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A CLASS OF MULTIFRACTAL PROCESSES CONSTRUCTED
USING AN EMBEDDED BRANCHING PROCESS

BY GEOFFREY DECROUEZ AND OWEN DAFYDD JONES

University of Melbourne

We present a new class of multifractal process on R, constructed using an
embedded branching process. The construction makes use of known results
on multitype branching random walks, and along the way constructs cascade
measures on the boundaries of multitype Galton–Watson trees. Our class of
processes includes Brownian motion subjected to a continuous multifractal
time-change.

In addition, if we observe our process at a fixed spatial resolution, then
we can obtain a finite Markov representation of it, which we can use for on-
line simulation. That is, given only the Markov representation at step n, we
can generate step n+ 1 in O(logn) operations. Detailed pseudo-code for this
algorithm is provided.

1. Introduction. Information about the local fluctuations of a process X can
be obtained using the local exponent hX(t), defined as [37]

hX(t) := lim inf
ε→0

1

log ε
log sup

|u−t |<ε

|X(u) − X(t)|.

When hX(t) is constant all along the sample path with probability 1, X is said to
be monofractal. In contrast, we can consider a class of processes whose exponents
behave erratically with time: each interval of positive length exhibits a range of
different exponents. For such processes, it is, in practice, impossible to estimate
hX(t) for all t , due to the finite precision of the data. Instead, we use the Hausdorff
spectrum D(h), a global description of its local fluctuations. D(h) is defined as the
Hausdorff dimension of the set of points with a given exponent h. For monofractal
processes, D(h) degenerates to a single point at some h = H [so D(H) = 1, and
the convention is to set D(h) = −∞ for h �= H ]. When the spectrum is nontrivial
for a range of values of h, the process is said to be multifractal.

The term multifractal is also well defined for measures. Let B(x, r) be a ball
centered at x ∈ R

n with radius r . The local dimension of a finite measure μ at
x ∈ R

n is defined as

dimlocμ(x) = lim
r→0

logμ(B(x, r))

log r
.
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The Hausdorff spectrum D(α) of a measure at scale α is then defined as the Haus-
dorff dimension of the set of points with a given local dimension α. Measures for
which the Hausdorff spectrum does not degenerate to a point are called multifractal
measures. Constructions of multifractal measures date back to the m-ary cascades
of Mandelbrot [28], and the multifractal spectrum of such measures can be found
in, for example, [37].

A positive nondecreasing multifractal process can be obtained by integrating a
multifractal measure. Other processes with nontrivial multifractal structure can be
obtained by using the integrated measure as a multifractal time change, applied
to monofractal processes such as fractional Brownian motion. This is the basis of
models such as infinitely divisible cascades [3, 5, 10].

Multifractals have a wide range of applications. For example, the rich struc-
ture of network traffic exhibits multifractal patterns [1], as does the stock mar-
ket [29, 30]. Other applications include turbulence [39], seismology [15, 40] and
imaging [38], to cite but a few.

On-line simulation of multifractal processes is in general difficult, because their
correlations typically decay slowly, meaning that to simulate X(n+1) one requires
X(1), . . . ,X(n). This is the same problem faced when simulating fractional Brow-
nian motion, where to simulate X(n + 1) one needs the whole covariance matrix
of X(1), . . . ,X(n + 1). Some simple monofractal processes avoid this problem,
for example, α-stable or M/G/∞ processes [11], but it remains a real problem to
find flexible multifractal models that can be quickly simulated.

We propose a new class of multifractal processes, called Multifractal Embedded
Branching Process (MEBP) processes, which can be efficiently simulated on-line.
MEBP are defined using the crossing tree, an ad-hoc space–time description of
the process, and are such that the spatial component of their crossing tree is a
Galton–Watson branching process. For any suitable branching process, there is
a family of processes—identical up to a continuous time change—for which the
spatial component of the crossing tree coincides with the branching process. We
identify one of these as the Canonical Embedded Branching Process (CEBP), and
then construct MEBP from it using a multifractal time change. To allow on-line
simulation of the process, the time change is constructed from a multiplicative
cascade on the crossing tree. The simulation algorithm presents nice features since
it only requires O(n logn) operations and O(logn) storage to generate n steps,
and can generate a new step on demand.

To construct the time change we use here, we start by constructing a multiplica-
tive cascade on a multitype Galton–Watson tree. The cascade defines a measure
on the boundary of the tree, whose existence follows from known results for mul-
titype branching random walks. (See, e.g., [23] for the single-type case.) To map
the cascade measure onto R+, we use the so called “branching measure” on the
tree, in contrast to the way this is usually done, using a “splitting measure.” See
Section 3 for details and further background.
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The MEBP processes constructed here include a couple of special cases of inter-
est. We can represent Brownian motion as a CEBP, thus MEBP processes include
a subclass of multifractal time changed Brownian motions. Such models are of
particular interest in finance [29, 30]. In the special case when the number of sub-
crossings is constant and equal to two (for the definition see Section 2), the CEBP
degenerates to a straight line, and the time change is just the well-known binary
cascade (see, e.g., [4, 20, 32] and references therein).

Although we do show that MEBP possess a form of discrete multifractal scaling
[see the discussion following equation (3.5)], the multifractal nature of MEBP
processes is not studied in this paper. We refer the reader to a coming paper for a
full study of the multifactal spectrum of MEBP [13]. In particular, it can be shown
that CEBP processes are monofractal, and that the multifractal formalism holds
for MEBP processes, with a nontrivial spectrum. The monofractal nature of CEBP
processes, together with an upper bound of the spectrum of MEBP, was derived in
the Ph.D. thesis of the first author [12].

The paper is organized as follows. First we recall the definition of the crossing
tree and then construct the CEBP process. We then construct MEBP processes and
give conditions for continuity. Finally we provide an efficient on-line algorithm
for simulating MEBP processes. An implementation of the algorithm is available
from the second author’s website [16].

2. CEBP and the crossing tree. Let X : R+ → R be a continuous process,
with X(0) = 0. For n ∈ Z we define level n passage times T n

k by putting T n
0 = 0

and

T n
k+1 = inf{t > T n

k |X(t) ∈ 2n
Z,X(t) �= X(T n

k )}.
The kth level n (equivalently scale 2n) crossing Cn

k is the sample path from T n
k−1

to T n
k .

Cn
k := {(t,X(t))|T n

k−1 ≤ t < T n
k }.

When passing from a coarse scale to a finer one, we decompose each level n

crossing into a sequence of level n − 1 crossings. To define the crossing tree, we
associate nodes with crossings, and the children of a node are its subcrossings.
The crossing tree is illustrated in Figure 1, where the level 3, 4 and 5 crossings of
a given sample path are shown.

The crossing tree is an efficient way of representing a self-similar signal, and
can also be used for inference. In [18] the crossing tree is used to test for self-
similarity and to obtain an asymptotically consistent estimator of the Hurst index
of a self-similar process with stationary increments, and in [19] it is used to test
for stationarity.

In addition to indexing crossings be their level and position within each level, we
will also use a tree indexing scheme. Let ∅ be the root of the tree, representing the
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FIG. 1. A section of sample path and levels 3, 4 and 5 of its crossing tree. In the top frame we have
joined the points T n

k at each level, and in the bottom frame we have identified the kth level n crossing
with the point (2n,T n

k−1) and linked each crossing to its subcrossings.

first level 0 crossing. The first generation of children (which are level −1 crossings,
of size 1/2) are labeled by i, 1 ≤ i ≤ Z∅, where Z∅ is the number of children
of ∅. The second generation (which are level −2 crossings, of size 1/4) are then
labeled ij , 1 ≤ j ≤ Zi , where Zi is the number of children of i. More generally,
a node is an element of U = ⋃

n≥0 N
n and a branch is a couple (u,uj) where

u ∈ U and j ∈ N. The length of a node i = i1, . . . , in is |i| = n, and the kth element
is i[k] = ik . If |i| > n, i|n is the curtailment of i after n terms. Conventionally
|∅| = 0, and i|0 = ∅. A tree ϒ is a set of nodes, that is, a subset of U , such that:

• ∅ ∈ ϒ ;
• if a node i belongs to the tree, then every ancestor node i|k , k ≤ |i|, belongs to

the tree;
• if u ∈ ϒ , then uj ∈ ϒ for j = 1, . . . ,Zu and uj /∈ ϒ for j > Zu, where Zu is

the number of children of u.
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Let ϒn be the nth generation of the tree, that is, the set of nodes of length n.
(These are level −n crossings, of size 2−n.) Define ϒi = {j ∈ ϒ ||j| ≥ |i| and
j||i| = i}. The boundary of the tree is given by ∂ϒ = {i ∈ N

N|∀n ≥ 0, i|n ∈ ϒ}.
Let ψ(i) be the position of node i within generation |i|, so that crossing i is just
C

−|i|
ψ(i). The nodes to the left and right of i, namely C

−|i|
ψ(i)−1 and C

−|i|
ψ(i)+1, will be

denoted i− and i+. In general, when we have quantities associated with cross-
ings, we will use tree indexing and level/position indexing interchangeably. So
Zi = Z

−|i|
ψ(i), Ti = T

−|i|
ψ(i) , etc. At present our tree indexing only applies to crossings

contained within the first level 0 crossing; however, in Section 3.3 we will extend
this notation to the whole tree.

Let αn
k ∈ {+,−} be the orientation of Cn

k , + for up and − for down, and let
An

k be the vector given by the orientations of the subcrossings of Cn
k . Let Dn

k =
T n

k − T n
k−1 be the duration of Cn

k . Clearly, to reconstruct the process we only need
αn

k and Dn
k for all n and k. The αn

k encode the spatial behavior of the process,
and the Dn

k the temporal behavior. Our definition of an EBP is concerned with the
spatial component only.

DEFINITION 2.1. A continuous process X with X(0) = 0 is called an Em-
bedded Branching Process (EBP) process if for any fixed n, conditioned on the
crossing orientations αn

k , the random variables An
k are all mutually independent,

and An
k is conditionally independent of all Am

j for m > n. In addition we require
that {An

k |αn
k = i} are identically distributed, for i = +,−.

That is, an EBP process is such that if we take any given crossing, then count the
orientations of its subcrossings at successively finer scales, we get a (supercritical)
two-type Galton–Watson process, where the types correspond to the orientations.

Subcrossing orientations have a particular structure. A level n up crossing is
from k2n to (k + 1)2n, a down crossing is from k2n to (k − 1)2n. The level n − 1
subcrossings that make up a level n parent crossing consist of excursions (up–
down and down–up pairs) followed by a direct crossing (down–down or up–up
pairs), whose direction depends on the parent crossing: if the parent crossing is
up, then the subcrossings end up–up; otherwise, they end down–down. Let Zn

k be
the length of An

k , that is, the number of subcrossings of Cn
k . The number of up

and down subcrossings will be written Zn+
k and Zn−

k , respectively. Clearly, each
of the Zn

k −2 first entries of An
k comes in pairs, each pair being up–down or down–

up. The last two components are either the pair up–up or down–down, depending
on αn

k . Thus, given αn
k = +, we must have Zn+

k = 1
2Zn

k + 1 and Zn−
k = 1

2Zn
k − 1,

and conversely given αn
k = −.

Let A be the space of possible orientations. That is, a ∈ A consists of some
number of pairs, +− or −+, then a single pair ++ or −−. Given an EBP pro-
cess, for the offspring type distributions we write p+

A(a) = P(An
k = a|αn

k = +)
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and p−
A(a) = P(An

k = a|αn
k = −), for a ∈ A. Let μ+ = E(Zn

k |αn
k = +), μ− =

E(Zn
k |αn

k = −) and μ = 1
2(μ+ + μ−), then the mean offspring matrix is given by

M := E

(
(Zn+

k |αn
k = +) (Zn−

k |αn
k = +)

(Zn+
k |αn

k = −) (Zn−
k |αn

k = −)

)
=

( 1
2μ+ + 1 1

2μ+ − 1
1
2μ− − 1 1

2μ− + 1

)
.

To proceed we need to make some assumptions about p±
A .

ASSUMPTION 2.1. μ+,μ− > 2 and E(Zni
k logZni

k |αn
k = j) < ∞ for i, j = ±.

The first of these assumptions ensures that M is strictly positive with dominant
eigenvalue μ > 2, and corresponding left eigenvector (1

2 , 1
2). The corresponding

right eigenvector is ((μ+ − 2)/(μ − 2), (μ− − 2)/(μ − 2))T . The second assump-
tion is the usual condition for the normed limit of a supercritical Galton–Watson
process to be nontrivial.

THEOREM 2.1. For any offspring orientation distributions p±
A satisfying As-

sumption 2.1, there exists a corresponding continuous EBP process X defined
on R+.

PROOF. A version of this result can be found as Theorem 1 in [17], for partic-
ular orientation distributions.

STEP 1. We initially construct a single crossing from 0 to 1, with support
[0, T 0

1 ]. In step 2 we will extend the range to R and the support to [0,∞). X is
obtained as the limit as n → +∞, of a sequence of random walks X−n with steps
of size 2−n and duration μ−n. Put X0(0) = 0 and X0(1) = 1, so that the coarsest
scale is n = 0. Given X−n we construct X−(n+1) by replacing the kth step of X−n

by a sequence of Z−n
k steps of size 2−(n+1) and duration μ−(n+1). If α−n

k = i, then
the orientations A−n

k of the subcrossings are distributed according to pi
A. For a

given n the A−n
k are all mutually independent, and, given α−n

k , A−n
k is condition-

ally independent of all A−m
j , for −m > −n.

Denote the (random) time that X−n hits 1 by

T
0,−n

1 = inf{t |X−n(t) = 1}.
We define X−n(t) for all t ∈ [0, T

0,−n
1 ] by linear interpolation, and set X−n(t) = 1

for all t > T
0,−n

1 . The interpolated X−n have continuous sample paths, and we will
show that they converge uniformly on any finite interval, from which the continuity
of the limit process follows. For any m ≤ n, let T

−m,−n
0 = 0 and

T
−m,−n
k+1 = inf{t > T

−m,−n
k |X−n(t) ∈ 2−m

Z,X−n(t) �= X−n(T
−m,−n
k )}.

If X−n(T
−m,−n
k ) = 1, then set T

−m,−n
k+1 = ∞. By construction X−n(T

−m,−n
k ) =

X−m(μ−mk), for all k and m ≤ n. The duration of the kth level −m crossing of
X−n is D

−m,−n
k = T

−m,−n
k − T

−m,−n
k−1 .
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FIG. 2. Construction of X0, X−1 and X−2, and the associated crossing tree (see the proof of
Theorem 2.1). The subtree rooted at crossing C−1

4 (the 4th crossing of size 1/2) corresponds to the
tree inside the dashed box. In the notation of the proof of Theorem 2.1, for this subtree we have
m = 1. If we go down one level in the subtree, corresponding to level n = 2 of the original tree, then
S+
−1,4(1) = 3 and S−

−1,4(1) = 1 count the number of up and down crossings at level 1 of the subtree.

Similarly, S+
−1,4(2) = 7 and S−

−1,4(2) = 3 count the number of up and down crossings at level 2 of
the subtree, and so on. This figure also illustrates other notation used in the proof of Theorem 2.1.
For example, one has T

−1,−2
1 = T

−2,−2
4 , since for X−2, the the first crossing time of size 2−1

corresponds to the fourth crossing time of size 2−2.

A realization of X0, X−1 and X−2 is given in Figure 2, with the associated
crossing tree.

We use a branching process result to establish that the crossing durations con-
verge. When we defined the crossing tree (see Figure 1) we started with a sample
path and then defined generations of crossings: taking the first crossing of size 1
as the root (level or generation 0), its subcrossings of size 1/2 form the second
generation (or level), its subcrossings of size 1/4 form the third generation, and
so on. Each crossing can be up or down, so our tree has two types of nodes. Here
we are reversing that process. That is, we are growing a tree using a two-type
Galton–Watson process, and from the tree, constructing a sample path. The off-
spring distributions for our tree are just p±

A . Given the tree at generation n, we get
an approximate sample path by taking a sequence of up and down steps of size
2−n and duration μ−n, with directions taken from the node types of the tree. We
need to show that the sequence of sample paths, obtained as n → ∞, converges.
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Consider the subtree descending from crossing C−m
k . Let S+

−m,k(n − m) and
S−

−m,k(n − m) be the number of up and down crossings of size 2−n which are
descended from the kth crossing of size 2−m; then {(S+

−m,k(n − m),S−
−m,k(n −

m))}∞n=m is a two-type Galton–Watson process. From Athreya and Ney [2],
Section V.6, Theorems 1 and 2, we have that as n → ∞, μm−n(S+

−m,k(n −
m),S−

−m,k(n − m)) converges almost surely and in mean to (1
2 , 1

2)W−m
k , where

W−m
k is strictly positive, continuous and E(W−m

k |α−m
k = ±) = (μ± − 2)/(μ − 2).

Moreover, the distribution of W−m
k depends only on α−m

k , and for any fixed m

the W−m
k are all independent. Finally, since S+

−m,k(n − m) + S−
−m,k(n − m) =

μnD
−m,−n
k , we have

D
−m,−n
k → μ−mW−m

k a.s. as n → ∞.

Accordingly, let T −m
k = ∑k

j=1 μ−mW−m
j = limn→∞ T

−m,−n
k .

Take any ε > 0, δ > 0 and T > 0. To establish the a.s. convergence of the pro-
cesses X−n, uniformly on compact intervals, we show that we can find a u so that
with probability 1 − ε,

|X−r (t) − X−s(t)| ≤ δ for all r, s ≥ u and t ∈ [0, T ].(2.1)

Given t ∈ [0, T ], let k = k(n, t) be such that

T −n
k−1 ≤ t < T −n

k .

For any r, s ≥ n, the triangle inequality yields

|X−r (t) − X−s(t)| ≤ |X−r (t) − X−r (T
−n,−r
k )|

(2.2)
+ |X−s(T

−n,−s
k ) − X−s(t)|,

since X−r (T
−n,−r
k ) = X−s(T

−n,−s
k ) = X−n(kμ−n).

For any u ≥ n let j = j (n,u) be the smallest j such that T
−n,−u
j > T . As

u → +∞, j (n,u) → j (n) < ∞ a.s., so for any n we can choose ε0 such that

P

(
min

i≤j (n)
μ−nW−n

i ≥ ε0

)
≥ 1 − ε,

and u such that for all q ≥ u,

P

(
max

i≤j (n)
|T −n,−q

i − T −n
i | < ε0

)
≥ 1 − ε,

which yields

P

(
max

i≤j (n)
|T −n,−q

i − T −n
i | < min

i≤j (n)
μ−nW−n

i

)
≥ 1 − ε.

Thus, given n we can find u such that for all q ≥ u, with probability at least 1 − ε,

T
−n,−q
k−2 < t < T

−n,−q
k+1 for all t ∈ [0, T ].
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Now, since X−q(T
−n,−q
k−2 ) = X−n((k − 2)μ−n), X−q(T

−n,−q
k+1 ) = X−n((k +

1)μ−n), and in three steps X−n can move at most distance 3 · 2−n, we have

|X−q(t) − X−q(T
−n,−q
k )| ≤ 3 · 2−n.

Choosing n large enough that 6 · 2−n ≤ δ, we see that (2.1) follows from (2.2).
Sending δ and ε to 0 shows that X−n converges to some continuous limit process
X uniformly on all closed intervals [0, T ], with probability 1. By construction, the
duration of crossing C−n

k is μ−nW−n
k .

STEP 2. Clearly the construction above can be used to generate any crossing
from 0 to ±2n. Thus, to extend our construction from a single crossing to a process
X(t) defined for all t ∈ R+, we proceed by constructing a nested sequence of
processes {X(n)}∞n=0, such that X(n) is a crossing from 0 to ±2n, and the first level
n crossing of X(n+1) is precisely X(n). To make this work, we just need to specify
P(X(n)(T n

1 ) = 2n) in a consistent manner.
Consider the orientation of the first crossing from 0 to ±2n for an EBP process.

Let u = P(αn
1 = +|αn+1

1 = +) and v = P(αn
1 = +|αn+1

1 = −); then u and v are
determined by p±

A , and

an := P(αn
1 = +) = uan+1 + v(1 − an+1) = v + (u − v)an+1.(2.3)

For (u, v) ∈ [0,1]2 \ {(1,0)}, we see that equation (2.3) has fixed point a =
v/(1 − u + v) ∈ [0,1]. Moreover, the only doubly infinite sequence {an}∞n=−∞
which satisfies (2.3) and remains in [0,1] is given by an = a for all n. Given this, it
follows that an = a, and thus from Bayes’s theorem that P(αn+1 = +|αn

1 = +) = u

and P(αn+1 = +|αn
1 = −) = v. If (u, v) = (1,0), then any a ∈ [0,1] is possible,

but everything else goes through as before. In this case the αn
1 are all the same, but

may be of either type.
Construct X(0) as a crossing from 0 to 1 with probability a [the fixed point

of (2.3)], otherwise as a crossing from 0 to −1. Then, given X(n), construct X(n+1)

as follows: first, put αn+1
1 = + with probability u if α0

1 = +, with probability v

otherwise; second, generate An+1
1 conditional on αn+1

1 and αn
1 ; third, use X(n) as

the first level n crossing of X(n+1); finally construct the remaining level n crossings
conditional on αn

2 , αn
3 , . . . , αn

Zn+1
1

. Write X for the limit of the X(n). To complete

our construction we just need to check that the process X does not escape to ±∞
in finite time. By construction, we have T n

1 = inf{t |X(t) = ±2n} = μnWn
1 , where

Wn
1 is strictly positive, continuous, and has a distribution depending only on the

orientation αn
1 . Thus for any T > 0, P(T n

1 < T ) → 0 as n → ∞. �

THEOREM 2.2. Let X be the EBP constructed in Theorem 2.1; then, for
each n, conditioned on the crossing orientations αn

k , the crossing durations Dn
k

are all mutually independent, and Dn
k is conditionally independent of all Am

j

for m > n. Also, E(Dn
k |αn

k = ±) = μn(μ± − 2)/(μ − 2), and the distribution
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of μ−nDn
k depends only on αn

k . Moreover, up to finite-dimensional distributions,
X is the unique such EBP with offspring orientation distributions p±

A . That is, for
any other EBP process Y with offspring orientation distributions p±

A and cross-

ing durations as above, we have (X(t1), . . . ,X(tk))
d= (Y (t1), . . . , Y (tk)) for any

0 ≤ t1 < t2 < · · · < tk .
Accordingly, we call X the Canonical EBP (CEBP) process with these offspring

distributions.
We also observe that X is discrete scale-invariant: let H = log 2/ logμ; then

for all c ∈ {μn,n ∈ Z},
X(t)

fdd= c−HX(ct),(2.4)

where
fdd= denotes equality for finite-dimensional distributions. H = logμ/ log 2 is

known as the Hurst index.

PROOF. We retain the notation of Theorem 2.1.
For the process X, the dependence structure of the crossing durations is clear

from the construction.
To show uniqueness, let Y be some other EBP process with offspring orientation

distributions p±
A , and crossing durations satisfying the conditions of the theorem

statement. We will make use of the same notation for the crossing times, durations,
orientations, etc. of Y as for X, and rely on the context to distinguish them.

For an EBP, the finite joint distributions of the orientations An
k are determined

completely by p±
A , and thus are identical for X and Y . For the crossing durations

of Y , note that for any m ≤ n and k, we have

μmD−m
k = μm−n

ζ(−m,−n,k+1)∑
j=ζ(−m,−n,k)+1

μnD−n
j ,(2.5)

where ζ(−m,−n, k) is such that ζ(−m,−n, k)+1 is the index of the first level −n

subcrossing of C−m
k . Thus by the strong law of large numbers, sending n → ∞,

μmD−m
k = μm−nS+

−m,k(n − m)

[
μn

S+
−m,k(n − m)

ζ(−m,−n,k+1)∑
j=ζ(−m,−n,k)+1

α−n
j =+

D−n
j

]

+ μm−nS−
−m,k(n − m)

[
μn

S−
−m,k(n − m)

ζ(−m,−n,k+1)∑
j=ζ(−m,−n,k)+1

α−n
j =−

D−n
j

]

P−→ 1

2
W−m

k μn
E(D−n

j |α−n
j = +) + 1

2
W−m

k μn
E(D−n

j |α−n
j = −)

= W−m
k ,



MULTIFRACTAL PROCESS WITH EMBEDDED BRANCHING PROCESS 2367

where the distribution of W−m
k is completely determined by p±

A , and thus is the
same for X and Y .

Once we have the crossing orientations and the assumed dependence structure
of the crossing durations, the crossing distributions (for up and down types) de-
termine the joint distributions of the crossing times {T n

k }. Thus, for any n and k,
{X(T n

i )}ki=0 and {Y(T n
i )}ki=0 are identically distributed. Since any t can be brack-

eted by a sequence of hitting times, X and Y are identical up to finite-dimensional
distributions.

That X is discrete scale-invariant is a direct consequence of its construction,
since simultaneously scaling the state space by 2k and time space by μk does not
change the distribution of X. �

REMARK 2.1. From [14] it is clear that Brownian motion is an example of a
CEBP process, where the offspring of any crossing consist of a geometric (1/2)
number of excursions, each up–down or down–up with equal probability, followed
by either an up–up or down–down direct crossing. That is,

p+
A(· · ·++) = p−

A(· · ·−−) = 2−(z+1),

where · · · represents a combination of z pairs, each either +− or −+. It follows
that P(Zn

k = 2x) = 2−x , independently of αn
k .

3. From CEBP to MEBP. In this section we construct Multifractal Embed-
ded Branching processes (MEBP processes) as time changed CEBP processes.

Consider initially a single crossing of a CEBP X, from 0 to ±1. We constructed
X as the limit of a sequence of processes X−n, which take steps of size 2−n and
duration μ−n. The crossing tree gives the number of subcrossings of each crossing.
If we add a weight of 1/μ to each branch of the tree, then truncating the tree at
level −n, the product of the weights down any line of descent is μ−n, which is
the duration of any single crossing by X−n. We generalize this by allowing the
weights to be random, then defining the duration of a crossing to be the product
of the random weights down the line of descent of the crossing. The resulting
process, Y−n say, can be viewed as a time-change of X−n, where the time-change
is obtained from a multiplicative cascade defined on a (two-type) Galton–Watson
tree.

As for CEBP, we will initially construct a single level 0 crossing of an MEBP,
then extend the construction to R+. We will retain the notation of Section 2, but
note that we will prefer the tree indexing scheme to the level/position indexing
scheme in what follows. In particular, the number of level −n up and down sub-
crossings of node i in level −m are denoted S+

i (n−m) and S−
i (n−m), and, under

Assumption 2.1, the almost sure limit and mean limit of μm−n(S+
i (n−m),S−

i (n−
m)) is (1

2 , 1
2)Wi. The duration of crossing i of the CEBP process X is then μ−mWi.
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We assign weight Ri(j) to the branch (i, ij). Ri := (Ri(1), . . . ,Ri(Zi)) may
depend on Ai, but conditioned on αi must be independent of other nodes j that are
not descendants of i. For r ∈ R

|a|
+ , write F±

R|a(r) = P(R∅(1) ≤ r(1), . . . ,R∅(z) ≤
r(z)|α∅ = ±,A∅ = a, |a| = z) for the joint distribution of R∅, conditioned on the
crossing orientations a. The weight attributed to node i is

ρi =
|i|−1∏
k=0

Ri|k (i[k + 1]).

That is, ρi is the product of all weights on the line of descent from the root down to
node i. We use the weights to define a measure, ν, on the boundary of the crossing
tree. The measure ν on ∂ϒ is then mapped to a measure ζ on R, with which we de-
fine a chronometer M (a nondecreasing process) by M(t) = ζ([0, t]). The MEBP
process is then given by Y = X ◦ M−1, where X is the CEBP. The crossing trees
of X and Y have the same spatial structure, but have different crossing durations.
In Figure 4 we plot a realization of an MEBP process and its associated CEBP.

The literature on multiplicative cascades is rather extensive. For the existence
of limit random measures and the study of the properties of certain martingales
defined on m-ary trees, one can refer, for instance, to the works of Kahane and
Peyrière [20], Barral [4], Liu and Rouault [25] and Peyrière [36]. For results on
random cascades defined on Galton–Watson trees, see, for example, Liu [22, 23],
and Burd and Waymire [9].

To obtain the time-change process explicitly, the random measure defined on
the boundary of the tree is mapped to R+ then integrated. Note that this mapping,
given explicitly in Section 3.2, differs from random partitions previously consid-
ered in the literature. The usual approach is to use a “splitting measure” to map
the boundary of the tree to [0,1], then use the density of the cascade measure with
respect to the splitting measure; see, for example, [34, 35, 37]. Our approach can
be thought of as using the “branching measure” instead of a splitting measure.
A splitting measure is constructed by splitting the mass associated with a given
node between its offspring, with no mass lost or gained. The branching measure al-
locates mass according to the number of offspring, and is only conserved in mean.
We have taken the terminology of splitting and branching measures from [23], Ex-
ample 1.3. A multifractal study of the measure we construct on R+ is given in a
forth-coming paper [13].

3.1. The measure ν. To construct ν, we use a well-known correspondence
between branching random walks and random cascades, in which the offspring
of individual i have types given by Ai and displacements (relative to i) given
by −logRi. For background on multitype branching random walks, we refer the
reader to Kyprianou and Sani [21] and Biggins and Sani [8].
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Suppose |i| = m and n ≥ m. Define

W ±
i (n − m,θ) = ∑

j∈ϒn∩ϒi,αj=±
(ρj/ρi)

θ

and for i, j = ±,

mi,j (θ) = E
(

W j
∅(1, θ)|α∅ = i

)
= E

( ∑
1≤k≤Z∅,αk=j

R∅(k)θ
∣∣∣α∅ = i

)
.

Let M(θ) = (mi,j (θ))i,j=±, and write mn
i,j (θ) for the (i, j) entry of the nth

power Mn(θ). Then it is straight forward to check that E(W j
i (n − m,θ)|αi =

i) = mn−m
i,j (θ). If we take constant weights equal to 1/μ, then W ±

i (n − m,1) =
μm−nS±

i , in the notation of Theorem 2.1.
Let μ(θ) be the largest eigenvalue of M(θ). We make the following assumptions

about R∅.

ASSUMPTION 3.1. We suppose that 0 < R∅ < ∞ a.s., M(θ) < ∞ in an open
neighborhood of 1, μ(1) = 1 and μ′(1) < 0.

In the case where the distribution of R∅ (and thus Z∅) does not depend on α∅,
we assume in addition that

E

(Z∅∑
j=1

R∅(j) log
Z∅∑
j=1

R∅(j)

)
< ∞.

In the case where there is dependence on the crossing orientation (type), we
suppose that for some δ > 1, μ(δ) < 1 and

E

((Z∅∑
j=1

R∅(j)

)δ∣∣∣∣α∅ = i

)
< ∞ for i = ±.

Note that if the weights are finite and strictly positive, then M and μ from
the previous section are just M(0) and μ(0), and from Assumption 2.1 we get
0 < M(θ) for all θ ≥ 0. In the case where R∅ does not depend on α∅, the
BRW simplifies to a single-type process, and the condition μ(1) = 1 simplifies
to E(

∑Z∅

j=1 R∅(j)) = 1, which we recognize as a conservation of mass condition.
Left and right eigenvectors corresponding to μ(1) will be denoted u = (u+, u−)

and v = (v+, v−)T , normed so that u(1,1)T = 1 and uv = 1. The following lemma
is a direct consequence of Biggins and Kyprianou [7], Theorem 7.1, and Biggins
and Sani [8], Theorem 4.
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LEMMA 3.1. Under Assumptions 2.1 and 3.1, (W +
i (n − m,1), W −

i (n −
m,1)) converges almost surely to uWi, for some random variable Wi such that
the distribution of Wi depends only on αi, and E(Wi|αi = i) = vi . Moreover, for
each n, conditioned on the crossing orientations αi, i ∈ ϒn, the Wi are mutually
independent, and Wi is conditionally independent of (Aj,Rj) for |j| < |i|. For all
nodes i,

Wi =
Zi∑

j=1

Ri(j)Wij .(3.1)

Note that in the case where R∅ does not depend on α∅, the right eigenvector
v = (1,1)T .

We can now define the measure ν on ∂ϒ . Recall ϒi = {j ∈ ϒ ||j| ≥ |i| and
j||i| = i}, so ∂ϒi contains all the nodes on the boundary of the tree which have
i as an ancestor. We define ν(∂ϒi) = ρiWi. By Carathéodory’s extension theorem,
we can uniquely extend ν to the sigma algebra generated by these cylinder sets.

3.2. The measure ζ and time change M. The measure ζ is a mapping of ν

from ∂ϒ to [0,W∅] ⊂ R. By analogy with m-ary cascades, we call ζ a Galton–
Watson cascade measure on [0,W∅].

As above, let T −n
k denote the kth level −n passage time of the CEBP process X,

and put

ζ((T −n
k−1, T

−n
k ]) := ν(∂ϒ−n

k ) = ρ−n
k W −n

k .

Putting ζ({0}) = 0, this gives us ζ([0, T −n
k ]) for all n, k ≥ 0. For arbitrary

t ∈ (0,W∅], let i ∈ ∂ϒ be such that t ∈ (T −n
ψ(i|n)−1, T

−n
ψ(i|n)] for all n ≥ 0.

Noting that T −n
ψ(i|n) = Ti|n is a nonincreasing sequence, we define ζ([0, t]) =

limn→∞ ζ([0, T −n
ψ(i|n)]).

We can now define M(t) = ζ([0, t]), and define the MEBP process Y (on
[0, W∅]) as

Y = X ◦ M−1.

Here we take M−1(t) = inf{s : M(s) ≥ t}, so that it is well defined, even if M has
jumps or flat spots.

Put T −n
k = M(T −n

k ) = ∑k
j=1 ρ−n

j W −n
j . Then Y(T −n

k ) = X(T −n
k ), so T −n

k is

the kth level −n crossing time for Y , and D−n
k = ρ−n

k W −n
k the kth level −n cross-

ing duration. Note that if we take constant weights equal to 1/μ, then T −n
k = T −n

k

and Y = X.

LEMMA 3.2. Under Assumptions 2.1 and 3.1, M and M−1 are continuous.
That is, M has neither jumps nor flat spots.
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PROOF. To show that M has no flat spots, it is enough to show that:

(a)

max
k

μ−nW−n
k

P−→ 0 as n → ∞,

(b)

W −n
k > 0 a.s. for each n, k ≥ 0.

Property (a) follows directly from Theorem 1 in [33], noting that under As-
sumption 2.1 E(Wi|αi = ±) < ∞, so that

∫ y
0 x dF±(x) is slowly varying, where

F±(x) = P(Wi ≤ x|αi = ±). This is equivalent to saying that the measure ν̄, de-
fined on ∂ϒ by ν̄(∂ϒi) = μ−|i|Wi, has no atoms.

To show (b), let q± = P(W∅ = 0|α∅ = ±), then note that since the weights
R∅ > 0, we have, from (3.1), that

qi = fi(q+, q−),(3.2)

where fi is the joint probability generating function of Z±
∅ given α∅ = i. [Note

that q̄± = P(W∅ = 0|α∅ = ±) satisfy the same equations.] Since (Zi
∅
|α∅ = i) ≥ 2

and P(Z±
∅ = 2|α∅ = i) < 1, we have for (q+, q−) ∈ [0,1]2 \ {(0,0), (1,1)},

fi(q+, q−) < qi . Thus the only solutions to (3.2) are (0,0) and (1,1), and as
E(W∅|α∅ = ±) > 0, we get q± = 0.

M is continuous (has no jumps) if ζ has no atoms. That is,

(a*)

max
k

ρ−n
k W −n

k

P−→ 0 as n → ∞,

(b*)

W−n
k > 0 a.s. for each n, k ≥ 0.

We prove (b*) in exactly the same way as (b).
Property (a*) is equivalent to saying that ν has no atoms. In the case where the

distribution of R∅ does not depend on α∅, the BRW embedded in the crossing tree
is effectively single-type, and (a*) is given by Liu and Rouault [24], Theorem 6.
In the case where the distribution of R∅ does depend on α∅, the approach of [24]
generalizes only as far as the end of their Lemma 13, at which point we require,
for some λ < 1,

Eν({i :ρi|n ≥ λn}) → 0 as n → ∞.(3.3)

However, this can be shown using some recent results of Biggins [6], as we now
demonstrate.

In the notation of [6], consider a BRW with offspring types {σi} d= {A∅(i)} and

displacements {zi} d= {log(R∅(i)γ )}, for some γ > 1. Put

m̄i,j (θ) = E

( ∑
1≤k≤Z∅,A∅(k)=j

R∅(k)θγ θ
∣∣∣α∅ = i

)
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(this is mi,j in the notation of [6]). Then the matrix M̄(θ) = (m̄i,j (θ))i,j=± has
maximum “Perron–Frobenius” eigenvalue κ(θ) = μ(θ)γ θ . From assumptions 2.1
and 3.1 it is clear that for some θ > 0, M̄(θ) is finite, irreducible and primitive.

Let B(n)
i be the rightmost particle of type i in generation n, that is,

B(n)
± = max

i∈ϒn,αi=± logρi + n logγ.

Then Proposition 5.6 of [6] shows that

B(n)
±
n

a.s.−→ �(κ∗),

where κ∗(a) = supθ≥0{θa − κ(θ)} and �(κ∗) = sup{a :κ∗(a) < 0}.
We have κ(0) = μ(0), κ(1) = γ , κ ′(1) = μ′(1)γ + 1, and for γ large enough,

κ(θ) → ∞ as θ → ∞, faster than linear. �(κ∗) corresponds to the slope of the
line that passes through the origin and is tangent to κ∗, from which it follows
that �(κ∗) < γ provided that κ ′(1) �= γ , that is, provided μ′(1) �= (γ − 1)/γ . But
μ′(1) < 0 and γ > 1 by assumption, so κ ′(1) �= γ , and we get

max
i∈ϒn,αi=±

logρi

n

a.s.−→ �(κ∗) − γ < 0.

Equation (3.3) follows immediately, completing the proof of our lemma. �

3.3. Extending the construction to R+. We can extend Y from [0, W∅] to R+
in much the same way we extended the CEBP X, by constructing a sequence of
nested processes Y (n), where Y (n) consists of a a single level n crossing from 0 to
±2n, and the first level n crossing of Y (n+1) is precisely Y (n). As for the CEBP
we need to specify P(Y (n)(T n

1 ) = 2n) in a consistent manner, but we also need to
scale the first crossing.

Construct Y (0) as a crossing from 0 to 1 with probability a [the fixed point of
(2.3)], otherwise as a crossing from 0 to −1. Then, given Y (n), construct Y (n+1) as
follows: first, put αn+1

1 = + with probability u if αn
1 = + and probability v other-

wise; second, generate (An+1
1 ,Rn+1

1 ) conditional on αn+1
1 and αn

1 ; third, scale the
weights Rn+1

1 by 1/Rn+1
1 (1); fourth, use Y (n) as the first level n crossing of Y (n+1);

finally, construct the remaining level n crossings conditional on αn
2 , αn

3 , . . . , αn

Zn+1
1

.

Write Y for the limit of the Y (n).
When constructing Y (n+1) we take Zn+1

1 independent processes, each con-
structed like Y (n), then scale the first by 1 = Rn+1

1 (1)/Rn+1
1 (1), the second by

Rn+1
1 (2)/Rn+1

1 (1), and so on, before stitching them together. When constructing
the second and subsequent level n crossings of Y (n+1), we proceed exactly as for
the construction of Y (0), except for a spatial scaling of 2n and a temporal scaling of∏n

k=1 1/Rk
1(1), noting that the Rk

1(1) are taken from the first level n crossing, and
are thus independent of the second and subsequent level n crossings. Thus with
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this construction, the process Y (n)(t) is distributed as 2nY (0)(tρ−n
1 ), where ρ−n

1 is
the weight given to the first level −n crossing of Y (0) (a product of n weights, from
level −1 to −n).

To complete our construction, we just need to check that the process Y does not
escape to ±∞ in finite time. To see this note that the second level n crossing of
Y (n+1) is distributed as

Rn+1
1 (2)∏n+1

k=1 Rk
1(1)

W n
2 ,

where, conditioned on its orientation, W n
2 is equal in distribution to the level 0

crossing of Y (0), and is independent of Rk
1(1) for k = 1, . . . , n+ 1 and of Rn+1

1 (2).
We have already seen that W n

2 > 0 almost surely, and by assumption, Rn+1
1 (2) > 0,

so it suffices to show that
∏n+1

k=1 Rk
1(1) → 0 almost surely as n → ∞. Given the

orientations αk
1 , k = 1, . . . , n+1, the weights Rk

1(1) are independent. The sequence
of orientations {αk

1}∞k=1 form a two-state (+ and −) Markov chain, with transition
matrix (

u 1 − u

v 1 − v

)
.

Thus the product R1
1(1)R2

1(1) · · · can be written as a product of independent ran-
dom variables of the form

C =
U∏

k=1

Ak

V∏
k=1

Bk,

where U ∼ geom(u), V ∼ geom(1 − v), Ak ∼ (Rk
1(1)|αk

1 = +), Bk ∼ (Rk
1(1)|

αk
1(1) = −), and they are all independent. The product

∏n+1
k=1 Rk

1(1) converges to
zero if the sum

∑n+1
k=1 logRk

1(1) diverges to −∞, which follows almost surely from
the strong law of large numbers, provided E logC = 1

1−u
E logA1 + 1

v
E logB1 < 0

(assuming u �= 1 and v �= 0). That is, the process Y is defined on R+ provided the
following assumption holds.

ASSUMPTION 3.2. If u = P(αn
1 = +|αn+1

1 = +) �= 1 and v = P(αn
1 =

+|αn+1
1 = −) �= 0, then we suppose that

1

1 − u
E

(
logRn

1 (1)|αn
1 = +) + 1

v
E

(
logRn

1 (1)|αn
1 = −)

< 0.

If u = 1, then we require E(logRn
1 (1)|αn

1 = +) < 0, and if v = 0, then we require
E(logRn

1 (1)|αn
1 = −) < 0.

To describe the crossing tree of the extended process Y , it is convenient to ex-
tend the tree-indexing notation introduced earlier. We do this by indexing nodes
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relative to a spine, defined by the first crossing at each level. For any node in the
tree, we can trace its ancestry back to the spine. For any n let n : ∅ be the node
on level n of the spine and ϒn : ∅ the tree descending from that node. Nodes in the
tree ϒn : ∅ will be labeled n : i, where i is the node index relative to n : ∅. Thus n : i
is in level n − |i| of the crossing tree, and a crossing previously labeled i is now
labeled 0 : i. Note that this labeling is not unique, as n : i = (n + 1) : 1i.

Write ρn : i for the weight assigned to node n : i, which is given by

ρn : i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|i|−1∏
k=0

Rn : i|k (i[k + 1])
/ (n∧|i|)−1∏

k=0

R(n−k) : ∅(1), n > 0,

|i|−1∏
k=0

Rn : i|k (i[k + 1]), n = 0,

|i|−1∏
k=0

Rn : i|k (i[k + 1])
|n|−1∏
k=0

R−k : ∅(1), n < 0.

Here we have used the convention that
∏−1

k=0 xk = 1, to deal with the case |i| = 0.
Let Wn : i be branching random walk limit associated with crossing n : i; see

Lemma 3.1. Then the duration of crossing n : i is

Dn : i = ρn : iWn : i.(3.4)

We summarize conditions for existence and continuity of Y in the theorem below.

THEOREM 3.1. Suppose we are given subcrossing orientation distributions
p±

A and weight distributions F±
R|a , satisfying Assumptions 2.1, 3.1 and 3.2. Then

there exists a continuous EBP process Y with subcrossing orientation distributions

p±
A and crossing durations Dn : i

fdd= ρn : iWn : i.
For each n, conditioned on the crossing orientations αn

k , the random vari-
ables W n

k are mutually independent, and W n
k is conditionally independent of all

(Am
j ,Rm

j ) for m > n. Also, E(W n
k |αn

k = i) = vi , and the distribution of W n
k de-

pends only on αn
k .

We call Y the multifractal embedded branching process (MEBP) defined by p±
A

and F±
R|a .

As a corollary of our construction we also obtain a novel Galton–Watson cas-
cade measure ζ on R+, constructed by mapping the cascade measure ν from the
boundary of the (doubly infinite) tree to R+, using the measure ν̄ as a reference.
[Where ν̄ is defined on ∂ϒ by ν̄(∂ϒn : i) = μnWi.]

Mandelbrot, Fisher and Calvet [31] described a class of multifractal processes
such that

Y(at)
fdd= M(a)Y (t) and M(ab)

d= M1(a)M2(b),
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where M1 and M2 are independent copies of M . Write A for M−1, and then we
can re-express the scaling rule for Y as

Y(A(a)t)
fdd= aY (t) and A(ab)

d= A1(a)A2(b),(3.5)

where A1 and A2 are independent copies of A. When constructing our MEBP Y ,
we noted that Y (n)(t) is distributed as 2nY (0)(tρ−n

1 ). More generally we have

Y (m+n)(t)
fdd= 2nY (m)(tρ−n

1 ), so sending m → ∞ we get, for n = 0,1, . . . ,

Y (t)
fdd= 2nY (tρ−n

1 ).

This is close to the form (3.5) with A(2−n) = ρ−n
1 = ∏−n+1

k=0 Rk
1(1). The differ-

ences are that A(a) is only defined for a = 2−n, n ∈ Z+, and the product form

A(ab)
d= A1(a)A2(b) does not quite hold because of the dependence of Rk

1 on
the orientation αk

1 . [In fact, the sequence {(− logρ−n
1 , α−n

1 )} is Markov additive.]
Nonetheless, we recognize that MEBP processes possess a form of discrete mul-
tifractal scaling. The full multifractal spectrum is obtained in a forthcoming pa-
per [13].

4. On-line simulation. There are many ways we could make a multifractal
time-change of a CEBP. However, by defining the time-change via the crossing
tree, we obtain a fast on-line algorithm to simulate the process. As before, we will
suppose that we are given subcrossing orientation distributions p±

A and weight dis-
tributions F±

R|a , satisfying Assumptions 2.1, 3.1 and 3.2. Let Y be the correspond-

ing MEBP. Then we will simulate the sequence {(T 0
k , Y (T 0

k ))}. That is, we will
simulate Y at the spatial scale of 1. Given the multifractal nature of the process,
the choice spatial scale is not a restriction, as the process can be scaled to any de-
sired resolution. An immediate consequence of the definition of the crossing times
T 0

k is the following bound on Y :

Y(t) ∈ (
Y(T 0

k ) − 1, Y (T 0
k ) + 1

)
for t ∈ (T 0

k , T 0
k+1).

The basis of our simulation is a Markov process, which describes the line of
descent of the current level zero crossing, from the spine down to level 0. For
n ≥ m and k ≥ 0 let κ(m,n, k) be such that Cm

k is a subcrossing of Cn
κ(m,n,k), and

let Sn
k ∈ {1, . . . ,Zn+1

κ(n,n+1,k)} be the position of Cn
k within Cn+1

κ(n,n+1,k). Using this

notation, if n : i is the tree-index of C0
k , then for 0 ≤ m ≤ n−1, i[n−m] = Sm

κ(0,m,k).

Let Y n(k) = (κ(0, n, k), Sn
κ(0,n,k),Z

n+1
κ(0,n+1,k),A

n+1
κ(0,n+1,k),R

n+1
κ(0,n+1,k)), which is a

description of the level n super-crossing of C0
k , and the family it belongs to.
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Let N(k) be the smallest n such that κ(0, n + 1, k) = 1, and put

Y(k) = (
Y 0(k), . . . , Y N(k)(k)

)
.

LEMMA 4.1. Y is a Markov process.

PROOF. We first show how to update Y(k) to obtain Y(k + 1). Let M be the
largest m ≤ N(k) such that

Sn
κ(0,n,k) = Zn+1

κ(0,n+1,k) for n = 0, . . . ,m.

That is, for all m ≤ M we have that Cm
κ(0,m,k) is the last level m crossing in its

family.
If M = N(k), then N(k + 1) = N(k) + 1, and Y gains the component

Y N(k+1)(k + 1). Let n = N(k + 1). Then we have κ(0, n, k + 1) = 2, Sn
2 = 2 and

κ(0, n + 1, k + 1) = 1. The distribution of (Zn+1
1 ,An+1

1 ,Rn+1
1 ) depends on Y(k)

only through αn
1 = An+1

1 (1), which is given by An
1(Z

n
1 ).

If M < N(k), then for n = M + 1 we have κ(0, n, k + 1) = κ(0, n, k) +
1, Sn

κ(0,n,k+1) = Sn
κ(0,n,k) + 1 and κ(0, n + 1, k + 1) = κ(0, n + 1, k). Thus

Zn+1
κ(0,n+1,k+1) = Zn+1

κ(0,n+1,k), An+1
κ(0,n+1,k+1) = An+1

κ(0,n+1,k), and Rn+1
κ(0,n+1,k+1) =

Rn+1
κ(0,n+1,k).
For n > M + 1, we have Y n(k + 1) = Y n(k).
For n = M, . . . ,0, we generate Y n(k + 1) recursively. We have κ(0, n, k +

1) = κ(0, n, k) + 1, Sn
κ(0,n,k+1) = 1, and κ(0, n + 1, k + 1) = κ(0, n + 1, k) +

1. The distribution of (Zn+1
κ(0,n+1,k+1),A

n+1
κ(0,n+1,k+1),R

n+1
κ(0,n+1,k+1)) is determined

by αn+1
κ(0,n+1,k+1), that is, An+2

κ(0,n+2,k+1)(S
n+1
κ(0,n+1,k+1)). Thus {Y n(k + 1)}Mn=0 de-

pends on Y(k) only through αM+1
κ(0,M+1,k+1) = AM+2

κ(0,M+2,k+1)(S
M+1
κ(0,M+1,k+1)) =

AM+2
κ(0,M+2,k)(S

M+1
κ(0,M+1,k)+1).

That Y is Markov follows from the conditional independence of the (Zn
k ,An

k ,
Rn

k ) given the orientations αn
k . �

From Y(k), we get the orientation α0
k of C0

k , and the weights

Rn+1
κ(0,n+1,k)

(
Sn

κ(0,n,k)

)
for n = 0, . . . ,N(k).

To calculate the crossing duration D0
k we also need Rn+1

1 (1), for n = 0, . . . ,N(k)

and W 0
k . Keeping track of the spine weights Rn+1

1 (1) is no problem. Calculating
W 0

k is less straightforward. We do have that the W 0
k are conditionally independent

given the α0
k , but we do not have an explicit formulation of the density of (W 0

k |α0
k =

±).
The simplest way to approximate the W 0

k is to generate a BRW (using p±
A and

F±
R|a) for a fixed number of generations, m say, and sum the node weights across
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the final generation. However, this is exactly the same as setting the W 0
k to be

constant, then scaling the resulting process by 2−m, so we will just set W 0
k equal

to its mean vα0
k .

REMARK 4.1. Writing Y as X ◦ M−1, where X is the CEBP corresponding
to Y , we note that X and M are, in general, dependent. However, in the case
where X is Brownian motion, we can construct M independently of X, simply by
taking the orientations α0

k as i.i.d. random variables, equal to + and − with equal
probability. This is because for Brownian motion X(T 0

k ) is just a simple random
walk. In fact, in this case, there need not be any relation at all between the crossing
tree of X and that used to construct M.

4.1. Pseudo-code. We give pseudo code for simulating {(T 0
k , Y (T 0

k ))}, with
the crossing durations Dn : i approximated by ρn : iE(Wn : i) (i.e., putting Wn : i =
vi , where i = αn : i).

Updating Y(k) is handled by procedures Expand and Increment. Procedure
Expand checks if M = N(k). If so, it then generates the component Y M+1(k)

and updates N(k). Assuming M < N(k), procedure Increment updates Y n(k)

to Y n(k + 1) recursively, for n = M + 1, . . . ,0. The actions of Expand and Sim-
ulate are illustrated in Figure 3.

Given sample position Y(T 0
k ), sample time T 0

k and crossing state Y(k), the pro-
cedure Simulate applies the procedures Expand and Increment, calculates
Y(T 0

k+1), T 0
k+1 and Y(k + 1), then increments k. Procedure Initialize gener-

ates an initial Y(T 0
1 ), T 0

1 and Y(1) suitable for passing to Simulate.

FIG. 3. Action of the procedures Increment and Expand. Suppose that at iteration k we have
generated the tree given by solid black lines only, so that N(k) = 1, and Y N(k)(k) describes the
family of node i1. When we reach node i1, we are at the end of level 0 and 1 crossings. To generate
the next level 0 node, we first need to increase N(k) by 1 and generate the family of node i3, which is
the role of the procedure Expand. Next, procedure Increment goes down the tree and generates
the families of nodes i4 and i5, hence generating i6.
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Recall that u = P(αn+1
1 = +|αn

1 = +) and v = P(αn+1
1 = +|αn

1 = −). Here

α
N(k)+1
1 is given by A

N(k)+1
1 (Z

N(k)+1
1 ).

Procedure Expand Y(k)

If S
N(k)
κ(0,N(k),k) = Z

N(k)+1
κ(0,N(k)+1,k) Then

κ(0,N(k) + 2, k) = 1

Generate α
N(k)+2
1 using u, v and α

N(k)+1
1

Generate (Z
N(k)+2
κ(0,N(k)+2,k),A

N(k)+2
κ(0,N(k)+2,k),R

N(k)+2
κ(0,N(k)+2,k))

using the distributions pi
A and F i

R|a
conditioned on the first offspring having orientation α

N(k)+1
1

where i = α
N(k)+2
1 ∈ {+,−}

S
N(k)+1
κ(0,N(k)+1,k) = 1

Store R
N(k)+2
1 (1)

N(k) = N(k) + 1

End If
End Procedure

Procedure Increment Y n(k)

# Assume that Cn−1
k is at the end of a level n crossing,

# so Sn−1
κ(0,n−1,k) = Zn

κ(0,n,k). This is always the case for n = 0

κ(0, n, k + 1) = κ(0, n, k) + 1

If Sn
κ(0,n,k) = Zn+1

κ(0,n+1,k) Then

Increment X n+1(k)

Sn
κ(0,n,k+1) = 1

Generate (Zn+1
κ(0,n+1,k+1),A

n+1
κ(0,n+1,k+1),R

n+1
κ(0,n+1,k+1))

using the distributions pi
A and F i

R|a
where i = An+2

κ(0,n+2,k+1)(S
n+1
κ(0,n+1,k+1)) ∈ {+,−}

Else

X q(k + 1) = Y q(k) for q = n + 1, . . . ,N(k)

Sn
κ(0,n,k+1) = Sn

κ(0,n,k) + 1

End If
End Procedure

We apply procedure Increment to Y 0(k), and then it is recursively applied to
all Y n(k) such that C

q
κ(0,q,k) is at the end of a level q +1 crossing for all 0 ≤ q < n.
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Y n(k + 1) = Y n(k) for all n larger than this.

Procedure Simulate
Expand Y(k)

Increment X 0(k)

Put i = A1
κ(0,1,k+1)(S

0
k+1)

If i = + Then
Y(T 0

k+1) = Y(T 0
k ) + 1

Else
Y(T 0

k+1) = Y(T 0
k ) − 1

End If
T 0

k+1 = T 0
k + vi ∏N(k+1)

j=0 (R
j+1
κ(0,j+1,k+1)(S

j
κ(0,j,k+1))/R

j+1
1 (1))

k ← k + 1
End Procedure

To initialize the algorithm, the procedure Initialize is used. Recall that
(v+, v−)T is the right μ(1)-eigenvector of M(1).

Procedure Initialize Y(1)

k = 1, N(1) = 0, κ(0,0,1) = 1, κ(0,1,1) = 1
Put α1

1 = i = + with probability a

Generate (Z1
1,A1

1,R
1
1) using the distributions

pi
A and F i

R|a , with i = α1
1

S0
1 = 1

Store R1
1(1)

T 0
1 = vi

If i = + Then Y(T 0
1 ) = 1 Else Y(T 0

1 ) = −1 End If
End Procedure

An implementation is available from the web page of Jones [16]. An example
of the type of signal obtained with this algorithm is given in Figure 4, where we
have represented an MEBP process with its corresponding CEBP. p±

A and F±
R|a are

described in the caption.

4.2. Efficiency. Consider the tree descending from crossing C
N(k)
1 down to

level 0. On average C
N(k)
1 has μN(k) level 0 subcrossings, so we must have

N(k) = O(log k). At each step, the number of operations required by procedure
Expand is fixed [independent of N(k)], but we can go through Increment
up to N(k) times, so the number of operations required by Simulation is
of order N(k). Thus, to generate n steps, we use O(n logn) operations, since
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FIG. 4. Top figure: CEBP process where the offspring consist of a geometric(0.6) number of excur-
sions, each up–down or down–up with equal probability, followed by either an up–up or down–down
direct crossing [compare this with Brownian motion, for which there are a geometric(0.5) number of
excursions]. Bottom figure: MEBP process obtained from a multifractal time change of the top CEBP
process, with i.i.d. gamma distributed weights.

∑n
k=1 log k = O(n logn), and O(logn) storage. The algorithm is on-line, meaning

that given the current state [of size O(logn)] we can generate the next immediately
[using O(logn) operations].

5. Randomizing the starting point. Crossing times are points where the be-
havior of the process can change, spatially and temporally, and the higher the level,
the more dramatic this can be. For MEBP processes, 0 is a crossing time for all
levels, and because of this we cannot expect MEBP to have stationary increments.
To avoid the problem of 0 being special, we would like to start the process at a
“random” time, as if the process had been running since time immemorial and we
just happened across it.
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To make the idea of a “random” starting time more precise, let Y be an MEBP
and {Y (n)} the nested sequence of processes used to construct Y , where Y (n) is
a single level n crossing from 0 to ±2n. Choose a time t uniformly in [0, T n

1 ] =
[0, Dn : ∅]. For any i ∈ ϒn : ∅, the probability that t is in Cn : i is proportional to the
crossing duration Dn : i = ρn : iWn : i. That is, choosing t is equivalent to choosing
n : j ∈ ∂ϒn : ∅ so that the probability that n : j||i| = n : i is proportional to ρn : iWn : i.
It turns out that we can do exactly this using a size-biased measure for a multitype
branching random walk.

Size-biased measures for branching processes were introduced by Lyons, Pe-
mantle and Peres [27] and generalized to branching random walks by Lyons [26].
Kyprianou and Sani [21] then extended their construction to multitype branching
random walks. Fix n, and for brevity write i for n : i. Let � be the space of marked
trees, where the mark associated with node i is (− logRi|k−1(i[k]), αi), writing k

for |i|. Let F be the σ -field generated by all finite truncations of trees. The off-
spring orientation distributions p±

A and weight distributions F±
R|a induce a mea-

sure ξ on (�, F ). Let �̃ be the space of trees with a distinguished line of descent
i ∈ ∂ϒ , called a spine, and F̃ the σ -field generated by all finite truncations of trees
with spines. Kyprianou and Sani define a size-biased measure π̃ on (�̃, F̃ ) such
that ∫

j∈∂ϒi

dπ̃(ϒ, j) = ρiWi

vα∅

dξ(ϒ).(5.1)

This is precisely what we want, and, remarkably, the measure can be constructed
using the original multitype branching walk, modified so that the offspring gen-
eration down the spine is size-biased. That is, rather than construct Y (n) and then
choose a spine, we can construct the process and the spine together.

Let x ∈ ∂ϒ be the spine, and let p̃±
A and F̃±

R|a be the offspring orientation and
weight distributions for nodes on the spine. Then from [21], Section 2, we have
that

p̃i
A(a)F̃ i

R|a(r) = P(Ax|n = a,Rx|n ≤ r|αx|n = i)

∝ pi
A(a)

|a|∑
j=1

va(j)
∫
s≤r

s(j)F i
R|a(ds).

Note here that s and r are in R
|a|
+ . Putting r = ∞|a| to get p̃i

A(a), and then dividing
out p̃i

A(a) to get F̃ i
R|a(r), gives us

p̃i
A(a) ∝ pi

A(a)

|a|∑
j=1

va(j)
∫

R
|a|
+

s(j)F i
R|a(ds),

F̃ i
R|a(r) ∝

|a|∑
j=1

va(j)
∫
s≤r

s(j)F i
R|a(ds).
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That these are well defined follows from Assumption 3.1.
In the case where the offspring weights are i.i.d. with distribution F , we get

p̃i
A(a) ∝ |a|pi

A(a),

F̃ i
R|a(r) ∝

|a|∑
j=1

∫ r(j)

0
sF (ds)

∏
i �=j

F (r(i)).

The first of these is clearly a size-biased version of pi
A. The second can be inter-

preted as conditioning on which offspring is on the spine, then size-biasing the
weight for that offspring.

For selecting the next node on the spine, we again have from [21], Section 2,
that

p̃a,r (j) := P(x[n + 1] = j |Ax|n = a,Rx|n = r) ∝ va(j)r(j).

Kyprianou and Sani also also show that under π̃ , the sequence {αx|n}∞n=1 of
orientations down the spine is Markovian, with transition probabilities(

v+ 0
0 v−

)−1
M(1)

(
v+ 0
0 v−

)
.

The stationary distribution is (u+v+, u−v−), and so the reversed chain (moving
up the spine) has transition matrix(

u+ 0
0 u−

)−1
M(1)T

(
u+ 0
0 u−

)
,(5.2)

and the same stationary distribution as before. Note that it follows from assump-
tions 2.1 and 3.1 that u,v > 0.

5.1. MEBP construction with random start. We now show how, given an
MEBP Y : [0,∞) → R generated by p±

A and F±
R|a , we can construct a shifted ver-

sion, Ỹ : (−∞,∞) → R, with a “randomly” chosen starting point. Where unam-
biguous, we will use the same notation to describe Ỹ as Y , and we will assume
that assumptions 2.1 and 3.1 hold throughout. As before, we start by constructing
a crossing of size 1 (level 0). Let x be the spine, which will be the line of descent
corresponding to time 0. Accordingly, we will write C−n

0 = Cx|n for the level −n

spinal crossing. Note that previously, the first crossing at level −n was labeled 1,
and started at time 0. For our new construction, time 0 will occur somewhere in
the interior of crossing C−n

0 , so crossing C−n
1 will still be the first full crossing to

occur after time 0.
The generation n (level −n) nodes in ϒn are totally ordered according to the rule

i < j if and only if, for some m, i|m = j|m and i[m + 1] < j[m + 1]. For i, j ∈ ϒn

let

d(i, j) =
⎧⎨
⎩

|{k : i < k ≤ j}|, i < j,
0, i = j,
−|{k : i > k ≥ j}|, i > j.
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We will write C−n
d(x,i) for Ci.

Set the orientation of C0
0 to be + with probability u+v+, and then generate

(A0
0,R

0
0) using p̃i

A and F̃ i
R|a , where i = α0

0. Choose j ∈ {1, . . . ,Z∅} using p̃A∅,R∅
,

and then put x|1 = j . Subsequent generations are produced using p±
A and F±

R|a for

nodes off the spine, and p̃±
A and F̃±

R|a for the spinal node. The spinal node in the
next generation is chosen using p̃a,r . Crossing durations are defined as before; that
is, D−n

k = ρ−n
k W −n

k , where Wi is the π̃ -a.s. limit of
∑

j∈ϒn∩ϒi
ρj/ρi. For k �= 0

(nodes off the spine) the convergence of this sequence a.s. and in mean follows as
before. For k = 0 (nodes on the spine) a.s. convergence follows from (5.1) and the
fact that ρx|n Wx|n ∈ (0,∞) ξ -a.s.

Given crossing durations, we define crossing times as follows. Time 0 corre-
sponds to the spine x. For any m ≥ 0, T −m

0 > 0 is the first time the process starts a
level −m crossing:

T −m
0 = lim

n→∞
∑

i∈ϒn,i|m=x|m,i>x

ρiWi,

T −m
k+1 = T −m

k + ρ−m
k+1W −m

k+1 for k ≥ 0,

T −m
−1 = lim

n→∞
∑

i∈ϒn,i|m=x|m,i<x

ρiWi,

T −m
−k−1 = T −m

−k − ρ−m
−k W −m

−k for k ≥ 1.

We also put Ỹ (0) = 0 and

Ỹ (T −m
0 ) = lim

n→∞
∑

i∈ϒn,i|m=x|m,i>x

αi2
−n,

Ỹ (T −m
k+1 ) = Ỹ (T −m

k ) + α−m
k+12−m for k ≥ 0,

Ỹ (T −m
−1 ) = lim

n→∞
∑

i∈ϒn,i|m=x|m,i<x

αi2
−n,

Ỹ (T −m
−k−1) = Ỹ (T −m

−k ) + α−m
−k 2−m for k ≥ 1.

So for k ≥ 1, C−m
k is from T −m

k to T −m
k+1 , while for k ≤ 0 it is from T −m

k−1 to T −m
k .

Let Ỹ (0) be the level 0 crossing constructed above. We now show how to extend
the construction from Ỹ (n) to Ỹ (n+1). Let n : x be the spine starting at level n. First
choose αn+1

0 = i using the reversed Markov chain 5.2, then choose (An+1
0 ,Rn+1

0 )

and (n + 1) : x[1] = j using p̃i
A, F̃ i

R|a and p̃a,r , all conditioned on αn
0 , which is

the orientation of (n + 1) : x[1]. Put the j th level n subcrossing of Ỹ (n+1), that
is Cn

0 , equal to Ỹ (n). For the other level n subcrossings, we use the construction of
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Section 3.3, and scale the kth subcrossing by Rn+1
0 (k)/Rn+1

0 (j). That is, we use
the weights up the spine, from level 0 to n, to rescale the process. Let Ỹ be the
limit of the Ỹ (n).

To see that Ỹ (t) is defined for all t ∈ R we need two things. First we note
that from the form of p̃a,r , with probability 1 we cannot have n : x[1] equal to 1
eventually, or equal to Zn : ∅ eventually. That is, at all levels there will be crossings
to the left and right of the spinal crossing. Second, we need to know that the scaling
coming from the spine weights grows to infinity, that is,

∏n+1
k=1 Rk

0(k : x[1]) → 0 a.s.
as n → ∞.

As noted above, the sequence of orientations up the spine is a Markov
process. Because the weights are conditionally independent given the orien-
tations, the sequence (

∑n+1
k=1 logRk

0(k : x[1]), αn+1
0 ) is Markov additive. Thus,∑n+1

k=1 logRk
0(k : x[1]) → −∞ a.s., equivalently

∏n+1
k=1 Rk

0(k : x[1]) → 0 a.s., pro-
vided the expected increments of the sum are negative. That is, provided the fol-
lowing assumption holds (this replaces Assumption 3.2).

ASSUMPTION 5.1. Let R± be a random spinal weight, chosen according to
p̃±

A , F̃±
R|a and p̃a,r . Then we assume that

u+v+
E logR+ + u−v−

E logR− < 0.

It remains an open problem to show that the process Ỹ has stationary incre-
ments.

5.2. On-line simulation. To simulate Ỹ we need only modify procedures Ex-
pand and Initialie. Note that the spinal crossings are now counted as cross-
ing 0 at each level, so N(k) is the smallest n such that κ(0, n + 1, k) = 0.

Procedure Expand Y(k)

While S
N(k)
κ(0,N(k),k) = Z

N(k)+1
κ(0,N(k)+1,k) Do

κ(0,N(k) + 2, k) = 0

Generate α
N(k)+2
0 using (u+v+, u−v−) and α

N(k)+1
0

Generate A
N(k)+2
0 , R

N(k)+2
0 and S

N(k)+1
0

using the distributions p̃i
A, F̃ i

R|a and p̃a,r

conditioned on offspring S
N(k)+1
0 having orientation α

N(k)+1
0

where i = α
N(k)+2
0 ∈ {+,−}

Store R
N(k)+2
0 (S

N(k)+1
0 )

N(k) = N(k) + 1
End While

End Procedure
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Procedure Initialize Y(0)

k = 0, N(0) = 0, κ(0,0,0) = 0, κ(0,1,0) = 0
Put α1

0 = + with probability u+v+

Generate A1
0, R1

0 and S0
0 using the distributions

p̃i
A, F̃ i

R|a and p̃a,r , with i = α1
0

Store R1
0(S0

0)

T 0
0 = 0, Y(T 0

0 ) = 0
End Procedure
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