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ALIGNMENT-FREE PHYLOGENETIC RECONSTRUCTION:
SAMPLE COMPLEXITY VIA A BRANCHING PROCESS ANALYSIS

BY CONSTANTINOS DASKALAKIS1 AND SEBASTIEN ROCH2

Massachusetts Institute of Technology and University of California, Los Angeles

We present an efficient phylogenetic reconstruction algorithm allowing
insertions and deletions which provably achieves a sequence-length require-
ment (or sample complexity) growing polynomially in the number of taxa.
Our algorithm is distance-based, that is, it relies on pairwise sequence com-
parisons. More importantly, our approach largely bypasses the difficult prob-
lem of multiple sequence alignment.

1. Introduction. We introduce a new efficient algorithm for the phylogenetic
tree reconstruction (PTR) problem which rigorously accounts for insertions and
deletions.

Phylogenetic background. A phylogenetic tree or phylogeny is a tree repre-
senting the speciation history of a group of organisms. The leaves of the tree are
typically existing species. The root corresponds to their most recent common an-
cestor (MRCA). Each branching in the tree indicates a speciation event. It is com-
mon to assume that DNA evolves according to a Markovian substitution process on
this phylogeny. Under such a model, a gene is a sequence in {A,G,C,T}k . Along
each edge of the tree, each site independently mutates according to a Markov rate
matrix. The length of a branch is a measure of the amount of substitution along that
branch. The precise definition of a branch length depends on the model of evolu-
tion. For roughly constant mutation rates, one can think of the branch length as
proportional to the amount of time elapsed along a branch. The PTR problem con-
sists of estimating a phylogeny from the genes observed at its leaves. We denote
the leaves of a tree by [n] = {1, . . . , n} and their sequences by σ1, . . . , σn.

The model of sequence evolution above is simplistic: it ignores many mutational
events that DNA undergoes through evolution. At the gene level, the most impor-
tant omissions are insertions and deletions of sites, also called indels. Stochastic
models taking indels into account have long been known [39, 40], but they are not
widely used in practice (or in theory) because of their complexity. Instead, most
practical algorithms take a two-phase approach:
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(1) Multiple sequence alignment. Site ti of sequence σi and site tj of sequence
σj are said to be homologous if they descend from the same site t0 of a common
ancestor u (not necessarily the MRCA) only through substitutions. In the multiple
sequence alignment (MSA) problem, we seek roughly to uncover the homology
relation between σ1, . . . , σn. Typically, the output is represented by a matrix D of
n aligned sequences of equal length with values in {A,G,C,T,−}. Each column
of the matrix corresponds to homologous sites. The state − is called a gap and is
used to account for insertions and deletions. For instance, if sequence σl does not
have a site corresponding to t0 in u above, then a gap is aligned with positions ti
of σi and tj of σj (which belong to the same column).

(2) Phylogenetic tree reconstruction. The matrix D is then cleaned up by re-
moving all columns containing gaps. Let D′ be this new matrix. A standard PTR
algorithm is then applied to D′. Note that substitutions alone suffice to explain D′.
Traditionally, most of the research on phylogenetic methods has focused on the
second phase.

In fact, current theoretical analyses of PTR assume that the MSA problem has
been solved perfectly. This has been a long-standing assumption in evolutionary
biology. But this simplification is increasingly being questioned in the phyloge-
netic literature, where it has been argued that alignment heuristics often create
systematic biases that affect analysis [26, 42]. Much recent empirical work has
been devoted to the proper joint estimation of alignments and phylogenies [25–28,
32, 37, 39, 40]. Here we give the first analysis of an efficient, provably consistent
PTR algorithm in the presence of indels. Our new algorithm suggests that a rough
alignment suffices for an accurate tree reconstruction (bypassing the computation-
ally difficult multiple alignment problem).

Theoretical properties of PTR. In addition to computational efficiency, an
important theoretical criterion in designing a PTR algorithm is the so-called
sequence-length requirement (SLR). At a minimum, a reconstruction algorithm
should be consistent, that is, assuming a model of sequence evolution, the output
should be guaranteed to converge on the true tree as the sequence length k (the
number of samples) goes to +∞ [15]. Beyond consistency, the sequence-length
requirement (or convergence rate) of a PTR algorithm is the sequence length re-
quired for guaranteed high-probability reconstruction. The SLR is typically given
as an asymptotic function of n, the number of leaves of the tree. Of course, it also
depends on the substitution parameters.

A classical result due to Erdős et al. [13] states that, for general trees under the
assumption that all branch lengths are bounded by constants, the so-called short
quartet method (SQM) has poly(n)-SLR. The SQM is a particular PTR algorithm
based on estimating evolutionary distances between the leaf taxa, that is, the sum of
the branch lengths between species. Such algorithms are known as distance-based
methods. The basic theoretical result behind distance-based methods is the follow-
ing: the collection of pairwise evolutionary distances between all species forms a
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special metric on the leaves known as an additive metric; under mild regularity as-
sumptions, such a metric characterizes the underlying phylogeny interpreted as an
edge-weighted tree, that is, there is a one-to-one correspondence between additive
metrics and phylogenies; moreover, the mapping between them can be computed
efficiently [34].

A new approach. In the classical theoretical setting above where the MSA
problem is assumed perfectly solved (we refer to this setting below as the ESSW
framework), the evolutionary distance between two species is measured using the
Hamming distance (or a state-dependent generalization) between their respective
sequences. It can be shown that after a proper correction for multiple substitu-
tions (which depends on the model used) the expectation of the quantity obtained
does satisfy the additive metric property and can therefore serve as the basis for a
distance-based PTR algorithm.

Moving beyond the ESSW framework, it is tempting to account for indels by
simply using edit distance instead of the Hamming distance. Recall that the edit
distance or Levenshtein distance between two strings is given by the minimum
number of operations needed to transform one string into the other, where an op-
eration is an insertion, deletion or substitution of a single character. However, no
analytical expression is known for the expectation of edit distance under standard
indel models and computing such an expression appears difficult (if at all possi-
ble). An alternative idea is to compute the maximum likelihood estimator for the
time elapsed between two species given their sequences. But this involves solving
a nonconvex optimization problem and the likelihood is only known to be effi-
ciently computable under a rather unrealistic assumption known as reversibility
[39] (see below).

We use a different approach. We divide the sequences into quantile blocks (the
first x%, the second x%, etc.). We show that by appropriately choosing x above
we can make sure that the blocks in different sequences essentially “match” each
other, that is, they are made of mostly homologous sites. We then compare the state
frequencies in matching blocks and build an additive metric out of this statistic. As
we show below, this is in fact a natural generalization of the Hamming estimator
of the ESSW framework. However, unlike the Hamming distance which can easily
be analyzed through standard concentration inequalities, proving rigorously that
our approach works involves several new technical difficulties. Our analysis relies
on a branching process analysis of the site displacements. We give a quick proof
sketch after the formal statement of our results in Section 1.2.

The results described here were first announced without proof in the special case
of ultrametric trees under the CFN model with inverse logarithmic indel rates [10].
Here we give full proofs of stronger results, including extensions to bounded-rate
trees under GTR models.

Related work. For more background on models of molecular evolution and
phylogenetics, see, for example, [16, 17, 34]. Following the seminal results of [13],
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there has been much work on sequence-length requirement, including [4–9, 14, 18,
20, 23, 24, 29, 30, 33, 35, 36].

The multiple sequence alignment problem as a combinatorial optimization
problem (finding the best alignment under a given pairwise scoring function)
is known to be NP-hard [12, 41]. Most heuristics used in practice, such as
CLUSTAL [19], MAFFT [22] and MUSCLE [11], use the idea of a guide tree,
that is, they first construct a very rough phylogenetic tree from the data (using, e.g.,
edit distance as a measure of evolutionary distance), and then recursively construct
local alignments produced by “aligning alignments.”

To our knowledge, little theoretical work has been dedicated to the joint es-
timation of alignments and phylogenies, with the exception of Thatte [38] who
gave consistency results for the reversible case in the limit where the deletion-to-
insertion ratio tends to 1. However, no sequence-length requirement is obtained
in [38]. In recent related work, the problem of reconstructing ancestral sequences
in the presence of indels was considered [1, 2].

1.1. Model of sequence evolution.

Phylogeny. A phylogeny is represented by a binary tree T = (V ,E), whose
leaves L ⊂ V correspond to extant species, and whose bifurcations denote evo-
lutionary events whereby two new species are generated from an ancestor. The
root of the phylogeny, denoted by r(T ), represents the common ancestor of all the
species in the phylogeny, and we assume that all edges of T are directed away
from r(T ); so, if e = (u, v) is a branch of the phylogeny, u is the parent of v and
v is the child of u. Moreover, if v′ is in the subtree of T rooted at u, we call v′ a
descendant of u and u an ancestor of v′.

Along each branch of the phylogeny, the genetic material of the parent species
is subject to modifications that produce the genetic material of its child species.
A common biological assumption is that the genetic material of each species u can
be represented by a binary sequence σu = (σ 1

u , . . . , σ
Ku
u ) of length Ku over a finite

alphabet—for ease of presentation, we work with a binary alphabet {0,1} (but
see Section 5 for extensions to richer alphabets)—and that the changes to which
σu is subjected along the branch e = (u, v) are described by a Markov process.
In particular, the Markov property implies that, given the sequence σu of u, the
sequence σv is independent of the sequences of the species outside the subtree of
T rooted at u.

A simplifying assumption commonly used in phylogenetics is that all species
have sequences of the same length and, moreover, that every site, that is, every
coordinate, in their sequences evolves independently from every other site. In par-
ticular, it is assumed that, along each branch e = (u, v) of the phylogeny, every site
σ

j
u of the sequence σu is flipped with probability pe to the value 1 − σ

j
u indepen-

dently from the other sites. This model is known as the Cavender–Farris–Neyman
(CFN) model. A simple generalization to {A,G,C,T} is known as the Jukes–Cantor
(JC) model (see, e.g., [16]).
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Accouting for indels. In this paper, we consider a more general evolutionary
process that accounts for the possibility of insertions and deletions. Our model
is similar to the original TKF91 model [39], except that we do not enforce re-
versibility. In our model, every edge e = (u, v) of the phylogeny is characterized
by a quadruple of parameters (te;ηe,μe, λe), where te is the evolutionary time be-
tween the species u and v, and ηe, μe and λe are, respectively, the substitution,
deletion and insertion rates. The Markov process by which the sequence at v is
obtained from the sequence at u is defined below (see, e.g., [21] for background
on continuous-time Markov processes).

DEFINITION 1.1 (Evolutionary process on a branch). Given an edge e =
(u, v), with parameters (te;ηe,μe, λe), the sequence σv at v is obtained from the
sequence σu at u according to the following Markov process:

(1) Intialize σv := σu, Kv := Ku and t� := te (where t� is the remaining time on
the edge e).

(2) While t� > 0:

• (Timing of next event) let I0, I1, . . . , IKv be exponential random variables
with rate λe, D1, . . . ,DKv exponential random variables with rate μe and
M1, . . . ,MKv exponential random variables with rate ηe; suppose that these
random variables are mutually independent and let T be their minimum;

• if T > t�, the process ends at t�; otherwise:
– (Insertion) if Ij = T , insert a new site whose value is chosen uniformly

at random from {0,1} between the sites σ
j
v and σ

j+1
v of σv ;

– (Deletion) if Dj = T , delete the site σ
j
v from σv ;

– (Substitution) and if Mj = T , replace σ
j
v by 1 − σ

j
v ;

(If j = 0, then σ
j
v is undefined and, if j = Kv , then σ

j+1
v is undefined.)

• (Remaining time) update σv according to these changes, and update Kv to
reflect the new sequence length; set the remaining time t� := t� − T .

In words, the evolutionary process defined above assumes that every site of the
sequence σu of the parent species is, independently from the other sites, subjected
to a sequence of evolutionary events that flip its value; these events are distributed
according to a Poisson point process of intensity ηe in the time interval [0, te].
However, the site may get deleted and therefore not be inherited by the sequence
of the node v; this is determined by whether an exponential random variable of
rate μe is smaller than te. While each site of the parental sequence σu is subjected
to this process, new sites are introduced in the space between existing sites at
rate λe, and each of these sites follows a similar process for the remaining time. In
essence, insertion and deletion events are governed by an independent branching
process for each ancestral site. Note further that the order of the sites, as described
above, also plays a role.
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REMARK 1.2. Unlike [39], we do not use an “immortal link” and we do not
assume that the length process is at stationarity. Our techniques can also be ap-
plied to the TKF91 model without much modifications. We leave the details to the
reader.

Given the evolutionary process on a branch of the phylogeny, the evolutionary
process on the whole phylogeny is defined as follows.

DEFINITION 1.3 (Evolutionary process). Suppose that every site of the se-
quence σr(T ) at the root of the phylogeny is chosen to be 0 or 1 uniformly at
random. Recursively, if σu is the sequence at node u and e = (u, v) is an edge of
the phylogeny, the sequence σv at node v is obtained from the sequence σu by an
application of the evolutionary process on a branch described by Definition 1.1.

For ease of exposition, we first present our proof in the special case where the
substitution, insertion and deletion rates are the same on all edges of the phylogeny.

DEFINITION 1.4 (Ultrametric assumption). Under the ultrametric assump-
tion, the leaves of the phylogeny are contemporaneous, that is, there exists H such
that for each u ∈ L the sum of evolutionary times te on the branches between u

and the root is H .

DEFINITION 1.5 (Molecular clock assumption). Under the molecular clock
assumption, we assume that the ultrametric assumption holds. Moreover, there ex-
ist η, μ and λ such that ηe = η, μe = μ and λe = λ, for all e ∈ E.

We discuss a more general case in Section 5.

Notation. In the sequel, we label the leaves of the phylogeny with the positive
integers 1, 2, . . . , n, so that L = {1, . . . , n}, and the root r(T ) of the phylogeny
with 0.

1.2. Main result.

Statement of results. We begin with a consistency result. Here we consider a
completely general phylogeny, that is, neither the ultrametric nor the molecular
clock assumptions need hold.

THEOREM 1 (Consistency: finite case). Assume that 0 < te, ηe, λe,μe < +∞,
for all e ∈ E. Then there exists a procedure returning the correct tree from the
sequences at the leaves, with probability of failure approaching 0 as the sequence
length at the root of the tree goes to +∞.
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Our main result is the following. For simplicity we first work under the sym-
metric two-state case and assume that the molecular clock assumption holds.

THEOREM 2 (Main result: two-state, molecular clock case). Consider the two-
state model under the molecular clock assumption. Assume further that there exist
constants

0 < f, g < +∞,

independent of n, such that

f < te < g ∀e ∈ E.

Moreover, assume that

ηe = η, λe = λ, μe = μ ∀e ∈ E,

where η, λ and μ are bounded between constants (independent of n) 0 <
¯
η < η̄ <

+∞, 0 = ¯λ < λ̄ < +∞ and 0 =
¯
μ < μ̄ < +∞, respectively. Under the assump-

tions above, for all β ′ > 0 there exists β ′′ > 0 such that there exists a polynomial-
time algorithm solving the phylogenetic reconstruction problem (i.e., returning
the correct tree) with probability of failure n−β ′

, if the root sequence has length
kr ≥ nβ ′′

.3

REMARK 1.6 (Branch lengths). Our assumption that all branch lengths te,
e ∈ E, satisfy f < te < g is standard in the sequence-length requirement literature
following the seminal work of [13].

Extensions. In Section 5 we derive the following extension. Let Q be a re-
versible 4 × 4 rate matrix with stationary distribution π . (Larger alphabets are also
possible.) The GTR sequence evolution process is identical to the one described
in Definition 1.1 except that the substitution process is a continuous-time Markov
process with rate matrix ηeQ.

THEOREM 3 (Main result: GTR, bounded-rates case). Consider the GTR
model with rate matrix Q under the ultrametric assumption (but not necessarily
the molecular clock assumption). Assume further that there exist constants

0 < f, g,
¯
η, η̄, ¯λ, λ̄,

¯
μ, μ̄,< +∞,

independent of n, such that

f < te < g,
¯
η < ηe < η̄ ∀e ∈ E.

3In [10], a preliminary version of this result was announced without proof, with the much stronger
assumption that λ̄, μ̄ = O(1/ logn), that is, that the indel rates are negligible. Here we show that this
assumption can be relaxed (at the cost of longer sequences).
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Moreover, assume that

λe = λ, μe = μ ∀e ∈ E,

where λ and μ are bounded between constants (independent of n) 0 = ¯λ < λ̄ <

+∞ and 0 =
¯
μ < μ̄ < +∞, respectively. We refer to the conditions above as

the bounded-rates assumption. Under the assumptions above, for all β ′ > 0 there
exists β ′′ > 0 such that there exists a polynomial-time algorithm solving the phy-
logenetic reconstruction problem (i.e., returning the correct tree) with probability
of failure n−β ′

, if the root sequence has length kr ≥ nβ ′′
.

Proof sketch. Consider the two-state, molecular clock case. As we noted be-
fore, unlike the classical setting where the Hamming distance can be analyzed
through standard concentration inequalities, proving rigorously that our approach
works involves several new technical difficulties. The proof goes through the fol-
lowing steps:

(1) Expectations. We first compute expectations of block statistics, which in-
volve analyzing a continuous-time Markov process. We use these calculations to
define an appropriate additive metric based on correlations between blocks.

(2) Sequence length and site displacements. We give bounds on how much se-
quence lengths vary across the tree through a moment-generating function argu-
ment. Using our bounds on the sequence length process, we bound the worst-case
displacements of the sites. Namely, we show that, under our assumptions, all sites
move by at most O(

√
k log k).

(3) Sequence partitioning. We divide each sequence in blocks of size roughly
kζ for ζ > 1/2, where k is the sequence length at the root. From our bounds on site
displacements, it follows that the blocks roughly match across different sequences.
In particular, we bound the number of homologous sites between matching blocks
with high probability and show that the expected correlation between these blocks
is approximately correct.

(4) Concentration. Finally, we show that our estimates are concentrated. The
concentration argument proceeds by conditioning on the indel process satisfying
the high-probability conditions in the previous points.

The crux of our result is the proper estimation of an additive metric. With such an
estimation procedure in hand, we can use a standard distance-based approach to
recover the phylogeny.

Organization. The rest of the paper is organized as follows. The evolutionary
distance forming the basis of our approach is presented in Section 2. We describe
our full distance estimator in Section 3 and prove its concentration in the same
section. Extensions are described in Section 5.
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2. Evolutionary distances. Consider the two-state, molecular clock case. In
this section, we show how to define an appropriate notion of “evolutionary dis-
tance” between two species. Although such distances have been widely used in
prior phylogenetic work and have been defined for a variety of models [16, 34],
to our knowledge our definition is the first that applies to models with indels. We
begin by reviewing the standard definition in the indel-free case and then adapt it
to the presence of indels. Our estimation procedure is discussed in Section 3.

2.1. The classical indel-free case. Suppose first that λ = μ = 0, that is, there
is no indel. In that case, the sequence length remains fixed at k and the alignment
problem is trivial. Underlying all distance-based approaches is the following basic
definition.

DEFINITION 2.1 (Additive metric). A phylogeny is naturally equipped with a
so-called additive metric on the leaves D :L × L → (0,+∞) defined as

∀a, b ∈ L D(a, b) = ∑
e∈PT (a,b)

ωe,

where PT (a, b) is the set of edges on the path between a and b in T and where ωe

is a nonnegative function of the parameters on e (in our case, te, ηe, λe and μe).
For instance, a common choice for ωe would be ωe = ηete in which case D(a, b) is
the expected number of substitutions per site between a and b. Often D(a, b) is re-
ferred to as the “evolutionary distance” between species a and b. Additive metrics
are characterized by the following four-point condition: for all a, b, c, d ∈ L,

D(a, b) + D(c, d) ≤ max{D(a, c) + D(b, d), D(a, d) + D(b, c)}.
Moreover, assuming ωe > 0 for all e ∈ E, it is well known that there exists a one-
to-one correspondence between D and T as a weigthed tree with edge weights
{ωe}e∈E . We will discuss algorithms for constructing T from D in Section 4. For
more background on tree-based metrics, see [34].

Definition 2.1 implies that phylogenies can be reconstructed by computing
D(a, b) for all pairs of leaves a, b ∈ L. Assume we seek to estimate the evo-
lutionary distance between species a and b using their respective sequences.
In a first attempt, one might try the (normalized) Hamming distance between
σa = (σ 1

a , . . . , σ k
a ) and σb = (σ 1

b , . . . , σ k
b ). However, the expected Hamming dis-

tance (in other words, the probability of disagreement between a site of a and b)
does not form an additive metric as defined in Definition 2.1. Instead, it is well
known that an appropriate estimator is obtained by “correcting” the Hamming dis-
tance for “multiple” substitutions. Denoting by Ĥ(σa, σb) the Hamming distance
between σa and σb, a Markov chain calculation shows that D(a, b) = −1

2 log(1 −
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2E[Ĥ(σa, σb)]), with the choice ωe = ηete (see, e.g., [16]). In a distance-based
reconstruction procedure, one first estimates D with

D̂(a, b) = −1
2 log

(
1 − 2Ĥ(σa, σb)

)
(1)

and then applies one of the algorithms discussed in Section 4 below. The sequence-
length requirement of such a method can be derived by using concentration results
for Ĥ [4, 13].

2.2. Taking indels into account. To simplify the presentation, we assume
throughout that λ �= μ. The case λ = μ follows from the same argument.

In the presence of indels, the estimator (1) based on the Hamming distance
is difficult to apply. One has to first align the sequences, which cannot be done
perfectly and causes biases as well as correlations that are hard to analyze. Alter-
natively, one could try a different string distance such as edit distance. However,
computing the expectation of edit distance under indel models appears difficult.

We use a different approach involving correlations between state frequencies.
We will eventually apply the estimator to large sub-blocks of the sequences (see
Section 3), but we first describe it for the full sequence for clarity. For a node u,
let Ku be the (random) length of the sequence at u and Zu, the number of 0’s in
the sequence at u. Then, our distance estimator is

D̂(a, b) = (
Za − 1

2Ka

)(
Zb − 1

2Kb

)
.

We now analyze the expectation of this quantity. For u ∈ V , we let


u = Zu − 1
2Ku

be the deviation of Zu from its expected value (conditioned on the sequence
length).

Single channel. Suppose T is made of a single edge from the root r to a leaf a

with parameters t, η, λ,μ. Assume first that the original sequence length is kr = 1.
Let Ka be the length of the sequence at a. Then Ka is a continuous-time branch-
ing process and, by Markov chain calculations ([3], Section III.5), its moment-
generating function is

F(s, t) ≡ E[sKa ] = μ(s − 1) − e(μ−λ)t (λs − μ)

λ(s − 1) − e(μ−λ)t (λs − μ)
.(2)

By differentiating F(s, t) we derive

E[Ka] = e−(μ−λ)t(3)

and

Var[Ka] = μ + λ

μ − λ

[
e−(μ−λ)t − e−2(μ−λ)t ].(4)
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Let K∗
a be the number of “new” sites at a, that is, excluding the original site if it

survived. (We ignore the substitutions for the time being.) The probability that the
original site survives is e−μt . Then,

E[K∗
a ] = E[Ka − 1{original site survives}] = e−(μ−λ)t − e−μt

by linearity of expectation.
We now take into account substitutions. Assume that the original sequence

length at r is a random variable Kr and that the sequence at r is i.i.d. uniform.
Denote by Zr the number of 0’s at r . The probability that a site in r , that is still
surviving in a, has flipped its value is

p = P[state flips odd number of times in time t]

=
+∞∑
j=0

e−ηt (ηt)2j+1

(2j + 1)!
= e−ηt sinhηt

= 1 − e−2ηt

2
.

Also, note that a new site created along the path between r and a has equal chance
of being 0 or 1 at the end of the path. Then we have the following lemma.

LEMMA 2.2 (Single channel: expected deviation). The following holds:

E[
a|Kr,Zr ] = e−(2η+μ)t
r .

PROOF. We have

E[
a|Kr,Zr ] = E
[(

Za − 1
2Ka

)|Kr,Zr

]
= Zre

−μt (1 − p) + (Kr − Zr)e
−μtp

+ Kr

(
e−(μ−λ)t − e−μt )1

2 − Kre
−(μ−λ)t 1

2(5)

= Zr(1 − 2p)e−μt − 1
2Kr(1 − 2p)e−μt

= e−2ηt e−μt
r,

where on the first two lines:

(1) the first term is the number of original 0’s surviving in state 0;
(2) the second term is the number of original 1’s surviving in state 0;
(3) the third term is the number of new sites surviving in state 0 (where recall

that new sites are uniformly chosen in {0,1});
(4) the fourth term is half the sequence length at a given the length at r . �
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Fork channel. Consider now a “fork” tree, that is, a root r from which em-
anates a single edge eu = (r, u) which in turn branches into two edges ea = (u, a)

and eb = (u, b) (see Figure 1 below). For x = a, b,u, we denote the parameters
of edge ex by tx, λx,μx, ηx . Our goal is to compute E[D̂(a, b)] assuming that the
sequence length at the root is kr . We use (5), the Markov property and the fact
that Zu conditioned on Ku is a binomial with parameters 1/2 and Ku. We get the
following lemma.

LEMMA 2.3 (Fork channel: expected distance). The following holds:

E[D̂(a, b)] = e−(2ηa+μa)ta e−(2ηb+μb)tbe−(μu−λu)tu
kr

4
.

PROOF. We have

E[D̂(a, b)] = E[
a
b]
= E[E[
a
b|Ku,Zu]]
= E[E[
a|Ku,Zu]E[
b|Ku,Zu]]
= e−2ηata e−μata e−2ηbtbe−μbtbE[
2

u]
= e−2ηata e−μata e−2ηbtbe−μbtbE[E[
2

u|Ku]]
= e−2ηata e−μata e−2ηbtbe−μbtbE

[
Ku

4

]

= e−2ηata e−μata e−2ηbtbe−μbtb
e−(μu−λu)tukr

4
,

where we used (3) and Lemma 2.2. �

Molecular clock. We specialize the previous result to the molecular clock as-
sumption. That is, we assume, for x = a, b,u, that λx = λ, μx = μ and ηx = η.
Note that by construction ta = tb (assuming species a and b are contemporary). We

denote t = ta and t̄ = tu + ta . Denoting κ = kre
−(μ−λ)t̄

4 , we then get the following
lemma.

LEMMA 2.4 (Molecular clock: expected distance). The following holds:

E[D̂(a, b)] = e−(4η+μ+λ)tκ.

Letting

β = 4η + μ + λ,

we get that

−2 log E[κ−1D̂(a, b)] = 2βt,
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which is the evolutionary distance between a and b with the choice ωe = βte.
Therefore, we define the following estimator:

D̂∗(a, b) = −2 logκ−1D̂(a, b).

3. Distance computation. We now show how to estimate the evolutionary
distance between two species by decomposing the sequences into large blocks
which serve as roughly independent samples. We use the following notation: Mt =
e−(μ−λ)t , Dt = e−μt , δ = μ − λ, φ = μ + λ and �t = δ−1λ(1 − Mt).

We show in Section 4 that the time elapsed between the root and the leaves is

bounded by g2

f
log2 n. Hence, under our assumptions

ϒ−1
n ≡ e−(μ̄+λ̄)(g2/f ) log2 n ≤ e−(μ̄g2/f ) log2 n

(6)
≤ Mt ≤ e(λ̄g2/f ) log2 n ≤ e(λ̄+μ̄)(g2/f ) log2 n ≡ ϒn,

ϒ−1
n ≤ e−(μ̄g2/f ) log2 n ≤ Dt ≤ 1(7)

and

0 ≤ �t = λt
1 − e−(μ−λ)t

(μ − λ)t
≤ λ̄

g2

f
log2 n

e(λ̄g2/f ) log2 n − 1

(λ̄g2/f ) log2 n
(8)

= e(λ̄g2/f ) log2 n − 1 ≤ ϒn,

where we used that the function x−1(1 − e−x) is nonnegative and decreasing since
its derivative is

xe−x − (1 − e−x)

x2 = e−x (1 + x) − ex

x2 ≤ 0, x �= 0.

Note that the bounds above are polynomials in n with exponents depending only on
f , g, λ̄ and μ̄. In particular, we will ultimately take sequence lengths kr of the form
nβ ′′

with β ′′ chosen much larger than the exponent in ϒn. We call polynomials in n

(such as ϒn) which have an exponent not depending on β ′′, small polynomials. As
a result, the following notation will be useful. For a function W(kr) of kr , we use
Sn(W(kr)) to denote a function smaller or equal to W(kr) up to a small polynomial
factor. (The latter will be used similarly to the big-O notation.)

Recall the following standard concentration inequalities (see, e.g., [31]).

LEMMA 3.1 (Chernoff bounds). Let Z1, . . . ,Zm be independent {0,1}-
random variables such that, for 1 ≤ i ≤ m, P[Zi = 1] = pi where 0 < pi < 1.
Then, for Z = ∑m

i=1 Zi , M = E[Z] = ∑m
i=1 pi , 0 < δ− ≤ 1 and 0 < δ+ ≤ U ,

P[Z < (1 − δ−)M] < e−Mδ2−/2

and

P[Z > (1 + δ+)M] < e−c(U)Mδ2−,

where c(U) = [(1 + U) ln(1 + U) − U ]/U2.
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3.1. Concentration of the indel process.

Sequence length. We first show that the sequence length is concentrated. Let
T be single channel consisting of edge e = (r, a). Let kr be the length at r .

LEMMA 3.2 (Single channel: large deviations of sequence length). For all
γ > 0 and k̂r ≥ kr = nβ ′′′

with β ′′′ > 0 large enough, with probability at least
1 − k̂

−γ
r ,

Ka = krMt ± Sn

(√
k̂r log k̂r

)
,

where the small polynomial factor in Sn(

√
k̂r log k̂r ) depends on γ as well.

REMARK 3.3. Although we stated Lemma 3.2 for the full sequence, it will
also be needed for “half-sequences” and “blocks.” In particular, we use the previ-
ous lemma to track the position of sites. In that context, one should think of kr as
the position of a site in r and Ka as its position in a. Then we can use k̂r for the
full sequence length at r (see Section 3.2).

PROOF OF LEMMA 3.2. We think of Ka as

Ka =
kr∑

i=1

Ka,i,

where Ka,i is the number of sites generated by a single site of the sequence at r .
Intuitively, Ka,i is the number of sites that were inserted between the sites i and
i + 1 of the sequence at r , plus the site at position i itself, if it survived. Clearly
the variables {Ka,i}i are mutually independent.

Using (3) we obtain that

E[Ka] = krMt .

For ε > 0, by Markov’s inequality, we have

P[Ka ≥ krMt + krε] ≤ s−kr (Mt+ε)
E[sKa ] = (

s−(Mt+ε)
E[sKa,1])kr .(9)

We take s = 1 + Cε for C > 0 to be determined.
We have

E[sKa,1] = μ(s − 1) − e(μ−λ)t (λs − μ)

λ(s − 1) − e(μ−λ)t (λs − μ)
= (μ − λM−1

t )Cε + δM−1
t

λ(1 − M−1
t )Cε + δM−1

t

= δ−1(μMt − λ)Cε + 1

δ−1λ(Mt − 1)Cε + 1
= 1 − (λ−1μ�t − 1)Cε

1 − �tCε

= [1 − (λ−1μ�t − 1)Cε]
+∞∑
ι=0

[�tCε]ι,
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whenever �tCε < 1. Hence, if ϒnCε < 1 is bounded away from 1 (independently
of n), we have, using (8),

E[sKa,1] = [1 − (λ−1μ�t − 1)Cε][1 + �tCε + (�tCε)2 + O((ϒnCε)3)]
= 1 + Mt(Cε) + Mt�t(Cε)2 + O((ϒnCε)3).

Moreover, using the binomial series and (6), and assuming Cε < 1

s−(Mt+ε) =
+∞∑
ι=0

(−Mt − ε)(−Mt − ε − 1) · · · (−Mt − ε − ι + 1)

ι! [Cε]ι

≤ 1 − (Mt + ε)(Cε) + (Mt + ε)(Mt + ε + 1)

2
(Cε)2

+
+∞∑
ι=3

(Mt + ε + 1)ι[Cε]ι

= 1 − (Mt + ε)(Cε) + (Mt + ε)(Mt + ε + 1)

2
(Cε)2

+ O((ϒnCε)3),

whenever ε is small and ϒnCε < 1 is bounded away from 1 (independently
from n). Therefore,

s−(Mt+ε)
E[sKa,1] = 1 − ε(Cε) + Mt�t(Cε)2 + (Mt + ε)(Mt + ε + 1)

2
(Cε)2

− (Mt + ε)Mt(Cε)2 + O((ϒnCε)3).

Note that the second term on the right-hand side depends on C whereas the remain-
ing terms depend on C2. Taking C = ϒ−2

n C0(γ ) with C0(γ ) > 0 small enough and
c = c0(γ ) > 0 large enough, using (9) with the choice

ε = c

√
ϒ2

n log k̂r

kr

,

we get that

P
[
Ka ≥ krMt + c

√
ϒ2

n k̂r log k̂r

] ≤ P[Ka ≥ krMt + krε]

≤
(

1 − O(log k̂r )

kr

)kr

≤ k̂−γ
r .

Note that our choice of ε satisfies ϒnCε < 1 for kr a large enough polynomial of n

(compared to the small polynomial ϒn).
A similar inequality holds for the other direction. �
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FIG. 1. The fork channel.

Correlated sites. Now let T be the fork channel consisting of nodes r , u, a and
b as in Figure 1. Assume that a and b are contemporary, call t the time separating
them from u and denote by Sab the number of sites in a and b that are jointly sur-
viving from u. These are the sites that produce correlation between the sequences
at a and b. All other sites are essentially noise. We bound the large deviations
of Sab.

LEMMA 3.4 (Fork channel: large devations of jointly surviving sites). Condi-
tion on the sequence length at u being ku. Then, for all γ > 0 and all k̂u ≥ ku =
nβ ′′′

with β ′′′ > 0 large enough, with conditional probability at least 1 − k̂
−γ
u ,

Sab = kuD
2
t ± Sn

(√
k̂u log k̂u

)
,

where the small polynomial factor in Sn(

√
k̂u log k̂u) depends on γ as well.

PROOF. Each site in u survives in a with probability Dt . The same holds for
b independently.

The result then follows from Chernoff’s bound. We have

P
[
Sab < kuD

2
t − c

√
ϒ2

n k̂u log k̂u

] ≤ P

[
Sab < kuD

2
t − c

√
ϒ2

n log k̂u

ku

· kuD
2
t

]

≤ exp(−c2ϒ2
nD2

t log k̂u)

≤ k̂−γ
u

for c = c(γ ) > 0 large enough, where we used (7).
The other direction is similar. �

3.2. Sequence partitioning. From Lemma 3.2, it follows that the sites of the
root sequence (or of an internal sequence) remain fairly close to their expected
position at the leaves. We take advantage of this fact by dividing each sequence
into blocks of size asymptotically larger than the typical displacement implied by
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Lemma 3.2. As a result, matching blocks in different sequences share a significant
fraction of sites. Moreover, distinct blocks are roughly independent. We estimate
the evolutionary distance between two leaves by comparing the site frequencies in
matching blocks. This requires some care as we show next.

Consider the fork channel. We seek to estimate the evolutionary distance
D̂(a, b) between a and b (normalized by the sequence length at u).

Partitioning the leaf sequences. Let k0 be some deterministic length (to be
determined), and consider the first k0 sites in the sequences σa and σb at the nodes
a and b, respectively. If the sequence at a or b has length smaller than k0, we
declare that our distance estimate D̃(a, b) (see below) is +∞.

We divide the leaf sequences into L blocks of length � where � = �kζ
0 �, for

some 1
2 < ζ < 1 to be determined later and L = �k0/��. We let k′

0 = �L. For all
i = 1, . . . ,L, we define the ith block σa,i of a to be the subsequence of σa ranging
from position (i − 1)�+ 1 to position i�. We let Za,i be the number of zeros inside
σa,i and define the block deviations


a,i = Za,i − �

2

for all i = 1, . . . ,L, and similarly for the sequence at b.
Using the above notation we define our distance estimator next. Assume that

L is even. Otherwise, we can just drop the last block in the above partition. Our
estimator is

D̃(a, b) = 2

L

L/2−1∑
j=0


a,2j+1
b,2j+1.

Notice that in our summation above we skipped every other block in our sequence
partition to avoid overlapping sites and hence, decrease potential correlations be-
tween the terms in the estimator. In the rest of this section, we analyze the proper-
ties of D̃(a, b). To do this it is helpful to consider the sequence at u and the events
that happened in the channels defined by the edges (u, a) and (u, b).

Partitioning the ancestral sequence. Let us choose �u to be the largest integer
satisfying

�uMt ≤ �.(10)

Suppose that the sequence σu at node u is not shorter than k′
u = (L − 1)�u, and

define the ith ancestral block σu,i of u to be the subsequence of σu ranging from
position (i − 1)�u + 1 to position i�u, for all i ≤ L − 1. Given Lemma 3.2, the
choice of �u in (10) is such that the blocks of u and the corresponding blocks at a

and b roughly align.
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In order to use the expected evolutionary distance as computed in Lemma 2.4,
we define an “interior” ancestral block which is guaranteed with high proba-
bility to remain entirely “inside” the corresponding leaf block. Let δu = �L +

1
Mt

Sn(
√

k′
u log k′

u)�, where the small polynomial factor is the maximum of those in

the proofs of Lemma 3.2 and Lemma 3.4 for a given choice of γ . [The L = o(
√

k0)

in δu is needed only when (10) is a strict inequality. See the proof of Lemma 3.5
below.] We define the ith (ancestral) interior block σ ′

u,i of u to be the subsequence
of σu,i ranging from position (i − 1)�u + δu of σu to position i�u − δu. Notice
that δu = Sn(

√
k0 log k0), while �u = Sn(k

ζ
0 ). Therefore, for k0 > k∗

0 , where k∗
0

is sufficiently large, (i − 1)�u + δu < i�u − δu so that the sequence σ ′
u,i is well

defined.
Also, for all i = 1, . . . ,L − 1, we define x′

a,i , y′
a,i to be the position of the left-

most (resp., right-most) site in the sequence σa descending from the site at position
(i − 1)�u + δu (resp., i�u − δu of σu). Similarly, we define x′

b,i and y′
b,i . Given this

notation, we define the following “good” event

E ′
1 = {∀i ≤ L − 1 : (i − 1)� < x′

a,i , x
′
b,i < (i − 1)� + 2Mtδu,

(11)
i� − 2Mtδu < y′

a,i , y
′
b,i < i�}.

Intuitively, when the event E ′
1 holds, all surviving descendants of the interior block

σ ′
u,i are located inside the blocks σa,i and σb,i,, respectively (and the blocks remain

large enough).
To argue about block independence, we also define the exterior block σ ′′

u,i of u

to be the subsequence of σu,i ranging from position (i −1)�u −δu of σu to position
i�u + δu with corresponding positions x′′

a,i , y′′
a,i , x′′

b,i and y′′
b,i and good event E ′′

1
defined similarly as above, that is,

E ′′
1 = {∀i ≤ L − 1 : (i − 1)� − 2Mtδu < x′′

a,i , x
′′
b,i < (i − 1)�,

i� < y′′
a,i , y

′′
b,i < i� + 2Mtδu}.

We define

E1 = E ′
1 ∪ E ′′

1 .

We show that this event holds with high probability, conditioned on the sequence
length Ku at u being at least k′

u. Figure 2 shows the structure of the indel process
in the case that the event E1 holds.

LEMMA 3.5 (Interior/exterior block is inside/outside leaf block). Conditioned
on the event {Ku ≥ k′

u}, we have

P[E1] ≥ 1 − 16L

(
1

k′
u

)γ

.



ALIGNMENT-FREE PHYLOGENETIC RECONSTRUCTION 711

FIG. 2. Under the event E1 the descendants of the interior blocks of σu fall inside the correspond-
ing blocks of σa ; the descendants of the exterior blocks of σu contain all surviving sites inside the
corresponding blocks of σa ; the windows of uncertainty have length 2Mtδu.

PROOF. It follows from Lemma 3.2 that the left-most descendant of the site at
position (i − 1)�u + δu of σu is located inside the sequence of node a at position
at least

Mt

(
(i − 1)�u + δu

) − Sn

(√
k′
u log k′

u

)
> Mt

(
(i − 1)�u + L

)
> (i − 1)�

with probability ≥ 1 − ( 1
k′
u
)γ . The other bounds follow similarly. Taking a union

bound over all i’s establishes the result. �

Block correlation. Let Sab,i be the number of common sites in the blocks σa,i

and σb,i that are jointly surviving from u. Similarly, we define S′
ab,i and S′′

ab,i

where, for ξ = a, b, σ ′
ξ,i (resp., σ ′′

ξ,i ) denotes the subsequence of σξ ranging from
position x′

ξ,i (resp., x′′
ξ,i ) to position y′

ξ,i (resp., y′′
ξ,i ). We define a good event for

Sab,i as

E2 = {∀i ≤ L − 1 :�uD
2
t − 3Mtδu ≤ Sab,i ≤ �uD

2
t + 3Mtδu}.

LEMMA 3.6 (Jointly surviving sites in blocks). Conditioned on the event
{Ku ≥ k′

u}, we have

P[E2] ≥ 1 − 18L

(
1

k′
u

)γ

.
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PROOF. We bound

P[E c
2 ] = P[E c

2 ∩ E1] + P[E c
2 ∩ E c

1 ] ≤ P[E c
2 ∩ E1] + P[E c

1 ]

≤ P[E c
2 ∩ E1] + 16L

(
1

k′
u

)γ

.

By construction, under E1 we have S′
ab,i ≤ Sab,i ≤ S′′

ab,i so that

P[E c
2 ∩ E1] ≤ P[∃i, S′

ab,i ≤ �uD
2
t − 3Mtδu]

+ P[∃i, S′′
ab,i ≥ �uD

2
t + 3Mtδu]

≤ P
[∃i, S′

ab,i ≤ (�u − 2δu + 1)D2
t − Sn

(√
k′
u logk′

u

)]
+ P

[∃i, S′′
ab,i ≥ (�u + 2δu + 1)D2

t + Sn

(√
k′
u log k′

u

)]
≤ 2L

(
1

k′
u

)γ

by Lemma 3.4, where we also used the fact that D2
t ≤ Mt . �

3.3. Estimation guarantees. We are now ready to analyze the behavior of our
estimate D̃(a, b). In this subsection we compute the expectation and variance of

D̃(a, b). We denote by I a realization of the indel process (but not of the substi-
tution process) on the paths between u and a, b. We denote by E the event that
{Ku ≥ k′

u}, E1 and E2 are satisfied. Suppose that k0 > k∗
0 (defined in Section 3.2).

LEMMA 3.7 (Block independence). Conditioning on I and E , the variables

{
a,2j+1
b,2j+1}L/2−1
j=1

are mutually independent.

PROOF. Observe that when Ku ≥ k′
u the ancestral blocks σu,i are well defined.

Assuming that k0 > k∗
0 , the interior blocks σ ′

u,i are also well defined and disjoint.
Hence, for a fixed I under E , for all i ≤ L − 1, both 
a,i and 
b,i depend on the
subsequence of σu ranging from position (i−1)�u−δu+1 to position i�u+δu−1.
In this case, for j ∈ {1, . . . ,L/2 − 1}, different 
a,2j+1
b,2j+1’s are functions of
different subsequences of σu. Observe that, since the root sequence is i.i.d. uniform
and the insertions above u are also i.i.d. uniform, the state of every site in σu is uni-
form and independent from the other sites. It follows from the above observations
that {
a,2j+1
b,2j+1}L/2−1

j=1 are mutually independent. �
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LEMMA 3.8 (Expected correlation under good event). We have

E[
a,i
b,i |I, E ] = 1
4e−4ηt e−2μt�u ± Sn

(√
k0 log k0

)
.

PROOF. Let 
S
a,i be the contribution to 
a,i from those common sites be-

tween a and b that are jointly surviving from u. Let 
NS
a,i = 
a,i − 
S

a,i , and
similarly for b. Then

E[
a,i
b,i |I, E ] = E[(
S
a,i + 
NS

a,i )(

S
b,i + 
NS

b,i )|I, E ]
= E[
S

a,i

S
b,i |I, E ],

since the contribution from 
NS
a,i and 
NS

b,i is independent and averages to 0. Write


S
a,i as a sum over the jointly surviving sites, that is,


S
a,i =

Sab,i∑
j=1

(
z
(j)
a,i − 1

2

)
,

where z
(j)
a,i is 1 if the corresponding site of a is 0. Note that the terms in parentheses

have zero expectation given I and E . Then,

E[
S
a,i


S
b,i |I, E ] =

Sab,i∑
j=1

E

[(
z
(j)
a,i − 1

2

)(
z
(j)
b,i − 1

2

)∣∣∣I, E
]

by independence of the sites. We compute the expectation above. We have

E

[(
z
(j)
a,i − 1

2

)(
z
(j)
b,i − 1

2

)∣∣∣I, E
]

= E

[(
z
(j)
a,i z

(j)
b,i − 1

2
z
(j)
a,i − 1

2
z
(j)
b,i + 1

4

)∣∣∣I, E
]

= E
[
z
(j)
a,i z

(j)
b,i |I, E

] − 1

4

= 1

2

1 + e−4ηt

2
− 1

4

= 1

4
e−4ηt .

Therefore,

E[
S
a,i


S
b,i |I, E ] = 1

4e−4ηtSab,i .

The result then follows from the definition of E2. �
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LEMMA 3.9 (Variance under good event). We have

Var[
a,i
b,i |I, E ] ≤ 3
16�2.

PROOF. By Cauchy–Schwarz we have

E[
2
a,i


2
b,i |I, E ] ≤ (E[
4

a,i |I, E ]E[
4
b,i |I, E ])1/2

= ( 1
16(3�2 − 2�) · 1

16(3�2 − 2�)
)1/2

≤ 3
16�2,

where we used the fact that the length of the sequences σa,i and σb,i is determin-
istically �, and the number of zeros in σa,i and σb,i follows a binomial distribution
with � trials and probability 1/2. �

LEMMA 3.10 (Distance estimate). We have

E[D̃(a, b)|I, E ] = 1
4e−(4η+μ+λ)t � ± Sn

(√
k0 log k0

)
and

Var[D̃(a, b)|I, E ] ≤ 3

8

1

�k1−ζ
0 ��2.

In particular, the standard deviation

STD[D̃(a, b)|I, E ] = O
(
k
(3ζ−1)/2
0

) = o
(√

k0
)

for ζ > 1/2 small enough.

PROOF. From Lemma 3.7, the L/2 = �k0/��/2 terms in D̃(a, b) are mutually
independent. The proof then follows from Lemmas 3.8 and 3.9 and the definition
of �u. �

3.4. Concentration. We now show that our distance estimate is concentrated.
For notational convenience, we denote by P

∗
u the probability measure induced

by conditioning on the event {Ku ≥ k′
u}. Recall that the event E is contained in

{Ku ≥ k′
u}.

LEMMA 3.11 (Concentration of distance estimate). Let α > 0 be such that
ζ −α > 1/2, and β = 1 − ζ − 2α > 0 for ζ > 1/2 small enough. Then for k0 large
enough

P
∗
u

[∣∣∣∣4

�
D̃(a, b) − e−(4η+μ+λ)t

∣∣∣∣ >
1

kα
0

]
≤ O

(
1

k
β
0

)
.
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PROOF. We use Chebyshev’s inequality. We first condition on I, E . Recalling
that � = �kζ

0 �, note that

P
∗
u

[
4

�
D̃(a, b) > e−(4η+μ+λ)t + 1

kα
0

∣∣∣I, E
]

≤ P
∗
u

[
D̃(a, b) >

�

4
e−(4η+μ+λ)t + �

4

1

kα
0

∣∣∣I, E
]

≤ P
∗
u

[
D̃(a, b) > E[D̃(a, b)|I, E ] − Sn

(√
k0 log k0

) + �

4

1

kα
0

∣∣∣I, E
]

≤ 3�2/(8�k1−ζ
0 �)

(�/(4kα
0 ) − Sn(

√
k0 log k0))2

= O

(
1

k
1−ζ−2α
0

)
.

The other direction is similar. Taking expectation over I , we have

P
∗
u

[∣∣∣∣4

�
D̃(a, b) − e−(4η+μ+λ)t

∣∣∣∣ >
1

kα
0

∣∣∣E
]

≤ O

(
1

k
β
0

)
.

Choose γ > 0 in Lemmas 3.2 and 3.4 large enough so that

γ − (1 − ζ ) > β.

Then, from Lemmas 3.5 and 3.6, we have

P
∗
u

[∣∣∣∣4

�
D̃(a, b) − e−(4η+μ+λ)t

∣∣∣∣ >
1

kα
0

]

≤ P
∗
u

[∣∣∣∣4

�
D̃(a, b) − e−(4η+μ+λ)t

∣∣∣∣ >
1

kα
0

∣∣∣E
]
P

∗
u[E ] + P

∗
u[E c]

≤ O

(
1

k
β
0

)
.

�

The proofs of Theorems 1 and 2 are given in the next section.

4. Putting it all together.

Large-scale asymptotics. We are ready to prove our main result in the molec-
ular clock case. We postpone the more general case to the next section. A last bit
of notation: for a pair of leaves a, b ∈ [n], we denote by tab the time between a, b

and their most recent common ancestor.

PROOF OF THEOREM 2. We first give a bound on the diameter of the tree.
Let h (resp., H ) be the length of the shortest (resp., longest) path between the
root and a leaf in graph distance. Because the number of leaves is n we must have
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2h ≤ n and 2H ≥ n. Since all leaves are contemporaneous it must be that Hf ≤ hg.
Combining these constraints gives that the diameter Diam satisfies

2
f

g
log2 n ≤ 2h ≤ Diam ≤ 2H ≤ 2

g

f
log2 n.

Given our bound on the diameter of the tree, it follows that the time from the root
r of the tree to any leaf is at most g2

f
log2 n. Suppose that the length kr at the root

of the tree satisfies kr > k∗
r = k∗

r (k0), where k∗
r is the minimum integer satisfying

k∗
r ≥ e(g2/f )·μ log2 n(

k0 + Sn

(√
k∗
r log k∗

r

))
,

where the small polynomial factor is taken to be the one used in Lemma 3.2.
Lemma 3.2 and a union bound then imply that with probability at least

1 − O(n) · (k∗
r )−γ

for all nodes u

Ku ≥ k′
u.

LEMMA 4.1 (Concentration of distance estimate). For all α′ > 0, β ′ > 0, there
exists k0 = nβ ′′′

with β ′′′ > 0 large enough so that if the sequence length at the root
is kr > k∗

r (k0), then

P

[
∀a, b ∈ [n],

∣∣∣∣4

�
D̃(a, b) − e−(4η+μ+λ)tab

∣∣∣∣ ≤ 1

nα′

]
= 1 − O

(
1

nβ ′

)
.

PROOF. This follows from Lemma 3.11 and our observation above that, if
kr > k∗

r (k0), with probability at least 1 − O(n) · (k∗
r )−γ , then Ku ≥ k′

u for all
nodes u. �

Given our bound on the diameter of the tree, it follows that for all pairs of leaves
a, b and small ε > 0

e−(4η+μ+λ)tab±ε = e−(4η+μ+λ)tab
(
1 ± O(ε)

) ≥ 1

nα′′
(
1 ± O(ε)

)
.

Therefore, choosing α′ large enough in Lemma 4.1, we get that all distances can
be estimated within a small ε simultaneously with probability going to 1.

Using the standard Buneman algorithm, we can recover the tree efficiently (see,
e.g., [34]). �

Constant-size case. The proof of Theorem 1 for the molecular clock case
builds on the proof of Theorem 2 by treating n as a constant and letting the se-
quence length at the root of the tree go to infinity.



ALIGNMENT-FREE PHYLOGENETIC RECONSTRUCTION 717

PROOF OF THEOREM 1 (Molecular clock case). We can restate Lemma 4.1
in the following form, where the failure probability is expressed more cleanly in
terms of the sequence length at the root of the tree. The proof of the lemma is
essentially the same.

LEMMA 4.2 (Concentration of distance estimate). For all α′ > 0, there exists
k∗

0 = nβ ′′′
for β ′′′ > 0 large enough such that if the sequence length at the root is

kr > k∗
r (k∗

0), then

P

[
∀a, b ∈ [n],

∣∣∣∣4

�
D̃(a, b) − e−(4η+μ+λ)tab

∣∣∣∣ ≤ 1

nα′

]
= 1 − O(n · k−γ

r ) − O(n2 · k−β
r ).

Repeating the proof of Theorem 2 above, it follows that the algorithm fails
to reconstruct the phylogeny with probability O(n · k

−γ
r ) + O(n2 · k−β

r ). Letting
kr → +∞ concludes the proof of Theorem 1. �

5. Extensions.

GTR model. We briefly discuss how our results can be extended to GTR mod-
els. For background on GTR models, see, for example, [16]. Let Q be a reversible
4 × 4 rate matrix with stationary distribution π . Our new sequence evolution pro-
cess is identical to the one described in Definition 1.1 except that the substitution
process is a continuous-time Markov process with rate matrix ηeQ. The rate ma-
trix Q has 4 nonnegative eigenvalues. For convenience, we assume that the largest
negative eigenvalue is −1. We denote by w the corresponding eigenvector which
we assume is normalized as ∑

s∈{A,G,C,T}
πsw

2
s = 1.

We now perform the following transformation of the state space. For a node u,
let σu = (σ 1

u , . . . , σ
Ku
u ) be the transformed sequence at u where σ i

u = wA (resp.,
wG,wC,wT) if the state at site i is A (resp., G,C,T). Note that, under stationarity,
the expectation of the state at site i is 0 by orthogonality of π and w. Then our
distance estimator is

D̂(a, b) =
(

Ka∑
i=1

σ i
a

)(
Kb∑
j=1

σ
j
b

)
.

In particular, in the two-state CFN case, we have w = (+1,−1) and we obtain the
same estimate as before, up to a constant. We now analyze the expectation of this
quantity. For u ∈ V , we let


u =
Ku∑
i=1

σ i
u.
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LEMMA 5.1. The following holds:

E[
a|σr ] = e−(η+μ)t
r .(12)

REMARK 5.2. Note that this formula is slightly different than that in Lem-
ma 2.2 because of the normalization implied by requiring Q to have second eigen-
value −1.

PROOF OF LEMMA 5.1. The sites created after r contribute 0 in expectation.
Of course, so do the deleted sites. The fraction of sites that survive is e−μt . Suppose
site i survives, then note that

E[σ i
a|σ i

r = ws, i survives] = ∑
s′

(eηtQ)ss′ws′ = e−ηtws.

Summing over all sites of r we get

E[
a|σr ] = e−(η+μ)t
r

as claimed. �

Consider now a “fork” tree, that is, a root r from which emanates a single edge
eu = (r, u) which in turn branches into two edges ea = (u, a) and eb = (u, b). For
x = a, b,u, we denote the parameters of edge ex by tx, λx,μx, ηx . Our goal is to
compute E[D̂(a, b)] assuming that the sequence length at the root is k. The proof
is similar to Lemma 2.3.

LEMMA 5.3. The following holds:

E[D̂(a, b)] = e−(ηa+μa)ta e−(ηb+μb)tbe−(μu−λu)tuk.

Note that Remark 5.2 also applies here.

PROOF. We have

E[D̂(a, b)] = E[
a
b]
= E[E[
a
b|σu]]
= E[E[
a|σu]E[
b|σu]]
= e−ηata e−μata e−ηbtbe−μbtbE[
2

u]
= e−ηata e−μata e−ηbtbe−μbtbE[E[
2

u|Ku]]
= e−ηata e−μata e−ηbtbe−μbtbE[Var[
u|Ku]]
= e−ηata e−μata e−ηbtbe−μbtbE[Ku Var[σ 1

u ]]
= e−ηata e−μata e−ηbtbe−μbtbE[KuE[(σ 1

u )2]]
= e−ηata e−μata e−ηbtbe−μbtbe−(μu−λu)tuk
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by Lemma 5.1. �

From the previous lemmas, one can adapt the proofs above to the GTR case.

Nonclock case. Using Lemma 5.3, we can get rid of the molecular clock as-
sumption. Consider again the fork tree, but assume that each edge is in fact a path.
An adaptation of Lemma 5.3 gives the following lemma.

LEMMA 5.4. The following holds:

− ln
(

E[D̂(a, b)]√
E[Ka]E[Kb]

)
= ∑

e∈P(a,b)

(ηe + μe/2 + λe/2)te.

Note that Remark 5.2 also applies here.

PROOF. Note that

− ln(k−1
E[Ka]) = ∑

e∈P(r,a)

(μe − λe)te

and similarly for b. A variant of Lemma 5.3 gives

− ln(k−1
E[D̂(a, b)]) = ∑

e∈P(a,b)

(ηe + μe)te + ∑
e∈P(r,u)

(μe − λe)te.

The result follows by subtracting the previous expressions. �

The expression in Lemma 5.4 provides the additive metric needed to extend our
results to nonclock bounded-rates case.

6. Concluding remarks. We have shown how to reconstruct phylogenies un-
der the bounded-rates, GTR model with indels. Our efficient algorithm requires
polynomial-length sequences at the root. A natural open problem arises from this
work: Can our results be extended to general trees with bounded branch lengths, as
opposed to the bounded-rates model? The key difference between the two models
is that the former may have a linear diameter whereas the latter has logarithmic
diameter. To extend our results, one would need to deal with far away leaves that
are almost uncorrelated but for which our block structure does not apply.
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