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OPTIMAL INVESTMENT UNDER MULTIPLE DEFAULTS RISK:
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We study an optimal investment problem under contagion risk in a finan-
cial model subject to multiple jumps and defaults. The global market infor-
mation is formulated as a progressive enlargement of a default-free Brownian
filtration, and the dependence of default times is modeled by a conditional
density hypothesis. In this Itô-jump process model, we give a decomposi-
tion of the corresponding stochastic control problem into stochastic control
problems in the default-free filtration, which are determined in a backward
induction. The dynamic programming method leads to a backward recursive
system of quadratic backward stochastic differential equations (BSDEs) in
Brownian filtration, and our main result proves, under fairly general condi-
tions, the existence and uniqueness of a solution to this system, which char-
acterizes explicitly the value function and optimal strategies to the optimal
investment problem. We illustrate our solutions approach with some numeri-
cal tests emphasizing the impact of default intensities, loss or gain at defaults
and correlation between assets. Beyond the financial problem, our decompo-
sition approach provides a new perspective for solving quadratic BSDEs with
a finite number of jumps.

1. Introduction. In this paper, we address an investment problem in an assets
portfolio subject to defaults and contagion risk, which is a major issue for risk
management in financial crisis period. We consider multiple default events corre-
sponding, for example, to the defaults of multi credit names or to counter party
defaults and contagion effects, meaning that defaults on some assets may induce
loss or gain on the other assets. One usually formulates the default-free assets price
process as an Itô process governed by some Brownian motion W , and jumps are
introduced at random default times, associated to a marked point process μ. The
optimal investment problem in this incomplete market framework may be then
studied by stochastic control and dynamic programming methods in the global
filtration G, generated by W and μ. This leads in principle to Hamilton–Jacobi–
Bellman integrodifferential equations in a Markovian framework, and, more gen-
erally, to backward stochastic differential equations (BSDEs) with jumps, and the
derivation relies on a martingale representation under G, with respect to W and μ,
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which holds under intensity hypothesis on the defaults, and the so-called immer-
sion property [or (H) hypothesis]. Such an approach was used in the recent papers
[1, 13] in the single default case, and in [7] for the multiple defaults case. For ex-
ponential utility criterion, the solution to the optimal investment problem is then
characterized through a quadratic BSDE with jumps, whose existence is proved
under a boundedness condition on the portfolio constraint set.

We revisit and extend the optimal investment problem in this multiple defaults
context by using an approach initiated in [9] in the single default time case, and
further developed in [14] in the multiple defaults with random marks case. By
viewing the global filtration G as a progressive enlargement of filtrations of the
default-free filtration F generated by the Brownian motion W , with the default
filtration generated by the random times and jumps, the basic idea is to split the
global optimal investment problem, into sub-control problems in the reference fil-
tration F and corresponding to optimal investment problems in default-free mar-
kets between two default times. More precisely, we derive a backward recursive
decomposition by starting from the optimal investment problem when all defaults
occurred, and then going back to the initial optimal investment problem before any
default. The main point is to connect this family of stochastic control problems in
the F-filtration, and this is achieved by assuming the existence of a conditional
density on the default times given the default-free information F. Such a density
hypothesis, which is standard in the theory of enlargement of filtrations, was re-
cently introduced in [4, 5] for credit risk analysis, and may be seen as an extension
of the usual intensity hypothesis.

This F-decomposition approach allows us furthermore to formulate an optimal
investment problem where the portfolio constraint set can be updated after each
default time, depending possibly on the past defaults, which is financially rele-
vant. This extends the global approach formulation where the portfolio set has to
be fixed at the beginning. Next, for exponential utility function criterion, we ap-
ply dynamic programming method to each optimal investment problems in the
F-filtration. We then get rid of the jump terms arising in the dynamic program-
ming in the G-filtration, and are led instead to a backward recursive system of
quadratic BSDEs in Brownian filtration with a nonstandard exponential term. Our
main result is to prove under fairly general conditions (without assuming in par-
ticular a boundedness condition on the portfolio constraint set) the existence and
uniqueness of a solution to this system of BSDEs. Existence is showed by induc-
tion, based on Kobylanski results [12] together with approximating sequences for
dealing with the exponential term and unbounded portfolio, suitable uniform esti-
mates and comparison results for getting the convergence. Uniqueness is obtained
by verification arguments for relating the solution of these BSDEs to the value
functions of the F-control problems, and uses BMO-martingale tools. Moreover,
an interesting feature of our decomposition is to provide a nice characterization
of the optimal trading strategy between two default times, and to emphasize the
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impact of defaults and jumps in the portfolio investment. We also illustrate nu-
merically these results in a simple two defaultable assets model, where each asset
is subject to its own default and also to its counterpart. Finally, we mention that
beyond the optimal investment problem, the F-decomposition approach provides
a new perspective for solving (quadratic) BSDEs with finite number of jumps, see
the recent paper [11].

The outline of this paper is organized as follows. In Section 2, we present the
multiple defaults model where the assets price process is written as a change of
regimes model with jumps related to the default times and random marks. Sec-
tion 3 formulates the optimal investment problem, and gives the decomposition of
the corresponding stochastic control problem. Section 4 is devoted to the deriva-
tion by dynamic programming method of the sub-control problems in terms of a
recursive system of BSDEs, and to the existence and characterization results of
this system for the optimal investment problem. Finally, we provide in Section 5
some numerical experiments for illustrating our solutions approach in a simple
two-defaultable assets model.

2. Multiple defaults model.

2.1. Market information setup. We fix a probability space (�, G,P), equipped
with a reference filtration F = (Ft )t≥0 satisfying the usual conditions, and repre-
senting the default-free information on the market. Let τ = (τ1, . . . , τn) be a vec-
tor of n random times, representing multiple default times, and L = (L1, . . . ,Ln)

be a vector of n marks associated to default times, Li being an G -measurable
random variable taking values in some Polish space E ⊂ R

p , and representing,
for example, the loss given default at time τi . The global market information is
given by the default-free information together with the observation of the default
times and their associated marks when they occur. It is then formalized by the
progressive enlargement of filtration G = F∨D

1 ∨ · · ·∨D
n, where D

k = (Dk
t )t≥0,

Dk
t = D̃k

t+ , D̃k
t = σ(Lk1τk≤s, s ≤ t)∨σ(1τk≤s, s ≤ t), k = 1, . . . , n. In other words,

G = (Gt )t≥0 is the smallest right-continuous filtration containing F such that for
any k = 1, . . . , n, τk is a G-stopping time, and Lk is Gτk

-measurable.
For simplicity of presentation, we shall assume in the rest of this paper that the

default times are ordered, that is, τ1 ≤ · · · ≤ τn, and so valued in �n on {τn < ∞}
where

�k := {(θ1, . . . , θk) ∈ (R+)k : θ1 ≤ · · · ≤ θk}.
On one hand, this means that we do not distinguish specific credit names, and only
observe the successive default times, which is relevant in practice for classical
portfolio derivatives, like basket default swaps. On the other hand, we may notice
that the general nonordered multiple random times case for (τ1, . . . , τn) [together
with marks (L1, . . . ,Ln)] can be derived from the successive random times case



458 Y. JIAO, I. KHARROUBI AND H. PHAM

by considering suitable auxiliary marks. Indeed, denote by τ̂1 ≤ · · · ≤ τ̂n the cor-
responding ordered times, and by ιk the index mark valued in {1, . . . , n} so that
τ̂k = τιk for k = 1, . . . , n. Then it is clear that the progressive enlargement of filtra-
tion of F with the successive random times (τ̂1, . . . , τ̂n), together with the marks
(ι1,Lι1, . . . , ιn,Lιn), leads to the filtration G.

We introduce some notation used throughout the paper. For any (θ1, . . . , θn) ∈
�n, (�1, . . . , �n) ∈ En, we denote by θ = (θ1, . . . , θn), � = (�1, . . . , �n) and θk =
(θ1, . . . , θk), �k = (�1, . . . , �k), for k = 0, . . . , n, with the convention θ0 = �0 = ∅.
We also denote by τ k = (τ1, . . . , τk) and Lk = (L1, . . . ,Lk). For t ≥ 0, the set �k

t

denotes the event

�k
t := {τk ≤ t < τk+1}

(with �0
t = {t < τ1}, �n

t = {τn ≤ t}) and represents the scenario where k defaults
occur before time t . We call �k

t as the k-default scenario at time t . We define simi-
larly �k

t− = {τk < t ≤ τk+1}. Notice that for fixed t , the family (�k
t )k=0,...,n [resp.,

(�k
t−)k=0,...,n] forms a partition of �. We denote by P(F) the σ -algebra of F-

predictable measurable subsets on R+ × �, and by PF(�k,Ek) the set of indexed
F-predictable processes Zk(·, ·), that is, s.t. the map (t,ω, θk,�k) → Zk

t (ω, θk,�k)

is P(F) ⊗ B(�k) ⊗ B(Ek)-measurable. We also denote by OF(�k,Ek) the set
of indexed F-adapted processes Zk(·, ·), that is, such that for all t ≥ 0, the map
(ω, θk,�k) → Zk

t (ω, θk,�k) is Ft ⊗ B(�k) ⊗ B(Ek)-measurable.
We recall from [14], Lemma 2.1, or [8], Lemma 4.1, the key decomposition of

any G-adapted (resp., G-predictable) process Z = (Zt )t≥0 in the form

Zt =
n∑

k=0

1�k
t
Zk

t (τ k,Lk)

[
resp., Zt =

n∑
k=0

1�k
t−

Zk
t (τ k,Lk)

]
, t ≥ 0,

where Zk lies in OF(�k,E
k) [resp., PF(�k,E

k)].
As in [5] and [14], we now suppose the existence of a conditional joint density

for (τ ,L) with respect to the filtration F.

Density hypothesis. There exists α ∈ OF(�n,E
n) such that for any bounded

Borel function f on �n × En, and t ≥ 0,

E[f (τ ,L)|Ft ] =
∫
�n×En

f (θ,�)αt (θ ,�) dθη(d�) a.s.,(2.1)

where dθ = dθ1 · · ·dθn is the Lebesgue measure on R
n, and η(d�) is a Borel mea-

sure on En in the form η(d�) = η1(d�1)
∏n−1

k=1 ηk+1(�k, d�k+1), with η1 a nonneg-
ative Borel measure on E and ηk+1(�k, d�k+1) a nonnegative transition kernel on
Ek × E.

REMARK 2.1. From condition (2.1), we see that τ admits a conditional
(w.r.t. F) density with respect to the Lebesgue measure given by ατ (θ) =
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∫
α(θ ,�)η(d�). This implies, in particular, that the default times are totally in-

accessible with respect to the default-free information, which is consistent with
the financial modeling that the default events should arrive by surprise, and can-
not be read or predicted from the reference market observation. This joint density
condition w.r.t. the Lebesgue measure also implies that the default times cannot
occur simultaneously, that is, τi 
= τj , i 
= j , a.s., which is a standard hypothesis in
the modeling of multiple defaults. Moreover, by considering a conditional density,
and thus a time-dependence of the martingale density process (αt (θ ,�))t≥0, we
embed the relevant case in practice when the default times are not independent
of the reference market information F. Compared to the classical default intensity
processes for successive defaults in the top-down modeling approach, the condi-
tional density provides more and necessary information for analyzing the impact
of default events. Further detailed discussion and some explicit models for density
of ordered random times are given in [5].

On the other hand, condition (2.1) implies that the family of marks L ad-
mits a conditional (w.r.t. F) density with respect to the measure η(d�) given
by αL(�) = ∫

α(θ ,�) dθ . This general density hypothesis (2.1) embeds several
models of interest in applications. In the case where α is separable in the form
α(θ ,�) = ατ (θ)αL(�), this means that the random times and marks are indepen-
dent given Ft . The particular case of nonrandom constant mark Lk = �k is obtained
by taking Dirac measure ηk = δ�k

. The case of i.i.d. marks Lk , k = 0, . . . , n, is in-
cluded by taking αL(�) separable in �k , and η as a product measure. We can also
recover a density modeling of ordered default times (as in the top-down approach)
from a density model of the nonordered defaults (as in the bottom-up approach).
Indeed, let τ = (τ1, . . . , τn) be a family of nonordered default times having a den-
sity ατ , and denote by τ̂ = (τ̂1, . . . , τ̂n), ι = (ι1, . . . , ιn) the associated ranked de-
fault times and index marks. By using statistics order, we then see that (τ , ι) satisfy
the density hypothesis with

α̂(θ1, . . . , θn, i1, . . . , in) = ∑
σ∈n

ατ (
θσ(1), . . . , θσ(n)

)
1{(i1,...,in)=(σ (1),...,σ (n))}

for (θ1, . . . , θn) ∈ �n, � = (i1, . . . , in) ∈ E = {1, . . . , n}, where n denotes the set
of all permutations σ = (σ (1), . . . , σ (n)) of E, and with η(d�) = ∑

σ∈n
δ�=σ ,

ηk+1(�k, d�) = ∑
i∈E\{�1,...,�k} δ�=i .

2.2. Assets and credit derivatives model. We consider a portfolio of d assets
with value process defined by a d-dimensional G-adapted process S. This process
has the following decomposed form:

St =
n∑

k=0

1�k
t
Sk

t (τ k,Lk),(2.2)

where Sk(θk,�k), θk = (θ1, . . . , θk) ∈ �k , �k = (�1, . . . , �k) ∈ Ek , is an indexed
process in OF(�k,E

k), valued in R
d+, representing the assets value in the k-default
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scenario, given the past default events τ k = θk and the marks at default Lk = �k .
Notice that St is equal to the value Sk

t only on the set �k
t , that is, only for τk ≤ t <

τk+1. We suppose that the dynamics of the indexed process Sk is given by

dSk
t (θk,�k) = Sk

t (θk,�k) ∗ (
bk
t (θk,�k) dt + σk

t (θk,�k) dWt

)
, t ≥ θk,(2.3)

where W is a m-dimensional (P,F)-Brownian motion, m ≥ d , bk and σk are in-
dexed processes in PF(�k,E

k), valued, respectively, in R
d and R

d×m. Here, for
x = (x1, . . . , xd)′ ∈ R

d and y = (y1, . . . , yd)′ in R
d×q , the expression x ∗ y de-

notes the vector (x1y1, . . . , xdyd)′ in R
d×q . Model (2.2)–(2.3) can be viewed as an

assets model with change of regimes after each default event, with coefficients bk ,
σk depending on the past default times and marks. We make the usual no-arbitrage
assumption that there exists an indexed risk premium process λk ∈ PF(�k,E

k) s.t.
for all (θk,�k) ∈ �k × Ek .

σk
t (θk,�k)λ

k
t (θk,�k) = bk

t (θk,�k), t ≥ 0.(2.4)

Moreover, in this contagion risk model, each default time may induce a jump in the
assets portfolio. This is formalized by considering a family of indexed processes
γ k , k = 0, . . . , n − 1, in PF(�k,Ek,E), and valued in [−1,∞)d . For (θk,�k) ∈
�k × Ek , and �k+1 ∈ E, γ k

t (θk,�k, �k+1) represents the relative vector jump size
on the d assets at time t = θk+1 ≥ θk with a mark �k+1, given the past default
events (τ k,Lk) = (θk,�k). In other words, we have

Sk+1
θk+1

(θk+1,�k+1) = Sk

θ−
k+1

(θk,�k) ∗ (
1d + γ k

θk+1
(θk,�k, �k+1)

)
,(2.5)

where we denote 1d as the vector in R
d with all components equal to 1.

REMARK 2.2. In this defaults market model, some assets may not be traded
anymore after default times, which means that their relative jump size is equal
to −1. For k = 0, . . . , n, (θk,�k) ∈ �k × Ek , denote by dk(θk,�k) the number of
assets among the d-assets which cannot be traded anymore after k defaults, so that
we can assume w.l.o.g. bk(θk,�k) = (b̄k(θk,�k)0), σk(θk,�k) = (σ̄ k(θk,�k)0),
γ k(θk,�k, �) = (γ̄ k(θk,�k, �)0), where b̄k(θk,�k), σ̄ k(θk,�k), γ̄ k(θk,�k, �) are F-
predictable processes valued, respectively, in R

d̄k(θk,�k), R
d̄k(θk,�k)×m, R

d̄k(θk,�k)

with d̄k(θk,�k) = d − dk(θk,�k), the number of remaining tradable assets. Either
d̄k(θk,�k) = 0, and so σk(θk,�k) = 0, bk(θk,�k) = 0, γ k(θk,�k, �) = 0, in which
case (2.4) is trivially satisfied, or d̄k(θk,�k) ≥ 1, and we shall assume the natural
condition that the volatility matrix σ̄ k(θk,�k) is of full rank. We can then define
the risk premium

λk(θk,�k) = σ̄ k(θk,�k)
′(σ̄ k(θk,�k)σ̄

k(θk,�k)
′)−1b̄k(θk,�k),

which satisfies (2.4).
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REMARK 2.3. One can write the dynamics of the assets model (2.2)–(2.3)–
(2.5) as a jump-diffusion process under G. Let us define the G-predictable pro-
cesses (bt )t≥0 and (σt )t≥0 valued, respectively, in R

d and R
d×m by

bt =
n∑

k=0

1�k
t−

bk
t (τ k,Lk), σt =

n∑
k=0

1�k
t−

σk
t (τ k,Lk),(2.6)

and the indexed G-predictable process γ , valued in R
d , and defined by

γt (�) =
n−1∑
k=0

1�k
t−

γ k
t (τ k,Lk, �).

Let us introduce the random measure μ(dt, d�) associated to the jump times and
marks (τk,Lk), k = 1, . . . , n, and given by

μ([0, t] × B) = ∑
k

1τk≤t1Lk∈B, t ≥ 0,B ∈ B(E).(2.7)

Then, the dynamics of the assets value process S is written under G as

dSt = St ∗
(
bt dt + σt dWt +

∫
E

γt (�)μ(dt, d�)

)
.(2.8)

Notice that in formulation (2.8), the process W is not in general a Brownian motion
under (P,G), but a semimartingale under the density hypothesis, which preserves
the semimartingale property [also called (H′) hypothesis in the progressive en-
largement of filtrations literature]. We also mention that the random measure μ is
not independent of W under the conditional density hypothesis. Thus, in general,
we de not have a martingale representation theorem under (P,G) with respect to
W and μ.

In this market, a credit derivative of maturity T is modeled by a GT -measurable
random variable HT , thus decomposed in the form

HT =
n∑

k=0

1�k
T
Hk

T (τ k,Lk),(2.9)

where Hk
T (·, ·) is FT ⊗ B(�k) ⊗ B(Ek)-measurable, and represents the option

payoff when k defaults occured before maturity T .
The above model setup is quite general, and allows us to consider a large family

of explicit examples.

2.3. Examples.

EXAMPLE 2.1 (Exogenous counterparty default). We consider a highly risky
underlying name (e.g., Lehman Brothers) which may have an impact on many
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other names once the default occurs. One should take into consideration this coun-
terparty risk for each asset in the investment portfolio; however, the risky name
itself is not necessarily contained in the investment portfolio. A special case of this
example containing one asset (without marks) has been considered in [9]; see also
[1, 13].

There is one default time τ (n = 1), which may induce jumps in the price pro-
cess S of the d-assets portfolio. The corresponding mark is given by a random
vector L valued in E ⊂ [−1,∞)d , representing the proportional jump size in the
d-assets price.

The assets price process is described by

St = S0
t 1t<τ + S1

t (τ,L)1t≥τ ,

where S0 is the price process before default, governed by

dS0
t = S0

t ∗ (b0
t dt + σ 0

t dWt)

and the indexed process S1(θ, �), (θ, �) ∈ R+ × E, representing the price process
after default at time θ and with mark �, is given by

dS1
t (θ, �) = S1

t (θ, �) ∗ (
b1
t (θ, �) dt + σ 1

t (θ, �) dWt

)
, t ≥ θ,

S1
θ (θ, �) = S0

θ ∗ (1d + �).

Here W is an m-dimensional (P,F)-Brownian motion, m ≥ d , b0, σ 0 are F-
predictable bounded processes valued, respectively, in R

d and R
d×m, and the

indexed processes b1, σ 1 lie in PF(R+,E), and valued, respectively, in R
d and

R
d×m.

EXAMPLE 2.2 (Assets portfolio with multilateral counterparty risks). The de-
faults family and the assets family coincide, each underlying name subjected to the
default risk of itself and to the counterparty default risks of the other names of the
portfolio. The assets family is represented by a portfolio of defaultable bonds. Re-
call that a defaultable bond is a credit derivative which insures 1 euro to its buyer
if no default occurs before the maturity; otherwise, the buyer of the bond receives
a recovery rate at the default time. The recovery rate may be random, and so it is
viewed in our model as a random mark at the default time.

In this contagion risk model, the number of defaults times n is equal to the
number d of defaultable bonds. We denote by P i the price process of the ith de-
faultable bond of maturity Ti , by τi its default time and Li its (random) recovery
rate valued in E = [0,1). The price process P i drops to Li at the default time τi ,
and remains constant afterward. Moreover, at the default times τj , j 
= i (which
are not necessarily ordered) of the other defaultable bonds, the price process P i

has a jump, which may depend on τj and Lj . Actually, the jump size of P i will
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typically depend on Lj if the name i is the debt holder of name j . The assets
portfolio price process S = (P 1, . . . ,P n) has the decomposed form

P i
t =

n∑
k=0

1τ̂k≤t<τ̂k+1P
i,k
t (τ̂ k, ιk, L̂k), t ≥ 0,(2.10)

where τ̂ k = (τ̂1, . . . , τ̂k) denotes the k first ordered times, ιk = (ι1, . . . , ιk) the
corresponding index marks, that is, τ̂k = τιk , and L̂k = (Lι1, . . . ,Lιk ). The in-
dex F-adapted process P i,k(θk, ιk,�k), for (θk, ιk,�k) ∈ �k × I

k × Ek , represents
the price process of the ith defaultable bond, given that the k names (ι1, . . . , ιk)

defaulted at times τ̂ k = θk with the marks L̂k = �k . Here, we denoted by Ik =
{(ι1, . . . , ιk) ∈ {1, . . . , n} : ιj 
= ιj ′ for j 
= j ′}. When i ∈ {ι1, . . . , ιk}, that is, i = ιj

for some j = 1, . . . , k, then P i,k(θk, ιk,�k) = �j , and otherwise it evolves accord-
ing to the dynamics

dP
i,k
t (θk, ιk,�k)

= P
i,k
t (θk, ιk,�k)

(
b

i,k
t (θk, ιk,�k) dt + σ

i,k
t (θk, ιk,�k) dWt

)
, t ≥ θk.

Here W is an m-dimensional (P,F)-Brownian motion, m ≥ n, and the indexed
processes bi,k , σ i,k lie in PF(�k, I

k,Ek), and are valued, respectively, in R
n and

are R
1×m. The jumps of the ith defaultable bond are given by

P
i,k+1
θk+1

(θk+1, ιk+1,�k+1) = P
i,k

θ−
k+1

(θk, ιk,�k)
(
1 + γ

i,k
θk+1

(θk, ιk,�k, ιk+1, �k+1)
)

for θk+1 ≥ θk , and ιk+1 ∈ {1, . . . , n} \ {ι1, . . . , ιk}, and we have γ
i,k
θk+1

(θk, ιk,�k ,

ιk+1, �k+1) = −1 + �k+1/P
i,k

θ−
k+1

(θk, ιk,�k), meaning that P
i,k+1
θk+1

(θk+1, ιk+1,

�k+1) = �k+1, when ιk+1 = i. This model is compatible with several ones in the
literature (see, e.g., [2, 3]), and we shall focus in the last section on this example
for numerical illustrations in the case n = 2.

EXAMPLE 2.3 (Basket default swaps). A kth-to-default swap is a credit
derivative contract, which provides to its buyer the protection against the kth de-
fault of the underlying name. The protection buyer pays a regular continuous pre-
mium p until the occurrence of the kth default time, or until the maturity T , if
there are less than k defaults before maturity. In return, the protection seller pays
the loss 1 − Lk where Lk is the recovery rate if τk is the kth default occurring be-
fore T , and zero otherwise. By considering that the available information consists
in the ranked default times and the corresponding recovery rates, and assuming
zero interest rate, the payoff of this contract can then be written in the form (2.9)
with

Hi
T (θ i ,�i ) =

{−pθk + (1 − �k), if i ≥ k,
−pT, if i < k,

for θ i = (θ1, . . . , θi) ∈ �i , �i = (�1, . . . , �i) ∈ Ei .
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3. The optimal investment problem.

3.1. Trading strategies and wealth process. A trading strategy in the d-assets
portfolio model described in Section 2.2 is a G-predictable process π , hence de-
composed in the form

πt =
n∑

k=0

1�k
t−

πk
t (τ k,Lk), t ≥ 0,(3.1)

where πk is an indexed process in PF(�k,E
k), and πk(θk,�k) is valued in Ak

closed set of R
d containing the zero element, and represents the amount invested

continuously in the d-assets in the k-default scenario, given the past default events
τ k = θk and the marks at default Lk = �k , for (θk,�k) ∈ �k × Ek . Notice that
in this modeling, we allow the space Ak of strategies constraints to vary between
default times. This means that the investor can update her portfolio constraint set
based on the observation of the past default events, and this includes the typical
case for defaultable bonds where the assets cannot be traded anymore after their
own defaults. Notice that this framework is then more general than the standard
formulation of a stochastic control problem, where the control set A is invariant in
time.

REMARK 3.1. It is possible to formulate a more general framework for the
modeling of portfolio constraints by considering that the set Ak may depend on
the past defaults and marks. More precisely, by introducing for any k = 0, . . . , n,
a closed set Āk ⊂ R

d × �k × Ek , s.t. (0, θk,�k) ∈ Āk for all (θk,�k) ∈ �k × Ek ,
and denoting by Ak(θk,�k) = {π ∈ R

d : (π, θk,�k) ∈ Āk}, the portfolio constraint
is defined by the condition that the process πk(θk,�k) should be valued in
Ak(θk,�k). In the rest of this paper, and for simplicity of notation, we shall fo-
cus on the case where Ak does not depend on the past defaults and marks, that is,
Āk = Ak × �k × Ek .

In the sequel, we shall often identify the strategy π with the family (πk)k=0,...,n

given in (3.1), and we require the integrability conditions: for all θk ∈ �k , �k ∈ Ek ,∫ T

0
|πk

t (θk,�k)
′bk

t (θk,�k)|dt

+
∫ T

0
|πk

t (θk,�k)
′σk

t (θk,�k)|2 dt(3.2)

< ∞ a.s.,

where T < ∞ is a fixed finite horizon time. Given a trading strategy π =
(πk)k=0,...,n, the corresponding wealth process is defined by

Xt =
n∑

k=0

1�k
t
Xk

t (τ k,Lk), 0 ≤ t ≤ T ,(3.3)
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where Xk(θk,�k), θk ∈ �k , �k ∈ Ek , is an indexed process in OF(�k,E
k), repre-

senting the wealth controlled by πk(θk,�k) in the price process Sk(θk,�k), given
the past default events τ k = θk and the marks at default Lk = �k . From the dynam-
ics (2.3), and under (3.2), it is governed by

dXk
t (θk,�k) = πk

t (θk,�k)
′(bk

t (θk,�k) dt + σk(θk,�k) dWt

)
, t ≥ θk.(3.4)

Moreover, each default time induces a jump in the assets price process, and then
also on the wealth process. From (2.5), it is given by

Xk+1
θk+1

(θk+1,�k+1) = Xk

θ−
k+1

(θk,�k) + πk
θk+1

(θk,�k)
′γ k

θk+1
(θk,�k, �k+1).

Notice that the dynamics of the wealth process can be written as a jump-Itô con-
trolled process under G by means of the random measure μ in (2.7),

dXt = π ′
t

(
bt dt + σt dWt +

∫
E

γt (�)μ(dt, d�)

)
.(3.5)

3.2. Value functions and F-decomposition. Let U be an exponential utility
with risk aversion coefficient p > 0,

U(x) = − exp(−px), x ∈ R.

We consider an investor with preferences described by the utility function U , who
can trade in the d-assets portfolio following an admissible trading strategy π ∈ AG

to be defined below, associated with a wealth process X = Xx,π , as in (3.3) with
initial capital X0− = x. Moreover, the investor has to deliver at maturity T an
option of payoff HT , a bounded GT -measurable random variable, decomposed into
the form (2.9). The optimal investment problem is then defined by

V 0(x) = sup
π∈AG

E[U(X
x,π
T − HT )].(3.6)

Our main goal is to provide existence and characterization results of the value
function V 0, and of the optimal trading strategy π̂ (which does not depend on the
initial wealth x from the exponential form of U ) in the general assets framework
described in the previous section. A first step is to define in a suitable way the set
of admissible trading strategies.

DEFINITION 3.1 (Admissible trading strategies). For k = 0, . . . , n, Ak
F

de-
notes the set of indexed process πk in PF(�k,E

k), valued in Ak satisfying (3.2),
and such that:

• the family {U(Xk
τ (θk,�k)), τ F-stopping time valued in [θk, T ]} is uniformly in-

tegrable, that is, U(Xk(θk,�k)) is of class (D);
• E[∫ T

θk

∫
E(−U)(Xk

s (θk,�k) + πk
s (θk,�k)

′γ k
s (θk,�k, �))ηk+1(�k, d�) ds] < ∞,

when k ≤ n − 1,
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for all (θk,�k) ∈ �k(T )×Ek , where we set �k(T ) = �k ∩[0, T ]k . We then denote
by AG = (Ak

F
)k=0,...,n the set of admissible trading strategies π = (πk)k=0,...,n.

As mentioned above, the indexed control sets Ak in which the trading strate-
gies take values may vary after each default time. This nonstandard feature in
control theory prevents a direct resolution to (3.6) by dynamic programming or
duality methods in the global filtration G, relying on the dynamics (3.5) of the
controlled wealth process. Following the approach in [14], we then provide a de-
composition of the global optimization problem (3.6) in terms of a family of op-
timization problems with respect to the default-free filtration F. Under the density
hypothesis (2.1), let us define a family of auxiliary processes αk ∈ OF(�k,E

k),
k = 0, . . . , n, which is related to the survival probability and is defined by recur-
sive induction from αn = α,

αk
t (θk,�k) =

∫ ∞
t

∫
E

αk+1
t (θk, θk+1,�k, �k+1) dθk+1ηk+1(�k, d�k+1)(3.7)

for k = 0, . . . , n − 1, so that

P[τk+1 > t |Ft ] =
∫
�k×Ek

αk
t (θk,�k) dθkη(d�k), P[τ1 > t |Ft ] = α0

t ,

where dθk = dθ1 · · ·dθk , η(d�k) = η1(d�1) · · ·ηk(�k−1, d�k). Given πk ∈ Ak
F

, we
denote by Xk,x(θk,�k) the controlled process solution to (3.4) and starting from x

at θk . For simplicity of notation, we omit the dependence of Xk,x in πk . The value
function to the global G-optimization problem (3.6) is then given in a backward
induction from the F-optimization problems:

V n(x, θ,�)
(3.8)

= ess sup
πn∈An

F

E[U(X
n,x
T − Hn

T )αT (θ ,�)|Fθn],

V k(x, θk,�k)

= ess sup
πk∈Ak

F

E

[
U(X

k,x
T − Hk

T )αk
T (θk,�k)

(3.9)

+
∫ T

θk

∫
E

V k+1(
X

k,x
θk+1

+ πk
θk+1

γ k
θk+1

(�k+1), θk+1,�k+1
)

× ηk+1(�k, d�k+1) dθk+1

∣∣∣Fθk

]

for any x ∈ R, k = 0, . . . , n, (θk,�k) ∈ �k(T ) × Ek . Here Xk,x denotes wealth
process in (3.4) controlled by πk , and starting from x at time θk . To alleviate nota-
tion, we omit, and often omit in the sequel, in Xk,x , Hk

T , πk , γ k , the dependence
on (θk,�k), when there is no ambiguity. Notice that (θk,�k) appears in (3.9) as a
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parameter index through Xk,x , Hk
T , πk , γ k and αk . On the other hand, θk appears

also via θk as the initial time in (3.9). The interpretation of relations (3.8)–(3.9)
is the following. V k represents the value function of the optimal investment prob-
lem in the k-default scenario, and equality (3.9) may be understood as a dynamic
programming relation between two consecutive default times: on the k-default sce-
nario, with a wealth controlled process Xk , either there are no other defaults before
time T (which is measured by the survival density αk), in which case, the investor
receives the terminal gain U(Xk

T − Hk
T ), or there is a default at time τk+1, which

occurs between θk and T , inducing a jump on Xk , and from which the maxi-
mal expected profit is V k+1. Moreover, if there exists, for all k = 0, . . . , n, some
π̂ k ∈ Ak

F
attaining the essential supremum in (3.8)–(3.9), then the trading strategy

π̂ = (π̂k)k=0,...,n ∈ AG, is optimal for the initial investment problem (3.6).

4. Backward recursive system of BSDEs. In this section, we exploit the spe-
cific form of the exponential utility function U(x) in order to characterize, by
dynamic programming methods, the solutions to the stochastic optimization prob-
lems (3.8)–(3.9) in terms of a recursive system of indexed backward stochastic
differential equations (BSDEs) with respect to the filtration F, assumed from now
on to be generated by the m-dimensional Brownian motion W .

We use a verification approach in the following sense. We first derive formally
the system of BSDEs associated to the F-stochastic control problems. The main
step is then to obtain existence of a solution to these BSDEs, and prove that this
BSDEs-solution indeed provides the solution to our optimal investment problem.

Let us consider the starting problem (3.8) of the backward induction. For fixed
(θ ,�) ∈ �n(T )×En, problem (3.8) is a classical exponential utility maximization
in the market model Sn(θ ,�) starting from θn, and with random endowment H̃ n

T =
Hn

T + 1
p

lnαT . We recall briefly how to derive the corresponding BSDE. For t ∈
[θn, T ], νn ∈ An

F
, let us introduce the following set of controls coinciding with ν

until time t :

An
F
(t, νn) = {πn ∈ An

F
:πn·∧t = νn·∧t }

and define the dynamic version of (3.8) by considering the following family of
F-adapted processes:

V n
t (x, θ,�, νn) = ess sup

πn∈An
F
(t,νn)

E[U(X
n,x
T − H̃ n

T )|Ft ], t ≥ θn,(4.1)

so that V n
θn

(x, θ,�, νn) = V n(x, θ,�) for any νn ∈ An
F

. From the dynamic program-
ming principle, one should have the supermartingale property of {V n

t (x, θ,�, νn),
θn ≤ t ≤ T }, for any νn ∈ An

F
, and if an optimal control exists for (4.1), we should

have the martingale property of {V n
t (x, θ,�, π̂n), θn ≤ t ≤ T } for some π̂n ∈ An

F
.

Moreover, from the exponential form of the utility function U and the additive
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form of the wealth process Xn in (3.4), the value function process V n should be in
the form

V n
t (x, θ,�, νn) = U

(
X

n,x
t − Yn

t (θ ,�)
)
, θn ≤ t ≤ T ,

for some indexed F-adapted process Yn independent of νn, that we search in
the form: dYn

t = −f n
t dt + Zn

t dWt . Then, by using the above supermartin-
gale and martingale property of the dynamic programming principle, and since
V n

T (x, θ,�, νn) = U(x − H̃ n
T ) by (4.1), we see that (Y n,Zn) should satisfy the

following indexed BSDE:

Yn
t (θ ,�) = Hn

T (θ ,�) + 1

p
lnαT (θ ,�)

(En)

+
∫ T

t
f n(r,Zn

r , θ,�) dr −
∫ T

t
Zn

r dWr, θn ≤ t ≤ T ,

and the generator f n is the indexed process in PF(Rm,�n,E
n) defined by

f n(t, z, θ,�) = inf
π∈An

{
p

2
|z − σn

t (θ ,�)′π |2 − bn(θ ,�)′π
}

= −λn
t (θ ,�)z − 1

2p
|λn

t (θ,�)|2(4.2)

+ p

2
inf

π∈An

∣∣∣∣z + 1

p
λn

t (θ ,�) − σn
t (θ ,�)′π

∣∣∣∣
2

,

where the second equality comes from (2.4). This quadratic BSDE is similar to the
one considered in [15] or [6] in a default-free market. Next, consider the problems
(3.9), and define similarly the dynamic version by considering the value function
process

V k
t (x, θk,�k, ν

k)

= ess sup
πk∈Ak

F
(t,νk)

E

[
U

(
X

k,x
T − Hk

T (θk,�k)
)
αk

T (θk,�k)

(4.3)

+
∫ T

t

∫
E

V k+1
θk+1

(
X

k,x
θk+1

+ πk
θk+1

γ k
θk+1

(�k+1), θk+1,�k+1
)

× ηk+1(�k, d�k+1) dθk+1

∣∣∣Ft

]

for θk ≤ t ≤ T , where Ak
F
(t, νk) = {πk ∈ Ak

F
:πk·∧t = νk·∧t }, for νk ∈ Ak

F
, so that

V k
θk

(x, θk,�k, ν
k) = V k(x, θk,�k). The dynamic programming principle for (4.3)
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formally implies that the process

V k
t (x, θk,�k, ν

k)

+
∫ t

0

∫
E

V k+1(
X

k,x
θk+1

+ νk
θk+1

γ k
θk+1

(�k+1), θk+1,�k+1
)

× ηk+1(�k, d�k+1) dθk+1

for θk ≤ t ≤ T is a (P,F)-supermartingale for any νk ∈ Ak
F

, and is a martingale
for π̂ k if it is an optimal control for (4.3). Again, from the exponential form of
the utility function U , the additive form of the wealth process Xk in (3.4), and by
induction, we see that the value function process V k should be in the form

V k
t (x, θk,�k, ν

k) = U
(
X

k,x
t − Y k

t (θk,�k)
)
, θk ≤ t ≤ T ,

for some indexed F-adapted process Y k , independent of νk , that we search in the
form dY k

t = −f k
t dt +Zk

t dWt . By using the supermartingale and martingale prop-
erties of the dynamic programming principle for V k , and since V k

T (x, θk,�k) =
U(x − H̃ k

T ), with H̃ k
T = Hk

T + 1
p

lnαk
T , we see that (Y k,Zk) should satisfy the

indexed BSDE,

Y k
t (θk,�k) = Hk

T (θk,�k) + 1

p
lnαk

T (θk,�k) +
∫ T

t
f k(r, Y k

r ,Zk
r , θk,�k) dr

(Ek)

−
∫ T

t
Zk

r dWr, θk ≤ t ≤ T ,

with a generator f k defined by

f k(t, y, z, θk,�k)

= inf
π∈Ak

{
p

2
|z − σk

t (θk,�k)
′π |2 − bk

t (θk,�k)
′π

+ 1

p
U(y)

∫
E

U
(
πγ k

t (θk,�k, �)

− Y k+1
t (θk, t,�k, �)

)
ηk+1(�k, d�)

}
(4.4)

= −λk
t (θk,�k)z − 1

2p
|λk

t (θk,�k)|2

+ inf
π∈Ak

{
p

2

∣∣∣∣z + 1

p
λk

t (θk,�k) − σk
t (θk,�k)

′π
∣∣∣∣
2

+ 1

p
U(y)

∫
E

U
(
πγ k

t (θk,�k, �)

− Y k+1
t (θk, t,�k, �)

)
ηk+1(�k, d�)

}
,
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where the second equality comes from (2.4).
The equations (Ek), k = 0, . . . , n, define thus a recursive system of families of

BSDEs, indexed by (θ ,�) ∈ �n(T ) × En, and the rest of this section is devoted
first to the well-posedness and existence of a solution to this system, and then to its
uniqueness via a verification theorem relating the solution to the value functions
(4.1), (4.3).

4.1. Existence to the recursive system of indexed BSDEs. The generators of
our system of BSDEs do not satisfy the usual Lipschitz or quadratic growth as-
sumptions. In particular, in addition to the growth condition in z for f k defined in
(4.4), there is an exponential term in y via the utility function U(y), which prevents
a direct application of known existence results in the literature for BSDEs.

Let us introduce some notation for sets of processes. We denote by S ∞
c [t, T ] the

set of F-adapted continuous processes Y which are essentially bounded on [t, T ],
that is, ‖Y‖S ∞

c [t,T ] := ess sup(s,ω)∈[t,T ]×� |Ys(ω)| < ∞, and by L2
W [t, T ] the set

of F-predictable processes Z s.t. E[∫ T
t |Zs |2 ds] < ∞. For any k = 0, . . . , n, we

denote by S ∞
c (�k,E

k) the set of indexed F-adapted continuous processes Y k in
OF(�k,E

k), which are essentially bounded, uniformly in their indices

‖Y k‖S ∞
c (�k,E

k) := sup
(θk,�k)∈�k(T )×Ek

‖Y k(θk,�k)‖S ∞
c [θk,T ] < ∞.

We also denote by L2
W(�k,E

k) the set of indexed F-predictable processes Zk in
PF(�k,E

k) such that

E

[∫ T

θk

|Zk
t (θk,�k)|2 dt

]
< ∞ ∀(θk,�k) ∈ �k(T ) × Ek.

We make the following boundedness assumptions:

(HB) (i) The risk premium is bounded uniformly w.r.t. its indices: there exists a
constant C > 0 such that for any k = 0, . . . , n, (θk,�k) ∈ �k(T ) × Ek , t ∈ [θk, T ],

|λk
t (θk,�k)| ≤ C a.s.

(ii) The indexed FT -measurable random variables Hk
T and lnαk

T are bounded
uniformly in their indices: there exists a constant C > 0 such that for any k =
0, . . . , n, (θk,�k) ∈ �k(T ) × Ek ,

|Hk
T (θk,�k)| + |lnαk

T (θk,�k)| ≤ C a.s.

We then state the existence result for the recursive system of BSDEs.

THEOREM 4.1. Under (HB), there exists a solution (Y k,Zk)k=0,...,n ∈∏n
k=0 S ∞

c (�k,E
k) × L2

W(�k,E
k) to the recursive system of indexed BSDEs (Ek),

k = 0, . . . , n.

PROOF. We prove the result by a backward induction on k = 0, . . . , n, and
consider the property

there exists a solution Y k ∈ S ∞
c (�k,E

k) to (Ek).(Pk)
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• For k = n. From expression (4.2) of the generatof f n, there exists some posi-
tive constant C s.t.

|f n(t, z, θ,�)| ≤ C
(|z|2 + |λn

t (θ ,�)|2)
∀(t, z, θ,�) ∈ [0, T ] × R

m × �n(T ) × En.

Hence, under (HB), we can apply Theorem 2.3 in [12] for any fixed (θ,�) ∈
�n(T ) × En, and get the existence of a solution (Y n(θ ,�),Zn(θ ,�)) ∈ S ∞

c [θn,
T ] × L2

W [θn, T ]. Moreover, from Proposition 2.1 in [12], we have the following
estimate:

|Yn
t (θ ,�)| ≤ ess sup

�

(
|HT (θ ,�)| + 1

p
|lnαT (θ ,�)|

)

+ C

∫ T

t
|λn

s (θ ,�)|2 ds, θn ≤ t ≤ T .

Under (HB), this implies that sup(θ ,�)∈�n(T )×En ‖Yn(θ ,�)‖S ∞
c [θn,T ] < ∞. Finally,

the measurability of Yn and Zn with respect to (θ,�) follows from the measura-
bility of the coefficients Hn, αn

T and f n w.r.t. (θ,�) (see Appendix C in [11]). The
property (Pn) is then proved.

• Fix k ∈ {0, . . . , n − 1}, and suppose that (Pk+1) is true, and denote by
(Y k+1,Zk+1) ∈ S ∞

c (�k+1,E
k+1)× L2

W(�k+1,E
k+1) a solution to (Ek+1). Since

the indexed F-adapted process Y k+1 is continuous, it is actually F-predictable,
and so Y k+1 ∈ PF(�k+1,E

k+1). This implies that the map (t,ω, θk,�k+1) →
Y k+1

t (ω, θk, t,�k+1) is P(F) ⊗ B(�k) ⊗ B(Ek+1)-measurable. The generator f k

is thus well defined in (4.4) as an indexed process in PF(R,R
m,�k,E

k), and we
shall prove that (Pk) holds true by proceeding in four steps, in order to overcome
the technical difficulties coming from the exponential term in U(y) together with
the quadratic condition in z for f k .

Step 1: Approximating sequence. We truncate the term U(y) = −e−py when y

goes to −∞, as well as the infimum, by considering the truncated generator

f k
N(t, y, z, θk,�k)

= −λk
t (θk,�k)z − 1

2p
|λk

t (θk,�k)|2

+ inf
π∈Ak,|(σ k

t )′π |≤N

{
p

2

∣∣∣∣z + 1

p
λk

t (θk,�k) − σk
t (θk,�k)

′π
∣∣∣∣
2

+ 1

p
U(max(−N,y))

×
∫
E

U
(
πγ k

t (θk,�k, �)

− Y k+1
t (θk, t,�k, �)

)
ηk+1(�k, d�)

}
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and introduce the corresponding family of approximated BSDEs with terminal
data H̃ k

T and generator f k
N ,

Y
k,N
t (θk,�k) = Hk

T (θk,�k) + 1

p
lnαk

T (θk,�k)

+
∫ T

t
f k

N(r, Y k
r ,Zk,N

r , θk,�k) dr(4.5)

−
∫ T

t
Zk,N

r dWr, θk ≤ t ≤ T .

Under (HB)(i), there exists a constant C such that for all (θk,�k) ∈ �k(T ) × Ek ,

f k
N(t, y, z, θk,�k) ≥ −λk

t (θk,�k)z − 1

2p
|λk

t (θk,�k)|2
(4.6)

≥ −C(1 + |z|)
for all (t, y, z) ∈ [θk, T ] × R × R

m. Moreover, since 0 ∈ Ak , and the process Y k+1

is essentially bounded, there exists some positive constant CN (depending on N )
s.t. for all (θk,�k) ∈ �k(T ) × Ek ,

f k
N(t, y, z, θk,�k) ≤ −λk

t (θk,�k)z − 1

2p
|λk

t (θk,�k)|2

+ p

2

∣∣∣∣z + 1

p
λk

t (θk,�k)

∣∣∣∣
2

+ CN(4.7)

≤ CN(1 + |z|2),
under (HB)(i). Hence, for any given (θk,�k) ∈ �k(T ) × Ek , we can apply The-
orem 2.3 in [12], and obtain the existence of a solution (Y k,N(θk,�k),Z

k,N(θk ,
�k)) ∈ S ∞

c [θk, T ] × L2
W [θk, T ] to (4.5). The measurability of (Y k,N ,Zk,N) w.r.t.

its arguments (θk,�k) follows from the measurability of Hk
T , αk

T , f k
N w.r.t. (θk,�k).

In the next steps, we prove the convergence of the sequence (Y k,N ,Zk,N)N to a
solution of (Ek).

Step 2: Lower bound for the approximating sequence. Define the generator func-
tion f k by

f k(t, z, θk,�k) = −λk
t (θk,�k)z − 1

2p
|λk

t (θk,�k)|2.

Under (HB)(i), and for fixed (θk,�k) ∈ �k(T )×Ek , the function f k(·, θk,�k) sat-
isfies the usual Lipschitz (and a fortiori quadratic growth) condition in z, which
implies from Theorem 2.3 in [12] that there exists (Y k(θk,�k),Z

k(θk,�k)) ∈
S ∞

c [θk, T ] × L2
W [θk, T ] solution to the BSDE with terminal data Hk

T (θk,�k) +
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1
p

lnαk
T (θk,�k), and generator f k(·, ·, θk,�k). The solution (Y k,Zk) is measur-

able w.r.t. the arguments (θk,�k), and from the uniform boundedness condition
in (HB), and Proposition 2.1 in [12], we deduce that (Y k,Zk) ∈ S ∞

c (�k,E
k) ×

L2
W(�k,E

k). Moreover, we easily see under (HB)(i) that for any (θk,�k) ∈
�k(T ) × Ek , f k(·, θk,�k) satisfy Assumptions (H2) and (H3) of [12]. Since
f k(·, θk,�k) ≤ f k

N(·, θk,�k), we can apply comparison Theorem 2.6 in [12] to get
the inequality

Y
k,N
t (θk,�k) ≥ Y k

t (θk,�k), θk ≤ t ≤ T a.s.(4.8)

for all N , and (θk,�k) ∈ �k(T ) × Ek . Since Y k ∈ S ∞
c (�k,E

k), this implies that
Y k,N is uniformly lower bounded, and thus by (4.5), we see that for N large
enough, (Y k,N ,Zk,N) satisfies the indexed BSDE with terminal data H̃ k

T , and with
a generator f̃ k

N where one can remove in f k
N the truncation in −N for U(y), that

is,

Y
k,N
t (θk,�k) = Hk

T (θk,�k) + 1

p
lnαk

T (θk,�k)

+
∫ T

t
f̃ k

N(r, Y k
r ,Zk,N

r , θk,�k) dr(4.9)

−
∫ T

t
Zk,N

r dWr, θk ≤ t ≤ T ,

with

f̃ k
N(t, y, z, θk,�k)

= −λk
t (θk,�k)z − 1

2p
|λk

t (θk,�k)|2

+ inf
π∈Ak,|(σ k

t )′π |≤N

{
p

2

∣∣∣∣z + 1

p
λk

t (θk,�k) − σk
t (θk,�k)

′π
∣∣∣∣
2

+ 1

p
U(y)

∫
E

U
(
πγ k

t (θk,�k, �)

− Y k+1
t (θk, t,�k, �)

)
ηk+1(�k, d�)

}
.

Step 3: Monotonicity and uniform estimate of the approximating sequence. We
cannot apply directly a comparison theorem for Y k,N for the quadratic genera-
tors f̃ k

N , since the derivative of f̃ k
N , with respect to z, is not of linear growth

in z, as requested in Assumption (H2) in [12]. We then make an exponential
change of variable by defining for any (θk,�k) ∈ �k(T ) × Ek , the pair of pro-
cesses (Ẏ k,N(θk,�k), Ż

k,N(θk,�k)) ∈ S ∞
c [θk, T ] × L2

W [θk, T ] by

Ẏ
k,N
t (θk,�k) = exp(pY

k,N
t (θk,�k))
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and

Ż
k,N
t (θk,�k) = pẎ

k,N
t (θk,�k)Z

k,N
t (θk,�k).

A straightforward Itô formula on (4.9) shows that (Ẏ k,N (θk,�k), Ż
k,N(θk,�k)) is

solution to the BSDE

Ẏ
k,N
t (θk,�k) = αk

T (θk,�k) exp(pHk
T (θk,�k))

+
∫ T

t
ḟ k

N(r, Ẏ k,N
r , Żk,N

r , θk,�k) dr

−
∫ T

t
Żk,N

r dWr, θk ≤ t ≤ T ,

where the generator ḟ k
N is defined by

ḟ k
N(t, y, z, θk,�k)

= inf
π∈Ak,|(σ k

t )′π |≤N

{
1

2
p2y|σk

t (θk,�k)
′π |2

− p
(
λk

t (θk,�k)y + z
)
σk

t (θk,�k)
′π

−
∫
E

U
(
πγ k

t (θk,�k, �)

− Y k+1
t (θk, t,�k, �)

)
ηk+1(�k, d�)

}
.

Fix (θk,�k) ∈ �k × Ek . Denote by ġk
N(π, t, y, z, θk,�k) the function inside the

infimum defining ḟ k
N , that is, ḟ k

N (·) = infπ∈Ak,|(σ k
t )′π |≤N ġk

N(π, ·). Then, for all

(t, y, y′, z, z′, θk,�k) ∈ [θk, T ] × R
2 × (Rm)2 × �k × Ek , we have

|ḟ k
N (t, y, z, θk,�k) − ḟ k

N (t, y′, z′, θk,�k)|
≤ sup

π∈Ak,|(σ k
t )′π |≤N

|ġk
N (π, t, y, z, θk,�k) − ġk

N(π, t, y′, z′, θk,�k)|

≤
(

1

2
p2N + pN |λk

t (θk,�k)|
)
|y − y′| + pN |z − z′|.

Under (HB)(i), we then see that ḟ k
N satisfies the standard Lipschitz condition in

(y, z), uniformly in (t,ω). Since the sequence (ḟ k
N)N is noninceasing, that is,

ḟ k
N+1 ≤ ḟ k

N , we obtain by standard comparison principle for BSDE that Ẏ k,N+1 ≤
Ẏ k,N , and so

Y
k,N+1
t (θk,�k) ≤ Y

k,N
t (θk,�k), θk ≤ t ≤ T a.s. ∀N ∈ N(4.10)

for all (θk,�k) ∈ �k × Ek . From the quadratic condition in z for f k
0 in (4.6) and

(4.7), uniformly in (θk,�k), and the a priori estimate of Proposition 2.1 in [12], we
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deduce under (HB)(ii) that Y k,0 ∈ S ∞
c (�k,E

k). Together with (4.8) and (4.10),
this implies that there exists a positive constant M such that

‖Y k,N‖S ∞
c (�k,E

k) ≤ M ∀N ∈ N.(4.11)

Step 4: Convergence of the approximating sequence. By using (4.11) in (4.5)
[or (4.9)], we see that (Y k,N ,Zk,N) satisfies the indexed BSDE with terminal
data H̃ k

T , and with generator f̂ k
N given by

f̂ k
N (t, y, z, θk,�k)

= −λk
t (θk,�k)z − 1

2p
|λk

t (θk,�k)|2

+ inf
π∈Ak,|(σ k

t )′π |≤N

{
p

2

∣∣∣∣z + 1

p
λk

t (θk,�k) − σk
t (θk,�k)

′π
∣∣∣∣
2

+ 1

p
U

(
(−M) ∨ y

)

×
∫
E

U
(
πγ k

t (θk,�k, �)

− Y k+1
t (θk, t,�k, �)

)
ηk+1(�k, d�)

}
.

By the same arguments as for the generator f k
N , there exists a constant CM such

that

|f̂ k
N (t, y, z, θk,�k)| ≤ CM(1 + |z|2)

for all N ∈ N, (t, y, z) ∈ [0, T ]×R×R
m, (θk,�k) ∈ �k ×Ek . Let us check that the

nonincreasing sequence (f̂ k
N)N converges uniformly on compact sets of (t, y, z) ∈

[0, T ] × R × R
m to f̂ k defined by

f̂ k(t, y, z, θk,�k)

= −λk
t (θk,�k)z − 1

2p
|λk

t (θk,�k)|2

+ inf
π∈Ak

{
p

2

∣∣∣∣z + 1

p
λk

t (θk,�k) − σk
t (θk,�k)

′π
∣∣∣∣
2

+ 1

p
U

(
(−M) ∨ y

) ∫
E

U
(
πγ k

t (θk,�k, �)

− Y k+1
t (θk, t,�k, �)

)
ηk+1(�k, d�)

}
.
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Indeed, notice that in the definition of f̂ k , one may restrict in the infimum over π

in Ak s.t. the function ĝk(π, ·) inside the infimum bracket, that is,

ĝk(π, t, y, z, θk,�k)

= p

2

∣∣∣∣z + 1

p
λk

t (θk,�k) − σk
t (θk,�k)

′π
∣∣∣∣
2

+ 1

p
U

(
(−M) ∨ y

) ∫
E

U
(
πγ k

t (θk,�k, �)

− Y k+1
t (θk, t,�k, �)

)
ηk+1(�k, d�)

is smaller than ĝk(π, ·) for π = 0. In other words, we have

f̂ k(t, y, z, θk,�k) = −λk
t (θk,�k)z − 1

2p
|λk

t (θk,�k)|2

+ inf
π∈Ak∩K(t,y,z,θk,�k)

ĝk(π, t, y, z, θk,�k),

where

K(t, y, z, θk,�k) = {π ∈ R
d : ĝk(π, t, y, z, θk,�k) ≤ ĝk(0, t, y, z, θk,�k)}.

Since U is nonpositive, Y k+1 is essentially bounded, and under (HB)(i), there ex-
ists some positive constant C such that

K(t, y, z, θk,�k)

⊂
{
π ∈ R

d :
∣∣∣∣z + 1

p
λk

t (θk,�k) − σk
t (θk,�k)

′π
∣∣∣∣ ≤

∣∣∣∣z + 1

p
λk

t (θk,�k)

∣∣∣∣ + C

}
(4.12)

⊂ {π ∈ R
d : |σk

t (θk,�k)
′π | ≤ C(|z| + 1)}

for all (t, y, z, θk,�k) ∈ [0, T ]× R × R
m ×�k ×Ek . This shows that on any com-

pact of (t, y, z) ∈ [0, T ] × R × R
m, we have K(t, y, z, θk,�k) ⊂ {π : |(σ k

t )′π | ≤
N} for N large enough, and so f̂ k

N = f̂ k , which obviously implies the con-
vergence of (f̂ k

N)N to f̂ k locally uniformly on (t, y, z) ∈ [0, T ] × R × R
m.

We can then apply Proposition 2.4 in [12], which states that the sequence
(Y k,N(θk,�k),Z

k,N(θk,�k))N converges in S ∞
c [θk, T ] × L2

W [θk, T ] to (Y k(θk ,
�k),Z

k(θk,�k)) solution to the BSDE with terminal data H̃ k
T , and generator f̂ k .

The indexed processes (Y k,Zk) inherit from (Y k,N ,Zk,N) the measurability in the
arguments (θk,�k) ∈ �k ×Ek . Moreover, from (4.11), we see that Y k also satisfies
the estimate

‖Y k‖S ∞
c (�k,E

k) ≤ M.

Hence, this implies that one can remove the truncation term −M in the BSDE
with generator f̂ k satisfied by (Y k,Zk). Therefore, (Y k,Zk) ∈ S ∞

c (�k,E
k) ×

L2
W(�k,E

k) is solution to (Ek), which ends the induction proof. �
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4.2. BSDE characterization by verification theorem. In this section, we show
that a solution (Y k)k to the recursive system indexed BSDEs actually provides the
solution to the optimal investment problem in terms of the value functions V k ,
k = 0, . . . , n, in (4.3). As a byproduct, we get the uniqueness of this system of
BSDEs and a description of an optimal strategy by means of the solution to these
BSDEs.

THEOREM 4.2. The value functions V k , k = 0, . . . , n, defined in (4.1), (4.3),
from the decomposition of the optimal investment problem (3.6), are given by

V k
t (x, θk,�k, ν

k) = U
(
X

k,x
t − Y k

t (θk,�k)
)
, θk ≤ t ≤ T ,(4.13)

for all x ∈ R, (θk,�k) ∈ �k × Ek , νk ∈ Ak
F

, where

(Y k,Zk)k=0,...,n ∈
n∏

k=0

S ∞
c (�k,E

k) × L2
W(�k,E

k)

is the solution to the recursive system of indexed BSDEs (Ek), k = 0, . . . , n. Here,
Xk,x denotes the wealth process in (3.4) controlled by νk , and starting from x

and θk . Moreover, there exists an optimal trading strategy π̂ = (π̂k)k=0,...,n ∈
AG = (Ak

F
)k=0,...,n described by

π̂ k
t (θk,�k)

∈ arg min
π∈Ak

{
p

2

∣∣∣∣Zk
t (θk,�k) + 1

p
λk

t (θk,�k) − σk
t (θk,�k)

′π
∣∣∣∣
2

(4.14)

+ 1

p
U(Y k

t (θk,�k))

∫
E

U
(
πγ k

t (θk,�k, �)

− Y k+1
t (θk, t,�k, �)

)
ηk+1(�k, d�)

}

for k = 0, . . . , n − 1, (θk,�k) ∈ �k(T ) × Ek , t ∈ [θk, T ], a.s., and

π̂n
t (θ ,�) ∈ arg min

π∈An

∣∣∣∣Zn
t (θ ,�) + 1

p
λn

t (θ ,�) − σn
t (θ ,�)′π

∣∣∣∣2

for k = n, (θ ,�) ∈ �n(T ) × En, t ∈ [θn, T ], a.s.

PROOF. Step 1: We first prove that for all k = 0, . . . , n, νk ∈ Ak
F

, U(Xk,x −
Y k(θk,�k)) ≥ V k(x, θk,�k, ν

k). Let (Y k,Zk)k=0,...,n ∈ ∏n
k=0 S ∞

c (�k,E
k) ×

L2
W(�k,E

k) be a solution to the system of BSDEs (Ek), k = 0, . . . , n. For any
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x ∈ R, (θk,�k) ∈ �k(T ) × Ek , νk ∈ Ak
F

, we apply Itô’s formula to the process

ξk
t (x, θk,�k, ν

k) := U
(
X

k,x
t − Y k

t (θk,�k)
)

+
∫ t

θk

∫
E

U
(
Xk,x

s + νk
s γ k

s (θk,�k, �)

− Y k+1
s (θk, s,�k, �)

)
ηk+1(�k, d�) ds

for k = 0, . . . , n, and ξn
t (x, θk,�n, ν

n) := U(X
n,x
t − Yn

t (θn,�n)), for k = n, and
θk ≤ t ≤ T . From the dynamics of Xk,x and Y k , we immediately get

dξk
t (x, θk,�k, ν

k)

= −U
(
X

k,x
t − Y k

t (θk,�k)
)[(

f k
t (t, Y k

t ,Zk
t , θk,�k)

− gk
t (ν

k
t , t, Y k

t ,Zk
t , θk,�k)

)
dt

+ (
σk

t (θk,�k)
′νk

t − Zk
t

)
dWt

]
,

where

gk
t (π, t, y, z, θk,�k)

= p

2
|z − σk

t (θk,�k)
′π |2 − bk

t (θk,�k)
′π

+ 1

p
U(y)

∫
E

U
(
πγ k

t (θk,�k, �)

− Y k+1
t (θk, t,�k, �)

)
ηk+1(�k, d�)

for k = 0, . . . , n − 1, and gn
t (π, t, y, z, θn,�n) = p

2 |z − σn
t (θn,�n)

′π |2 − bn
t (θn,

�n)
′π for k = n. Since, by construction, f k

t (t, y, z, θk,�k) = infπ∈Ak
gk

t (π, t, y, z,
θk,�k), and recalling that U is nonpositive, this implies that the process {ξk

t (x, θk ,
�k, ν

k), θk ≤ t ≤ T }, is a local supermartingale. By considering a localizing F-
stopping times sequence (ρn)n valued in [θk, T ] for ξk , we have the inequality

E[ξk
s∧ρn

(x, θk,�k, ν
k)|Ft ] ≤ ξk

t∧ρn
(x, θk,�k, ν

k), θk ≤ t ≤ s ≤ T .

Now, by Definition 3.1 of the admissibility condition for νk , and since the pro-
cesses Y k , Y k+1 are essentially bounded, the sequence (ξk

s∧ρn
(x, θk,�k, ν

k))n
is uniformly integrable for any s ∈ [θk, T ], and by the dominated convergence
theorem, we obtain the supermartingale property of ξk(x, θk,�k, ν

k). Therefore,
by writing the supermartingale property between t and T , and recalling that
Y k

T = Hk
T + 1

p
lnαk

T , we obtain the inequalities

U
(
X

n,x
t − Yn

t (θ ,�)
) ≥ E

[
U

(
X

n,x
T − Hn

T (θ ,�)
)
αT (θ,�)|Ft

]
,(4.15)
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U
(
X

k,x
t − Y k

t (θk,�k)
)

≥ E

[
U

(
X

k,x
T − Hk

T (θk,�k)
)
αk

T (θk,�k)

(4.16)

+
∫ T

t

∫
E

U
(
Xk,x

s + νk
s γ k

s (�)

− Y k+1
s (θk, s,�k, �)

)
ηk+1(�k, d�) ds

∣∣∣Ft

]
,

which hold true for any νk ∈ Ak
F

, k = 0, . . . , n.

Step 2: The process
∫ ·
θk

Zk
s (θk,�k) dWs is a BMO-martingale, for any k =

0, . . . , n, (θk,�k) ∈ �k(T ) × Ek . By applying Itô’s formula to the process
exp(qY k

t (θk,�k)) with q > p between any stopping time τ valued in [θk, T ] and T ,
and recalling the terminal data Y k

T = H̃ k
T = Hk

T + 1
p

lnαk
T , we get

1

2
q(q − p)E

[∫ T

τ
exp(qY k

t (θk,�k))|Zk
t (θk,�k)|2 dt

∣∣∣Fτ

]

= qE

[∫ T

τ
exp(qY k

t (θk,�k))

(
f k(t, Y k

t ,Zk
t , θk,�k) − p

2
|Zk

t |2
)

dt
∣∣∣Fτ

]
(4.17)

+ E[exp(qH̃ k
T (θk,�k)) − exp(qY k

τ (θk,�k))|Fτ ].
By definition of f k in (4.4), and since Y k+1 ∈ S ∞

c (�k+1,E
k+1), there exists a

constant C such that for all (t, y, z) ∈ [0, T ] × R × R
d ,

f k(t, y, z, θk,�k) ≤ p

2
|z|2 − CU(y).

Combining this last inequality with (4.17), we get

1

2
q(q − p)E

[∫ T

τ
exp(qY k

t (θk,�k))|Zk
t (θk,�k)|2 dt

∣∣∣Fτ

]

≤ qCE

[∫ T

τ
exp

(
(q − p)Y k

t (θk,�k)
)
dt

∣∣∣Fτ

]

+ E
[
eqH̃ k

T (θk,�k) − eqY k
τ (θk,�k)|Fτ

]
.

Under (HB)(ii), and since Y k ∈ S ∞
c (�k,E

k), this shows that there exists a constant
C s.t.

E

[∫ T

τ
|Zk

t (θk,�k)|2 dt
∣∣∣Fτ

]
≤ C for any stopping time τ valued in [θk, T ],
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which is the required BMO-property.

Step 3: Admissibility of π̂ k . Let us consider the functions ĝk , k = 0, . . . , n, de-
fined by

ĝk(π, t,ω, θk,�k)

= p

2

∣∣∣∣Zk
t (θk,�k) + 1

p
λk

t (θk,�k) − σk
t (θk,�k)

′π
∣∣∣∣
2

+ 1

p
U(Y k

t (θk,�k))

∫
E

U
(
πγ k

t (θk,�k, �)

− Y k+1
t (θk, t,�k, �)

)
ηk+1(�k, d�)

for k = 0, . . . , n−1 and ĝn(π, t,ω, θ,�) = |Zn
t (θk,�k)+ 1

p
λn

t (θ ,�)−σn
t (θ ,�)′π |2.

Recall that the indexed F-adapted processes Y k and Y k+1 are continuous,
hence F-predictable. Therefore, the map (π, t,ω, θk,�k) → ĝk(π, t,ω, θk,�k)

is B(Rd) ⊗ P(F) ⊗ B(�k) ⊗ B(Ek)-measurable. Moreover, for k = 0, . . . , n,
(θk,�k) ∈ �k × Ek , we recall from Remark 2.2 that either σk(θk,�k) = 0 and
γ k(θk,�k, �) = 0, in which case, the continuous function π → ĝk(π, t,ω, θk,�k)

attains trivially its infimum for π = 0, or σk(θk, θk) and γ k(θk,�k, �) are in the
form σk(θk,�k) = (σ̄ k(θk,�k)0), γ k(θk,�k, �) = (γ̄ k(θk,�k, �)0) for some full
rank matrix σ̄ k(θk,�k). In this case, the infimum of ĝk(π, ·) over π ∈ Ak is equal
to the infimum over π̄ ∈ (σ k)′Ak of function ḡk(π̄ , ·) where

ḡk(π̄ , t,ω, θk,�k)

= p

2

∣∣∣∣Zk
t (θk,�k) + 1

p
λk

t (θk,�k) − π̄

∣∣∣∣
2

+ 1

p
U(Y k

t )

∫
E

U
(
(σ̄ k(σ̄ k)′)−1π̄ γ̄ k

t (�) − Y k+1
t (θk, t,�k, �)

)
ηk+1(�k, d�)

for k = 0, . . . , n − 1, and ḡn(π̂ , t,ω, θ,�) = |Zn
t (θk,�k) + 1

p
λn

t (θ,�) − π̄ |2. We
clearly have

ḡk(0, t,ω, θk,�k) ≤ lim inf|π̄ |→∞ ḡk(π̄ , t,ω, θk,�k),

which shows that the continuous function π̄ → ḡk(π̄ , t,ω, θk,�k) attains its infi-
mum over the closed set (σ k

t )′Ak , and thus the function π → ĝk(π, t,ω, θk,�k)

attains its infimum over Ak(θk,�k). By a classical measurable selection theorem
(see, e.g., [16]), one can then find for any k = 0, . . . , n, π̂ k ∈ PF(�k,E

k) s.t.,

π̂ k
t (θk,�k) ∈ arg min

π∈Ak(θk,�k)

ĝk(π, t, θk,�k), θk ≤ t ≤ T a.s.

for all (θk,�k) ∈ �k(T ) × Ek . Let us now check that the trading strategy π̂ =
(π̂k)k=0,...,n is admissible in the sense of Definition 3.1. First, by writing that
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ĝk(π̂k
t , t, θk,�k) ≤ ĝk(0, t, θk,�k), we get, similarly to (4.12), the existence of

some constant C s.t.

|σk
t (θk,�k)

′π̂ k
t (θk,�k)| ≤ C

(
1 + |Zk

t (θk,�k)|), θk ≤ t ≤ T a.s.(4.18)

for all (θk,�k) ∈ �k(T )×Ek , k = 0, . . . , n. Since Zk ∈ L2
W(�k,E

k), and recalling
(HB)(i), this shows that π̂ k satisfies (3.2) for all k = 0, . . . , n. Let us denote by
X̂k,x the wealth process in (3.4) controlled by π̂ k , and starting from x at θk . By
definition of π̂ k , we have

f k(t, Y k
t ,Zk

t , θk,�k)

= p

2
|Zk

t − σk
t (θk,�k)

′π̂ k
t |2 − bk

t (θk,�k)
′π̂ k

t(4.19)

+ 1

p
U(Y k

t )

∫
E

U
(
π̂ k

t γ k
t (θk,�k, �) − Y k+1

t (θk, t,�k, �)
)
ηk+1(�k, d�)

for k = 0, . . . , n−1, and f n(t, Y n
t ,Zn

t , θ,�) = p
2 |Zn

t −σn
t (θ ,�)′π̂n

t |2 −bn
t (θ ,�)′π̂n

t

for k = n. From the forward dynamics of Y k , we can then write for all θk ≤ t ≤ T

U(X̂
k,x
t − Y k

t ) = U(x − Y k
θk

)E k
t

(
p

(
Zk − (σ k)′π̂ k))Rk

t

with

E k
t

(
p

(
Zk − (σ k)′π̂ k))

= exp
(
p

∫ t

θk

(
Zk

s − (σ k
s )′π̂ k

s

)
dWs − p2

2

∫ t

θk

|Zk
s − (σ k

s )′π̂ k
s |2 ds

)

and

Rk
t = exp

(
−

∫ t

θk

U(Y k
s )

∫
E

U
(
π̂ k

t γ k
t (θk,�k, �)

− Y k+1
t (θk, t,�k, �)

)
ηk+1(�k, d�) ds

)

for k = 0, . . . , n − 1, and Rn
t = 1. Now, from step 2 and (4.18), the process∫ ·

θk
p(Zk − (σ k)′π̂ k) dW is a BMO-martingale, and hence (see [10]), E k(p(Zk −

(σ k)′π̂ k)) is of class (D). Moreover, since U is nonpositive, we see that |Rk| ≤ 1,
and so |U(X̂k,x − Y k)| ≤ U(x − Y k

θk
)E k(p(Zk − (σ k)′π̂ k)), which shows that

U(X̂k,x − Y k) is of class (D), and then also U(X̂k,x) since Y k is essentially
bounded. It remains to check that for all k = 0, . . . , n − 1, (θk,�k) ∈ �k(T ) × Ek ,

E

[∫ T

θk

∫
E
(−U)

(
X̂

k,x
t + π̂ k

t γ k
t (θk,�k, �)

)
ηk+1(�k, d�) ds

]
< ∞.

By the definition of π̂ k [which implies (4.19)], the process ξk(x, θk,�k, π̂
k) de-

fined in step 1, is a local martingale. By considering a localizing F-stopping times
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sequence (ρn)n valued in [θk, T ] for this local martingale, we obtain

E

[∫ T ∧ρn

θk

∫
E
(−U)

(
X̂

k,x
t + π̂ k

t γ k
t (�) − Y k+1

t (θk, t,�k, �)
)
ηk+1(�k, d�) dt

]

= E[U(X̂
k,x
T ∧ρn

− Y k
T ∧ρn

) − U(x − Y k
θk

)] ≤ E[−U(x − Y k
θk

)],
since U is nonpositive. By Fatou’s lemma, we get the required inequality, and this
proves that π̂ k ∈ Ak

F
, for any k = 0, . . . , n; that is, π̂ = (π̂k)k=0,...,n is admissible:

π̂ ∈ AG.

Step 4: Since π̂ = (π̂k)k=0,...,n is admissible, and recalling that the processes Y k

are essentially bounded, this implies that the local martingales ξk(x, θk,�k, π̂
k),

k = 0, . . . , n, are “true” martingales. Hence, the inequalities in (4.15)–(4.16) be-
come equalities for ν = π̂ , which yield

U
(
X̂

n,x
t − Yn

t (θ ,�)
) = E

[
U

(
X̂

n,x
T − Hn

T (θ ,�)
)
αT (θ ,�)|Ft

]
,(4.20)

U
(
X̂

k,x
t − Y k

t (θk,�k)
)

= E

[
U

(
X̂

k,x
T − Hk

T (θk,�k)
)
αk

T (θk,�k)

(4.21)

+
∫ T

t

∫
E

U
(
X̂k,x

s + π̂ k
s γ k

s (�)

− Y k+1
s (θk, s,�k, �)

)
ηk+1(�k, d�) ds

∣∣∣Ft

]

for k = 0, . . . , n, (θk,�k) ∈ �k(T )×Ek , t ∈ [θk, T ], x ∈ R. Let us prove the prop-
erties (4.13) by backward induction on k = 0, . . . , n. For k = n, from the additive
form of the wealth process Xn,x and the exponential form of the utility function U ,
we observe that for any t ∈ [θn, T ], πn ∈ AF(t, νn), the quantity

E

[
U(X

n,x
T − Hn

T (θ ,�))

−U(X
n,x
t )

αT (θ ,�)
∣∣∣Ft

]

does not depend on the choice νn ∈ An
F

. By combining (4.15) and (4.20), we then
have

Jn
t (θ ,�) := ess sup

πn∈An
F
(t,νn)

E

[
U(X

n,x
T − Hn

T (θ ,�))

−U(X
n,x
t )

αT (θ ,�)
∣∣∣Ft

]

≤ U(−Yn
t (θ ,�)) = E

[
U(X̂

n,x
T − Hn

T (θ ,�))

−U(X̂
n,x
t )

αT (θ,�)
∣∣∣Ft

]

≤ Jn
t (θ ,�),

where we used in the last inequality the trivial fact that π̂n ∈ An
F
(t, π̂n). This shows

that U(−Yn
t (θ ,�)) = J n

t (θ,�), and so V n
t (x, θ,�, νn) = U(X

n,x
t − Yn

t (θ,�)) for
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any νn ∈ An
F

, x ∈ R, (θ ,�) ∈ �n(T ) × En, which is property (4.13) at step k = n.
Assume now that (4.13) holds true at step k + 1. Then, we observe, similarly as
above, that for any t ∈ [θk, T ], πk ∈ AF(t, νk), the quantity

E

[
U(X

k,x
T − Hk

T (θk,�k))α
k
T (θk,�k)

−U(X
k,x
t )

+
∫ T

t

∫
E

V k+1
θk+1

(X
k,x
θk+1

+ πk
θk+1

γ k
θk+1

(�k+1), θk+1,�k+1)

−U(X
k,x
t )

× ηk+1(�k, d�k+1) dθk+1

∣∣∣Ft

]

= E

[
U(X

k,x
T − Hk

T (θk,�k))α
k
T (θk,�k)

−U(X
k,x
t )

+
∫ T

t

∫
E

U(Xk,x
s + πk

s γ k
s (�) − Y k+1

s (θk, s,�l , �))

−U(X
k,x
t )

× ηk+1(�k, d�) ds
∣∣∣Ft

]

is independent of the choice νk ∈ Ak
F

. By combining (4.16) and (4.21), we then
have

J k
t (θk,�k)

:= ess sup
πk∈Ak

F
(t,νk)

E

[
U(X

k,x
T − Hk

T (θk,�k))α
k
T (θk,�k)

−U(X
k,x
t )

+
∫ T

t

∫
E

V k+1
θk+1

(X
k,x
θk+1

+ πk
θk+1

γ k
θk+1

(�k+1), θk+1,�k+1)

−U(X
k,x
t )

× ηk+1(�k, d�k+1) dθk+1

∣∣∣Ft

]

≤ U(−Y k
t (θk,�k))

= E

[
U(X̂

k,x
T − Hk

T (θk,�k))α
k
T (θk,�k)

−U(X
k,x
t )

+
∫ T

t

∫
E

V k+1
θk+1

(X̂
k,x
θk+1

+ π̂ k
θk+1

γ k
θk+1

(�k+1), θk+1,�k+1)

−U(X̂
k,x
t )

× ηk+1(�k, d�k+1) dθk+1

∣∣∣Ft

]

≤ J k
t (θk,�k),
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where we used in the last inequality the trivial fact that π̂ k ∈ Ak
F
(t, π̂k). This

proves that U(−Y k
t (θk,�k)) = J k

t (θk,�k), and thus the property (4.13) at step k.
Notice that this representation of Y k shows as a byproduct the uniqueness of the
solution to the recursive system of BSDEs (Ek). Finally, relations (4.21) for t = θk ,
together with (4.13), yield

V n(x, θ,�) = E[U(X̂
n,x
T − Hn

T )αT (θ ,�)|Fθn],

V k(x, θk,�k) = E

[
U(X̂

k,x
T − Hk

T )αk
T (θk,�k)

+
∫ T

θk

∫
E

V k+1(
X̂

k,x
θk+1

+ π̂ k
θk+1

γ k
θk+1

(�k+1), θk+1,�k+1
)

× ηk+1(�k, d�k+1) dθk+1

∣∣∣Fθk

]
,

which prove that π̂ = (π̂k)k=0,...,n is an optimal trading strategy. �

REMARK 4.1. We recall that, in a default-free market, the Itô model for stock
price S with risk premium λ and volatility σ , the optimal trading strategy (in
amount) for an exponential utility function U(x) = −e−px , and option payoff HT ,
is given by (see [6] or [15])

π̂M
t ∈ arg min

π∈A

∣∣∣∣Zt + 1

p
λt − (σt )

′π
∣∣∣∣
2

,

where (Y,Z) is the solution to the BSDE dYt = −f (t,Zt) dt +ZT dWt , YT = HT ,
f (t, z) = infπ∈A |z+ 1

p
λt − (σt )

′π |2. In our multiple defaults risk model, inducing
jumps on the stock price, we see from (4.14) the influence of jumps in the optimal
trading strategy π̂ k within the k-default scenario: there is a similar term involving
the coefficients λk and σk corresponding to the default-free regime case, but the
investor will take into account the possibility of a default and jump before the
final horizon, and which is formalized by the additional term involving the jump
size γ k . In particular, if γ k is negative (in the one-asset case d = 1), meaning that
there is a loss at default. Then the infimum in (4.14) will be achieved for a value
π̂ k smaller than the one without jumps. This means that when the investor knows
that there will be a loss at default on the stock, he will invest less in this asset,
which is intuitive. In the next section, we shall measure quantitatively this impact
on a two-assets model with defaults.

5. Applications and numerical illustrations. For numerical illustrations, we
consider a portfolio of two defaultable names, and denote by τ1 and τ2 their re-
spective nonordered default times, assumed to be independent of F, so that their
conditional density (w.r.t. F) is a deterministic function. We suppose that τ1 and
τ2 are correlated via the Gumbel copula which is suitable to characterize heavy
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tail dependence and is often used for insurance portfolios. More precisely, we
let P[τ1 > θ1, τ2 > θ2|Ft ] = P[τ1 > θ1, τ2 > θ2] = exp(−((a1θ1)

β + (a2θ2)
β)1/β)

with a1, a2 > 0 and β ≥ 1. In this model, each marginal default time τi follows the
exponential law with constant intensity ai , i = 1,2, and the correlation between
the two defaults is characterized by the constant parameter β . The case β = 1 cor-
responds to the independence case, and a larger value of β implies a large linear
correlation between the survival events ρs(T ) = corr(1{τ1>T },1{τ2>T }). The de-
fault density of τ = (τ1, τ2) is thus given by

ατ (θ1, θ2) = G(θ1, θ2)
(a1a2)

β

(θ1θ2)1−β
u(θ1, θ2)

1−2β(
u(θ1, θ2) + β − 1

)
,

where G(θ1, θ2) = P(τ1 > θ1, τ2 > θ2) = exp(−u(θ1, θ2)). As explained in Sec-
tion 2.1 and Remark 2.1, the case of ordered default times τ̂1 = min(τ1, τ2),
τ̂2 = max(τ1, τ2) can be recovered by considering the marks (ι1, ι2) indicating the
order of the defaults (τ1, τ2). The density of (τ̂1, τ̂2, ι1, ι2) is given by

α(θ , i, j) = 1{i=1,j=2}ατ (θ1, θ2) + 1{i=2,j=1}ατ (θ2, θ1)

for θ = (θ1, θ2) ∈ �2. Before any default, the price process S0 = (S1,0, S2,0) of
the two names is governed by a two-dimensional Black–Scholes model with the
correlation

dS0
t = S0

t ∗ (b0 dt + σ 0 dWt),

where b0 = (b1,0, b2,0) is a constant vector in R
2, σ 0 is the constant matrix

σ 0 =
(

σ 1,0
√

1 − ρ2 σ 1,0ρ

0 σ 2,0

)

with σ 1,0 > 0, σ 2,0 > 0, ρ ∈ (−1,1) and W = (W 1,W 2) is a two-dimensional
Brownian motion. The associated risk premium is then given by λ0 = (λ1,0, λ2,0)

with

λ1,0 = 1√
1 − ρ2

(
b1,0

σ 1,0 − ρ
b2,0

σ 2,0

)
, λ2,0 = b2,0

σ 2,0 .

Once the name j defaults at time τj , it drops to zero, but it also incurs a constant
relative jump (loss or gain) of size γ i ∈ [−1,∞) on the other name i 
= j . We
denote by Si,1(θ1) = Si,1(θ1, j) the price process of the survival name i after the
first default due to name j 
= i at time τj = θ1. We then have S

i,1
θ1

(θ1) = S
i,0
θ1

(1 +
γ i), and we assume that it follows a Black–Scholes model

dS
i,1
t (θ1) = S

i,1
t (θ1)(b

i,1 dt + σ i,1 dBi
t ), t ≥ θ1,

with constants bi,1 and σ i,1 > 0. Here Bi is the Brownian motion B1 =√
1 − ρ2W 1 + ρW 2, B2 = W 2. Finally, after both defaults, the two names can-

not be traded anymore, that is, S2 = (S1,2, S2,2) = 0.
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We consider the investment problem with utility function U(x) = −e−px , with-
out option payoff HT = 0, without portfolio constraint, and solve the recursive
system of BSDEs. Since all the coefficients of the assets price and the density are
deterministic, we notice that these BSDEs reduce actually to ordinary differential
equations (ODEs). We start from the case n = 2 after the defaults of both names.
The solution to the BSDE (En) for n = 2 is clearly degenerate:

Y 2(θ , i, j) = 1

p
lnα(θ , i, j), θ = (θ1, θ2) ∈ �2, i, j ∈ {1,2}, i 
= j.

Let us denote by Y 1,i (θ1) = Y 1(θ1, i), i = 1,2, the solution to the BSDE (E1)
after the first default due to name i. Notice that the auxiliary function α1,i (θ1) =
α1(θ1, i), defined in (3.7), is given for i, j = 1,2, i 
= j , by

α
1,i
t (θ1) =

∫ ∞
t

α(θ1, θ2, i, j) dθ2

= a
β
i

θ
1−β
1

(
(aiθ1)

β + (aj t)
β)1/β

e−((aiθ1)
β+(aj t)β)1/β

.

The function Y 1,i is then given by the solution to the ODE

Y
1,i
t (θ1) = 1

p

[
β lnai + (β − 1) ln θ1

+ 1

β
ln

(
(aiθ1)

β + (aj t)
β) − (

(aiθ1)
β + (aj t)

β)1/β
]

+
∫ T

t
f 1,i(s, Y 1,i

s , θ1) ds,

where

f 1,i(t, y, θ1) = − 1

2p

∣∣∣∣ b
j,1

σ j,1

∣∣∣∣
2

+ inf
π∈R

{
p

2

∣∣∣∣ 1

p

bj,1

σ j,1 − σ j,1π

∣∣∣∣
2

+ 1

p
e−p(y−π)α(θ1, t, i, j)

}

for i, j ∈ {1,2}, i 
= j . For k = 0, the survival probability α0 is equal to

α0
T = P[τ1 > T, τ2 > T ] = exp

(−T (a
β
1 + a

β
2 )1/β)

,

and the function Y 0 to the BSDE (E0) is then given by the solution to the ODE

Y 0
t = −T

p
(a

β
1 + a

β
2 )1/β +

∫ T

t
f 0(s, Y 0

s ) ds,(5.1)
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where

f 0(t, y) = − 1

2p
|λ0|2

+ inf
π=(π1,π2)∈R2

{
p

2

∣∣∣∣ 1

p
λ0 − (σ 0)′π

∣∣∣∣
2

+ 1

p
e−py[

e−p(−π1+π2γ 2−Y
1,1
t (t))

+ e−p(π1γ 1−π2−Y
1,2
t (t))]}.

We perform numerical results to study notably the following parameters: the
loss or gain at default, the default intensities and the correlation between the de-
faults and between the assets. We choose the parameters of assets as below and
fix them to be the same in all our tests: b1,0 = b2,0 = 0.02, σ 1,0 = σ 2,0 = 0.1,
b1,1 = b2,1 = 0.01, σ 1,1 = σ 2,1 = 0.2, p = 1 and T = 1.

In Figure 1, we present the optimal strategies π̂ = (π̂1, π̂2) at the initial time
before any default, for different values of loss or gain at default and of default
intensity. In Figure 1, we consider a symmetric case where the default intensities
a1 and a2, and the loss/gain γ 1 and γ 2, are equal, respectively, so they are the
same for π̂1 and π̂2. We choose the correlation parameter ρ = 0 and β = 2. The
optimal strategy is increasing with respect to γ , which means that one should invest
less on the assets when there is a large loss of default. When γ = 1, the strategy
converges to the Merton one, since in this case, the gain at default of the surviving
name will recompense the total loss of the default one. Furthermore, the strategy

FIG. 1. Optimal strategy π̂ before any default vs Merton π̂M .
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FIG. 2. Value function V 0
t .

is decreasing with respect to the default intensity. So when there is a higher risk of
default, one should reduce her investment. In particular, if the default probability
is high, and the loss at default is large, then the investor should sell instead of buy
the assets. Only when γ becomes positive, and the gain at default is large enough
to recompense the default risks, she can choose to buy the asset again.

Figure 2 plots the evolution of the value function before default, that is, t →
V 0

t (x) = −e−p(x−Y 0
t ), where Y 0

t is the solution of equation (5.1), and we have
chosen x = 0 in the test. We consider various values of γ with the same param-
eters as above and let a1 = a2 = 0.01, β = 2. The survival correlation is equal
to ρs(T ) = 0.5846. We observe a larger value function when the gain at default
(γ > 0) is larger. We also notice that the value function in a loss at default (γ < 0)
situation outperforms the no-loss case (γ = 0), which means that one can take
profit from a loss of the risky stock by a shortsale strategy.

Figure 3 plots the evolution of the optimal investment strategy π̂(t) for t ∈
[0, T ], T = 1, when there is a default event at time τ = 0.6, the parameters being
the same as in Figure 2, with two different levels of loss at default γ . We observe
a jump of the trading strategy at the default time in both curves. When there is
a larger loss at default, one should invest less from the beginning; however, after
the default occurs, the trading strategies on the surviving firm become the same
whatever the loss at default is.

We present, in Table 1, the optimal strategies at initial time before defaults for
firms with different levels of default risks (a1 
= a2). We still suppose equal loss
or gain at default (γ 1 = γ 2). Similarly to Figure 1, when the default intensity a1

of the first firm increases, one should reduce the investment on this firm. In the
case of high default risks and loss at default, one should sell instead of buy the
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FIG. 3. Time evolution of the optimal strategy π̂ given a default.

risky asset. However, the strategy on the second firm (the one with a2 = 0.1) will
in general increase when its counterparty becomes more risky.

Finally, we examine the impact of correlation parameters ρ and β on the trading
strategies before any default. In the following test presented in Table 2, we fix
a1 = 0.01 and a2 = 0.1. We observe that the correlation ρ between the assets will
modify the benchmark Merton strategies. When ρ increases, the investment on the
less risky asset goes in two directions: one should increase its quantity in the loss
at default case and reduce it in the gain at default case; as for the more risky asset,
one should always reduce the investment. Concerning the parameter β , when there

TABLE 1
Optimal strategies π̂1 and π̂2 before any defaults with various γ and default intensities

γ

−0.5 −0.1 0 0.5 1 Merton

a1 = 0.01, a2 = 0.1, β = 2 ρs = 0.2936

π̂1 0.462 1.659 1.892 2.621 2.832 2
π̂2 −1.047 −0.709 −0.498 0.623 1.168 2

a1 = 0.1, a2 = 0.1, β = 2 ρs = 0.5736

π̂1 −0.353 −0.210 −0.147 0.556 2 2
π̂2 −0.353 −0.210 −0.147 0.556 2 2

a1 = 0.3, a2 = 0.1, β = 2 ρs = 0.4555

π̂1 −1.723 −1.719 −1.647 −0.697 1.293 2
π̂2 −0.132 0.453 0.521 1.121 2.707 2
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TABLE 2
Optimal strategies π̂1 and π̂2 with various ρ and β

γ

−0.5 −0.1 0 0.5 1 Merton

ρ = 0, β = 1 ρs = 0

π̂1 0.228 0.942 1.099 1.966 2.459 2
π̂2 −0.867 −0.452 −0.278 0.856 1.541 2

ρ = 0, β = 2 ρs = 0.2936

π̂1 0.462 1.659 1.892 2.621 2.832 2
π̂2 −1.047 −0.709 −0.498 0.623 1.168 2

ρ = 0.3, β = 1 ρs = 0

π̂1 0.492 1.081 1.188 1.715 2.025 1.539
π̂2 −0.959 −0.504 −0.348 0.519 1.052 1.539

ρ = 0.3, β = 2 ρs = 0.2936

π̂1 0.863 1.939 2.077 2.399 2.450 1.539
π̂2 −1.235 −0.817 −0.626 0.216 0.627 1.539

is a larger β and hence a higher correlation between the survival events, one should
increase the investment in the less risky asset and decrease the investment in the
more risky one.
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