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RANDOM INTERLACEMENTS AND AMENABILITY
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and Weizmann Institute of Science

We consider the model of random interlacements on transient graphs,
which was first introduced by Sznitman [Ann. of Math. (2) (2010) 171 2039–
2087] for the special case of Z

d (with d ≥ 3). In Sznitman [Ann. of Math. (2)
(2010) 171 2039–2087], it was shown that on Z

d : for any intensity u > 0, the
interlacement set is almost surely connected. The main result of this paper
says that for transient, transitive graphs, the above property holds if and only
if the graph is amenable. In particular, we show that in nonamenable transitive
graphs, for small values of the intensity u the interlacement set has infinitely
many infinite clusters. We also provide examples of nonamenable transitive
graphs, for which the interlacement set becomes connected for large values
of u. Finally, we establish the monotonicity of the transition between the
“disconnected” and the “connected” phases, providing the uniqueness of the
critical value uc where this transition occurs.

1. Introduction. In [21], Sznitman introduced the model of random interlace-
ments on Z

d , for d ≥ 3. Intuitively speaking, this model describes the local picture
left by the trace of a random walk on a discrete torus or a discrete cylinder; see
[26] and [19]. Moreover, recent works have shown that random interlacements can
be used to obtain a better understanding of the trace of a random walk on these
graphs; see, for instance, [18, 20] and [24].

Later in [23] the construction of random interlacements was generalized to any
transient weighted graph. This extension has already been useful to prove results
concerning the random walk on random regular graphs; see [25]. There are also
strong indications that a better understanding of the random interlacements model
in more general classes of graphs could provide interesting results on the dis-
connection time of a discrete cylinder with general basis by a random walk; see
[17, 22] and [27].

In this paper we study random interlacements on a given graph G = (V ,E),
with special emphasis on the relations between the behavior of the interlacement
set and geometric properties of G. First, let us give an intuitive description of the
model which will be made precise in the next section. To define random interlace-
ments, one first considers the space W ∗ of doubly infinite, transient trajectories
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in G modulo time shift; see (17). The random interlacements consist of a Pois-
son point process on the space W ∗, constructed in a probability space (�, A,Pu).
Usually one is interested in understanding the trace left by this soup of random
walk trajectories, which is a random subset I of V . The parameter u ∈ R+ is a
multiplicative factor of the intensity; therefore the bigger the value of u, the more
trajectories enter the picture. Although we postpone the precise definition of ran-
dom interlacements to the next section, we mention here that I , under the law Pu,
is characterized as the unique random subset of V such that

Pu[I ∩ K = ∅] = exp
{−u cap(K)

}
for every finite K ⊂ V ;(1)

see (1.1) of [23]. In the equation above, cap(K) stands for the capacity of K de-
fined in (21).

In the case of Z
d , it was already shown that I , regarded as a random subset

of Z
d , defines an ergodic percolation process; see, for instance, [21], Theorem 2.1.

However, due to its long-range dependence, I behaves very differently from the
usual independent site percolation on Z

d . Let us stress here one such difference.
Although the marginal density Pu[x ∈ I] converges to zero as we drive the inten-
sity parameter u to zero, the set I is Pu-almost surely given by a single infinite
connected subset of Z

d ; see [21], Corollary 2.3. In particular there is no phase
transition for the connectivity of I as one varies u. For this reason, in the case
of Z

d , more attention has been given to the complement of I , the so called vacant
set denoted by V , which exhibits a nontrivial phase transition for every d ≥ 3; see,
for instance, [21] and [16].

In this work, we address similar questions for more general graphs G. We first
show that

if G is a transient, vertex-transitive graph, then the interlacement set I
under the law Pu is an ergodic subset of V ;

(2)

see Proposition 2.4. In particular, any automorphism-invariant event on {0,1}V has
probability either 0 or 1.

Given this fact, it is natural to ask what special property of Z
d is responsible for

the connectivity of the interlacement set at all intensities u. In this paper we show
that the answer to this question is related to the amenability of Z

d , as shown in the
two results that we now describe. The main result of this paper is the following:

if G is a vertex-transitive nonamenable graph, then for u > 0 small
enough, the interlacement set I is Pu-almost surely disconnected;

(3)

see Theorem 6.3. This shows a clear difference from the Z
d case.

This result motivates the definition of the critical parameter

uc = uc(G) = inf{u : I is connected Pu-a.s.}.(4)

See also Corollary 7.5. A trivial consequence of (3) is that the critical threshold uc

is positive for vertex-transitive, nonamenable graphs. In fact, Theorem 6.3 gives a
lower bound for uc in terms of the spectral radius of G; see definition in (14).
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The counterpart for Theorem 6.3 is given in Theorem 3.3, which gives the fol-
lowing generalization of Corollary 2.3 of [21]:

if G is a vertex-transitive amenable transient graph, then for all u > 0, the
set I is Pu-almost surely connected.

(5)

In particular, (5) implies that for transitive amenable graphs G, uc(G) = 0.
We also note that it is not always the case that uc is finite. In fact according to

Remark 7.1, in an infinite regular tree T
d for d ≥ 3, the interlacement set is almost

surely disconnected for every value of u > 0, so that uc(T
d) = ∞. However, in the

same spirit as for Bernoulli percolation (see, e.g., [9]), we can prove that

for random interlacements on T
d × Z

d ′
, where d ≥ 3 and d ′ ≥ 1, we have

0 < uc(T
d × Z

d ′
) < ∞;

(6)

see Proposition 7.2. Thus each of the three cases uc(G) = 0, uc(G) ∈ (0,∞) and
uc(G) = ∞ can happen. It is also of interest to study what happens regarding
the connectivity of I above uc (note that the connectivity of I is not a monotone
property). In Theorem 7.4, we show that

if G is a vertex-transitive and transient graph, then for any u > uc, the set
I is Pu-almost surely connected.

(7)

In other words, there is monotonicity in the uniqueness transition.
In addition to the critical value uc defined in (4), there is another critical value of

interest, which was defined in [21], (0.13). Recall that V stands for the complement
of I . For x ∈ V , let

ηx(u) = Pu[x belongs to an unbounded connected component of V],(8)

u∗(G) = inf
{
u ≥ 0, ηx(u) = 0

}
.(9)

In Corollary 3.2 of [23], the critical intensity u∗(G) was shown to be independent
of the choice of the base point x.

The critical intensity of Z
d was first studied in [21], where it was shown that

u∗(Zd) < ∞ for d ≥ 3, and u∗(Zd) > 0 for d ≥ 7. Later in [16], u∗(Zd) > 0 was
established for any d ≥ 3. In [23], the nondegeneracy of u∗ was established for
some families of graphs.

In Proposition 8.1 we join results from [3, 23] and (2) to show that

0 < u∗(G) < ∞ whenever G is a nonamenable Cayley graph.(10)

We now give a brief overview of the proof of the main result (3) of this paper.
We rely on the following domination result:

there is a coupling between Pu and the law of a certain branching random
walk on G, such that the cluster of I containing a given point x is almost-
surely contained in the trace left by the branching random walk from x.

(11)
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Given this coupling, the proof of (3) is reduced to a calculation on the heat-kernel
of the branching random walk.

The domination stated in (11) is given in two steps. First, in Proposition 4.1
we give the domination of random interlacements by the “frog model” or “A +
B → 2A model,” studied in [1] and [13]. Then Proposition 5.1 establishes the
domination of the mentioned frog model by a specific branching random walk
on G.

We now discuss the resemblance between our main results and a conjecture
in Bernoulli percolation. As we explained above, our results characterize the
amenability of transitive graphs in terms of the existence of infinitely many infinite
clusters in the interlacements set, for some parameter u > 0. Our investigation was
partially inspired by a similar, still open question for Bernoulli percolation. More
precisely, Benjamini and Schramm conjectured that a transitive graph is nona-
menable if and only if there is some p ∈ [0,1] for which Bernoulli site percolation
with parameter p contains an infinite number of infinite clusters; see Conjecture 6
in [5]. This conjecture has been resolved in some cases: Benjamini and Schramm
[6] solved it in the planar case and Pak and Smirnova-Nagnibeda [12] established
the nonuniqueness phase for certain classes of nonamenable Cayley graphs. The-
orem 4 of [5] gives a sufficient condition for having a nonuniqueness phase, and
that theorem is the main inspiration for our result concerning disconnectedness
of random interlacements. In [4], Benjamini et al. characterized the amenability
property of Cayley graphs in terms of the connectedness of the union of the wired
spanning forest and Bernoulli percolation.

The rest of the paper is organized as follows. The notation and the main prop-
erties of random interlacements we need are given in Section 2, where also the
{0,1}-law is provided. We then prove that the interlacement set is always con-
nected on amenable graphs; see Section 3. The Propositions 4.1 and 5.1 concern-
ing domination of random interlacements by the frog model and the branching ran-
dom walk are given, respectively, in Sections 4 and 5. The proof of Theorem 6.3
concerning disconnectedness of the interlacement set for small u is given in Sec-
tion 6. In the same section, we also obtain the required heat-kernel estimates on
the mentioned branching random walk. In Section 7, we prove that uc is finite for
the graph T

d × Z
d ′

and deal with the monotonicity of the uniqueness transition.
Finally, in Section 8, we obtain bounds on u∗ for nonamenable Cayley graphs,
establishing (10).

In this paper we use the following convention on constants, which are denoted
by c and c′. These constants can change from line to line and solely depend on the
given graph G which is fixed within proofs. Further dependence of constants are
indicated by subscripts, that is, cε is a constant depending on ε and potentially on
the graph G.

2. Notation and definitions. We let G = (V ,E) be an infinite connected
graph, which we always assume to have finite geometry, that is, every vertex in V



RANDOM INTERLACEMENTS AND AMENABILITY 927

belongs only to a finite number of edges. For x, y ∈ V , we write x ↔ y if they are
neighbors in G. For x ∈ V , let dx be the degree of x. Let � = �(G) = supx∈V dx ,
which sometimes will be assumed to be finite. We recall the definitions of vertex-
transitivity and amenability. A bijection f :V → V such that {f (x), f (y)} ∈ E if
and only if {x, y} ∈ E is said to be a graph automorphism of G. We denote the set
of automorphisms of G by Aut(G) and say that G is transitive if for any x, y ∈ V ,
there is a graph automorphism f such that f (x) = y. For K ⊂ V , we define the
outer vertex boundary of K as ∂V K = {y /∈ K :∃x ∈ K,d(x, y) = 1}, where d is
the usual graph distance induced in G. We write K for the set K ∪ ∂V K . We also
define the outer edge boundary of K as ∂EK = {{x, y} ∈ E :x ∈ K,y /∈ K}.

The vertex isoperimetric constant of the graph G is defined as

κV = κV (G) = inf
{ |∂V K|

|K| : |K| < ∞
}
.(12)

Similarly, the edge isoperimetric constant is defined to be

κE = κE(G) = inf
{ |∂EK|

|K| : |K| < ∞
}
.(13)

A graph G is said to be nonamenable if κV (G) > 0, otherwise it is said to be
amenable. In Theorems 3.3 and 6.3, where we use the notion of amenability, we
also assume the graph to have bounded degree; therefore we could have defined
amenability in terms of κE instead.

We let Px stand for the law of a simple random walk on G starting at x,
while (Xn)n≥0 stands for the canonical projections on V . For vertices x, y ∈ V ,
let p(n)(x, y) be the probability that a simple random walk started at x is at y after
n steps, that is, Px[Xn = y]. Let

ρ = ρ(G) := lim sup
n→∞

(
p(n)(x, y)

)1/n
.(14)

The quantity ρ is called the spectral radius of G, and is independent of the choices
of x and y. If G is nonamenable and has bounded degree, then ρ < 1; see [8],
Theorem 2.3. We also define the Green’s function of the simple random walk on
G as g(x, y) = ∑

n≥0 p(n)(x, y), for x, y ∈ V .
The space W+ stands for the set of infinite trajectories that spend only a finite

time in finite sets

W+ = {
γ : N → V ;γ (n) ↔ γ (n + 1) for each n ≥ 0 and

(15) {
n;γ (n) = y

}
is finite for all y ∈ V

}
.

We endow W+ with the σ -algebra W+ generated by the canonical coordinate
maps Xn.
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We further consider the space of doubly infinite trajectories that spend only a
finite time in finite subsets of V

W = {
γ : Z → V ;γ (n) ↔ γ (n + 1) for each n ∈ Z and

(16) {
n;γ (i) = y

}
is finite for all y ∈ V

}
.

On the space W , for k ∈ Z, we introduce the shift operator θk :W → W which
sends a trajectory w to w′ such that w′(·) = w(· − k). We also consider the space
W ∗ of trajectories in W modulo time shift

W ∗ = W/ ∼ where w ∼ w′ ⇐⇒ w = θk

(
w′) for some k ∈ Z(17)

and denote with π∗ the canonical projection from W to W ∗. The map π∗ induces a
σ -algebra in W ∗ given by W ∗ = {A ⊂ W ∗; (π∗)−1(A) ∈ W }, which is the largest

σ -algebra on W ∗ for which (W, W)
π∗→ (W ∗, W ∗) is measurable.

For any finite set K ⊂ V , we define for a trajectory w ∈ W the entrance time of
K as

HK(w) = inf
{
k ∈ Z;w(k) ∈ K

}
.(18)

For a trajectory w ∈ W+, the hitting time of K is defined as

H̃K(w) = inf
{
k ≥ 1;w(k) ∈ K

}
.(19)

Considering still a finite K ⊂ V , we define the equilibrium measure eK by

eK(x) = 1{x∈K}Px[H̃K = ∞] · dx(20)

and the capacity

cap(K) = ∑
x∈K

eK(x).(21)

In addition, we introduce the measure

PeK
= ∑

x∈V

eK(x)Px.(22)

Given a finite set K ⊂ V , write WK for the space of trajectories in W that enter
the set K , and denote with W ∗

K the image of WK under π∗.
The set of point measures on which one canonically defines random interlace-

ments is given by

� =
{
ω = ∑

i≥1

δw∗
i
;w∗

i ∈ W ∗ and ω
(
W ∗

K

)
< ∞, for every finite K ⊂ V

}
,(23)

endowed with the σ -algebra A generated by the evaluation maps ω �→ ω(D) for
D ∈ W ∗ ⊗ B(R+).

The following theorem resembles Theorem 1.1 in [21]. It was established in
Theorem 2.1 of [23], providing the existence of the intensity measure used to con-
struct the random interlacements process.
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THEOREM 2.1. There exists a unique σ -finite measure ν on (W ∗, W ∗) satis-
fying, for each finite set K ⊂ V ,

1W ∗
K

· ν = π∗ ◦ QK,(24)

where the finite measure QK on WK is determined by the following. Given A and
B in W+ and a point x ∈ V ,

QK

[
(X−n)n≥0 ∈ A,X0 = x, (Xn)n≥0 ∈ B

]
(25)

= Px[A|H̃K = ∞]eK(x)Px[B].

We are now ready to define the random interlacements. Consider on � the law
Pu of a Poisson point process with intensity measure given by uν(dw∗); for a
reference on the construction of Poisson point processes, see [14], Proposition 3.6.
We define the interlacement and the vacant set at level u, respectively, as

I(ω) =
{ ⋃

w∗∈supp(ω)

Range
(
w∗)}

(26)

and

V(ω) = V \ I(ω)(27)

for ω = ∑
i≥0 δw∗

i
in �.

Observe that with (1), (20) and (21), we have

Pu[x ∈ V] = exp
{−udxPx[H̃x = ∞]}.(28)

For finite K ⊂ V and ω = ∑
i≥0 δw∗

i
∈ � we define

μK(ω) = ∑
i≥0

δ(w∗
i )K,+1

{
w∗

i ∈ W ∗
K

}
(29)

were for w∗ ∈ W ∗
K , (w∗

i )
K,+ is defined to be the trajectory in W+ which follows

w∗ from the first time it hits K . Proposition 1.3, equation (1.45) in [21] says that

under Pu, μK is a Poisson point process on W+ with intensity measure
uPeK

(dw).
(30)

Actually, in [21], (30) is stated only for the Z
d case, but the proof does not use any

special properties of Z
d and is thus also valid here.

REMARK 2.2. Recall the definition of HK in (18) and note that for each w∗ ∈
W ∗

K , there is a unique w ∈ WK such that π∗(w) = w∗ and HK(w) = 0, we call



930 A. TEIXEIRA AND J. TYKESSON

this sK(w∗). Therefore, since by (25) the measure QK is supported on {HK = 0},
we conclude that for any A ∈ W contained in WK ,

QK

[(
π∗)(−1)(

π∗(A)
)]

= QK

[{
w ∈ W ; θl(w) ∈ A for some l ∈ Z

}]
(31)

= QK

[{
w ∈ W ;HK(w) = 0 and θl(w) ∈ A for some l ∈ Z

}]
= QK

[
sK

(
π∗(A)

)]
.

For a measure γ on W ∗ and g ∈ Aut(G), let γ g denote the image of γ under
the mapping w∗ → g(w∗). In Theorem 1.1 of [21] it was shown that on Z

d , the
measure ν is invariant under translations. We now show a similar statement for
vertex-transitive graphs.

PROPOSITION 2.3. For g ∈ Aut(G),

νg = ν.(32)

PROOF. We follow the proof of Theorem 1.1 in [21]. For g ∈ Aut(G) and
K ⊂ V finite, w∗ → g(w∗) maps W ∗

K one-to-one onto W ∗
g(K). Also note that

sK(g(w∗)) = g(sg−1(K)(w
∗)) for every w∗ ∈ W ∗

g−1(K)
. Then, for C ∈ W , we get

that

sK ◦ (
1W ∗

K
· νg)

(C) = sK ◦ (
(1W ∗

g−1(K)
· ν)g

)
(C)

= sg−1(K) ◦ (1W ∗
g−1(K)

· ν)
(
g(w) ∈ C

)
(33)

= Qg−1(K)

[
g(w) ∈ C

]
.

Now fix A,B ∈ W+ and y ∈ V . Let C be the event {(X−n)n≥0 ∈ A,X0 =
y, (Xn)n≥0 ∈ B}. Using (25), (24) and (33), we obtain that

sK ◦ (
1W ∗νg)

(C)

= Qg−1(K)

[
(X−n)n≥0 ∈ g−1(A),X0 = g−1(y), (Xn)n≥0 ∈ g−1(B)

]
(34)

= P
g−1(K)

g−1(y)

[
g−1(A)

]
eg−1(K)

(
g−1(y)

)
Pg−1(y)

[
g−1(B)

] = QK [C]
= sK ◦ (1W ∗

K
ν)(C).

This clearly implies that νg = ν. �

For g ∈ Aut(G), we define τg :� → �, which maps ω = ∑
i≥0 δw∗

i
∈ � to

τgω = ∑
i≥0

δg(w∗
i ) ∈ �.(35)
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A consequence of (32) is that

Pu is invariant under (τg)g∈Aut(G).(36)

More than that, we can prove a {0,1}-law. First, we need to introduce some
additional notation. A given g ∈ Aut(G) naturally induces a mapping from {0,1}V
to itself which we shall denote by tg . Denote by Qu the law on {0,1}V of (1{x ∈
I})x∈V under Pu. We write Y for the σ -algebra generated by the coordinate maps
Yz, z ∈ V on {0,1}V .

PROPOSITION 2.4. If G is transient and transitive, then for any u ≥ 0,
(tg)g∈Aut(G) is a measure preserving flow on ({0,1}V , Y,Qu) which is ergodic.
In particular, for any u ≥ 0 and any A ∈ Y which is invariant under Aut(G),

Qu[A] ∈ {0,1}.(37)

The proof of this proposition is very similar to the proof of Theorem 2.1 in [21],
but for the reader’s convenience we present the full proof with the necessary mod-
ifications in the Appendix.

3. The amenable case. In this section we prove that if G is an amenable
transitive graph, then I is Pu-almost surely connected for every u > 0. This is not
a direct consequence of the results in [7] as we explain in Remark 3.1 below.

REMARK 3.1. In [7], Burton and Keane developed a quite general technique
to prove uniqueness of the infinite components induced by a random subset of
edges U ⊂ E of an amenable graph G = (V ,E); see also Theorem 12.2 in [10].
Their result applies under the rather general conditions that U is translation invari-
ant and satisfies the so called finite energy property; that is, for every edge e ∈ E

and any U ⊂ E \ {e},
0 < P

[
e ∈ U |U \ {e} = U

]
< 1(38)

for some version of this conditional probability; see Definition 12.1 in [10]. We
note here that this condition does not hold in general for the interlacement set I as
observed in Remark 2.2(3) of [21].

Instead of considering I , it will be convenient to consider the set of edges tra-
versed by any of the trajectories in the Poisson point process ω. More precisely,
consider the set

Î(ω) = {
e ∈ E; e = {

w(k),w(k + 1)
}
,

(39)
for some k ∈ Z and some w such that π∗(w) ∈ supp(ω)

}
.

Observe, as in [21] below (2.18), that the connected components of V induced
by the edges in Î are either isolated points or infinite sub-components of I . We
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introduce some notation as in [21]. Denote by ψ̃ :� → {0,1}E the map ψ̃(ω) =
(1{e ∈ Î(ω)})e∈E . Let Q̃u be the probability measure on ({0,1}E, Ỹ) defined as
the image of Pu under ψ̃ . Here Ỹ stands for the canonical σ -algebra on {0,1}E . Let
t̃g , g ∈ Aut(G) be the canonical shift on {0,1}E . Then t̃g ◦ ψ̃ = ψ̃ ◦τg , g ∈ Aut(G),
and

for u ≥ 0, (t̃g)g∈Aut(G) is a measure preserving flow on ({0,1}E, Ỹ, Q̃u)

which is ergodic.
(40)

To prove (40), one proceeds in the same way as for Proposition 2.4; see the Ap-
pendix.

According to Remark 3.1, we need to adapt the technique of [7] in order to
apply it to the sets I or Î .

PROPOSITION 3.2. Let G be a transient and transitive graph and fix u > 0.
The number of infinite connected components induced by the set Î as defined in
(39) is Pu-almost surely a constant, which is either 1 or ∞.

PROOF. The proof of Corollary 2.3 of [21] would go through in the current
setting with only minor modifications, but here we proceed in a slightly different
manner. We denote by N the number of connected components induced by Î(ω).
The fact that N is almost surely a constant follows from ergodicity; see (40). More-
over, Î induces at least one unbounded connected component a.s. Thus it remains
to show that for any 2 ≤ k < ∞, Pu[N = k] = 0. Assume for contradiction that for
some 2 ≤ k < ∞ we have Pu[N = k] = 1. Fix o ∈ V , under the above assumption,
we can pick L < ∞ so large that the event

A = {
Î(ω) has k components, all intersecting B(o,L)

}

has positive probability. Denote by W ∗
1 the set of trajectories in W ∗ that visit ev-

ery vertex in B(o,L). Decompose ω into ω1 = 1W ∗
1
ω and ω2 = 1W ∗\W ∗

1
· ω. Un-

der Pu, ω1 and ω2 are independent Poisson point processes with intensity mea-
sures u1W ∗

1
dν and u1W ∗\W ∗

1
· dν, respectively. Using only the transience and con-

nectedness of G, it readily follows that the mass of 1W ∗
1
dν is strictly positive.

Since each trajectory in W ∗
1 intersects every trajectory of W ∗

B(o,L), it follows that if

ω1(W ∗) > 0, only one connected component induced by Î(ω) intersects B(o,L).
Thus we have the inclusion

A ⊂ {
ω1(

W ∗) = 0
}
.(41)

From (41) it follows that A ⊂ Ã where

Ã = {
Î

(
ω2)

has k components, all intersecting B(o,L)
}

(42)
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and since A has positive probability the same holds for Ã. Since the events Ã and
{ω1(W ∗) > 0} are defined in terms of independent Poisson point processes, they
are independent. Therefore,

Pu

[
Ã ∩ {

ω1(
W ∗)

> 0
}]

> 0.(43)

But on Ã ∩ {ω1(W ∗) > 0}, we have N = 1. Thus (43) contradicts our assumption
that N = k a.s. for some 2 ≤ k < ∞, completing the proof of the proposition. �

In the next theorem, we rule out the possibility of having infinitely many com-
ponents in Î if the underlying graph is transitive and amenable.

THEOREM 3.3. Let G be a transient, transitive and amenable graph. Then

Pu[I is connected] = Pu[Î is connected] = 1 for every u > 0.(44)

PROOF. Throughout this proof, we use the convention that Range(w) is the
set of edges that are traversed by the trajectory w where w ∈ W or w ∈ W ∗. Using
Proposition 3.2, we conclude that for every u > 0, the number of infinite clusters
in Î is Pu-a.s. a constant which is either 1 or ∞. Since Î has no finite components,
all we need to do is to rule out the case that it has infinitely many infinite clusters.
For this let us suppose by contradiction the contrary. Under this assumption, we are
going to construct, with positive probability, a trifurcation point for Î as defined
below.

The definition of trifurcation point was first introduced in [7]. We say that a
given point y is a trifurcation point for the configuration E ∈ {0,1}E if it belongs
to an infinite connected component induced by {E = 1} but the removal of y would
split its cluster into three distinct infinite connected components.

Using the assumption that Pu-a.s. there are infinitely many infinite connected
components in Î , we conclude that there exist a finite, connected set K ⊆ V which
intersects three distinct infinite clusters of Î with positive probability. This implies
that

Pu

[
there are trajectories w1,w2,w3 ∈ supp(ω) ∩ W ∗

K
(45)

whose ranges belong to distinct components of Î
]
> 0.

It is useful now to decompose the point measure ω into ω1 = 1W ∗
K

· ω and ω2 =
1W ∗\W ∗

K
· ω, which are independent under Pu; see the notation below (18). We

denote the laws of ω1 and ω2, respectively, by P1 and P2. We say that a given set
U ⊆ E is good if

P1
[
there are w1, w2, w3 in supp(ω1)

(46)
whose images are not connected through U

]
> 0.
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By (45) and Fubini’s theorem, we conclude that with positive P2-probability,
Î(ω2) is good.

From now on we fix a good set U . Our aim is to show that with positive P1-
probability Î(ω1) ∪ U has a trifurcation point in K . For this, we first observe from
(46), (24) and (25) that for some triple {z1, z2, z3} ⊂ K ,

P K
z1

⊗ P K
z2

⊗ P K
z3

[
Range

(
Xi

)
, i = 1,2,3 are not connected through U

]
> 0,

where Xi , i = 1,2,3 stand for the random walk trajectories, which are implicit in
the above product space. The above can be rewritten as

P K
z1

⊗ P K
z2

⊗ P K
z3

[
Range

(
X1)

and Range
(
X2)

are not connected

to each other through U and Range
(
X3)

does

not touch the clusters containing z1 and z2 in

U ∪ Range
(
X1) ∪ Range

(
X2)]

> 0.

By conditioning in the range of the walks X1 and X2, we obtain that

P K
z1

⊗ P K
z2

⊗ P K
z3

⊗ P K
z3

[
Range

(
Xi

)
, i = 1,2 are not connected through

U and Range
(
X3) ∪ Range

(
X4)

do not touch

the clusters containing z1 and z2

in U ∪ Range
(
X1) ∪ Range

(
X2)]

> 0,

and repeating this argument twice, we get

(
P K

z1

)⊗2 ⊗ (
P K

z2

)⊗2 ⊗ (
P K

z3

)⊗2[(
Range

(
X1) ∪ Range

(
X2))

,
(
Range

(
X3) ∪ Range

(
X4))

,
(47) (

Range
(
X5) ∪ Range

(
X6))

are not connected through U
]
> 0.

We can construct a deterministic subgraph G′ of K such that:

• G′ is connected,
• z1, z2 and z3 belong to G′ and
• the removal of some vertex y of G′ separates the vertices z1, z2 and z3 into

disjoint components.

Indeed, to perform such construction, one could, for instance, take a shortest path
γ from z1 to z2 in K and a shortest path γ ′ from z3 to the range of γ . Then, the
graph G′ given by the union of the vertices and edges of γ and γ ′ would satisfy
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the above conditions with y being the intersection of γ and γ ′. Note that the three
above conditions imply that, for a subgraph I of G,

if I ∩ K = G′, and z1, z2 and z3 belong to distinct infinite connected
components of I \ (K \ {z1, z2, z3}), then y is a trifurcation point of I .

(48)

Using that G′ is finite and connected, with positive Pz1 -probability, the random
walk X1 can cover G′ and return to z1 before escaping from K . This together with
(48) and (47) gives that if U is good,

∏
i=1,2,3

(
Pzi

⊗ P K
zi

)[
y is a trifurcation point of

⋃
i=1,...,6

Range
(
Xi) ∪ U

]
> 0.

Finally, we use (24) and (25) to conclude that if U is good,

P1
[
y is a trifurcation point of Î(ω1) ∪ U

]
> 0.(49)

This, together with Fubini’s theorem and the fact that I(ω2) is good with positive
P2-probability, gives that y is a trifurcation point with positive Pu-probability. The
rest of the proof of the theorem follows the ideas of [7]; see also the proof of
Theorem 2.4 in [10]. �

4. Domination by the frog model. Using the Poissonian character of random
interlacements, we are going to show that the cluster of I(ω) containing a given
point x ∈ V is dominated by the trace left by the particles in a certain particle
system, the so-called frog model. In what follows we give an intuitive description
of this process.

Place a random number of particles in each site of V with a prescribed distribu-
tion which will be given later. These particles should be understood as “sleeping”
when the system starts. In the first iteration, only the particles sitting at the fixed
site x are active, and they perform simple random walks. When an active particle
reaches the neighborhood of a sleeping one, the latter becomes active, starting to
perform simple random walk and so on. Note the two differences between this
model and the one studied in [13]: we consider a random initial configuration in-
stead of a deterministic one and the active particles can wake a sleeping particle
by simply visiting its neighborhood, without the need to occupy the same site.

We now give a precise description of this process, while keeping a similar no-
tation as that of previous sections. Consider the following measure on the space
(W, W ) of doubly infinite trajectories:

ν̃ = ∑
y∈V

dyP̃y,(50)

where P̃y is supported in {X0 = y} ⊂ W and given by

P̃y

[
(X−i )i≥0 ∈ A,X0 = y, (Xi)i≥0 ∈ B

]
(51)

= Py[A]Py[B] for every A,B ∈ W+.
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Intuitively speaking, the measure P̃y launches two independent random walks
from y, one to the future and the other to the past.

Consider also the following space of point measures on W :

M =
{
ω̃ = ∑

i≥1

δwi
;wi ∈ W and ω̃

({
X0(w) ∈ K

})
< ∞,

(52)

for all finite K ⊂ V

}
,

which is endowed with the sigma-algebra M generated by the evaluation maps
ω̃ → ω̃(D), for any D ∈ W .

In analogy to (26), for any ω̃ ∈ M we define

Ĩ(ω̃) =
{ ⋃

w∈supp(ω̃)

Range(w)

}
,(53)

which is the trace of the trajectories composing ω̃.
We also introduce, in the probability space (M, M, P̃u), a Poisson point process

ω̃ in W with intensity measure given by uν̃. In Remark 4.2 below, we prove that,
if G has bounded degree, then Ĩ(ω̃) = V , P̃u-a.s. In our pictorial description, this
corresponds to the fact that if we wake up, all the particles at time zero all the
sites will eventually be visited. In what follows we will instead consider Ĩ(w̃|·)
where w̃|· denotes the restriction of w̃ to some set · ∈ W .

Fix now ω̃ ∈ M . The following construction can be intuitively described as
gradually “revealing” ω̃. By this, we mean that in each step we observe ω̃ re-
stricted to larger and larger subsets of W . More precisely, recalling the definition
of K in Section 2, define:

• Ã0(ω̃) = {x} “particles sitting at x are activated at iteration 0,” and supposing
we have constructed Ã0, . . . , Ãk−1,

• let Ãk(ω̃) = Ĩ(ω̃|{X0∈Ãk−1(ω̃)}), “particles sitting at Ãk−1 were activated and per-

formed random walks, whose ranges will determine the next active set Ãk .”

Note that the above restriction of ω̃ does not include all trajectories which hit Ãk−1,
solely the ones starting on it. Also, we sometimes write Ãk instead of Ãk(ω̃) in
order to avoid an overly heavy notation.

Due to the Poissonian character of P̃u, since Ãk(ω̃) is determined by
ω̃|{X0∈Ãk−1},

conditioned on Ã0(ω̃), . . . , Ãk(ω̃), the point measure ω̃|{X0∈Ãk\Ãk−1}, is

distributed as a Poisson point process on {X0 ∈ Ãk \ Ãk−1}, with intensity
given by u1{X0∈Ãk\Ãk−1} · ν̃;

(54)

see, for instance, [14], Proposition 3.6.
We can now state our domination result.
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PROPOSITION 4.1. Let Cx be the connected component of I(ω) containing
x ∈ V . We can find a coupling Q1 between Pu and P̃u such that

Cx ⊂ Ĩ(ω̃|{X0∈⋃
k Ãk}), Q1-a.s.(55)

PROOF. Recall the definition of W ∗
K above (23), which we now extend to sets

K which are possibly infinite.
For a given ω ∈ �, we are going to construct sets A0(ω),A1(ω), . . . in a similar

way as we did for Ãk(ω̃)’s. For this:

• consider A0 = {x} “trajectories passing through x are activated at step 0,” and
suppose we have constructed A0, . . . ,Ak−1,

• let Ak(ω) = I(ω|W ∗
Ak−1

) “trajectories meeting Ak−1 were activated and their

ranges will determine the next active set Ak .”

Note that the Poissonian character of Pu gives us that for every k ≥ 0,

conditioned on A0(ω), . . . ,Ak(ω), the process ω|W ∗
Ak

\W ∗
Ak−1

is distributed

as a Poisson point process on W ∗
Ak

with intensity given by u1W ∗
Ak

\W ∗
Ak−1

·ν;
(56)

compare with (54).
Another important remark is that, although I(ω|W ∗⋃

k Ak
) could in principle be a

proper subset of I(ω), actually the connected component Cx of I(ω) containing x

is given by

Cx = I(ω|W ∗⋃
k Ak

).(57)

To see why this holds, note first that Cx is empty if and only if ω|W ∗
Ak

= 0 for every

k ≥ 0. Assume now that Cx is nonempty and take a point y in Cx , which implies the
existence of a path x = x0, x1, . . . , xn = y contained in I(ω). Supposing by con-
tradiction that y /∈ I(ω|W ∗⋃

k Ak
), let jo be the first j ≤ n such that xj /∈ I(ω|W ∗⋃

k Ak
).

Since Cx is nonempty, we conclude that jo ≥ 1, and therefore xjo is within dis-
tance one from xjo−1 ∈ I(ω|W ∗⋃

k Ak
). To obtain a contradiction, let ko be such that

xjo−1 ∈ I(ω|W ∗⋃
k≤ko

Ak
) and observe that xjo must belong to Ako+1, and since it

belongs to I(ω) it must also be in I(ω|W ∗⋃
k Ak

), which is a contradiction. This

proves that Cx ⊆ I(ω|W ∗⋃
k Ak

). The other inclusion in obvious since I(ω|W ∗⋃
k Ak

) is

connected and contained in I(ω). This establishes (57).
From (57), we see that the set Cx can be written in a way that resembles the set

Ĩ(ω̃|{X0∈⋃
k Ãk}) appearing in (55). But to proceed with the proof of the proposition,

we first need to find a coupling Q1 between ω (under Pu) and ω̃ (under P̃u) such
that

ω|W ∗
Ak(ω)

≤ π∗ ◦ (ω̃|{X0∈Ak(ω)}) for every k ≥ 0, Q1-a.s.(58)
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Note that the sets Ãk(ω̃) do not appear in the above equation. In order for Q1 to
satisfy the above, it is clearly enough that

ω|W ∗
Ak

\W ∗
Ak−1

≤ π∗ ◦ (ω̃|{X0∈Ak\Ak−1}) for every k ≥ 0, Q1-a.s.,(59)

where we used the convention that A−1 = ∅. We now prove the existence Q1
satisfying (59) and consequently (58).

Recall first that, conditioned on A1,A2, . . . ,Ak , the left-hand side of inequal-
ity (59) is independent of ω|W ∗

Ak−1
while the right-hand side is independent of

ω̃|{X0∈Ak−1}. Therefore, to be able to construct the coupling Q1 satisfying (59), it
suffices to show that for any B ⊆ B ′,

we can couple ω|W ∗
B′ \W ∗

B
with ω̃|{X0∈B ′\B} in a way that

ω|W ∗
B′ \W ∗

B
≤ π∗ ◦ (ω̃|{X0∈B ′\B}).

(60)

In fact, once we have established the above, we can proceed by induction with
B ′ = Ak and B = Ak−1, for k ≥ 0 and define ω|W ∗\⋃

k W ∗
Ak

and ω̃|{X0 /∈⋃
k Ak} in-

dependently. This way, they will have the correct marginal distribution (see, e.g.,
Proposition 3.6 in [14]) and will satisfy (59).

As a further reduction, we claim that it is enough to establish (60) in the case
where B ′ = B ∪ {y}, with y /∈ B . Indeed, if B ′ = B ∪ {y1, y2, . . .}, then we write
Bi = B ∪ {y1, . . . , yi} and use (60) repeatedly for the sets Bi+1 and Bi , with i ≥ 0
to obtain (60).

From now on, fix B ⊂ V and y /∈ B and note, by (24), that

the intensity measure of ω|W ∗
B∪{y}\W ∗

B
is given by uπ∗ ◦ (1{HB=∞} · Q{y}),(61)

which we estimate as follows.
Fix C,C′ ∈ W+ and consider the event D ∈ W given by D = {Hy = 0} ∩

{(X−i )i≥0 ∈ C} ∩ {(Xi)i≥0 ∈ C′}. Then

1{HB=∞} · Q{y}(D) = Q{y}[D,HB = ∞]
(25)= Py[C,HB = H̃y = ∞]dyPy

[
C′,HB = ∞]

≤ Py[C, H̃y = ∞]dyPy

[
C′](62)

(51)= dy P̃y

[
(X−i )i≥0 ∈ C ∩ {H̃y = ∞},X0 = y, (Xi)i≥0 ∈ C′]

= dy P̃y[D].
Since the above holds for every event D as above, we conclude that 1{HB=∞} ·
Q{y} ≤ dyP̃y . We can therefore construct a Poisson point process ω̃− in W with
intensity given by u1{HB=∞} · Q{y} in a way that ω̃− ≤ ω̃{X0=y}. Since π∗ ◦ ω̃−
has the same law as ω|W ∗

B∪{y}\W ∗
B

, we conclude (60) from (61), for the case where

B ′ = B ∪{y}. As we have discussed, this is enough to establish (60) in general and
consequently (59) and (58).
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Now that we have constructed Q1, we are going to prove that it satisfies (55).
First we claim that

Ak(ω) ⊆ Ãk(ω̃) for every k ≥ 0, Q1-a.s.(63)

To prove that, observe first that A0 = Ã0 = {x} and suppose that we have estab-
lished the above result for k−1. Then we use (58) to obtain that, Q1-almost surely,

I(ω|W ∗
Ak−1

) ⊆ Ĩ(ω̃|{X0∈Ak−1})(64)

and therefore

Ak(ω) = I(ω|W ∗
Ak−1

) ⊆ Ĩ(ω̃|{X0∈Ak−1}) ⊆ Ĩ(ω̃|{X0∈Ãk−1}) = Ãk,(65)

proving (63).
Finally, using (57), (58) and (63), we obtain

Cx = I(ω|W ∗⋃
k Ak

) ⊆ Ĩ(ω̃|{X0∈⋃
k Ak}) ⊆ Ĩ(ω̃|{X0∈⋃

k Ãk}), Q1-a.s.,(66)

proving (55). �

REMARK 4.2. As promised below (53), let us show that if G has degree
bounded by �, then P̃u-a.s. Ĩ(ω̃) = V . First, fix some y ∈ V and consider the
events Cz = {some walker started at z hits y}, for z ∈ V . Clearly, under the mea-
sure P̃u they are independent. We now estimate

∑
z∈V P̃u[Cz], which is bounded

from below by
∑
z∈V

P̃u

[
ω̃(X0 ∈ z) > 0

]
Pz[Hy < ∞]

≥ cu

∑
z∈V

Pz[Hy < ∞]
(67)

= cu

1

Ey[number of visists to y]
∑
z∈V

Ez[number of visists to y]

≥ cu,y

∑
z∈V

∑
n≥0

p(n)(z, y) ≥ cu,y,�

∑
n≥0

∑
z∈V

p(n)(y, z) = ∞,

where in the second line we used the strong Markov property, and in the third line
we used the reversibility of the walk.

Using the independence of the events {Cz}z∈V and the Borel–Cantelli lemma,
we conclude that P̃u-a.s. the point y is visited by infinitely many walks. Since this
holds true for any of the countable y’s in V , we conclude that P̃u-a.s. Ĩ(ω̃) = V ,
as desired.
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5. Domination by branching random walk. In this section we show that the
so-called frog model defined in Section 4 can be dominated by a certain multitype
branching random walk which we introduce below. Although the main result of
this section is very intuitive, its proof is somewhat technical. This is mainly due to
the infection of neighbors present in our version of the frog model (see comment in
the second paragraph of Section 4) and the notation we chose for the frog model,
resembling random interlacements’ formalism.

Consider two types of individuals, namely ◦ and •, and four probability distri-
butions on Z+: q◦→◦, q◦→•, q•→◦ and q•→•. These are the offspring distributions
which should be understood as follows: q◦→• is the distribution of the number of
•-descendants of a ◦-individual, and analogously for q◦→◦, q•→◦ and q•→•. If one
supposes that all individuals have an independent number of ◦ and • descendants,
then these four distributions completely characterize the branching mechanism.

We now make a specific choice for the q’s, namely:

• q◦→• = δ2, “◦-individuals always have two descendants of type •,”
• q•→• = δ1, “•-individuals always have one descendants of type •” and
• q◦→◦ = q•→◦ = Poisson(u�2).

Finally we need to introduce the initial distribution:

at the first generation, all individuals are of type ◦ and their number is
Poisson(u�2) distributed.

(68)

We now construct in some abstract probability space (S, S,Pu) the tree T =
(T , E ) originated by the above 2-type Galton–Watson process, which is completely
characterized by the above properties. Rigorously, T should be called a forest,
since it has as many connected components as the number of individuals at gener-
ation one. However, we keep the notation “tree” for simplicity.

Here, the set of vertices T is given by the disjoint union of T ◦ and T •, corre-
sponding to the type of each individual; see Figure 1. Supposing that the degree
of G is bounded by �, we construct in the same probability space (S, S,Pu) a

FIG. 1. The multitype Galton–Watson tree T = (T , E ), where T = T ◦ ∪ T •.
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collection (�e)e∈E of i.i.d. random variables with uniform distribution over the set
{1,2, . . . ,�!}. These variables �e should be regarded as random labels assigned to
the edges of T .

We now use the above construction to define a special branching random walk
on the original graph G = (V ,E). For this, for every vertex y ∈ V , we fix a bijec-
tion φy : (Z/dyZ) → N (y). Recall that dy is the degree of y, and N (y) stands for
the set of its neighbors.

Fix now x ∈ V , a tree T , the labels (�e)e∈E and (φy)y∈V as above. We define
the coordinate processes (Zx

a )a∈T of the branching random walk by:

Zx
a = x for every a in the first generation of T . If Zx

a = y for some a ∈ T ,
then for any descendant b of a, we define Zx

b as φy(�{a,b} moddy).
(69)

Recall that �e was uniformly chosen in {1,2, . . . ,�!}, and note that dy di-
vides �!. This implies that, conditioned on Zx

a = y, Zx
b is a uniformly chosen

neighbor of y, for every b descendant of a in T . Using this fact inductively, we
conclude that given T , for any b ∈ T ,

Zx
b under the probability distribution Pu has the same law as the random

walk Xn under Px , where n is the generation of b in T .
(70)

From our specific choice of the offspring distribution, note that Pu-a.s.

for every point a ∈ T ◦, there exist exactly two infinite lines of
•-descendants going down from a.

(71)

We denote the union of these two lines by La ⊂ T , which are drawn with contin-
uous segments in Figure 1. Denote by E(La) ⊂ E the set of edges in La and by
V (La) ⊂ T the set of individuals in La .

Having constructed the branching random walk (Zx
a )a∈T , we can use the above

observation to associate, for every a ∈ T ◦ a doubly infinite trajectory wa ∈ W

given by the image of La under the branching random walk Z. And using (70), we
conclude that

the law of wa as an element of W is given by P̃Za as in (51).(72)

The above allows us to define
◦
ω = ∑

a∈T ◦
δwa ∈ M.

We can now prove the domination result, which gives a way to control the parti-
cle system defined in the previous section with the above branching random walk.

PROPOSITION 5.1. If the degree of G is bounded by �, there is a coupling
Q2 between the laws P̃u and Pu, such that Q2-a.s. we have

Ĩ(ω̃|{X0∈⋃
k Ãk}) ⊆ Ĩ(

◦
ω) = {

Zx
a ;a ∈ T

}
.(73)
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FIG. 2. The sets LA0 , LA1 and LA2 corresponding to T in Figure 1.

PROOF. We recall the definition of the sets Ãk(ω̃) constructed above Proposi-
tion 4.1. We will need an analogous way to gradually reveal the measure ◦

ω which
can be informally described as “slowly revealing the lines La” composing T . More
precisely:

• consider A0 = T ◦
0 , “all individuals in the first generation of T ” and supposing

we have constructed Ak−1,
• let LAk−1 be the union of all La where a ∈ Ak−1 and all edges in T that connect

any such a to its parent. Then define Ak to be the union of V (LAk−1) with its
descendants.

In Figure 2, we show the sets LA0 , LA1 and LA2 .
Observe also the following two consequences of our particular choice for the

offspring distribution of T :

• Ak \ V (LAk−1) consists solely of ◦-type individuals,
• conditioned on LAk−1 , the set Ak \ V (LAk−1) can be obtained by independently

attaching a Poisson(u�2) number of ◦-offsprings to each site of LAk−1 \ LAk−2 ,
for any k ≥ 1,

where we use the convention that LA−1 = ∅.
In order to compare ω̃ and ◦

ω, we claim that

given LAk−1 and (�e)e∈E(LAk−1 ), let Zk = (Zx
a )a∈V (LAk−1 ). Then∑

a∈Ak\V (LAk−1 ) δwa is a Poisson point process with intensity measure

larger or equal than
∑

x∈Z k\Zk
udxP̃x .

(74)

To prove the above statement, observe first that Zk can be written in terms of
LAk−1 and (�e)e∈E(LAk−1 ). By using the comment above (74), we conclude that

(Zx
a )a∈Ak\V (LAk−1 ) is a Poisson process in Z k with intensity given by

∑
a∈V (LAk−1 )\V (LAk−2 )

u�2

deg(Zx
a )

∑
y∈N (Zx

a )

δy.(75)

One can now conclude (74) from (75) and (72) and u�2/deg(Zx
a ) ≥ udx .
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We now prove that

there exist a coupling Q2 between P̃u and Pu, such that ω̃|{X0∈Ãk} ≤∑
a∈Ak

δwa , Q2-a.s. for every k ≥ 0.
(76)

For this, fix a point measure ω̃ sampled according to P̃u. This gives rise to a
sequence of sets Ã0, Ã1, . . . . Note that ω̃({X0 ∈ Ã0}) is Poisson distributed, with
a parameter not bigger than u�. We can therefore couple this random variable
with the initial number |T0| of individuals in the Galton–Watson tree, in a way that
almost surely

ω̃
({X0 ∈ Ã0}) ≤ |T0|.

And on the above event, one can construct the coupling in (76) for k = 0, us-
ing (72).

We now proceed by induction. Suppose that we have obtained the coupling
between ω̃|{X0∈Ãk−1} under P̃u and LAk−1 under Pu [together with its labels
(�e)e∈E(LAk−1 )] in a way that ω̃|{X0∈Ãk−1} ≤ ∑

a∈Ak−1
δwa for a given k. Then

Ãk ⊆ Z k . We can now obtain the statement for k using (74) and comparing the
intensity measure of the referred Poisson point process with that of (50).

The statement in Proposition 5.1 clearly follows from (76). �

6. The disconnected phase. The aim of this section is to show that on any
nonamenable graph of bounded degree, uc > 0; that is, for some u > 0 small
enough the interlacement set is Pu-a.s. disconnected; see Theorem 6.3. First, in
Section 6.1, we obtain estimates for the branching random walk introduced in Sec-
tion 5, and then those estimates are used in Section 6.2 to establish the existence
of such a disconnectedness phase.

6.1. Results for the branching random walk. The goal of this subsection is to
prove a heat-kernel estimate for the branching random walk; see Proposition 6.2
below. In Section 6.2 this will be used as a key ingredient for showing Theorem 6.3.
Recall the definitions of T = (T , E ), T ◦ and T • from Section 5. We introduce
some additional notation. For n ∈ N, let

Tn = {a ∈ T ;a is in generation n},(77)

T ◦
n = {

a ∈ T ◦;a is in generation n
}

(78)

and

T •
n = {

a ∈ T •;a is in generation n
}
.(79)

Then clearly |Tn| = |T ◦
n | + |T •

n |.
We begin by bounding the expected number of members of Tn:
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LEMMA 6.1. For every n ≥ 0 and u ≥ 0,

Eu

[|Tn|] ≤ cu,λ

(
1 + 2u�2)n

.(80)

PROOF. To show (80), we proceed by fairly standard recursion arguments.
First, using the fact that all members in generation 0 are of type ◦, we observe that

Eu

[|T0|] = Eu

[∣∣T ◦
0

∣∣] = u�2(81)

and

Eu

[|T1|] = (
2 + u�2)

Eu

[∣∣T ◦
0

∣∣] = (
2 + u�2)

u�2.(82)

In addition, we have

Eu

[∣∣T ◦
n

∣∣] = u�2Eu

[∣∣T ◦
n−1

∣∣] + u�2Eu

[∣∣T •
n−1

∣∣]
(83)

= u�2Eu

[|Tn−1|] for every n ≥ 1.

Hence, for every n ≥ 2,

Eu

[|Tn|] = (
1 + u�2)

Eu

[∣∣T •
n−1

∣∣] + (
2 + u�2)

Eu

[∣∣T ◦
n−1

∣∣]
= (

1 + u�2)
Eu

[|Tn−1|] + Eu

[∣∣T ◦
n−1

∣∣]
(83)= (

1 + u�2)
Eu

[|Tn−1|] + u�2Eu

[|Tn−2|](84)

≤ (
1 + u�2)

Eu

[|Tn−1|] + u�2Eu

[|Tn−1|]

= (
1 + 2u�2)

E
[|Tn−1|].

Now (80) follows from (84), (82) and induction. �

The proposition below can be seen as a heat-kernel estimate for the above con-
structed branching random walk.

PROPOSITION 6.2. Suppose G = (V ,E) is nonamenable, with degree bound-
ed by � < ∞. Recall the definition of the branching random walk starting at a
x ∈ V , introduced in Section 5. There is u0 > 0 such that, for every x ∈ V fixed,

lim
y;d(x,y)→∞ Pu

[∃a ∈ T :Zx
a = y

] = 0 for every u < u0.(85)

PROOF. By [28], Lemma (8.1), page 84, we have

p(n)(x, y) ≤ cρn for every x, y ∈ V .(86)

Denote the event appearing in the probability on the left-hand side of (85) with Hy

(where the index x is omitted since it is kept fixed during the proof).
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We observe the following inclusion:

Hy ⊂
∞⋃

n=d(x,y)

{∣∣{a ∈ Tn :Zx
a = y

}∣∣ ≥ 1
}

(87)

and suppose that

u <
1

2�2

(
1

ρ
− 1

)
.(88)

We now obtain

Pu[Hy]
(87)≤

∞∑
n=d(x,y)

Pu

[∣∣{a ∈ Tn :Zx
a = y

}∣∣ ≥ 1
]

≤
∞∑

n=d(x,y)

Eu

[∣∣{a ∈ Tn :Zx
a = y

}∣∣]

=
∞∑

n=d(x,y)

∑
m≥1

Eu

[∣∣{a ∈ Tn :Zx
a = y

}∣∣, |Tn| = m
]

=
∞∑

n=d(x,y)

∑
m≥1

Eu

[ ∑
a∈Tn

Eu

[
Zx

a = y|T
]
, |Tn| = m

]
.

By using the independence of T and the labels (�e)e∈E , we deduce from (80) and
(70) that the above is bounded by

≤
∞∑

n=d(x,y)

cu,λ

(
1 + 2u�2)n

Px[Xn = y]

(86)≤
∞∑

n=d(x,y)

cu,λ

(
ρ

(
1 + 2u�2))n

,

which converges to zero as d(x, y) goes to infinity, due to (88).
Therefore, we see that (85) holds with

u0 = 1

2�2

(
1

ρ
− 1

)
> 0,(89)

completing the proof of the theorem. �

6.2. Disconnectedness when u is small. We now collect the results of previous
sections in order to obtain the almost sure disconnectedness of random interlace-
ments at low levels for a large class of nonamenable graphs of bounded degree. Be-
fore, recall the definitions of the spectral radius ρ in (14) and the capacity in (21).
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THEOREM 6.3. Consider a nonamenable graph G with degree bounded by
� < ∞. Then

uc ≥ 1

2�2

(
1

ρ
− 1

)
.(90)

PROOF. We first observe that the nonamenability, together with the assump-
tion that the degrees are uniformly bounded imply that

inf
x∈V

Px[H̃x = ∞] > 0 see, for instance, (4.4) of [23].(91)

For u, v ∈ V , write u
I(ω)←→ v if u and v belong to the same connected component

of the subgraph induced by I(ω). If u > 0 is such that I(ω) is connected Pu-a.s.,
then for o ∈ V ,

inf
y∈V

Pu

[
o

I(ω)←→ y
] = inf

y∈V
Pu

[
o ∈ I(ω), y ∈ I(ω)

]

≥ inf
y∈V

Pu

[
o ∈ I(ω)

]
Pu

[
y ∈ I(ω)

]

≥ inf
y∈V

(
1 − exp

{−udyPy[H̃y = ∞]})2(92)

≥
(
1 − exp

{
−u inf

x∈V
Px[H̃x = ∞]

})2

> 0,

where the FKG-inequality (see [23], Theorem 3.1) was used in the first inequality,
and in the third inequality we used the fact that dx ≥ 1. Consequently, to show that
with positive probability I(ω) is disconnected for small u, it is enough to show
that

lim
d(o,y)→∞Pu

[
o

I(ω)←→ y
] = 0,

when u is sufficiently small. From Propositions 4.1 and 5.1 we know that

Pu

[
o

I(ω)←→ y
] ≤ Pu[Hy],(93)

where we recall the definition of the event Hy from the proof of Proposition 6.2.
Proposition 6.2 says that

lim
d(x,y)→∞ Pu[Hy] = 0 whenever u <

1

2�2

(
1

ρ
− 1

)
,(94)

and therefore, we obtain (90). �

7. The connected phase. The aim of this section is to provide results regard-
ing the phase u > uc. In Section 7.1 we give an example of a graph for which this
phase is nonempty. In Section 7.2 we show that for any u > uc, the interlacement
set I is connected.
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7.1. Finiteness of uc for T
d × Z

d ′
. In Proposition 7.2 below we prove that

the value uc is finite for the classical example of the product between a d-regular
tree and the d ′-dimensional Euclidean lattice: T

d × Z
d ′

, where d ≥ 3 and d ′ ≥ 1.
A similar result was proved in [9] for Bernoulli percolation. It is worth mentioning
that the finiteness of uc does not hold true for every vertex-transitive nonamenable
graph G, as we note in the following:

REMARK 7.1. (1) For the infinite d regular tree T
d (d ≥ 3), we have

uc

(
T

d) = ∞.(95)

Indeed, using Theorem 5.1, (5.7) and (5.9) of [23], we conclude that for any u > 0,
with Pu-positive probability, the root ∅ ∈ T

d is an isolated component of T
d \ I .

In this event, any two neighbors y and y′ of ∅ are contained in I ruling out the
almost sure connectedness of I and yielding (95).

(2) Considering again the above mentioned event, since the set I has Pu-a.s.
no finite components [see (17) and [23] (2.26)] we conclude that with positive
probability there are at least two distinct infinite clusters in I . This together with
Proposition 3.2 gives that for every u > 0 the interlacement set I has infinitely
many connected components Pu-a.s.

In what follows we use the same convention as in (4.1) of [23] for the product
of two graphs. More precisely, if G = (V ,E) and G′ = (V ′,E′) are graphs, the
product G × G′ has vertex set V × V ′, and there is an edge between (x, x′) and
(y, y′) if and only if d(x, y) + d ′(x′, y′) = 1, where d(·, ·) and d ′(·, ·) denote,
respectively, the distances in G and G′.

PROPOSITION 7.2. For any d ≥ 3 and d ′ ≥ 1 we have that

0 < uc

(
T

d × Z
d ′)

< ∞.(96)

PROOF. The fact that uc is positive follows directly from Theorem 6.3 and the
nonamenability of the graph under consideration; see [28], 4.10, page 44. There-
fore we focus on establishing that uc < ∞.

We first obtain a characterization of the random interlacements law on T
d ×Z

d ′
,

which resembles Theorem 5.1 in [23]. For this, let us first note that the set of
trajectories

W ∗
bad(n) = {

w ∈ W ∗;w intersects B(∅, n) × Z
d ′

infinitely many times
}

has ν-measure zero for all n ≥ 0, where ∅ denotes the origin of the tree. To
see why this is true, observe that the first projection of a random walk on
T

d × Z
d ′

is transient. This, together with equations (25) and (24), shows that
W ∗

bad(n) ∩ W ∗
B(∅,n)×B(0,m) has ν-measure zero for every m ≥ 0, yielding the claim.
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For x ∈ V , we write n(x) = inf{n;x ∈ B(∅, n) × Z
d ′ } and define a map

φ :W ∗ → T
d × Z

d ′
in the following way. If w belongs to some {W ∗

bad(n)}n≥0,
then φ(w) can be defined arbitrarily, otherwise φ(w) returns the unique point
x ∈ T

d × Z
d ′

such that:

• w does not enter B(∅, n(x) − 1) × Z
d ′

[trivially true if n(x) = 1] and
• x is the first point visited in B(∅, n(x)) × Z

d ′
.

Note that this is well defined out of
⋃

n≥0 W ∗
bad(n).

A second observation is that the sets

W ∗
x = {

w ∈ W ∗;φ(w) = x
}

(97)

form a disjoint partition of W ∗. This decomposition provides us with an alterna-
tive way to construct the set I . More precisely, in some auxiliar probability space
(�′, A′,P ′):

• we consider for every x ∈ V , independent random variables (Jx)x∈V , distributed
as Poisson(u · ν(W ∗

x ));
• for x ∈ V and i ≤ Jx we let Xi

x and Y i
x be random walks with distributions

Px[·|H̃B(∅,n(x))×Zd′ = ∞] and Px[·|HB(∅,n(x)−1)×Zd′ = ∞].
Using (25), (24) and Proposition 3.6 of [14], we conclude that under Pu,

the set I is distributed as
⋃

x∈V

⋃
i≤Jx

Range(Xi
x) ∪ Range(Y i

x).(98)

The main advantage of this representation is that the variables Jx are indepen-
dent, providing us with an (inhomogeneous) Bernoulli percolation Zx = 1{Jx>0},
for x ∈ V , such that P ′[Zx = 0] = P ′[Jx = 0] = exp{−uν(W ∗

x )}. It is also impor-
tant to note by (25) and (24) that

ν
(
W ∗

x

) = Px[H̃B(∅,n(x))×Zd′ = ∞, H̃{x} = ∞]dxPx[H̃B(∅,n(x)−1)×Zd′ = ∞]
(99)

≥ β > 0,

uniformly on x ∈ V . This implies that (Zx)x∈V stochastically dominates a
Bernoulli(1 − exp{−uβ}) i.i.d. percolation.

We now state a known result on the uniqueness of the infinite cluster of
Bernoulli percolation, first proved in [9]. More precisely, Proposition 8.1 of [10]
states that for d ≥ 3, d ′ ≥ 1 and p close enough to 1,

there is a.s. a unique infinite cluster C∞ in Bernoulli(p) site percolation
on T

d × Z
d ′

.
(100)

A careful reader would observe that the result in [10] is stated for bond percola-
tion instead. However, the second part of the proof of Lemma 4.1 applies without
modifications to site percolation, if one uses the fact that Lemma 4.3 of [10] was
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proved in [15] for site percolation as well. Moreover, using equation (8.9) of [10]
we obtain that this unique infinite cluster satisfies

Px[HC∞ < ∞] = 1 for every x ∈ V .(101)

We now take uo large enough so that for every u ≥ uo, (Zx)x∈V dominates a
Bernoulli percolation satisfying the two above claims. Then, for these values of u,
the Pu-almost sure connectivity of I will follow from the characterization in (98),
proving that uc ≤ uo < ∞. �

REMARK 7.3. A natural question that the above proof raises is: Is it true that
for any nonamenable graph, random interlacements dominate Bernoulli site per-
colation, as we obtained in the proof of Proposition 7.2? This question was posed
to the authors by Itai Benjamini.

Note also that random interlacements on Z
d do not dominate or become domi-

nated by any Bernoulli site percolation; see Remark 1.1 in [16].

7.2. Monotonicity of the uniqueness transition. Observe that the event {I is
connected} is not monotone with respect to the set I . This immediately raises the
question of whether there could be some u > uc for which I u is Pu-a.s. discon-
nected. The next result rules out this possibility. Note that a similar question was
considered in [11] in the case of Bernoulli percolation on unimodular transitive
graphs and in [15] in the general quasi-transitive case.

Fix intensities u′ > u ≥ 0. For the statement of Theorem 7.4 below, we need
to couple the random interlacement at levels u and u′. Actually, this is done in
[23] for all values of u ≥ 0 simultaneously, but for the purpose of this paper, it is
enough to consider the following. Put P = Pu ⊗ Pu′−u. For (ω1,ω2) ∈ � × �, put
I u = I(ω1) and I u′−u = I(ω2). Finally, we define I u′

as I u ∪ I u′−u. Then clearly
I u ⊂ I u′

, and under P, the random sets I u and I u′−u are independent. Moreover,
due to the Poissonian character of random interlacements, we have that under P,
the sets I u, I u′

, I u′−u have laws Pu, Pu′ , Pu′−u, respectively.

THEOREM 7.4. Suppose that G is such that Px[H̃x = ∞] is uniformly
bounded from below by γ > 0. Then, for any u′ > u ≥ 0, we have that

all components of I u′
contain an infinite component of I u, P-a.s.(102)

Observe that transience and transitivity imply the above hypothesis.

PROOF OF THEOREM 7.4. To obtain the statement in (102), it is enough to
prove that, for every x ∈ V , the following event has P-probability one:{

the connected component of I u′
containing x

is either empty or contains an infinite component of I u
}
.
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Indeed, if this is the case, we can intersect the countable collection of such events
(as x runs in V ), and we obtain (102).

Now fix x ∈ V and recall from (17) and (26) that the set I u has no finite com-
ponents. Then, since I u ⊆ I u′

, the above mentioned event equals{
the connected component of I u′

containing x
(103)

is either empty or contains a point in I u
}
.

Now let us see that the above event has P-probability one. For this, recall that if
x ∈ I u′ \ I u, then x ∈ I u′−u, which is equivalent to ω2(W

∗{x}) > 0.
Given the Poissonian character of ω2, we can construct its restriction to the

set W ∗{x} in the following way. First simulate the random variable J = ω2(W
∗{x})

which has Poisson distribution [with parameter (u′ − u)ν(W ∗{x})]. Then for every
i = 1, . . . , J we throw an independent trajectory w ∈ W ∗{x} with distribution given
by ν restricted to W ∗{x} and normalized to become a probability measure. According
to (24), this probability distribution is given by π∗ ◦ Q{x}/e{x}(x).

Conditioned on the event ω2(W
∗{x}) > 0, we know by the above construction and

(25) that I u′−u contains a random walk trajectory with law Px . Thus, all we have
to do in order to prove that (103) has probability one is to show that P-a.s. the set
I u is such that

Px[HIu < ∞] = 1,(104)

which, by Fubini’s theorem, is equivalent to proving that Px-a.s. the range of a
random walk is a sequence (xi)i≥0 such that

P
[

I u ∩ {xi}i≥0 �= ∅
] = 1.(105)

In fact we will exhibit a subsequence (xij )j≥0 of the random walk trace, such
that I u almost surely intersects {xij }j≥0. For this, let us show that Px-a.s. there
exists a subsequence (xij )j≥0 of the random walk trace such that

Pxij
[H{xi0 ,...,xij−1 } < ∞] < 1

2 for all j ≥ 1.(106)

To see why this is true, we first claim that for every finite K ⊂ V , the set

AK = {
z ∈ V ;Pz[HK < ∞] ≥ 1

2

}
is Px -a.s. visited finitely many times.(107)

Indeed, if the random walk had a positive probability of visiting the set AK in-
finitely many times, we could use Borel–Cantelli’s lemma to prove that the set K

would also be visited infinitely often, which is a contradiction, proving (107). Note
that for some graphs the set AK could be infinite.

We can now define the subsequence (ij )j≥0 that we mentioned in (106) above.
First fix a sequence (xi)i≥0 that visits AB(x,n) finitely often for every n ≥ 0 (note
that AB(x,n), n ≥ 0 is a countable family). According to (107) these sequences have
Px-probability one. Now, let i0 = 0 and supposing we have defined ij for j ≤ jo,
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take ijo+1 to be such that xijo+1 is outside of AB(x,n) with Kj−1 := {xi0, . . . , xij−1}
⊂ B(x,n). This shows (106).

We are now in position to prove (105) by considering the following disjoint
subsets of W ∗:

W ∗
j = {

w ∈ W ∗;Range(w) intersects xij but not Kj−1
}

for j ≥ 1.(108)

They have ν-measure bounded away from 0, as the following calculation shows:

ν
(
W ∗

j

) = ν
(
W ∗{xij

} \ W ∗
Kj−1

) (24)= Q{xij
}
[
(Xn)n∈Z ∩ Kj−1 = ∅

]
(109)

(25)= Pxij
[HKj−1 = ∞|H̃xij

= ∞]e{xij
}(xij )Pxij

[HKj−1 = ∞],

which by (106) and the hypothesis of the theorem, is bounded from below by γ /4.
Finally, we estimate

P
[

I u ∩ {xi}i≥0 �= ∅
] ≥ P

[
I u ∩ {xij }j≥0 �= ∅

]
(110)

≥ P
[
ω1

(
W ∗

j

)
> 0, for some j ≥ 1

]
,

which has probability one, since the above random variables are independent Pois-
son random variables with parameter bounded away from zero. This proves (105),
therefore establishing that (103) has probability one, completing the proof of The-
orem 7.4. �

The following corollary is an immediate consequence of Theorem 7.4.

COROLLARY 7.5. For any graph G satisfying the hypothesis of Theorem 7.4
and for any u > uc, the set I is Pu-a.s. connected. In particular, for these graphs
we could have alternatively used the definition

uc = sup{u ≥ 0; I is not Pu-a.s. connected}.(111)

Furthermore, the connectedness transition for I is unique for these graphs.

REMARK 7.6. (1) Note that we do not necessarily suppose that the underlying
graph is transitive (or quasi-transitive) which is a standard assumption in the case
of Bernoulli percolation to obtain the monotonicity of the uniqueness transition.

(2) In the above result we do not rule out the existence of exceptional intensi-
ties u > uc for which I is disconnected. According to Corollary 7.5 and Fubini’s
theorem, the set of such exceptional intensities must have zero Lebesgue measure.
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8. Bounds for u∗. Recall that in Theorem 4.1 of [23], it was shown that for
any nonamenable graph of bounded degree, the critical value u∗ is finite. In this
section, we provide a lower bound for u∗ which implies the positivity of u∗ on
any nonamenable Cayley graph. First we recall the definition of a Cayley graph:
given a finitely generated group H with symmetric generating set S, the (right)
Cayley graph G = G(H,S) is the graph with vertex set H and such that {u, v} is
an edge if and only if u = vs for some s ∈ S. Recall that the critical value uc can be
degenerated on nonamenable Cayley graphs; see Remark 7.1. In Proposition 8.1
below, we show that in contrast, u∗ is always nondegenerate on such graphs.

PROPOSITION 8.1. Let G be a Cayley graph of degree d , and fix o ∈ V . Then

− 1

dPo[H̃o = ∞] log
(

d

d + κV

)
≤ u∗≤ 2d2κ−2

E ≤ 2d2κ−2
V .(112)

PROOF. We begin with the lower bound. Since G is a Cayley graph, and the
law of V is invariant under Aut(G), Theorem 2.1 of [3] implies that if

Pu[o ∈ V] ≥ d

d + κV

,(113)

then V contains unbounded connected components with positive probability. We
recall that [see (28)]

Pu[o ∈ V] = exp
{−udPo[H̃o = ∞]}.(114)

We now conclude the lower bond in (112) from (113) and (114).
We now proceed with the upper bound. The proof of Theorem 4.1 in [23] shows

that u∗ ≤ κ where κ is the constant appearing in statement (b) of Theorem 10.3
in [28]. However, the proof of Theorem 10.3 in [28] shows that κ can be chosen
to equal 2κ2 where κ is the constant appearing in the statement of Proposition 4.3
of [28]. The constant κ is the same as appears in Definition 4.1 of [28], and compar-
ing that definition with (13), one sees that κ = dκ−1

E . Thus, u∗ ≤ 2d2κ−2
E . Since

|∂EK| ≥ |∂V K| we obtain κE ≥ κV , and consequently 2d2κ−2
E ≤ 2d2κ−2

V , com-
pleting the proof of the proposition. �

APPENDIX

In this section we present the proof of Proposition 2.4. We follow here the same
arguments as those of Theorem 2.1 of [21], but they are included in detail for the
reader’s convenience. Recall the definitions of tg , Y and Qu from Section 2.

Before proving Proposition 2.4, we formulate and prove Lemma A.1. The proof
of this lemma is similar to that of Lemma 2.1 of [2], where the analogous result
for random interlacements on Z

d was proved; see also [22], Remark 1.5.

LEMMA A.1. Let u ≥ 0 and K1 and K2 be finite disjoint subsets of V . Let F1
and F2 be [0,1]-valued measurable functions on the set of finite point-measures
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on W+ (endowed with its canonical σ -field). Then
∣∣Eu

[
F1(μK1)F2(μK2)

] − Eu

[
F1(μK1)

]
Eu

[
F2(μK2)

]∣∣
≤ cu cap(K1) cap(K2) sup

x∈K1,

y∈K2

g(x, y).

PROOF. We decompose the Poisson point process μK1∪K2 into four indepen-
dent Poisson point processes as follows:

μK1∪K2 = μ1,1 + μ1,2 + μ2,1 + μ2,2,(115)

where

μ1,1 = ∑
i≥0

δwi
1{X0 ∈ K1,HK2 = ∞}, μ1,2 = ∑

i≥0

δwi
1{X0 ∈ K1,HK2 < ∞},

μ2,1 = ∑
i≥0

δwi
1{X0 ∈ K2,HK1 < ∞}, μ2,2 = ∑

i≥0

δwi
1{X0 ∈ K2,HK1 = ∞}.

From (30) we conclude that the μi,j ’s are independent Poisson point processes
on W+, and their corresponding intensity measures are given by

u1{X0 ∈ K1,HK2 = ∞}PeK1∪K2
, u1{X0 ∈ K1,HK2 < ∞}PeK1∪K2

,

u1{X0 ∈ K2,HK1 < ∞}PeK1∪K2
, u1{X0 ∈ K2,HK1 = ∞}PeK1∪K2

.

We observe that μK1 − μ1,1 − μ1,2 is determined by μ2,1 and therefore inde-
pendent of μ1,1,μ2,2 and μ1,2. In the same way, μK2 − μ2,2 − μ2,1 is indepen-
dent of μ2,2,μ2,1 and μ1,1. We can therefore introduce the auxiliary Poisson pro-
cesses μ′

2,1 and μ′
1,2 such that they have the same law as μK1 − μ1,1 − μ1,2 and

μK2 −μ2,2 −μ2,1, respectively, and μ′
2,1, μ′

1,2, μi,j , 1 ≤ i, j ≤ 2 are independent.
Then

Eu

[
F1(μK1)

] = Eu

[
F1

(
(μK1 − μ1,1 − μ1,2) + μ1,1 + μ1,2

)]
(116)

= Eu

[
F1

(
μ′

2,1 + μ1,1 + μ1,2
)]

and in the same way,

Eu

[
F2(μK2)

] = Eu

[
F2

(
μ′

1,2 + μ2,2 + μ2,1
)]

.(117)

Using (116), (117) and the independence of the Poisson processes μ′
2,1 + μ1,1 +

μ1,2 and μ′
1,2 + μ2,2 + μ2,1, we get

Eu

[
F1(μK1)

]
Eu

[
F2(μK2)

]
(118)

= Eu

[
F1

(
μ′

2,1 + μ1,1 + μ1,2
)
F2

(
μ′

1,2 + μ2,2 + μ2,1
)]

.



954 A. TEIXEIRA AND J. TYKESSON

From (118) we see that
∣∣Eu

[
F1(μK1)F2(μK2)

] − Eu

[
F1(μK1)

]
Eu

[
F2(μK2)

]∣∣
≤ Pu

[
μ′

2,1 �= 0 or μ′
1,2 �= 0 or μ2,1 �= 0 or μ1,2 �= 0

]
(119)

≤ 2
(
Pu[μ2,1 �= 0] + Pu[μ1,2 �= 0])

≤ 2u
(
PeK1∪K2

[X0 ∈ K1,HK2 < ∞] + PeK1∪K2
[X0 ∈ K2,HK1 < ∞]).

We now bound the two last terms in the above equation,

PeK1∪K2
[X0 ∈ K1,HK2 < ∞] ≤ ∑

x∈K1

eK1(x)Px[HK2 < ∞]

= ∑
x∈K1,y∈K2

eK1(x)g(x, y)eK2(y)(120)

≤ cap(K1) cap(K2) sup
x∈K1,y∈K2

g(x, y).

A similar estimate holds for PeK1∪K2
[X0 ∈ K2,HK1 < ∞], and the result follows.

�

PROOF OF PROPOSITION 2.4. We follow the proof of Theorem 2.1 in [21],
which goes through with only minor modifications. We define the map ψ :� →
{0,1}V given by ψ(ω) = (1{x ∈ V(ω)})x∈V . Then Qu = ψ ◦ Pu and moreover

tg ◦ ψ = ψ ◦ τg, g ∈ Aut(G).(121)

Choose a sequence of vertices v, v1, v2, . . . ∈ V such that d(v, vi) → ∞ as i →
∞. For each i ≥ 1, let gi ∈ Aut(G) be such that gi(v) = vi . These choices are
possible due to our assumption that G is an infinite transitive graph. To prove the
ergodicity statement, it suffices to establish that for any finite K ⊂ V and any
[0,1]-valued σ(Yz, z ∈ K)-measurable function f on {0,1}Z

d
, the following limit

holds:

lim
i→∞EQu[ff ◦ τgi

] = EQu[f ]2.(122)

Bound (122) gives the mixing of the interlacements set with respect to the au-
tomorphisms of G. The {0,1}-law (37) can be classically deduced as follows: if
A ∈ Y is invariant under Aut(G), then one can do L1(Qu)-approximation of its
indicator function by functions f as above. With (122), one obtains in a standard
way that Qu(A) = Qu(A)2, so that Qu(A) ∈ {0,1}.

Using (121), equation (122) will follow if we show that for any finite K ⊂ V

and any [0,1]-valued function F on the set of finite point-measures on W+,

lim
i→∞Eu

[
F(μK)F (μK) ◦ τgi

] = Eu

[
F(μK)

]2
.(123)
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However, Eu[F(μK)F (μK) ◦ τgi
] = Eu[F(μK)H(μgi(K))] for some H in the

same class of functions as F . Since d(K,gi(K)) → ∞ as i → ∞ and G is
transient, we conclude that supx∈K,y∈gi(K) g(x, y) → 0 as i → ∞. An appeal to
Lemma A.1 now gives (123), and the theorem follows. �
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