let
(Xx

t )t≥0 ∼ WIS1(x,α, b, a). Then, Yt = e−2btXx
t /a2 is a time-changed Bessel

squared process since dYt = α(e−2bt dt)+2
√

Yt (e
−bt dWt). We obtain WIS1(x,α,

b, a; t) =
Law

a2e2bt WIS1(x/a2, α,0,1; 1−e−2bt

2b
). A linear time-change also gives

that WIS1(x,α,0,1;λt) =
Law

λWIS1(x/λ,α,0,1; t), which leads to (14) by taking

λ = (1 − e−2bt )/(2bt).

2. Exact simulation of Wishart processes. In this section, we present a new
method to simulate exactly a Wishart process. To the best of our knowledge, this
is the first exact simulation method for noncentral Wishart distributions that works
for any α ≥ d − 1. Wishart distributions have been thoroughly studied in statis-
tics when α ∈ N (which is then called the number of degrees of freedom). Exact
simulation methods have already been proposed in that case. For instance, Odell
and Feiveson [25] and Smith and Hocking [26] have proposed an exact simula-
tion method for central Wishart distributions based on the Bartlett’s decompo-
sition. Gleser [12] extends it to any (noncentral) Wishart distribution. Bru [5]
also explains, when α ∈ N, how Wishart processes can be obtained as a square
of Ornstein–Uhlenbeck processes on matrices.

Here, our method relies on the identity in law (14) that enables us to focus on the
case b = 0, a = In

d . Then we show a remarkable splitting of the infinitesimal gen-
erator as the sum of commuting operators. These operators are associated to SDE
that can be solved explicitly on S +

d (R), which enables us to sample any Wishart
distribution.

2.1. A remarkable splitting for WISd(x,α,0, I n
d ). The following theorem ex-

plains how to split the infinitesimal generator of WISd(x,α,0, I n
d ) as the sum of

commutative infinitesimal generators. This result is the keystone of the paper and
will play a crucial role in the sequel both for the exact and discretization schemes.

THEOREM 7. Let L be the generator associated to the Wishart process
WISd(x,α,0, I n

d ) and Lei
d

be the generator associated to WISd(x,α,0, ei
d) for

i ∈ {1, . . . , d}. Then, we have

L =
n∑

i=1

Lei
d

and ∀i, j ∈ {1, . . . , d} Lei
d
L

e
j
d

= L
e
j
d

Lei
d
.(15)

PROOF. From (8), we easily get that L = ∑n
i=1 Lei

d
since In

d = ∑n
i=1 ei

d . The

commutativity property comes from a tedious but simple calculation. �
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Beyond the commutativity property, two other features of (15) are important to
notice:

• The operators Lei
d

and L
e
j
d

are the same up to the exchange of coordinates i

and j .
• The processes WISd(x,α,0, ei

d) and WISd(x,α,0, I n
d ) are well defined on

S +
d (R) under the same hypothesis, namely, α ≥ d − 1 and x ∈ S +

d (R).

This second property makes possible the composition that we explain now. Let us
consider t > 0 and x ∈ S +

d (R). We define, iteratively,

X
1,x
t ∼ WISd(x,α,0, e1

d; t),
X

2,X
1,x
t

t ∼ WISd(X
1,x
t , α,0, e2

d; t),
...

X
n,...X

1,x
t

t ∼ WISd

(
X

n−1,...X
1,x
t

t , α,0, en
d; t

)
.

Thus, conditionally to X
i−1,...X

1,x
t

t , X
i,...X

1,x
t

t is sampled according to the distribu-

tion at time t of a Wishart process starting from X
i−1,...X

1,x
t

t and with parameters
(α,0, ei

d). We have the following result.

PROPOSITION 8. Let X
n,...X

1,x
t

t be defined as above. Then

X
n,...X

1,x
t

t ∼ WISd(x,α,0, I n
d ; t).

Thanks to this proposition, we can generate a sample according to WISd(x,α,
0, I n

d ; t) as soon as we can simulate WISd(x,α,0, ei
d; t). These laws are the same

as WISd(x,α,0, e1
d; t), up to the permutation of the first and ith coordinates. In

the next subsection, it is explained how to draw such random variables.
It is really easy to give a formal proof of Proposition 8. Let Xx

t ∼ WISd(x,α,0,
In
d ; t) and f be a smooth function on S +

d (R) such that the series below
converge absolutely. By iterating Itô’s formula, we have that E[f (Xx

t )] =∑∞
k=0 tkLkf (x)/k!. Similarly, we also get by using the tower property of the con-

ditional expectation that

E
[
f
(
X

n,...X
1,x
t

t

)] = E
[
E
[
f
(
X

n,...X
1,x
t

t

)|Xn−1,...X
1,x
t

t

]]
(16)

=
+∞∑
kn=0

tkn

kn!E
[
L

kn

en
d
f
(
X

n−1,...X
1,x
t

t

)]
.
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Simply by repeating this argument, we get that

E
[
f
(
X

n,...X
1,x
t

t

)] =
+∞∑

k1,...,kn=0

t
∑n

i=1 ki

k1! · · ·kn!L
k1

e1
d

· · ·Lkn

en
d
f (x)

(17)

=
∞∑

k=0

tk

k! (Le1
d
+ · · · + Len

d
)kf (x) = E[f (Xx

t )].

To get the second equality, we identify a Cauchy product and use that the operators
Le1

d
, . . . ,Len

d
commute. To make this formal proof correct, one has to check that

the series are well defined and can be switched with the expectation. This check
is made in the Appendix C.1 for our framework and remains valid as soon as the
operator Lei

d
and L are of affine type.

2.2. Exact simulation for WISd(x,α,0, e1
d; t). For the sake of clarity, we start

with the case of d = 2 that avoids complexities due to matrix decompositions. We
deal with the general case just after.

2.2.1. The case d = 2. We start by writing explicitly the infinitesimal genera-
tor Le1

2
of WIS2(x,α,0, e1

2). From (8), we get

x ∈ S +
2 (R),

Le1
2
f (x) = α∂{1,1}f (x) + 2x{1,1}∂2{1,1}f (x)(18)

+ 2x{1,2}∂{1,1}∂{1,2}f (x) + x{2,2}
2

∂2{1,2}f (x).

We now show that this operator is in fact associated to an SDE that can be explicitly
solved. We will denote by (Z1

t , t ≥ 0) and (Z2
t , t ≥ 0) two independent standard

Brownian motions in R.
When x{2,2} = 0, we also have x{1,2} = 0 since x is nonnegative. In that case,

Xx
0 = x, d(Xx

t ){1,1} = α dt + 2
√

(Xx
t ){1,1} dZ1

t ,
(19)

d(Xx
t ){1,2} = 0, d(Xx

t ){2,2} = 0

has the infinitesimal generator (18), which is one of a CIR process (or of a squared
Bessel process of dimension α to be more precise). By using an algorithm that
samples exactly a noncentral chi-square distribution (see, e.g., Glasserman [11]),
we can then sample WIS2(x,α,0, e1

2; t) when x{2,2} = 0.
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When x{2,2} > 0, it easy to check that the SDE

d(Xx
t ){1,1} = α dt + 2

√√√√(Xx
t ){1,1} − ((Xx

t ){1,2})2

(Xx
t ){2,2}

dZ1
t

+ 2
(Xx

t ){1,2}√
(Xx

t ){2,2}
dZ2

t ,

(20)
d(Xx

t ){1,2} =
√

(Xx
t ){2,2} dZ2

t ,

d(Xx
t ){2,2} = 0,

starting from Xx
0 = x, has an infinitesimal generator equal to Le1

2
. To solve (20),

we set

(Uu
t ){1,1} = (Xx

t ){1,1} − ((Xx
t ){1,2})2

(Xx
t ){2,2}

,

(21)

(Uu
t ){1,2} = (Xx

t ){1,2}√
x{2,2}

, (Uu
t ){2,2} = x{2,2}.

Here, u stands for the initial condition, that is, u = Uu
0 . We get by using Itô calculus

that

d(Uu
t ){1,1} = (α − 1) dt + 2

√
(Uu

t ){1,1} dZ1
t ,

(22)
d(Uu

t ){1,2} = dZ2
t and d(Uu

t ){2,2} = 0.

Therefore, (Uu
t ){1,2} and (Uu

t ){1,1} can be sampled, respectively, by independent
Gaussian and noncentral chi-square variables. Then, we can get back Xx

t by in-
verting (21),

(Xx
t ){1,1} = (Uu

t ){1,1} + (Uu
t )2{1,2},

(23)
(Xx

t ){1,2} = (Uu
t ){1,2}

√
(Uu

t ){2,2}, (Xx
t ){2,2} = (Uu

t ){2,2}.

This result gives an interesting way to figure out the dynamics associated to
the operator Le1

2
by using a change of variable. It is worth noticing that the CIR

process (Uu
t ){1,1} is well defined as soon as its degree α − 1 is nonnegative, which

coincides with the condition under which the Wishart process WIS2(x,α,0, e1
2)

is well defined. Last, we notice that the solution of the operator Le1
2

involves a

CIR process in the diagonal term and a Brownian motion in the nondiagonal one.
A similar structure holds for larger d .
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2.2.2. The general case. We now present a general way to sample exactly
WISd(x,α,0, e1

d; t). We first write explicitly from (8) the infinitesimal generator
of WISd(x,α,0, e1

d) for x ∈ S +
d (R)

Le1
d
f (x) = α∂{1,1}f (x) + 2x{1,1}∂2{1,1}f (x)

+ 2
∑

1≤m≤d

m�=1

x{1,m}∂{1,m}∂{1,1}f (x)(24)

+ 1

2

∑
1≤m,l≤d

m�=1,l �=1

x{m,l}∂{1,m}∂{1,l}f (x).

As for d = 2, we will construct an SDE that has the same infinitesimal generator
Le1

d
and that can be solved explicitly. To do so however, we need to use further

matrix decomposition results. In the case d = 2, we have already noticed that we
choose different SDEs whether x2,2 = 0 or not. Here, the SDE will depend on the
rank of the submatrix (xi,j )2≤i,j≤d , and we set

r = Rk((xi,j )2≤i,j≤d) ∈ {0, . . . , d − 1}.
First, we consider the case where

∃cr ∈ Gr lower triangular, kr ∈ Md−1−r×r (R),
(25)

(x)2≤i,j≤d =
(

cr 0
kr 0

)(
cT
r kT

r

0 0

)
=: ccT .

With a slight abuse of notation, we consider that this decomposition also holds
when r = 0 with c = 0. When r = d − 1, c = cr is simply the usual Cholesky
decomposition of (xi,j )2≤i,j≤d . As it is explained in Corollary 11, we can still get
such a decomposition up to a permutation of the coordinates {2, . . . , d}.

THEOREM 9. Let us consider x ∈ S +
d (R) such that (25) holds. Let

(Zl
t )1≤l≤r+1 be a vector of independent standard Brownian motions. Then, the

following SDE [convention
∑r

k=1(· · ·) = 0 when r = 0]

d(Xx
t ){1,1} = α dt + 2

√√√√√(Xx
t ){1,1} −

r∑
k=1

(
r∑

l=1

(c−1
r )k,l(X

x
t ){1,l+1}

)2

dZ1
t

+ 2
r∑

k=1

r∑
l=1

(c−1
r )k,l(X

x
t ){1,l+1} dZk+1

t ,

(26)

d(Xx
t ){1,i} =

r∑
k=1

ci−1,k dZk+1
t , i = 2, . . . , d,

d
(
(Xx

t ){l,k}
)
2≤k,l≤d = 0
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has a unique strong solution starting from x. It takes values in S +
d (R) and has the

infinitesimal generator Le1
d
. Moreover, this solution is given explicitly by

Xx
t =

⎛
⎝1 0 0

0 cr 0
0 kr Id−r−1

⎞
⎠

×

⎛
⎜⎜⎜⎝

(Uu
t ){1,1} +

r∑
k=1

(
(Uu

t ){1,k+1}
)2 (

(Uu
t ){1,l+1}

)T
1≤l≤r 0

(
(Uu

t ){1,l+1}
)
1≤l≤r Ir 0

0 0 0

⎞
⎟⎟⎟⎠(27)

×
⎛
⎝1 0 0

0 cT
r kT

r

0 0 Id−r−1

⎞
⎠ ,

where

d(Uu
t ){1,1} = (α − r) dt + 2

√
(Uu

t ){1,1} dZ1
t ,

u{1,1} = x{1,1} −
r∑

k=1

(
u{1,k+1}

)2 ≥ 0,

(28)
d
(
(Uu

t ){1,l+1}
)
1≤l≤r = (dZl+1

t )1≤l≤r ,(
u{1,l+1}

)
1≤l≤r = c−1

r

(
x{1,l+1}

)
1≤l≤r .

Once again, we have made a slight abuse of notation when r = 0, and (27)
should be simply read as

Xx
t =

⎛
⎝ (Uu

t ){1,1} 0 0
0 0 0
0 0 0

⎞
⎠

in that case. In the statement above, it may seem weird that we use for u and Uu
t

the same indexation as the one for symmetric matrices while we only use its first
row (or column). The reason is that we can, in fact, see Xx

t as a function of Uu
t by

setting

(Uu
t ){i,j} = u{i,j} = x{i,j} for i, j ≥ 2 and

(29)
(Uu

t ){1,i} = u{1,i} = 0 for r + 1 ≤ i ≤ d.

Thus, (cr , kr , Id−1) is an extended Cholesky decomposition of ((Uu
t )i,j )2≤i,j≤d

and can be seen as a function of Uu
t . We get from (27) that

Xx
t = h(Uu

t ) with h(u) =
d−1∑
r=0

1r=Rk[(ui,j )2≤i,j≤d ]hr(u) and(30)
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hr(u) =
⎛
⎝1 0 0

0 cr(u) 0
0 kr(u) Id−r−1

⎞
⎠

×

⎛
⎜⎜⎜⎝

u{1,1} +
r∑

k=1

(
u{1,k+1}

)2 (
u{1,l+1}

)T
1≤l≤r 0

(
u{1,l+1}

)
1≤l≤r Ir 0

0 0 0

⎞
⎟⎟⎟⎠

×
⎛
⎝1 0 0

0 cr(u)T kr(u)T

0 0 Id−r−1

⎞
⎠ ,

where (cr(u), kr(u), Id−1) is the extended Cholesky decomposition of
(ui,j )2≤i,j≤d given by some algorithm (e.g., Golub and Van Loan [13], Al-
gorithm 4.2.4). Equation (30) will later play an important role in analyzing
discretization schemes.

The proof of Theorem 9 is given in Appendix C.2. It enables us to simulate
exactly the distribution WISd(x,α,0, e1

d; t) simply by sampling one noncentral
chi-square distribution for (Uu

t ){1,1} (see Glasserman [11]) and r other independent
Gaussian random variables. As in the d = 2 case, we notice that the condition
which ensures that the CIR process ((Uu

t ){1,1}, t ≥ 0) is well defined for any r ∈
{0, . . . , d − 1}, namely, α − (d − 1) ≥ 0, is the same as the one required for the
definition of WISd(x,α,0, e1

d).

REMARK 10. From (27), we easily get by a calculation made in (47) that
Rk(Xx

t ) = Rk((xi,j )2≤i,j≤d) + 1(Uu
t ){1,1} �=0, and therefore,

Rk(Xx
t ) = Rk((xi,j )2≤i,j≤d) + 1 a.s.

In particular, Xx
t is almost surely positive definite if x ∈ S +,∗

d (R).

Theorem 9 assumes that the initial value x ∈ S +
d (R) satisfies (25). Now we

explain why it is still possible, up to a permutation of the coordinates, to be in
such a case. This relies on the extended Cholesky decomposition which is stated
in Lemma 23.

COROLLARY 11. Let x ∈ S +
d (R) and (cr , kr ,p) be an extended Cholesky de-

composition of (xi,j )2≤i,j≤d (Lemma 23). Then, π = (1
0

0
p

)
is a permutation ma-

trix, WISd(x,α,0, e1
d) =

Law
πT WISd(πxπT ,α,0, e1

d)π and ((πxπT )i,j )2≤i,j≤d =( cr

kr

0
0

)( cT
r
0

kT
r
0

)
satisfies (25).
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PROOF. The result comes directly from (13), since πT = π−1 and πe1
dπT =

e1
d . �

Therefore, by a combination of Corollary 11 and Theorem 9, we get a simple
way to explicitly construct a process that has the infinitesimal generator Le1

d
for any

initial condition x ∈ S +
d (R). In particular, this enables us to sample exactly the

Wishart distribution WISd(x,α,0, e1
d; t). Algorithm 1 below sums up the whole

procedure.

Algorithm 1: Exact simulation WISd(x,α,0, e1
d; t)

Input: x ∈ S +
d (R), d , α ≥ d − 1 and t > 0.

Output: X, sampled according to WISd(x,α,0, e1
d; t).

Compute the extended Cholesky decomposition (p, kr , cr) of (xi,j )2≤i,j≤d

given by Lemma 23, r ∈ {0, . . . , d − 1} (see Golub and Van Loan [13] for an
algorithm);
Set π = (1

0
0
p

)
, x̃ = πxπT , (u{1,l+1})1≤l≤r = (cr)

−1(x̃{1,l+1})1≤l≤r and

u{1,1} = x̃{1,1} − ∑r
k=1(u{1,k+1})2 ≥ 0;

Sample independently r normal variables G2, . . . ,Gr+1 ∼ N (0,1) and
(Uu

t ){1,1} as a CIR process at time t starting from u{1,1} solving d(Uu
t ){1,1} =

(α − r) dt + 2
√

(Uu
t ){1,1} dZ1

t (see Glasserman [11]).

Set (Uu
t ){1,l+1} = u{1,l+1} + √

tGl+1;
return

X = πT

⎛
⎝1 0 0

0 cr 0
0 kr Id−r−1

⎞
⎠

×

⎛
⎜⎜⎜⎝

(Uu
t ){1,1} +

r∑
k=1

(
(Uu

t ){1,k+1}
)2 (

(Uu
t ){1,l+1}

)T
1≤l≤r 0

(
(Uu

t ){1,l+1}
)
1≤l≤r Ir 0

0 0 0

⎞
⎟⎟⎟⎠

×
⎛
⎝1 0 0

0 cT
r kT

r

0 0 Id−r−1

⎞
⎠π.

Let us now discuss the complexity of Algorithm 1. The number of operations
required by the extended Cholesky decomposition is of order O(d3). From a com-
putational point of view, the permutation is handled directly and does not require
any matrix multiplication so that we can consider w.l.o.g. that π = Id . Since cr

is lower triangular, the calculation of u{1,i}, i = 1, . . . , r + 1, only requires O(d2)

operations. Also, we do not perform in practice the matrix product (27), but only
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compute the values of X{1,i} for i = 1, . . . , d , which also requires O(d2) oper-
ations. Last, d samples are at most required. To sum up, it comes out that the
complexity of Algorithm 1 is of order O(d3).

2.3. Exact simulation for Wishart processes. We have now shown all the
mathematical results that enable us to give an exact simulation method for gen-
eral Wishart processes. This is made in two steps.

First, we know how to sample exactly WISd(x,α,0, e1
d; t) thanks to Theorem 9

and Corollary 11. By a simple permutation of the first and kth coordinates, we are
then also able to sample according to WISd(x,α,0, ek

d; t) for k ∈ {1, . . . , d}. Thus,
we get by Proposition 8 an exact simulation method to sample WISd(x,α,0, I n

d ; t).
It is given explicitly in Algorithm 2. Then we get an exact simulation scheme for
WISd(x,α, b, a; t) by using the law identity (14) (see Algorithm 3).

Algorithm 2: Exact simulation for WISd(x,α,0, I n
d ; t)

Input: x ∈ S +
d (R), n ≤ d , α ≥ d − 1 and t > 0.

Output: X, sampled according to WISd(x,α,0, I n
d ; t)

y = x

for k = 1 to n do
Set pk,1 = p1,k = pi,i = 1 for i /∈ {1, k} and pi,j = 0 otherwise
(permutation of the first and kth coordinates).
y = pYp where Y is sampled according to WISd(pyp,α,0, e1

d; t) by
using Algorithm 1.

end
return X = y.

Algorithm 3: Exact simulation for WISd(x,α, b, a; t)
Input: x ∈ S +

d (R), α ≥ d − 1, a, b ∈ Md(R) and t > 0.
Output: X, sampled according to WISd(x,α, b, a; t).
Calculate qt = ∫ t

0 exp(sb)aT a exp(sbT ) ds and (p, cn, kn) an extended
Cholesky decomposition of qt/t .
Set θt = p−1( cn

kn

0
Id−n

)
and mt = exp(tb).

return X = θtY θT
t , where Y ∼ WISd(θ−1

t mtxmT
t (θ−1

t )T , α,0, I n
d ; t) is

sampled by Algorithm 2.

Let us analyze the overall complexity of Algorithm 3. Since it basically runs n

times Algorithm 1, it requires a complexity of order O(nd3) and therefore at most
of order O(d4). As we have seen, the “bottleneck” of Algorithm 1 is the extended
Cholesky decomposition which is in O(d3). All the other steps in Algorithm 1 re-
quire at most O(d2) operations. A natural question for Algorithm 2 is to wonder if
we can reuse the Cholesky decomposition between the loops instead of calculating
it from scratch. For example, if it were possible to get the Cholesky decomposition
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of loop k +1 from the one of loop k at a cost O(d2), the complexity of Algorithms
2 and 3 would then drop to O(d3). Despite our investigations, we have not been
able to do so up to now.

REMARK 12. When α ≥ 2d − 1, it is possible to sample WISd(x,α,0, I n
d ; t)

in O(d3) by another mean. If X1
t ∼ WISd(x, d,0, I n

d ; t) and X2
t ∼ WISd(0, α −

d,0, I n
d ; t) are independent, we can check that X1

t + X2
t ∼ WISd(x,α,0, I n

d ; t).
Then, X1

t can be sampled by using Proposition 21 and X2
t by using Bartlett’s de-

composition (31) since X2
t =

Law
t WISd(0, α − d,0, I n

d ;1) from (11).

2.4. The Bartlett’s decomposition revisited. Now we would like to illustrate
our exact simulation method on the particular case WISd(0, α,0, I n

d ;1), which is
known in the literature as the central Wishart distribution. In that case, we can

perform explicitly the composition X
n,...

X
1,0
1

1 given by Proposition 8. We will show
by an induction on n that

X
n,...

X
1,0
1

1 =
(

(Li,j )1≤i,j≤n 0
0 0

)(
(LT

i,j )1≤i,j≤n 0
0 0

)
,(31)

where (Li,j )1≤j<i≤d and Li,i are independent random variables such that Li,j ∼
N (0,1) and (Li,i)

2 ∼ χ2(α − i + 1) and Li,j = 0 for i < j . This result is known
as the Bartlett’s decomposition and dates back to 1933 (see Kshirsagar [18] or
Kabe [17]).

For n = 1, we know from Theorem 9 that (X
1,0
1 )1,1 ∼ χ2(α) since d(X

1,0
t )1,1 =

α dt + 2
√

(X
1,0
t )1,1 dZ1

t with (X
1,0
0 )1,1 = 0, and all the other elements are equal

to 0. Let us assume now that the induction hypothesis is satisfied for n − 1. Then,
we can apply once again Theorem 9 (up to the permutation of the first and nth coor-

dinates). We have Rk(X
n−1,...

X
1,0
1

1 ) = n − 1, a.s., and the Cholesky decomposition
is directly given by (Li,j )1≤i,j≤n−1. Then, we get from (27) that there are inde-
pendent variables L2

n,n ∼ χ2(α − n + 1) and Ln,i ∼ N (0,1) for i ∈ {1, . . . , n − 1}
such that

X
n,...

X
1,0
1

1 =
⎛
⎝ (Li,j )1≤i,j≤n−1 0 0

0 1 0
0 0 Id−n

⎞
⎠

×

⎛
⎜⎜⎜⎝

In−1 (Ln,i)1≤i≤n−1 0

(Ln,i)
T
1≤i≤n−1

n∑
i=1

L2
n,i 0

0 0 0

⎞
⎟⎟⎟⎠

×
⎛
⎝ (Li,j )

T
1≤i,j≤n−1 0 0
0 1 0
0 0 Id−n

⎞
⎠ .
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Since⎛
⎜⎜⎜⎝

In−1 (Ln,i)1≤i≤n−1 0

(Ln,i)
T
1≤i≤n−1

n∑
i=1

L2
n,i 0

0 0 0

⎞
⎟⎟⎟⎠ =

⎛
⎝ In−1 0 0

(Ln,i)
T
1≤i≤n−1 Ln,n 0
0 0 0

⎞
⎠

×
⎛
⎝ In−1 (Ln,i)1≤i≤n−1 0

0 Ln,n 0
0 0 0

⎞
⎠ ,

we conclude by induction on n.

3. High-order discretization schemes for Wishart and semidefinite positive
affine processes. In this section, we switch from exact sampling to approximate
schemes. First, this will enable us to simulate not only Wishart processes, but also
general affine processes. More importantly, the discretization schemes that we in-
troduce are in practice faster than the exact simulation scheme, especially if one
has to sample entire paths. This will be illustrated in Section 4.

When dealing with discretization schemes, splitting operators is a powerful
technique to construct schemes for SDEs from other schemes obtained on sim-
pler SDEs. This idea of splitting originates from the seminal work of Strang [27]
in the field of ODEs. As pointed out by Ninomiya and Victoir [24] or Alfonsi [2],
it is rather easy to analyze the weak error (i.e., the error made on marginal distribu-
tions) of schemes obtained by splitting. Indeed, this can be done simply by using
the same arguments as Talay and Tubaro [28] for the Euler–Maruyama scheme.
Nonetheless, when we use the splitting technique for SDEs that are defined on a
given domain [S +

d (R) in our case], one has to be careful that the discretization
scheme remains in it. For example, in the case of the CIR diffusion (i.e., d = 1),
general splitting methods such as Ninomiya and Victoir [24] fail to preserve the
domain R

+. It is, in fact, only well defined for α ≥ 1, while the CIR process exists
for any α ≥ 0 (see Alfonsi [2]). Of course, the same remark holds for Wishart and
affine processes. This is why we will use the ad hoc splitting (7) instead of general
splitting methods, which enables us to get schemes that preserve S +

d (R) and are
defined without any restriction on the parameters.

The analysis of the strong error of our schemes is beyond the scope of this paper.
In fact, behind the term “strong error” we have in mind here two different things.
First, it can be the error made on pathwise expectations between the discretization
scheme and the exact scheme. This kind of error is illustrated numerically in the
next section (Figure 3) and seems to be of the same order as the weak error, even
though we are not at all able to mathematically show this result. Second, “strong
error” can also mean the pathwise error between the discretization scheme and the
exact solution for a given Brownian motion (Wt , t ≥ 0). The rate of convergence
for this kind of error has been analyzed for the CIR in Alfonsi [1] and is really
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low. This is mainly due to the fact that the square root is not Lipschitz near 0.
Fortunately, discretization schemes are mostly used to compute expectations with
a Monte Carlo algorithm. In this context, pathwise error is not so relevant.

To our knowledge, there are very few papers in the literature that deal with
discretization schemes for Wishart processes. Recently, Benabid, Bensusan and
Karoui [3] have proposed a Monte Carlo method to calculate expectations on
Wishart processes which is based on a Girsanov change of probability. Gauthier
and Possamai [10] introduce a moment-matching scheme for Wishart processes.
Both methods are well defined under some restrictions on the parameters, and there
is no theoretical result on their accuracy. Currently, Teichmann [29] is working on
dedicated schemes for general affine processes by approximating their character-
istic functions.

This section is structured as follows. First, we recall basic results on the splitting
technique to get discretization schemes for SDEs. We will take the same frame-
work as Alfonsi [2] since it is somehow designed for affine processes. Then we
will explain how to get high-order schemes for WISd(x,α,0, e1

d) from the con-
struction given by Theorem 9. The remarkable splitting (15) will then enable us
to get high-order schemes for WISd(x,α,0, I n

d ). From this result, we will be able
to get a second-order scheme for any semidefinite positive affine processes and a
third-order scheme for Wishart processes.

3.1. Weak error analysis and splitting methods. Let us start with some no-
tation. We consider a time horizon T > 0 and the regular time grid defined by
tNi = iT /N , i = 0, . . . ,N . When considering a Markovian process on a domain D,
a discretization scheme is a way to sample the value at a given time step t > 0,
starting from the current value x ∈ D. It is thus described by a probability measure
p̂x(t)(dz) on D, and we denote by X̂x

t a random variable that follows this law.
Then the full discretization on the regular time grid associated to this scheme from
x ∈ D is simply a sequence (X̂N

tNi
,0 ≤ i ≤ N) of random variables such that:

• X̂N

tN0
= x,

• the law of X̂N

tNi+1
is sampled according to p̂

X̂N

tN
i

(T /N)(dz) independently from

the previous samples, that is, E[f (X̂N

tNi+1
)|(X̂N

tNj
,0 ≤ j ≤ i)] = ∫

D
f (z)p̂

X̂N

tN
i

(T /

N)(dz) for any bounded measurable function f : D → R.

Now we focus on the analysis of the weak error E[f (Xx
T )]− E[f (X̂N

tNN
)]. There

is a huge literature on this topic. Talay and Tubaro [28] have obtained an expansion
error for Euler–Maruyama and Milstein schemes. This error has also been studied
on other schemes: we cite the articles of Kusuoka [19], Lyons and Victoir [21],
Ninomiya and Victoir [24], and Ninomiya and Ninomiya [23], to mention a few.
However, to our knowledge, most of these papers make regularity assumptions on
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the SDE coefficients that are not satisfied by affine diffusions. Typically, they as-
sume that these coefficients are C∞ with bounded derivatives. This is not satisfied
by general affine diffusions because of the square root diffusion term. For this rea-
son, Alfonsi [2] introduced a framework that allows us to rigorously analyze the
weak error for affine diffusions. In this paper, we will naturally work under this
framework. Unfortunately, this requires us to introduce some definitions, and we
present here only the main ones.

We consider a domain D ⊂ R
ζ , ζ ∈ N

∗, and L an operator associated to an
SDE defined on D. Mainly (but not only), we consider in this paper D = S +

d (R) ⊂
Sd(R) � R

d(d+1)/2. For γ = (γ1, . . . , γζ ) ∈ N
ζ , we define ∂γ = ∂

γ1
1 , . . . , ∂

γζ

ζ and

|γ | = ∑ζ
i=1 γi and set

C∞
pol(D) = {f ∈ C∞(D,R),∀γ ∈ N

ζ ,∃Cγ > 0, eγ ∈ N
∗,

∀x ∈ D, |∂γ f (x)| ≤ Cγ (1 + ‖x‖eγ )},
where ‖ · ‖ is a norm on R

ζ . We say that (Cγ , eγ )γ∈Nζ is a good sequence for
f ∈ C∞

pol(D) if one has |∂γ f (x)| ≤ Cγ (1+‖x‖eγ ). The operator L is said to satisfy
the required assumptions if it can be written as L = ∑

0<|γ |≤2 aγ (x)∂γ , with aγ ∈
C∞

pol(D). This property holds for affine diffusions since any aγ is an affine function.

We will say that X̂x
t is a potential weak νth-order scheme for the operator L if for

any function f ∈ C∞
pol(D) with a good sequence (Cγ , eγ )γ∈Nζ , there exist positive

constants C,E and η depending only on (Cγ , eγ )γ∈Nζ such that

∀t ∈ (0, η)
(32) ∣∣∣∣∣E[f (X̂x

t )] −
[
f (x) +

ν∑
k=1

1

k! t
kLkf (x)

]∣∣∣∣∣ ≤ Ctν+1(1 + ‖x‖E).

Roughly speaking, this is the main assumption that a discretization scheme
should satisfy to get a weak error of order ν. This is precised by the following
theorem given in [2] that relies on the idea developed by Talay and Tubaro [28] for
the Euler–Maruyama scheme.

THEOREM 13. Let L be an operator satisfying the required assumptions on D.
We assume that:

(1) X̂x
t is a potential weak νth-order scheme for L, and the scheme has uni-

formly bounded moments, that is,

∃n0 ∈ N
∗,∀q ∈ N

∗ sup
N≥n0,0≤i≤N

E[‖X̂N

tNi
‖q] < ∞;(33)

(2) f : D → R is a function such that u(t, x) = E[f (Xx
T −t )] is defined on

[0, T ] × D, C∞, solves ∀t ∈ [0, T ],∀x ∈ D, ∂tu(t, x) = −Lu(t, x) and satisfies

∀l ∈ N, γ ∈ N
ζ ,∃Cl,γ , el,γ > 0,∀x ∈ D, t ∈ [0, T ]

(34)
|∂l

t ∂γ u(t, x)| ≤ Cl,γ (1 + ‖x‖el,γ ).
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Then, there is K > 0, N0 ∈ N, such that |E[f (X̂N

tNN
)] − E[f (Xx

T )]| ≤ K/Nν for

N ≥ N0.

It is really important to notice that only assumption (1) depends on the dis-
cretization scheme. Assumption (2) just depends on the underlying diffusion. Since
we only have a hold over the discretization scheme, this means from a numerical
point of view that we mainly have to focus on assumption (1) to construct an ac-
curate scheme. From a mathematical point of view, the regularity of the Cauchy
problem which is required by assumption (2) is a tough problem that is interesting
in its own. General results have been obtained in Talay and Tubaro [28] when b

and σ are C∞ with bounded derivatives. In the case of Wishart processes, we are
able to get (34) when f ∈ C∞

pol(Sd(R)).

PROPOSITION 14. Let (Xx
t )t≥0 ∼ WISd(x,α, b, a) and L the associated gen-

erator. Let f ∈ C∞
pol(Sd(R)), x ∈ S +

d (R) and T > 0. Then, ũ(t, x) = E[f (Xx
t )] is

C∞ on [0, T ] × S +
d (R), solves ∂t ũ(t, x) = Lũ(t, x) and its derivatives satisfy

∀l ∈ N,∀n ∈ N
d(d+1)/2,∃Cl,n, el,n > 0,∀x ∈ S +

d (R),∀t ∈ [0, T ]
(35) ∣∣∣∣∂l

t

∏
1≤i≤j≤d

∂
n{i,j}
{i,j} ũ(t, x)

∣∣∣∣ ≤ Cl,n(1 + ‖x‖el,n).

The proof of this result is made in Appendix D.1. It relies on the explicit for-
mula of the characteristic function (10) and, more exactly, on the property stated
in Lemma 26. Unfortunately, we have not been able to show an analogous result
for general affine processes AFFd(x, ᾱ,B, a). We deem that (35) also holds in that
case, but this remains an open question.

Let us now turn to assumption (1) of Theorem 13. Usually, the boundedness of
moments is not a big issue and requires, in general, tedious calculations. This ba-
sically holds when the drift and the diffusion coefficients have a sublinear growth,
which is the case here. Conversely, it is much more difficult to find a scheme which
is a potential ν-order scheme and stays at the same time in the domain S +

d (R).
For example, the Euler–Maruyama scheme is, generally speaking, a potential first-
order scheme. However, it does not stay in S +

d (R) even for the CIR case (d = 1).
Still, for the CIR process, higher-order schemes such as Ninomiya and Victoir [24]
or Ninomiya and Ninomiya [23] stay in R

+ only under additional restrictions on
the parameters. To solve this problem and get high-order schemes that remain in
S +

d (R), we will construct ad hoc discretization schemes by taking advantage of
the remarkable splitting (15). In fact, the property of being a potential νth-order
schemes is really easy to handle by scheme composition, especially when ν = 2.
This kind of result dates back to Strang [27] in the field of ODEs. In our frame-
work, we recall a result that is stated in [2].
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PROPOSITION 15. Let L1,L2 be the generators of SDEs defined on D that
satisfy the required assumption on D. Let X̂

1,x
t and X̂

2,x
t denote, respectively, two

potential weak νth-order schemes on D for L1 and L2.

(1) If L1L2 = L2L1, X̂
2,X̂

1,x
t

t is a potential weak νth-order discretization
scheme for L1 + L2.

(2) Let B be an independent Bernoulli variable of parameter 1/2. If ν ≥ 2,

(a) BX̂
2,X̂

1,x
t

t + (1 − B)X̂
1,X̂

2,x
t

t and (b) X̂
2,X̂

1,X̂
2,x
t/2

t

t/2

are potential weak second-order schemes for L1 + L2.

Let us explain the notation above. The composition X̂
2,X̂

1,x
t1

t2
means that we first

use the scheme 1 with time step t1 and then, conditionally to X̂
1,x
t1

, we sample the

scheme 2 with initial value X̂
1,x
t1

and time step t2. To be explicit, it has the law∫
D

p̂2
y(t2)(dz)p̂1

x(t1)(dy), where p̂i
x(ti)(dz) denotes the law of X̂

i,x
ti

, i = 1,2.

3.2. High-order schemes for Wishart processes. In this paragraph, we will
give a way to get weak νth-order schemes for any Wishart processes. The con-
struction is similar to the one used for the exact scheme. First, we obtain a
νth-order scheme for WISd(x,α,0, e1

d). Then, we get a νth-order scheme for
WISd(x,α,0, I n

d ) from the splitting (15) and Proposition 15. Last, we use the iden-
tity in law (14) to get a weak νth-order scheme for any Wishart process.

Let us start then by introducing a potential weak νth-order scheme for
WISd(x,α,0, e1

d). Roughly speaking, we obtain this scheme from the exact
scheme given by Theorem 9 and Corollary 11 by replacing the Gaussian random
variables with moment matching variables and the exact CIR distribution with a
sample according to a potential weak νth-order scheme for the CIR.

THEOREM 16. Let x ∈ S +
d (R) and (cr , kr ,p) be an extended Cholesky

decomposition of (xi,j )2≤i,j≤d . We set π = (1
0

0
p

)
and x̃ = πxπT , so that

(x̃i,j )2≤i,j≤d = ( cr

kr

0
0

)( cT
r
0

kT
r
0

)
. As in Theorem 9, we have

u{1,1} = x̃{1,1} −
r∑

k=1

(
u{1,k+1}

)2 ≥ 0,

where (
u{1,l+1}

)
1≤l≤r = c−1

r

(
x̃{1,l+1}

)
1≤l≤r ,

and we set u{1,i} = 0 if r + 2 ≤ i ≤ d and u{i,j} = x̃{i,j} if i, j ≥ 2. Let (Ĝi)1≤i≤r

be a sequence of independent real variables with finite moments of any order such
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that

∀i ∈ {1, . . . , r},∀k ≤ 2ν + 1 E[(Ĝi)k] = E[Gk] where G ∼ N (0,1).

Let hr be the function defined by (30). Let (Ûu
t ){1,1} be sampled independently

according to a potential weak νth-order scheme for the CIR process d(Uu
t ){1,1} =

(α − r) dt + 2
√

(Uu
t ){1,1} dZ1

t starting from u{1,1}. We set

(Ûu
t ){1,i} = u{1,i} + √

tĜi, 2 ≤ i ≤ r + 1,

(Ûu
t ){1,i} = 0, r + 2 ≤ i ≤ d,

(Ûu
t ){i,j} = u{i,j} if i, j ≥ 2.

Then, the scheme X̂x
t = πT hr(Û

u
t )π is a potential νth-order scheme for Le1

d
and

takes values in S +
d (R).

Let us give the idea of the proof. By construction, we have X̂x
t ∈ S +

d (R) since
an analogous formula to (27) holds for X̂x

t . The tedious part is to check that it
is a potential νth-order scheme. We know from Theorem 9, equation (30) and
Corollary 11 that we have Xx

t = πT hr(U
u
t )π . It is easy to check that Ûu

t is a po-
tential νth-order scheme for the operator associated to the diffusion Uu

t . Let us
suppose for a while that hr(u) ∈ C∞

pol(Sd(R)). Then, u �→ f (πT hr(u)π) is also

in C∞
pol(Sd(R)), and for any f ∈ C∞

pol(S +
d (R)), there are constants C,E,η > 0 de-

pending only on a good sequence of f such that

|E[f (πT hr(Û
u
t )π)] − E[f (Xx

t )]| ≤ Ctν+1(1 + ‖x‖E),

which basically gives the desired result. Unfortunately, hr is not in C∞
pol(Sd(R)). In

fact, hr is only smooth with respect to the coefficients of the first row and the first
columns. However, these coefficients are also the only ones that are changed by Ûu

t

[the submatrix ((Ûu
t )i,j )2≤i,j≤d = (ui,j )2≤i,j≤d is constant], and it comes out that

the regularity on hr is sufficient to get a potential νth-order scheme for Le1
d
. This

is shown rigorously in the preprint version of this paper at the cost of additional
technical definitions such as the “immersion property” that we do not reproduce
here.

Now we briefly comment on the practical implementation of Theorem 16. Sec-
ond and third-order schemes for the CIR process satisfying can be found in Al-
fonsi [2]. We can therefore get second (resp., third) order schemes for Le1

d
by tak-

ing any variables that matches the five (resp., the seven) first moments of N (0,1).
This can be obtained by taking

P
(
Ĝi = √

3
) = P

(
Ĝi = −√

3
) = 1

6 and P(Ĝi = 0) = 2
3 ,(36)
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respectively,

P
(
Ĝi = ε

√
3 + √

6
) =

√
6 − 2

4
√

6
,

(37)

P
(
Ĝi = ε

√
3 − √

6
) = 1

2
−

√
6 − 2

4
√

6
, ε ∈ {−1,1}.

We focus now on the construction of a potential weak νth-order scheme
for WISd(x,α,0, I n

d ). Let X̂
1,x
t denote a potential weak νth-order scheme for

WISd(x,α,0, e1
d). For i ∈ {2, . . . , d}, WISd(x,α,0, ei

d) and WISd(x,α,0, e1
d)

have the same law up to the permutation of the first and ith coordinate. Let π1↔i

denote the associated permutation matrix. Then, we easily get that

X̂
i,x
t = π1↔iX̂

1,π1↔ixπ1↔i

t π1↔i

is a potential νth-order scheme for WISd(x,α,0, ei
d). Last, we get from Theorem 7

and the point 1 of Proposition 15 that

X̂
n,...X̂

1,x
t

t is a potential weak νth-order scheme for WISd(x,α,0, I n
d ).(38)

Now we are in position to construct a scheme for any Wishart process
WISd(x,α, b, a) thanks to the identity (14). Let θt ∈ Gd(R) be such as in Propo-
sition 6 and Ŷ

y
t denote a potential weak νth-order scheme for WISd(y,α,0, I n

d ).
Then we consider the following scheme for WISd(x,α, b, a):

X̂x
t = θt Ŷ

θ−1
t mt xmT

t (θ−1
t )T

t θT
t .(39)

Unfortunately, we need to make some technical restrictions on a and b [namely,
a ∈ Gd(R) or baT a = aT ab] to show that we get like this a potential νth-order
scheme. We, however, believe that this is rather due to our analysis of the error and
that the scheme converges as well without this restriction. In addition, we mention
that we give in the next section a second-order scheme based on Proposition 5 for
which we can make our error analysis for any parameters.

PROPOSITION 17. Let t > 0, a, b ∈ Md(R) and α ≥ d −1. Let mt = exp(tb),
qt = ∫ t

0 exp(sb)aT a exp(sbT ) ds and n = Rk(aT a). We assume that either a ∈
Gd(R) or b and aT a commute. We define:

• if n = d , θt as the (usual) Cholesky decomposition of qt/t ,

• if n < d , θt =
√

1
t

∫ t
0 exp(sb) exp(sbT ) dsp−1( cn

kn

0
Id−n

)
where (cn, kn,p) is the

extended Cholesky decomposition of aT a otherwise.

In both cases, θt ∈ Gd(R) and the scheme (39) is a potential weak νth-order
scheme for WISd(x,α, b, a).



SIMULATION SCHEMES FOR WISHART PROCESSES 1049

The proof of Proposition 17 is left in Appendix D.2. From Theorem 13, we
finally get the following result by using Propositions 14, 17.

THEOREM 18. Let (Xx
t )t≥0 ∼ WISd(x,α, b, a) such that either a ∈ Gd(R) or

aT ab = baT a and f ∈ C∞
pol(Sd(R)). Let (X̂N

tNi
,0 ≤ i ≤ N) be sampled with the

scheme defined by Proposition 17 and Theorem 16 with the third-order scheme for
the CIR given in [2]. Then,

∃C,N0 > 0,∀N ≥ N0 |E[f (X̂N

tNN
)] − E[f (Xx

T )]| ≤ C/N3.

3.3. Second-order schemes for affine diffusions on S +
d (R). In this part, we

present a potential second-order scheme for AFFd(x, ᾱ,B, a). Thanks to Propo-
sition 5, there is u ∈ Gd(R) and a diagonal matrix δ̄ such that ᾱ = uT δ̄u, aT a =
uT In

d u and we have(
uT Y

(u−1)T xu−1

t u
)
t≥0 ∼ AFFd(x, ᾱ,B, a)

where (Y
y
t )t≥0 ∼ AFFd(y, δ̄,Bu, I

n
d ).

Using the same linear transformation, we can get a potential νth-order scheme
for AFFd(x, ᾱ,B, a) from a potential νth-order scheme for AFFd(y, δ̄,Bu, I

n
d ) as

stated below.

LEMMA 19. If Ŷ
y
t is a potential νth-order scheme for AFFd(y, δ̄,Bu, I

n
d ),

then uT Ŷ
(u−1)T xu−1

t u is a potential νth-order scheme for AFFd(x, ᾱ,B, a).

PROOF. Let f ∈ C∞
pol(S +

d (R)). We then have x �→ f (uT xu) ∈ C∞
pol(S +

d (R)).
Since u is fixed, there are constants C,η,E depending only on a good se-

quence of f such that for t ∈ (0, η), |E[f (uT Ŷ
(u−1)T xu−1

t u)] − E[f (Xx
t )]| =

|E[f (uT Ŷ
(u−1)T xu−1

t u)] − E[f (uT Y
(u−1)T xu−1

t u)]| ≤ Ctν+1(1 + ‖(u−1)T x ×
u−1‖E) ≤ C ′tν+1(1 + ‖x‖E), for some constant C′ > C. �

We now focus on finding a scheme for AFFd(y, δ̄,Bu, I
n
d ), and we will con-

struct it from the second-order scheme for WISd(x,α,0, I n
d ) obtained in (38).

Since δ̄ is a diagonal matrix such that δ̄ − (d − 1)In
d ∈ S +

d (R), we have

δmin := min
1≤i≤n

δ̄i,i ≥ d − 1.

We rewrite the infinitesimal generator of Y
y
t as follows:

L = Tr
([δ̄ + Bu(x)]DS) + 2 Tr(xDS In

d DS )
(40)

= Tr
([δ̄ − δminI

n
d + Bu(x)]DS)︸ ︷︷ ︸

LODE

+ δmin Tr(In
d DS ) + 2 Tr(xDS In

d DS )︸ ︷︷ ︸
LWISd (x,δmin,0,In

d
)

.
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It is the sum of the infinitesimal generator of WISd(x, δmin,0, I n
d ) and of the gen-

erator of the affine ODE

dX
ODE,x
t = [δ̄ − δminI

n
d + Bu(X

ODE,x
t )]dt, X

ODE,x
0 = x ∈ S +

d (R).

We know by Lemma 27 that X
ODE,x
t ∈ S +

d (R) for any t ≥ 0 since assumption
(4) holds for Bu and δ̄ − δminI

n
d ∈ S +

d (R). Besides, this ODE can be solved ex-
plicitly [see formula (52)]. Let X̂x

t denote the potential second-order scheme for
WISd(x, δmin,0, I n

d ) obtained by (38) that uses the nested second-order scheme
for the CIR given in [2]. By using Proposition 15, the schemes

Ŷ x
t = X

ODE,X̂
X

ODE,x
t/2

t

t/2 or Ŷ x
t = (1 − B)X̂

X
ODE,x
t

t + BX
ODE,X̂x

t
t(41)

are potential second-order schemes for AFFd(x, δ̄,Bu, I
n
d ). In the numerical ex-

periments in Section 4, we have used X
ODE,X̂

X
ODE,x
t/2

t

t/2 even though the other scheme
would have worked as well; it is, in fact, a computational trade-off between solv-
ing a deterministic ODE and drawing a Bernoulli variable. Thanks to Lemma 19,
Proposition 14 and Theorem 13, we finally get the following result.

THEOREM 20. The scheme defined by Lemma 19 and equation (41) is a po-
tential second-order scheme for AFFd(x, ᾱ,B, a). In the Wishart case (3), we have
for f ∈ C∞

pol(Sd(R)),

∃C,N0 > 0,∀N ≥ N0 |E[f (X̂N

tNN
)] − E[f (Xx

T )]| ≤ C/N2.

3.4. A faster second-order scheme for AFFd(x, ᾱ,B, a) when ᾱ − daT a ∈
S +

d (R). In this section, we focus on the complexity of the discretization schemes
with respect to the dimension d . Up to now, the discretization schemes that we
have considered in Theorems 18 and 20 have a complexity of O(d4). Indeed, both
schemes rely on the construction (38) to sample WISd(x,α,0, I n

d ), which requires
n Cholesky decompositions, like the exact sampling. This requires at most O(d4)

operations. Here, we present a second-order scheme whose complexity is O(d3),
provided that ᾱ − daT a ∈ S +

d (R) or α ≥ d in the Wishart case. The practical rele-
vance of such a scheme will be illustrated in Section 4.

To do so, we use the same construction as in Section 3.3, and we remark that
different splitting from (40) are possible. In fact, we could have chosen instead
L = Tr([δ̄ −βIn

d +Bu(x)]DS )+β Tr(In
d DS )+2 Tr(xDS In

d DS ) for any β ∈ [d −
1, δmin]: the first part is the operator of an affine ODE which is well defined on
S +

d (R) by Lemma 27 while the second part is the generator of WISd(x,β,0, I n
d ).

When δmin ≥ d , which is equivalent to ᾱ − daT a ∈ S +
d (R), the following splitting
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obtained with β = d

L = Tr
([δ̄ − dIn

d + Bu(x)]DS)︸ ︷︷ ︸
L̃ODE

+ d Tr(I n
d DS ) + 2 Tr(xDS In

d DS )︸ ︷︷ ︸
LWISd (x,d,0,In

d
)

(42)

is really interesting. Indeed it is known from Bru [5] that Wishart processes with
α ∈ N can be seen as the square of an Ornstein–Uhlenbeck process on matrices
and can be simulated very efficiently. More precisely, we will use the following
result that is shown in Appendix D.3.

PROPOSITION 21. Let x ∈ S +
d (R) and c ∈ Md(R) be such that cT c = x. We

have (
(c + WtI

n
d )T (c + WtI

n
d ), t ≥ 0

) =
Law

WISd(x, d,0, I n
d ).

If Ĝ denote a d-by-d matrix with independent elements sampled according
to (36), X̂x

t = (c + √
tĜI n

d )T (c + √
tĜI n

d ) is a potential second-order scheme
for WISd(x, d,0, I n

d ).

To compute X̂x
t , one has to sample d2 random variables and to make one matrix

product, which requires O(d3) operations. This is faster than the scheme obtained
by (38). Then we follow the same line as in Section 3.3 and set

dX̃
ODE,x
t = [δ̄ − δminI

n
d + Bu(X̃

ODE,x
t )]dt, X̃

ODE,x
0 = x ∈ S +

d (R).

This ODE is well defined on S +
d (R) and can be solved explicitly. By Proposi-

tion 15,

Ŷ x
t = X̃

ODE,X̂
X̃

ODE,x
t/2

t

t/2 or Ŷ x
t = (1 − B)X̂

X̃
ODE,x
t

t + BX̃
ODE,X̂x

t
t(43)

is a potential second-order scheme for AFFd(x, δ̄,Bu, I
n
d ) that have still an O(d3)

complexity. Thanks to Lemma 19, Proposition 14 and Theorem 13, we get a similar
result to Theorem 20.

THEOREM 22. Let us assume that ᾱ − daT a ∈ S +
d (R). The scheme de-

fined by Lemma 19 and equation (43) is a potential second-order scheme for
AFFd(x, ᾱ,B, a) that requires at most O(d3) operations. In the Wishart case (3),
we have for f ∈ C∞

pol(Sd(R)),

∃C,N0 > 0,∀N ≥ N0 |E[f (X̂N

tNN
)] − E[f (Xx

T )]| ≤ C/N2.



1052 A. AHDIDA AND A. ALFONSI

4. Numerical results on the simulation methods. The scope of this section
is to compare the different simulation methods given in this paper. We still con-
sider a time horizon T and the regular time-grid tNi = iT /N , for i = 0, . . . ,N . In
addition, we want to compare our schemes to a standard one, and we will consider
the following corrected Euler–Maruyama scheme for AFFd(x, ᾱ,B, a):

X̂N

tN0
= x,

X̂N

tNi+1
= X̂N

tNi
+ (

ᾱ + B(X̂N

tNi
)
) T

N
+

√
(X̂N

tNi
)+(WtNi+1

− WtNi
)a(44)

+ aT (WtNi+1
− WtNi

)T
√

(X̂N

tNi
)+, 0 ≤ i ≤ N − 1.

Here, x+ denotes the matrix that has the same eigenvectors as x with the same
eigenvalue if it is positive and a zero eigenvalue otherwise. Namely, we set x+ =
o diag(λ+

1 , . . . , λ+
d )oT for x = o diag(λ1, . . . , λd)oT . Thus, x+ is by construction

a positive semidefinite matrix and its square root is well defined. Without this
positive part, the scheme above is not well defined for any realization of W .

First, we compare the time required by the different schemes and the exact sim-
ulation. Then, we present numerical results on the convergence of the different
schemes. Last, we give an application of our scheme to the Gourieroux–Sufana
model in finance.

4.1. Time comparison between the different algorithms. In this paragraph, we
compare the time required by the different schemes given in this paper. As it has
already been mentioned, the complexity of the exact scheme as well as the one of
the second-order scheme (given by Theorem 20) and the third-order scheme (given
by Theorem 18) is in O(d4) for one time-step. To be more precise, they require
O(d4) operations that mainly correspond to d Cholesky decompositions, O(d2)

generations of Gaussian (or moment-matching) variables and O(d) generations
of noncentral chi-square distributions (or second or third-order schemes for the
CIR). The time saved by the second and third-order schemes with respect to the
exact scheme only comes from the generation of random variables. For example,
the generation of the moment-matching variables (36) and (37) is 2.5 faster than
the generation of N (0,1) on our computer. The gain between the second or third-
order schemes for the CIR given in Alfonsi [2] and the exact sampling of the CIR
given by Glasserman [11] is much greater, but it depends on the parameters of
the CIR. When the dimension d gets larger, the absolute gain in time between the
discretization schemes and the exact scheme is, of course, increased. However, the
relative gain instead decreases to 1, because more and more time is devoted to
matrix operations and Cholesky decompositions that are the same in both cases.
Let us now quickly analyze the complexity of the other schemes. The second-order
scheme given by Theorem 22 (called “second-order bis” later) has a complexity
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in O(d3) operations for one Cholesky decomposition and matrix multiplications,
with O(d2) generations of Gaussian variables. The complexity of the corrected
Euler scheme is of the same kind. At each time-step, O(d3) operations are needed
for matrix multiplications and for diagonalizing the matrix in order to compute
the square root of its positive part. However, diagonalizing a symmetric matrix is,
in practice, much longer than computing a Cholesky decomposition even though
both algorithms are in O(d3). Also, one has to sample O(d2) Gaussian variables
for the Brownian increments.

In Table 1, we have calculated by a Monte Carlo method one value of the charac-
teristic function of a Wishart process. It is also known analytically thanks to (10),
and we have indicated in each case the exact value. We have considered dimen-
sions d = 3 and d = 10. We have given in each case an example where α ≥ d

and another one where d − 1 ≤ α < d . We have used the different algorithms pre-
sented in this paper: “2nd-order bis” stands for the scheme given by Theorem 22
[with the moment-matching variables (36)], “2nd order” stands for the scheme
given by Theorem 20 (with (36) and the second-order scheme for the CIR given
by [2]), “3rd order” stands for the scheme given by Theorem 18 (with (37) and the
third-order scheme for the CIR given by [2]) and “Corrected Euler” stands for the
corrected Euler–Maruyama scheme (44). For the exact scheme, we have consid-
ered both the cases with one time-step T and N time-steps T/N . Of course, the
first case is sufficient to calculate an expectation that only depends on XT , but the
second case allows us to also compute pathwise expectations. For each method, we
have given the value obtained and the time needed (in seconds) on our computer
(3000 MHz CPU).

First, let us mention that the exact value is in each case in the confidence interval
except for the corrected Euler scheme. As one can expect, the exact method with
one time-step is by far the quickest method to compute an expectation that only
depends on the final value. We put aside this case and focus now on the generation
of the whole path. We see from Table 1 that the second and the third-order schemes
require roughly the same computation time. As expected, the second-order scheme
bis is much faster when it is defined (i.e., when α ≥ d). On the contrary, the Euler
scheme is much slower than the second and third-order scheme. This is due to the
cost of the matrix diagonalization. Let us mention that the time required by the
discretization schemes is proportional to N and do not depend on the parameters
when the dimension is given. On the contrary, the time needed by the exact scheme
may change according to α and can increase considerably when α is close to d −1.
To be more precise, the exact simulation method for the CIR given by Glasserman
[11] uses a rejection sampling when the degree of freedom is lower than 1, which
corresponds to the case d −1 ≤ α < d . The rejection rate can in fact be rather high,
notably when the time-step gets smaller. For N = 30, d = 3 and α = 2.2, the exact
scheme is four times slower than the second-order scheme and 2.5 slower than the
exact scheme with α = 3.5.
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TABLE 1
E[exp(−Tr(ivX̂N

tNN
))] calculated by a Monte Carlo with 106 samples for a Wishart process with

a = Id , b = 0, x = 10Id , v = 0.09Id and T = 1. The starred numbers are those for which the exact
value is outside the 95% confidence interval, and �R (resp., �I ) gives the two standard

deviations value on the real (resp., imaginary) part

N = 10 N = 30

Schemes R. value Im. value Time R. value Im. value Time

α = 3.5, d = 3,�R = 10−3,�Im = 10−3,
exact value R. = −0.527090 and Im. = −0.228251

Exact (1 step) −0.526852 −0.227962 12
2nd-order bis −0.526229 −0.228663 41 −0.526486 −0.229078 125
2nd order −0.526577 −0.228923 76 −0.526574 −0.228133 229
3rd order −0.527021 −0.227286 82 −0.527613 −0.228376 244
Exact (N steps) −0.526963 −0.228303 123 −0.526891 −0.227729 369
Corrected Euler −0.525627∗ −0.233863∗ 225 −0.525638∗ −0.231449∗ 687

α = 2.2, d = 3,�R = 0.9 × 10−3,�Im = 1.3 × 10−3,
exact value R. = −0.591411 and Im. = −0.036346

Exact (1 step) −0.591579 −0.037651 12
2nd order −0.590444 −0.037024 77 −0.590808 −0.036487 229
3rd order −0.591234 −0.034847 82 −0.590818 −0.036210 246
Exact (N steps) −0.591169 −0.036618 174 −0.592145 −0.037411 920
Corrected Euler −0.589735∗ −0.042002∗ 223 −0.590079∗ −0.039937∗ 680

α = 10.5, d = 10,�R = 1.4 × 10−3,�Im = 1.3 × 10−3,
exact value R. = 0.063960 and Im. = −0.063544

Exact (1 step) 0.062712 −0.063757 181
2nd-order bis 0.064237 −0.063825 921 0.064573 −0.062747 2762
2nd order 0.064922 −0.064103 1431 0.063534 −0.063280 4283
3rd order 0.064620 −0.064543 1446 0.064120 −0.063122 4343
Exact (N steps) 0.063418 −0.064636 1806 0.063469 −0.064380 5408
Corrected Euler 0.068298∗ −0.058491∗ 2312 0.061732∗ −0.056882∗ 7113

α = 9.2, d = 10,�R = 1.4 × 10−3,�Im = 1.4 × 10−3,
exact value R. = −0.036064 and Im. = −0.093275

Exact (1 step) −0.036869 −0.094156 177
2nd order −0.036246 −0.094196 1430 −0.035944 −0.092770 4285
3rd order −0.035408 −0.093479 1441 −0.036277 −0.093178 4327
Exact (N steps) −0.036478 −0.092860 1866 −0.036145 −0.093003 6385
Corrected Euler −0.028685∗ −0.094281∗ 2321 −0.030118∗ −0.088988∗ 7144

Let us draw a conclusion from this time comparison between the different
schemes. Obviously, we recommend the use of the exact scheme when calculating
expectations that depend on one or few dates. Instead, when calculating pathwise
expectations of affine processes by Monte Carlo, we would recommend the use of,
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in general, the second-order bis scheme when α ≥ d and the second order (or third
order for Wishart processes) when d − 1 ≤ α < d .

4.2. Numerical results on the convergence. Now we want to illustrate the the-
oretical results of convergence obtained in this paper for the different schemes.
To do so, we have plotted for each scheme E[exp(−Tr(ivX̂N

tNN
))] in function of

the time step T/N . This expectation is calculated by a Monte Carlo method. As
for the time comparison, we illustrate the convergence for d = 3 in Figure 1 and
d = 10 in Figure 2. Each time, we consider a case where α ≥ d and a case where
d − 1 ≤ α < d , which is in general tougher. In these figures:

• scheme 1 denotes the value obtained by the exact scheme with one time-step,
• scheme 2 stands for the second-order scheme given by Theorem 20,
• scheme 3 denotes the third-order scheme given by Theorem 18,
• scheme 4 is the corrected Euler scheme (44).

Here, we have not plotted the convergence of the second-order (bis) scheme given
by Theorem 22 because it would have given almost the same convergence as the
other second-order scheme.

As expected, we observe in both Figures 1 and 2 convergences that fit our theo-
retical results. Namely, scheme 2 converges in O(1/N2) and scheme 3 converges
faster in O(1/N3). In some cases, such as Figure 2, scheme 3 already matches
the exact value from N = 2. Even though it seems to converge at an O(1/N)

speed, the corrected Euler scheme is clearly not competitive with respect to the

FIG. 1. d = 3, 107 Monte Carlo samples, T = 10. The real value of E[exp(−Tr(ivX̂N

tNN
))] in func-

tion of the time-step T/N . Left: v = 0.05Id and Wishart parameters x = 0.4Id , α = 4.5, a = Id and
b = 0. Exact value: 0.054277. Right: v = 0.2Id + 0.04q and Wishart parameters x = 0.4Id + 0.2q ,
α = 2.22, a = Id and b = −0.5Id . Exact value: 0.239836. Here, q is the matrix defined by:
qi,j = 1i �=j . The width of each point represents the 95% confidence interval.
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FIG. 2. d = 10, 107 Monte Carlo samples, T = 10. Left: imaginary value of E[exp(−Tr(ivX̂N

tNN
))]

with v = 0.009Id in function of the time-step T/N . Wishart parameters: x = 0.4Id , α = 12.5, b = 0
and a = Id . Exact value: −0.361586. Right: real value of E[exp(−Tr(ivX̂N

tNN
))] with v = 0.009Id

in function of T/N . Wishart parameters: x = 0.4Id , α = 9.2, b = −0.5Id and a = Id . Exact value
0.572241. The width of each point represents the 95% confidence interval.

other schemes. In the tough case d − 1 ≤ α ≤ d , the values obtained by the Euler
scheme are in fact outside the figures, and we have put the corresponding values
in Table 2.

We want to conclude this section by numerically testing the convergence of
our schemes when we calculate pathwise expectations. Of course, our theoreti-
cal results only bring on the weak error, but we may hope that our schemes con-
verge also quickly when considering more intricate expectations. In Figure 3, we
approximate E[max0≤t≤T Tr(Xx

t )] with the different schemes by computing the
maximum on the time-grid. The convergence seems to be roughly in O(1/

√
N)

for all the schemes (see Figure 3, left), including the exact scheme. However,
the main error seems to come from the approximation of max0≤t≤T Tr(Xx

t ) by
max0≤k≤N Tr(Xx

tNk
). In fact, we have plotted in Figure 3 (right) the difference

between E[max0≤k≤N Tr(X̂N

tNk
)] and E[max0≤k≤N Tr(Xx

tNk
)]. Then, we find con-

vergences that are very similar to those obtained for the weak error: schemes 2

TABLE 2
Values obtained by the Euler scheme in the numerical experiments of Figures 1 and 2

N 2 4 8 10 16 30

Figure 1, right −0.000698 0.000394 0.033193 0.111991 0.185128 0.210201
Figure 2, right 0.494752 −0.464121 0.657041 0.643042 0.637585 0.619553
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FIG. 3. d = 3, 107 Monte Carlo samples, T = 1. Wishart parameters x = 0.4Id + 0.2q

with qi,j = 1i �=j , α = 2.2, b = 0 and a = Id . Left: E[max0≤k≤N Tr(X̂N

tNk
)]. Right:

E[max0≤k≤N Tr(X̂N

tNk
)]− E[max0≤k≤N Tr(Xx

tNk
)] in function of T/N . The width of each point gives

the precision up to two standard deviations.

and 3 converge at a speed which is, respectively, compatible with O(1/N2) and
O(1/N3). Scheme 4 seems also to give an O(1/N) convergence. It would be
hasty to draw a global conclusion from this simple example. Nonetheless, the con-
vergence of schemes 2 and 3 is really encouraging on pathwise expectations, if
we put aside the problem of approximating a function of (Xx

t ,0 ≤ t ≤ T ) by a
function of (Xx

tNk
,0 ≤ k ≤ N).

4.3. An application in finance to the Gourieroux and Sufana model. In this
paragraph, we want to give a possible application of our schemes in finance. More
precisely, we will consider the model introduced by Gourieroux and Sufana [14].
This is a model for d risky assets S1

t , . . . , Sd
t . Let (Bt , t ≥ 0) denote a standard

Brownian motion on R
d that is independent from (Wt , t ≥ 0). Then, we consider

the following dynamics for the assets:

t ≥ 0,1 ≤ l ≤ d, Sl
t = Sl

0 + r

∫ t

0
Sl

u du +
∫ t

0
Sl

u

(√
Xu dBu

)
l ,(45)

where Xt = X0 + ∫ t
0 (αaT a + bXu +Xub

T ) du+ ∫ t
0 (

√
Xu dWua + aT dWT

u

√
Xu)

is a Wishart process. Here, (
√

Xu dBu)l is simply the lth coordinates of the vector√
Xu dBu. We can easily check that the instantaneous quadratic covariation matrix

between the log-prices of the assets is Xt . Last, r denotes the instantaneous interest
rate.
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To simulate both assets and the Wishart matrix, we proceed as follows. We
observe that the generator of (St ,Xt) can be written as

L = LS + LX where LS =
d∑

i=1

rsi∂si + 1

2

d∑
i,j=1

sisj xi,j ∂si ∂sj ,

and LX is the generator of the Wishart process WISd(x,α, b, a). The operator
LS is associated to the SDE dSl

t = rSl
t + Sl

t (
√

x dBt)l that can be solved ex-
plicitly. We have indeed Sl

t = Sl
0 exp[(r − xl,l/2)t + (

√
xBt)l]. Let us also re-

mark that
√

xBt =
Law

cBt if we have ccT = x; both are centered Gaussian vec-

tors with the same covariance matrix. In practice, it is more efficient to use
Sl

t = Sl
0 exp[(r −xl,l/2)t +(cBt )l] where c is computed with an extended Cholesky

decomposition of x rather than calculating
√

x, which requires a diagonalization.
Then we consider the scheme given by 2(a) in Proposition 15, where we take the
second-order scheme for WISd(x,α, b, a) and the exact scheme for LS . This con-
struction is known to preserve the second-order convergence. To be consistent with
Section 4.2, this scheme will be denoted by scheme 2 in this paragraph. To com-
pare this scheme with a more basic one, we consider the Euler–Maruyama scheme
defined by (44) and

Ŝ
l,N

tN0
= Sl

0,

Ŝ
l,N

tNi+1
= Ŝ

l,N

tNi

(
1 + rT /N + (√

(X̂N

tNi
)+(BtNi+1

− BtNi
)
)
l

)
, 0 ≤ i ≤ N − 1.

It is denoted by scheme 4 as in Section 4.2.
We have plotted in Figure 4 the price of a put option on the maximum of two

risky assets (d = 2). The Gourieroux and Sufana model is an affine model, and the
characteristic function of St is explicitly known (see [14]). Thus, it is possible to
adapt the method proposed by Carr and Madan [6] and to calculate by numerical
integration (which is possible for small dimensions) the value of this put option.
We have given in Figure 4 the exact value obtained by this method. As one might
have guessed, we observe a quadratic convergence for scheme 2 and a linear con-
vergence for scheme 4. The benefit of using scheme 2 is clear since it already fits
with the exact value from N = 5 in both cases; its convergence is really satisfac-
tory.

5. Conclusion and prospects. Let us draw a brief summary of this paper.
Thanks to a remarkable splitting of the infinitesimal generator of Wishart pro-
cesses, we have been able to sample exactly any Wishart distribution. We have also
proposed a third-order scheme for Wishart processes and a second-order scheme
for general affine diffusions. We have confirmed these rates of convergence with
numerical tests and analyzed the time complexity of each method. It comes out
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FIG. 4. E[e−rT (K − max (Ŝ
1,N

tNN
, Ŝ

2,N

tNN
))+] in function of T/N . d = 2, T = 1, K = 120,

S1
0 = S2

0 = 100 and r = 0.02. Wishart parameters: x = 0.04Id + 0.02q with qi,j = 1i �=j , a = 0.2Id ,
b = 0.5Id and α = 4.5 (left), α = 1.05 (right). The width of each point gives the precision up to two
standard deviations (106 Monte Carlo samples).

that we recommend to use the exact scheme to compute expectations that depend
on one (or few) times. To calculate pathwise expectations, we instead recommend
generally to use discretization schemes. More precisely, the second-order scheme
given by Theorem 22 has to be preferred when α ≥ d . Otherwise, we recommend
to use the third-order scheme given by Theorem 18 for Wishart processes or the
second-order scheme given by Theorem 20 for general affine diffusions.

Let us give now some prospects of this work. As a possible continuation of
this paper, it is natural to study how it is possible to extend our schemes to affine
diffusions on positive semidefinite matrices that include jumps (see Cuchiero et
al. [7]). From a modeling point of view, we believe that Wishart processes could
be used in a wide range of applications. In fact, they can be used as soon as one
has to model dependence dynamics. Thus, we hope that the possibility of sampling
such processes will stimulate different kinds of dependence models.

APPENDIX A: THE EXTENDED CHOLESKY DECOMPOSITION

LEMMA 23. Let q ∈ S +
d (R) be a matrix with rank r . Then there is a per-

mutation matrix p, an invertible lower triangular matrix cr ∈ Gr (R) and kr ∈
Md−r×r (R) such that

pqpT = ccT , c =
(

cr 0
kr 0

)
.

The triplet (cr , kr ,p) is called an extended Cholesky decomposition of q . Besides,
c̃ = ( cr

kr

0
Id−r

) ∈ Gd(R), and we have

q = (c̃T p)T I r
d c̃T p.
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The proof and a numerical procedure to get such a decomposition can be found
in Golub and Van Loan ([13], Algorithm 4.2.4). When r = d , we can take p = Id ,
and cr is the usual Cholesky decomposition.

APPENDIX B: PROOFS OF SECTION 1

B.1. Proof of Proposition 4. We will need in the proof the following basic
lemma.

LEMMA 24. Let b, c ∈ Sd(R). If either b ∈ S +
d (R) or c ∈ S +

d (R), then Id +
ibc is invertible. In particular, if b ∈ S +,∗

d (R), b + ic is invertible.

PROOF. Let v ∈ Sd(R) such that ∀s ∈ [0, t], Id − 2qsv ∈ Gd(R). As it is usual
for affine diffusions, the Laplace transform can be formulated with ODE solutions.
Namely, we will show that E[exp(Tr(vXx

t ))] = exp[φ(t, v)+Tr(ψ(t, v)x)], where
ψ and φ solve the following ODEs (see, e.g., Cuchiero et al. [7]):

∂tψ(t, v) = ψ(t, v)b + bT ψ(t, v) + 2ψ(t, v)aT aψ(t, v); ψ(0, v) = v,

∂tφ(t, v) = α Tr(ψ(t, v)); φ(0, v) = 0.

The function ψ solves an usual matrix Riccati ODE. As shown by Levin [20],
ψ can be obtained explicitly by the mean of an exponential matrix, and we get

ψ(t, v) = exp(tbT )(Id − 2vqt )
−1v exp(tb),

provided that Id − 2qsv is invertible for s ∈ [0, t], which holds by assumption.
Therefore we get, for x ∈ Sd(R),

Tr(ψ(t, v)x) = Tr
(
(Id − 2vqt )

−1v exp(tb)x exp(tbT )
)

= Tr
(
v(Id − 2qtv)−1 exp(tb)x exp(tbT )

)
,

since v(Id − 2qtv)−1 = (Id − 2vqt )
−1v. As explained by Grasselli and Tebaldi

([15], Section 4.2), φ can also be calculated explicitly by the mean of the exponen-
tial matrix above, and we get

φ(t, v) = −α

2
Tr

(
log[(Id − 2vqt ) exp(tbT )] − t Tr(b)

)
.

By using that exp(Tr(log(A))) = det(A) for A ∈ Gd(R), we deduce then that

exp(φ(t, v)) = exp
(

α

2
t Tr(b)

)(
det{(Id − 2vqt )}det{exp(tbT )})−α/2

= 1

det(Id − 2qtv)α/2 .
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Now it remains to show that (10) indeed holds. By Itô calculus, we get that for
s ∈ (0, t),

d exp
[
φ(t − s, v) + Tr

(
ψ(t − s, v)Xx

s

)]
= exp

[
φ(t − s, v) + Tr

(
ψ(t − s, v)Xx

s

)]
(46)

× Tr
[
ψ(t − s, v)

(√
Xx

s dWsa + aT dWT
s

√
Xx

s

)]
.

Thus, exp[φ(t − s, v) + Tr(ψ(t − s, v)Xx
s )] is a positive local martingale and

therefore a supermartingale, which gives that E[exp(Tr(vXx
t ))] ≤ exp[φ(t, v) +

Tr(ψ(t, v)x)] < ∞, that is, Db,a;t ⊂ D̃x,α,b,a;t , where

Db,a;t := {v ∈ Sd(R),∀s ∈ [0, t], Id − 2qsv ∈ Gd(R)}
and

D̃x,α,b,a;t := {v ∈ Sd(R),E[exp(Tr(vXx
t ))] < ∞}.

On the other hand, when −v ∈ S +,∗
d (R), we can check that exp[φ(t − s, v) +

Tr(ψ(t − s, v)Xx
s )] ≤ 1 by observing that det(Id − 2qtv) = det(Id + 2

√−v ×
qt

√−v) ≥ 1 and Tr(v(Id − 2qtv)−1 exp(tb)x exp(tbT )) = −Tr(
√−v(Id + 2 ×√−vqt

√−v)−1√−v exp(tb)x exp(tbT )) ≤ 0. In that case, exp[φ(t − s, v) +
Tr(ψ(t − s, v)Xx

s )] is a martingale from (46), and (10) holds.
Let us now observe that Db,a;t is convex. In fact, we have det(Id − 2qsv) =

det(Id − 2
√

qsv
√

qs), and therefore, Db,a;t = {v ∈ Sd(R),∀s ∈ [0, t], Id −
2
√

qsv
√

qs ∈ S +,∗
d (R)} which is obviously convex. The Laplace transform v �→

E[exp(Tr(vXx
t ))] is an analytic function on Db,a;t (see, e.g., [9], Lemma 10.8). The

right-hand side of (10) is also analytic on Db,a;t and coincides with the Laplace
transform when −v ∈ S +,∗

d (R). Therefore, (10) holds for v ∈ Db,a;t since Db,a;t
is convex. Now, we can extend to complex values of v. Indeed, the right-hand side
of (10) is well defined for v = vR + ivI with vR ∈ Db,a;t , thanks to Lemma 24.
Since both-hand sides are analytic functions of v, (10) holds for v = vR + ivI .

Last, we want to show that Db,a;t = D̃x,α,b,a;t . We first consider the case b = 0
and assume by a way of contradiction that there is v ∈ D̃x,α,0,a;t \ D0,a;t for some
x, α, a and t > 0. Let t̃ = min{s ∈ [0, t], Id − 2qsv /∈ Gd(R)} ∈ (0, t]. On the one
hand, we have v /∈ D0,a;t̃ and v ∈ D0,a;s for s ∈ [0, t̃). On the other hand, we have,
by Jensen’s inequality

s ∈ [0, t], exp
(
α(t − s)Tr(vaT a)

)
exp(Tr(vXx

s )) ≤ E[exp(Tr(vXx
t ))|Fs],

which gives s ∈ [0, t] �→ exp(−αs Tr(vaT a))E[exp(Tr(vXx
s ))] is nondecreasing

and finite. Since (10) holds for s < t̃ , we get that E[exp(Tr(vXx
t̃
))] = +∞, which

leads to a contradiction. Let us now consider the case b �= 0. From Proposition 6
(which is a consequence of the characteristic function obtained above), we have

v ∈ D̃x,α,b,a;t ⇐⇒ θT
t vθt ∈ D0,I n

d ;t
⇐⇒ ∀s ∈ [0, t] det

(
Id − 2(s/t)qtv

) �= 0.
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In particular, D̃x,α,b,a;t is an open set. For v ∈ Gd(R), we have det(Id −
2(s/t)qtv) �= 0 ⇐⇒ det(v−1 − 2(s/t)qt ) �= 0 [resp., det(Id − 2qsv) �= 0 ⇐⇒
det(v−1 − 2qs) �= 0]. Since sqt ≤ s′qt (resp., qs ≤ qs′) for s ≤ s′, we know
from Theorem 8.1.5 in [13] that the (real) eigenvalues of v−1 − 2(s/t)qt (resp.,
v−1 − 2qs ) are nonincreasing w.r.t. s. Since they are also continuous, and v−1 −
2(s/t)qt = v−1 − 2qs for s ∈ {0, t}, we get that ∀s ∈ [0, t],det(v−1 − 2(s/t)qt ) �=
0 ⇐⇒ ∀s ∈ [0, t],det(v−1 − 2qs) �= 0 and thus D̃x,α,b,a;t ∩ Gd(R) = Db,a;t ∩
Gd(R). Let v ∈ D̃x,α,b,a;t . Since D̃x,α,b,a;t is an open set, there is ε > 0 such that
v ± εId ∈ D̃x,α,b,a;t ∩ Gd(R). Since Db,a;t is convex, v = (v + εId + v − εId)/2 ∈
Db,a;t . �

B.2. Proof of Proposition 5. Once u is given, the identity in law comes di-
rectly from (13). We now give a constructive proof of the existence of u, which
takes back the arguments given by Golub and Van Loan ([13], Theorem 8.7.1).
Nonetheless, we explain it entirely since it gives a practical way to get u.

Let us consider ᾱ + aT a ∈ S +
d (R). From the extended Cholesky decomposition

given in Lemma 23 there is a matrix v ∈ Gd(R) such that vT ᾱv + vT aT av = I r
d ,

where r = Rk(ᾱ + aT a). Since vT ᾱv ∈ S +
d (R), vT aT av ∈ S +

d (R) and zT I r
d z = 0

for z ∈ R
d such that z1 = · · · = zr = 0, there are s1, s2 ∈ S +

n (R) such that

vT ᾱv =
(

s1 0
0 0

)
and vT aT av =

(
s2 0
0 0

)
.

Let o2 be an orthogonal matrix such that oT
2 s2o2 is a diagonal matrix. We as-

sume without loss of generality that only the first n elements of this diagonal are
positive: oT

2 s2o2 = diag(η1, . . . , ηn,0, . . . ,0). We set o = (o2
0

0
Id−r

)
and get I r

d =
oT vT ᾱvo + oT vT aT avo, which gives that oT vT ᾱvo is a diagonal matrix. Thus,
we get the desired result by taking u = diag(

√
η1, . . . ,

√
ηn,1, . . . ,1)o−1v−1.

APPENDIX C: PROOFS OF SECTION 2

C.1. Proof of Proposition 8. Let Xx
t ∼ WISd(x,α,0, I n

d ; t). We will check
that for any polynomial function f of the matrix elements, we have E[f (Xx

t )] =
E[f (X

n,...X
1,x
t

t )]. Let us consider a polynomial function f of degree m,

x ∈ Sd(R), f (x) = ∑
γ∈Nd(d+1)/2,|γ |≤m

aγ x̄γ ,

where |γ | = ∑
1≤i≤j≤d |γ{i,j}| and x̄γ = ∏

1≤i≤j≤d x
γ{i,j}
{i,j} . Since the operators are

affine, it is easy to check that Lf (x) and Lei
d
f (x) are also polynomial functions
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of degree m. We set

‖f ‖P = ∑
γ∈Nd(d+1)/2,|γ |≤m

|aγ | and |L| = max
γ∈Nd(d+1)/2,|γ |≤m

‖Lx̄γ ‖P,

so that ‖Lkf ‖P ≤ |L|k‖f ‖P for any k ∈ N. Therefore, the series
∑∞

k=0 tkLkf (x)/

k! converges absolutely. By using l + 1 times Itô’s formula, we get

E[f (Xx
t )] =

l∑
k=0

tk

k!L
kf (x) +

∫ t

0

(t − s)l

l! E[Ll+1f (Xx
s )]ds.

Wishart processes have bounded moments since the drift and diffusion coefficients
have a sublinear growth. Thus, C = maxγ∈Nd(d+1)/2,|γ |≤m sups∈[0,t] E[|X̄xγ

s |] < ∞
and we obtain that |∫ t

0
(t−s)l

l! E[Ll+1f (Xx
s )]ds| ≤ C‖f ‖P(t |L|)l+1/(l+1)! →

l→+∞ 0.

Thus, we have E[f (Xx
t )] = ∑∞

k=0 tkLkf (x)/k! and similarly we get that

E
[
f
(
X

n,...X
1,x
t

t

)|Xn−1,...X
1,x
t

t

] =
+∞∑
kn=0

tkn

kn!L
kn

en
d
f
(
X

n−1,...X
1,x
t

t

)
.

Now, we remark that C̃ = maxγ∈Nd(d+1)/2,|γ |≤m sups∈[0,t] max(E[|X̄1,xγ

t |], . . . ,
E[|X̄n,...X

1,xγ

t

t |]) < ∞ by using once again that Wishart processes have bounded

moments. Since E[|Lkn

en
d
f (X

n−1,...X
1,x
t

t )|] ≤ C̃‖f ‖P|Len
d
|kn , we can switch the ex-

pectation with the series and get (16). Then, since L
kn

en
d
f (x) are polynomial func-

tion of degree m, we can iterate this argument and finally get (17), which gives the
result.

C.2. Proof of Theorem 9. The proof is divided into two parts. First, we prove
that the SDE (26) has a unique strong solution which is given by (27) and is well
defined on S +

d (R). Second, we show that its infinitesimal generator is equal to the
operator Le1

d
defined in (18).

First step. Let us assume that (Xx
t )t≥0 is a solution to (26). We use the matrix

decomposition of (xi,j )2≤i,j≤d given by (25) and set

(Ut ){1,l+1} =
r∑

i=1

(c−1
r )l,i(X

x
t ){1,i+1}, l ∈ {l, . . . , r},

(Ut ){1,1} = (Xx
t ){1,1} −

r∑
l=1

(
r∑

i=1

(c−1
r )l,i(X

x
t ){1,i+1}

)2

= (Xx
t ){1,1} −

r∑
l=1

(
(Ut ){1,l+1}

)2
.
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We get by using Lemma 25 that⎛
⎝1 0 0

0 cr 0
0 kr Id−r−1

⎞
⎠

×

⎛
⎜⎜⎜⎝

(Ut ){1,1} +
r∑

k=1

(
(Ut ){1,k+1}

)2 (
(Ut ){1,l+1}

)T
1≤l≤r 0

(
(Ut ){1,l+1}

)
1≤l≤r Ir 0

0 0 0

⎞
⎟⎟⎟⎠

×
⎛
⎝1 0 0

0 cT
r kT

r

0 0 Id−r−1

⎞
⎠

=

⎛
⎜⎜⎜⎜⎝

(Ut ){1,1} +
r∑

k=1

(
(Ut ){1,k+1}

)2 (
(Ut ){1,l+1}

)T
1≤l≤rc

T
r

(
(Ut ){1,l+1}

)T
1≤l≤rk

T
r

cr

(
(Ut ){1,l+1}

)
1≤l≤r crc

T
r crk

T
r

kr

(
(Ut ){1,l+1}

)
1≤l≤r krc

T
r 0

⎞
⎟⎟⎟⎟⎠

= Xx
t .

Since ⎛
⎝1 0 0

0 cr 0
0 kr Id−r−1

⎞
⎠

is invertible, Xx
t ∈ S +

d (R) if, and only if

∀z ∈ R
d

zT

⎛
⎜⎜⎜⎝

(Ut ){1,1} +
r∑

i=1

(
(Ut ){1,i+1}

)2 (
(Ut ){1,l}

)
2≤l≤r+1 0

(
(Ut ){l,1}

)
2≤l≤r+1 Ir 0

0 0 0

⎞
⎟⎟⎟⎠z

(47)

= z2
1(Ut ){1,1} +

r∑
i=1

(
zi+1 + (Ut ){1,i+1}z1

)2

≥ 0 ⇐⇒ (Ut ){1,1} ≥ 0.

In particular, we get that (U0){1,1} = u{1,1} ≥ 0 since x ∈ S +
d (R). Now, by Itô

calculus, we get from (26) that

d(Ut ){1,l+1} =
r∑

i=1

r∑
k=1

(c−1
r )l,i(cr )i,k dZk+1

t = dZl+1
t
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and

d(Ut ){1,1} = (α − r) dt + 2
√

(Ut ){1,1} dW 1
t

+ 2
r∑

l=1

r∑
k=1

(c−1
r )l,k(Xt){1,k+1} dWl+1

t

−
r∑

l=1

2
(
(Ut ){1,l+1}

)
dWl+1

t

= (α − r) dt + 2
√

(Ut ){1,1} dW 1
t .

Thus, the solution (Xx
t )t≥0 is necessarily the one given by (27) [pathwise unique-

ness holds for ((Uu
t ){1,l})1≤l≤r+1, and especially for the CIR diffusion (Uu

t ){1,1}
since α ≥ d − 1 ≥ r]. Reciprocally, it is easy to check by Itô calculus that (27)
solves (26).

Second step. Now we want to show that Le1
d

is the infinitesimal operator associ-
ated to the process (Xx

t )t≥0. It is sufficient to compare the drift and the quadratic
covariation of the process Xx

t with Le1
d
. Since the drift part of (Xx

t )t≥0 clearly cor-
responds to the first order of Le1

d
, we study directly the quadratic part. From (26),

we have for i, j ∈ {2, . . . , d}2,

d
〈
(Xx

t ){1,1}, (Xx
t ){1,1}

〉
= 4

(
(Xx

t ){1,1} −
r∑

k=1

[
r∑

l=1

(c−1
r )k,l(X

x
t ){1,l+1}

]2

+
r∑

k=1

[
r∑

l=1

(c−1
r )k,l(X

x
t ){1,l+1}

]2)

= 4(Xx
t ){1,1} dt,

d
〈
(Xx

t ){1,i}, (Xx
t ){1,j}

〉
=

r∑
k=1

(cr)i−1,k(cr)j−1,k dt = (ccT )i−1,j−1 dt

= (Xx
t ){i,j} dt,

d
〈
(Xx

t ){1,1}, (Xx
t ){1,i}

〉
= 2

r∑
k=1

r∑
l=1

(cr)i−1,k(c
−1
r )k,l(X

x
t ){1,l+1} dt

= 2(Xx
t ){1,i} dt if i ≤ r + 1,
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d
〈
(Xx

t ){1,1}, (Xx
t ){1,i}

〉
= 2

r∑
k=1

r∑
l=1

(kr)i−1−r,k(c
−1
r )k,l(X

x
t ){1,l+1} dt

= 2
r∑

l=1

(krc
−1
r )i−1−r,l(X

x
t ){1,l+1} dt

= 2(Xx
t ){1,i} dt if i > r + 1 by Lemma 25.

Thus, we deduce that Le1
d

is the infinitesimal generator of (Xx
t )t≥0.

LEMMA 25. Let y ∈ S +
d (R). We set r = Rk((yi,j )2≤i,j≤d), yr

1 = (y1,i+1)1≤i≤r

and y
r,d
1 = (y1,i+1)r+1≤i≤d . We assume that there are an invertible matrix cr and

a matrix kr defined on Md−r−1×r (R), such that

(yi,j )2≤i,j≤d =
(

cr 0
kr 0

)(
cT
r kT

r

0 0

)
.

Then, we have y
r,d
1 = krc

−1
r yr

1.

PROOF. We set

p =
⎛
⎜⎝1 0 0

0 cr 0
0 kr Id−r−1

⎞
⎟⎠ and have p−1 =

⎛
⎜⎝

1 0 0

0 c−1
r 0

0 −krc
−1
r Id−r−1

⎞
⎟⎠ .

Since the matrix

p−1y(p−1)T =

⎛
⎜⎜⎝

y1,1 (c−1
r yr

1)
T (y

r,d
1 − krc

−1
r yr

1)
T

c−1
r yr

1 Ir 0
y

r,d
1 − krc

−1
r yr

1 0 0

⎞
⎟⎟⎠

is positive semidefinite, we necessarily have y
r,d
1 − krc

−1
r yr

1 = 0. �

APPENDIX D: PROOFS OF SECTION 3

D.1. Proof of Proposition 14.

LEMMA 26. Let (Xx
t )t≥0 ∼

Law
WISd(x,α, b, a) and v = vR + ivI such that

vR ∈ Db,a;t and vI ∈ Sd(R). We denote by φ(t, α, x, v) the Laplace transform
of Xx

t given by (10), the other parameters a, b being fixed. Then, the derivative
w.r.t. x{k,l} satisfies the equality

∂{k,l}φ(t, α, x, v) = φ(t, α + 2, x, v)p
{k,l}
t (v),
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where p
{k,l}
t is a polynomial function of the matrix elements of degree d defined by

p
{k,l}
t (v) = Tr[v adj(Id − 2qtv)mt (e

k,l
d + 1k �=le

l,k
d )mT

t ]
=: ∑

γ∈Nd(d+1)/2,|γ |≤d

a
γ,{k,l}
t v̄γ ,

where

v̄γ = ∏
{i,j}

v
γ{i,j}
{i,j} .

Moreover, its coefficients are bounded uniformly in time,

∃Kt > 0,∀s ∈ [0, t] max
γ∈Nd(d+1)/2,|γ |≤d

(∣∣aγ,{k,l}
s

∣∣) ≤ Kt.

PROOF. We get from (10)

∂{k,l}φ(t, α, x, v) = Tr[v adj(Id − 2qtv)mt(e
k,l
d + 1k �=le

l,k
d )mT

t ]
det(Id − 2qtv)

× exp(Tr[v(Id − 2qtv)−1mtxmT
t ])

det(Id − 2qtv)α/2

= φ(t, α + 2, x, v)Tr[v adj(Id − 2qtv)mt (e
k,l
d + 1k �=le

l,k
d )mT

t ].
Since s �→ ‖ms‖ and s �→ ‖qs‖ are continuous functions on [0, t], we obtain the
bounds on the polynomial coefficients. �

PROOF OF PROPOSITION 14. Let f ∈ C∞
pol(Sd(R)). First, let us observe that

(35) is obvious when l = |n| = 0. Since we have ∀l ∈ N,Llf ∈ C∞
pol(Sd(R)),

and ∂l
t ũ(t, x) = E(Llf (Xx

t )), it is sufficient to prove (35) only for the derivatives
w.r.t. x.

We first focus on the case |n| = 1 and want to show that ∂{k,l}ũ(t, x) satis-
fies (35). The sketch of this proof is to write f as the inverse Fourier transform of
its Fourier transform and then use Lemma 26. Unfortunately, f has not a priori the
required integrability to do that, and we have to introduce an auxiliary function fρ .

Definition of the new function fρ . Since Db,a;T given by (9) is an open set and
0 ∈ Db,a;T , there is ρ > 0 such that ρId ∈ Db,a;T . Let μ : R → R be the function
such that μ(x) = 0 if x ≤ −1 or x ≥ 0, μ(x) = exp( 1

x(x+1)
) if −1 < x < 0. We

have μ ∈ C∞(R).
Then we consider he cutoff function ζ : R → R ∈ C∞(R) defined as ∀x ∈ R,

ζ(x) =
∫ x
−∞ μ(y)dy∫
R

μ(y)dy
. It is nondecreasing, such that 0 ≤ ζ(x) ≤ 1, ζ(x) = 0 if x ≤ −1
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and ζ(x) = 1 if x ≥ 0. Besides, we have ζ ∈ C∞
pol(R) since all its derivatives have

a compact support. Now, we define a ϑ ∈ C∞
pol(Sd(R)) as

ϑ : Sd(R) → R, x �→
d∏

i=1

ζ
(
x{i,i}

) ∏
i �=j

ζ
(
x{j,j}x{i,i} − x2{i,j}

)
.

It is important to notice that 0 ≤ ϑ ≤ 1, ϑ(x) = 1 if x ∈ S +
d (R) and ϑ(x) = 0

if there is i ∈ {1, . . . , d} such that x{i,i} < −1 or i < j ∈ {1, . . . , d} such that
x2{i,j} > 1 + x{i,i}x{i,i}. Let γ ∈ N

d(d−1)/2. Since f ∈ C∞
pol(Sd(R)), there are con-

stants K,E > 0 and K ′,E′ > 0 such that, ∀x ∈ Sd(R)

|∂γ (ϑf )(x)| ≤ K(1 + ‖x‖E)

d∏
i=1

(
1{|x{i,i}|>−1}

) ∏
1≤i<j≤d

(
1{x2{i,j}≤1+x{i,i}x{j,j}}

)

≤ K ′(1 + ∥∥(x{i,i}
)
1≤i≤d

∥∥E1
)

×
d∏

i=1

(
1{|x{i,i}|>−1}

) ∏
1≤i<j≤d

(
1{x2{i,j}≤1+x{i,i}x{j,j}}

)
.

Here, the upper bound only involves the diagonal coefficients. We define

x ∈ Sd(R), fρ(x) := ϑ(x)f (x) exp(−Tr(ρx))

and obtain from the last inequality that fρ belongs to the Schwartz space of rapidly
decreasing functions since ρ > 0. Thus, its Fourier transform also belongs to the
Schwartz space and we have

fρ(x) = 1

(2π)d(d+1)/2

∫
Rd(d+1)/2

exp(−Tr(ivx))F (fρ)(v) dv,

where

F (fρ)(v) =
∫

Rd(d+1)/2
exp(Tr(ivx))fρ(x) dx

and, in particular, fρ, F (fρ) ∈ L1(Sd(R)) ∩ L∞(Sd(R)).
A new representation of ũ(t, x). We have f (x) = exp(ρ Tr(x))fρ(x) for x ∈

S +
d (R), and therefore

ũ(t, x) = E[exp(Tr(ρXx
t ))fρ(Xx

t )]
= 1

(2π)d(d+1)/2 E

[∫
Rd(d+1)/2

exp
(
Tr[(−iv + ρId)Xx

t ])F (fρ)(v) dv

]

= 1

(2π)d(d+1)/2

∫
Rd(d+1)/2

E
[
exp

(
Tr[(−iv + ρId)Xx

t ])]F (fρ)(v) dv.
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The last equality holds since∫
Rd(d+1)/2

∣∣E[
exp

(
Tr[(−iv + ρId)Xx

t ])]∣∣|F (fρ)(v)|dv

≤ φ(t, α, x,ρId)‖F (fρ)‖1 < ∞.

Here we have used that ρId ∈ Db,a;T to get φ(t, α, x,ρId) < ∞.
Derivation with respect to x{k,l}, k, l ∈ {1, . . . , d}. From Lemma 26, we have by

Lebesgue’s theorem

∂{k,l}ũ(t, x)

= 1

(2π)d(d+1)/2

∫
Rd(d+1)/2

φ(t, α + 2, x,−iv + ρId)(48)

× p
{k,l}
t (ρId − iv)F (fρ)(v) dv

since |∂x{k,l}φ(t, α, x,−iv + ρId)F (fρ)(v)| ≤ |φ(t, α + 2, x, ρId)||p{k,l}
t (ρId −

iv)F (fρ)(v)| and p
{k,l}
t (ρId − iv)F (fρ)(v) is a rapidly decreasing function.

Let 1 ≤ k′, l′ ≤ d . An integration by part gives
∫
R
(ρId − iv){k′,l′} exp(Tr[x(iv −

ρId)])ϑ(x)f (x) dx{k′,l′} = (
1k′ �=l′

2 +1k′=l′)
∫
R

exp (Tr[x(iv − ρId)])∂{k′,l′}(ϑ(x) ×
f (x)) dx{k′,l′}, and thus

(ρId − iv){k′,l′}F (exp[−ρ Tr(x)]ϑ(x)f (x))(v)

=
(

1k′ �=l′

2
+ 1k′=l′

)
F

(
exp[−ρ Tr(x)]∂{k′,l′}[ϑ(x)f (x)])(v).

We set ϕ(γ ) = ∏
1≤k′≤l′≤d(

1k′ �=l′
2 + 1k′=l′)

γ{k′,l′} for γ ∈ N
d(d+1)/2 and get by iter-

ating the argument that∏
1≤k′≤l′≤d

(ρId − iv)
γ{k′,l′}
{k′,l′} F (fρ)(v)

(49)
= ϕ(γ )F

(
exp[−ρ Tr(x)]∂γ (ϑ × f )(x)

)
(v).

Since p
{k,l}
t (ρId − iv) = ∑

γ∈Nd(d+1)/2,|γ |≤d a
γ,{k,l}
t

∏
1≤k′≤l′≤d(ρId − iv)

γ{k′,l′}
{k′,l′} , we

get from (48) and (49)

∂{k,l}u(t, x) = ∑
|γ |≤d

a
γ,{k,l}
t ϕ(γ )E

(
∂γ (f × ϑ)(Y x

t )
)

(50)
= ∑

|γ |≤d

a
γ,{k,l}
t ϕ(γ )E(∂γ f (Y x

t )),

where (Y x
t )t≥0 ∼

Law
WISd(x,α + 2, b, a). Here we have used that ∂γ (ϑ × f )(y) =

∂γ f (y) for y ∈ S +
d (R). From Lemma 26 (a

γ,{k,l}
t )γ∈Nd(d+1)/2,|γ |≤d is bounded for

t ∈ [0, T ], and we get (35) when |n| = 1 since ∂γ f ∈ C∞
pol(Sd(R)). Thanks to (50),
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a derivative of order |n|, can be seen as a (bounded) linear combination of deriva-
tives of order |n| − 1, and we easily get (35) by an induction on |n|.

It remains to check that we have indeed ∂t ũ(t, x) = Lu(t, x). Let t, h > 0. By
the Markov property, we have ũ(t + h,x) = E[ũ(t,Xx

h)]. From (35) and Itô’s for-
mula, we get [ũ(t + h,x) − u(t, x)]/h →

h→0+ Lu(t, x). �

LEMMA 27. Let α,x ∈ S +
d (R), B ∈ L(S +

d (R)) that satisfies (4), and x(t) be
the solution of the ODE

x(t) = x +
∫ t

0

(
α + B(x(s))

)
ds.(51)

Then we have x(t) ∈ S +
d (R) for t ≥ 0.

PROOF. The ODE (51) is affine and has unique solution on S +
d (R) which is

given by

t ≥ 0, x(t) = exp(tB)(x) +
∫ t

0
exp(sB)(α)ds,(52)

where ∀t ∈ R
+,∀x ∈ Sd(R), exp(tB)(x) = ∑∞

k=0
tkBk(x)

k! , Bk(x) = B ◦ · · · ◦ B︸ ︷︷ ︸
k times

(x)

such that B0(x) = x.
We first assume that α,x ∈ S +,∗

d (R) and consider τ = inf{t ≥ 0, x(t) /∈ S +
d (R)},

with the convention inf ∅ = +∞. We have τ > 0. Let us assume by a way of
contradiction that τ < ∞. Then x(τ) cannot be invertible and there is y ∈ S +

d (R)

such that y �= 0 and Tr(yx(τ )) = 0. From (52) and (4), we get

Tr(x′(τ )y) = Tr
([B(x(τ)) + α]y) > 0,

since α is positive definite. Therefore, there is ε ∈ (0, τ ) such that Tr(yx(τ − ε)) <

0. Let us now recall that z ∈ S +
d (R) ⇐⇒ ∀y ∈ S +

d (R),Tr(yz) ≥ 0. Thus, x(τ −
ε) /∈ S +

d (R), which contradicts the definition of τ .
In the general case α,x ∈ S +

d (R), we observe that the solution (52) is continuous
w.r.t. x and α, and thus ∀t ≥ 0, x(t) ∈ S +

d (R) since S +
d (R) is a closed set. �

D.2. Proof of Proposition 17. First, let us check that θt ∈ Gd(R) is well de-
fined, such that qt/t = θt I

n
d θT

t and satisfies

∃K,η > 0,∀t ∈ (0, η) max(‖θt‖,‖θt‖−1) ≤ K.(53)

When n = d , qt/t is definite positive as a convex combination of definite pos-
itive matrices and the usual Cholesky decomposition is well defined. Moreover,
(53) holds since qt/t goes to aT a which is invertible when t → 0+. When
n < d , we have assumed, in addition, that b and aT a commute. Therefore,
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qt = aT a(
∫ t

0 exp(sb) exp(sbT ) ds/t). Since aT a and (
∫ t

0 exp(sb) exp(sbT ) ds/t)

are positive semidefinite matrices that commute, we have

qt =
√

1

t

∫ t

0
exp(sb) exp(sbT ) ds aT a

√
1

t

∫ t

0
exp(sb) exp(sbT ) ds.

Once again, 1
t

∫ t
0 exp(sb) exp(sbT ) ds is definite positive as a convex combination

of definite positive matrices and we get that θt =
√

1
t

∫ t
0 exp(sb) exp(sbT ) ds ×

p−1( cn

kn

0
Id−n

) ∈ Gd(R) satisfies qt/t = θt I
n
d θT

t by Lemma 23. Similarly, (53) holds

since p−1( cn

kn

0
Id−n

)
does not depend on t and

√
1
t

∫ t
0 exp(sb) exp(sbT ) ds goes to

Id when t → 0+.
Let f ∈ C∞

pol(S +
d (R)). Let Xx

t ∼ WISd(x,α, b, a; t). Since the exact scheme is
a potential νth-order scheme, there are constants C,E,η > 0 depending only on a
good sequence of f such that

∀t ∈ (0, η)

∣∣∣∣∣E[f (Xx
t )] −

ν∑
k=0

tk

k!L
kf (x)

∣∣∣∣∣ ≤ Ctν+1(1 + ‖x‖E).(54)

On the other hand, we have from Proposition 6,

E[f (X̂x
t )] − E[f (Xx

t )]
(55)

= E
[
f
(
θt Ŷ

θ−1
t mt xmT

t (θ−1
t )T

t θT
t

)] − E
[
f
(
θtY

θ−1
t mt xmT

t (θ−1
t )T

t θT
t

)]
.

Let us introduce fθt (y) := f (θtyθT
t ) ∈ C∞

pol(S +
d (R)). By the chain rule, we have

∂{i,j}fθt (y) = Tr[θt (e
i,j
d + 1i �=j e

j,i
d )θT

t ∂f (θtyθT
t )], where (∂f (x))k,l = (1k=l +

1
21k �=l)∂{k,l}f (x) and e

i,j
d = (1k=i,l=j )1≤k,l≤d . From (53), we see that there is a

good sequence (Cγ , eγ )γ∈Nd(d+1)/2 that can be obtained from a good sequence of
f such that

∀t ∈ (0, η),∀y ∈ S +
d (R) |∂γ fθt (y)| ≤ Cγ (1 + ‖y‖eγ ).

Therefore, we get that there are constants still denoted by C,E,η > 0 such that

∀t ∈ (0, η)∣∣E[
f
(
θt Ŷ

θ−1
t mt xmT

t (θ−1
t )T

t θT
t

)] − E
[
f
(
θtY

θ−1
t mt xmT

t (θ−1
t )T

t θT
t

)]∣∣(56)

≤ Ctν+1(1 + ‖θ−1
t mtxmT

t (θ−1
t )T ‖E)

.

From (53), we get that there is a constant K ′ > 0 such that ‖θ−1
t mtx ×

mT
t (θ−1

t )T ‖E ≤ K ′‖x‖E for t ∈ (0, η). Thus, we get the result by gathering (54),
(55) and (56).
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D.3. Proof of Proposition 21. We have, by using Itô calculus, dXx
t =

(c + WtI
n
d )T dWtI

n
d + In

d dWT
t (c + WtI

n
d ) + dIn

d dt . By using Lemma 2, the
quadratic covariation of (Xx

t )i,j and (Xx
t )m,n is given by d〈(Xx

t )i,j , (X
x
t )m,n〉 =

(Xx
t )i,m(In

d )j,n + (Xx
t )i,n(I

n
d )j,m + (Xx

t )j,m(In
d )i,n + (Xx

t )j,n(I
n
d )i,m. Therefore,

(Xx
t )t≥0 solves the same martingale problem as WISd(x, d,0, I n

d ), which is known
to have a unique solution from Cuchiero et al. [7].

Let us now show that X̂x
t is a potential second-order scheme. We can see

c + √
tĜI n

d as the Ninomiya–Victoir scheme with moment-matching variables
(see [2], Theorem 1.18) associated to 1

2
∑d

i=1
∑n

j=1 ∂2
i,j on Md(R). Let f ∈

C∞
pol(S +

d (R)). Then, x ∈ Md(R) �→ f (xT x) ∈ C∞
pol(Md(R)) and there are con-

stants C,E,η > 0 depending only on a good sequence of f such that

∀t ∈ (0, η)∣∣E[
f
((

c + √
tĜI n

d

)T (
c + √

tĜI n
d

))] − E
[
f
(
(c + WtI

n
d )T (c + WtI

n
d )

)]∣∣
≤ Ctν+1(1 + ‖c‖E).

Let us now observe that the Frobenius norm of c is
√

Tr(cT c) = √
Tr(x) ≤√

d + Tr(x2) ≤ √
d +√

Tr(x2). Therefore, for any norm, there is a constant K > 0
such that ‖c‖ ≤ K(1 + ‖x‖), which gives the result.
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