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PHASE TRANSITION FOR THE MIXING TIME OF THE
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We prove that the mixing time of the Glauber dynamics for random
k-colorings of the complete tree with branching factor b undergoes a phase
transition at k = b(1 + ob(1))/ lnb. Our main result shows nearly sharp
bounds on the mixing time of the dynamics on the complete tree with n ver-
tices for k = Cb/ lnb colors with constant C. For C ≥ 1 we prove the mixing
time is O(n1+ob(1) lnn). On the other side, for C < 1 the mixing time ex-
periences a slowing down; in particular, we prove it is O(n1/C+ob(1) lnn)

and �(n1/C−ob(1)). The critical point C = 1 is interesting since it coincides
(at least up to first order) with the so-called reconstruction threshold which
was recently established by Sly. The reconstruction threshold has been of
considerable interest recently since it appears to have close connections to
the efficiency of certain local algorithms, and this work was inspired by our
attempt to understand these connections in this particular setting.

1. Introduction. There has been considerable interest in recent years in un-
derstanding the mixing time of Markov chains arising from single-site updates
(known as Glauber dynamics) for sampling spin systems on finite graphs. The
Glauber dynamics is well studied both for its computational purposes, most im-
mediately its use in Markov chain Monte Carlo (MCMC) algorithms, and for its
physical motivation as a model of how physical systems reach equilibrium. Sev-
eral works in this topic focus on exploring the dynamical and spatial connections
between the mixing time and equilibrium properties of the spin system. A notable
example of such equilibrium properties is the uniqueness of the infinite volume
Gibbs measure, which very roughly speaking corresponds to the influence of a
worst-case boundary condition. Recently a related weaker notion known as the re-
construction threshold has been the focus of considerable study. Reconstruction
considers the influence of a “typical” boundary condition (we define it more pre-
cisely momentarily).

Much of the recent interest in reconstruction stems from its conjectured con-
nections to the efficiency of local algorithms on trees and tree-like graphs, such as
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sparse random graphs. The Glauber dynamics is one particular example of such a
local algorithm; another important example is the class of belief propagation algo-
rithms. The work of Achlioptas and Coja-Oghlan [1] gives strong evidence for the
“algorithmic barriers” that arise in the reconstruction phase for several constraint
satisfaction problems, including colorings, on sparse random graphs. In this paper
we show that the mixing time of the Glauber dynamics for random colorings of
the complete tree undergoes a phase transition, and the critical point appears to
coincide with the reconstruction threshold, at least up to a first order term.

We study the heat-bath version of the Glauber dynamics on the complete tree
with branching factor b for the case of (proper vertex) k-colorings. Proper color-
ings correspond in the physics community to the zero-temperature limit of the anti-
ferromagnetic Potts model, and the infinite complete tree is known as the Bethe
lattice. Let C = {1,2, . . . , k} denote the set of k colors, and T� = (V ,E) denote the
complete tree with branching factor b, height � and n vertices. We are looking at
the set � of proper vertex k-colorings which are assignments σ :V → C such that
for all (v,w) ∈ E we have σ(v) �= σ(w). The Glauber dynamics for colorings is a
Markov chain (Xt) whose state space is � and transitions Xt → Xt+1 are defined
as follows:

• Choose a vertex v uniformly at random.
• For all w �= v, set Xt+1(w) = Xt(w).
• Choose Xt+1(v) uniformly at random from its set of available colors C \

Xt(N(v)) where N(v) denotes the neighbors of v.

For the complete tree, when k ≥ 3 the dynamics is ergodic where the unique sta-
tionary distribution is the uniform distribution over �. The mixing time is the
number of steps, from the worst initial state, to reach within variation distance
≤ 1/2e of the stationary distribution. We also consider the relaxation time which
is the inverse of the spectral gap of the transition matrix. We formally define these
notions in Section 3.

For general graphs of maximum degree b, the Glauber dynamics is ergodic
when k ≥ b + 2 and the best result for arbitrary graphs proves O(n2) mixing time
when k > 11b/6 [30]. There are a variety of improvements for classes of graphs
with high degree or girth (see [10] for a survey) and recently, Mossel and Sly [26]
proved polynomial mixing time for sparse random graphs G(n,d/n), for constant
d > 1, for some constant number of colors.

There are two phase transitions of primary interest in the tree T�—uniqueness
and reconstruction. These phase transitions are realized by analyzing the influence
of the boundary condition, which in the case of tree corresponds to fixing the col-
oring of the leaves. We say uniqueness holds if for all boundary conditions, if we
consider the uniform distribution conditional on the boundary condition, the influ-
ence at the root decays in the limit � → ∞ (i.e., the root is uniformly distributed
over the set C in the limit). Jonasson [16] established that the uniqueness threshold
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is at k = b + 2. When k ≤ b + 1 it is not hard to see that there are boundary condi-
tions which, in fact, “freeze” the root; moreover, the Glauber dynamics is not even
ergodic in the case when k = b + 2. Martinelli et al. [24] analyzed the Glauber
dynamics on the tree T� with a fixed boundary condition. They proved a bound of
O(n logn) on the mixing time when k ≥ b + 3 for any boundary condition.

The reconstruction threshold corresponds to the influence of a random bound-
ary condition. In particular, we first choose a random coloring of T�, the colors
of the leaves are fixed, and we rechoose a random coloring for the internal tree
from this conditional distribution. Reconstruction is said to hold if the leaves have
a nonvanishing (as � → ∞) influence on the root in expectation. We refer to the
reconstruction threshold as the critical point for the transition between the recon-
struction and nonreconstruction phases. It was recently established by Sly that the
reconstruction threshold occurs at k = b(1 + o(1))/ lnb [4, 29].

A general connection between reconstruction and the convergence time of the
Glauber dynamics was shown by Berger et al. [3] who showed, for general spin
systems, that O(n) relaxation time on the complete tree (without boundary condi-
tions) implies nonreconstruction. A new work of Ding et al. [6] gives very sharp
bounds on the mixing time of the Glauber dynamics for the Ising model on the
complete tree, and illustrates how it undergoes a phase transition at the reconstruc-
tion threshold. For the case of colorings, recently Hayes et al. [13] proved poly-
nomial mixing time of the Glauber dynamics for any planar graph with maximum
degree b when k > 100b/ lnb. Subsequently, improved results were established for
the tree. In particular, Goldberg et al. [11] proved the mixing time is n�(b/(k lnb))

for the complete tree with branching factor b, and Lucier et al. [20] proved the
mixing time is nO(1+b/(k lnb)) for any tree with maximum degree b and the num-
ber of colors k ≥ 4. In a follow-up paper, Lucier et al. [21] further prove the same
upper bound for the case when k = 3.

Our goal is to understand the relationship between the reconstruction thresh-
old and the mixing time. Thus we want to establish a more precise picture
than provided by the results of [11] and [20]. Our main result provides (nearly)
sharp bounds on the mixing time and relaxation time of the Glauber dynam-
ics for the complete tree, establishing a phase transition at the critical point
k = b(1+ob(1))/ lnb. Our proofs build upon the approaches used by [11] and [20].

THEOREM 1. For all C > 0, there exists b0 such that, for all b > b0, for
k = Cb/ lnb, the Glauber dynamics on the complete tree T on n vertices with
branching factor b and height H = �logb n	 satisfies the following:

(1) For C ≥ 1,

�
(
n lnn/(b poly(logb))

) ≤ Tmix ≤ O
(
n1+ob(1) lnn

)
,

�(n) ≤ Trelax ≤ O
(
n1+ob(1));
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(2) For C < 1,

�
(
n1/C−ob(1)) ≤ Tmix ≤ O

(
n1/C+ob(1) lnn

)
,

�
(
n1/C−ob(1)) ≤ Trelax ≤ O

(
n1/C+ob(1)),

where the ob(1) functions are O(ln lnb/ lnb) for the upper bounds, b1−1/C/C for
the lower bounds when 1/2 < C < 1 and exactly zero for the lower bounds when
0 < C ≤ 1/2. The constants in the �(·) and O(·) are universal constants.

REMARK. When C ≥ 1, the lower bound of the mixing time is proved by
Hayes and Sinclair [12] in a more general setting, and for the particular case of
the heat-bath version of the Glauber dynamics on the complete tree, we believe it
can be improved to �(n lnn/poly(logb)) by the same proof. The lower bound of
the relaxation time simply follows from the fact that the probability of selecting a
specific vertex to recolor in one step of the dynamics is 1/n. Note, the results of
Berger et al. [3] imply a lower bound of Trelax ≥ ω(n) for the case C < 1 since
reconstruction holds in this region.

Our result extends to more general k and b, thereby refining the general picture
provided by [11] and [20].

THEOREM 2. There exists b0 such that, for all k, b satisfying b/(k lnb) > 2
and b > b0, the Glauber dynamics on the complete tree of n vertices with branch-
ing factor b satisfies the following:

�
(
nb/(k lnb)) ≤ Tmix ≤ O

(
nb/(k lnb)+γ lnn

)
,

�
(
nb/(k lnb)) ≤ Trelax ≤ O

(
nb/(k lnb)+γ )

,

where

γ = γ (b) = 1 − ln k

lnb
+ ln lnb

lnb
+ O(1)

lnb

is at most a small constant.

REMARK. The constants in the �(·) and O(·) of Theorem 2 are universal
constants. Also, note that when k = bα for constant α < 1, then limb→∞ γ = 1−α,
and when k is constant, then limb→∞ γ = 1.

2. Proof overview. We now give an outline of the proofs of Theorem 1. Read-
ers can refer to Section 3 for the definitions and background materials.
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2.1. Upper bounds. We first sketch the proof approach for upper bounding
the mixing time and relaxation time. Let G∗ = (V ,E) be the star graph on b + 1
vertices, that is, the complete tree T1 of height 1 with b leaves, and H be the height
of the complete tree TH , that is, H = �logb n	. Let τ ∗ be the relaxation time of the
Glauber dynamics on the star graph G∗ using k colors.

We use the following decomposition result of Lucier and Molloy [20], which is
an application of the block dynamics technique (see Proposition 3.4 in [22]) to the
Glauber dynamics on the complete trees combined with an earlier result proved by
Berger et al. which shows that the relaxation time of this special block dynamics is
the same as that of the Glauber dynamics on the star graph (see Claim 2.9 in [3]).

THEOREM 3. The relaxation time Trelax of the Glauber dynamics on the com-
plete tree of height H with branching factor b satisfies

Trelax ≤ (τ ∗)H .

Therefore, proving the upper bounds in Theorem 1 reduces to the problem
of getting tight upper bounds of the relaxation time τ ∗ of the Glauber dynam-
ics on G∗. In [20], the authors used a canonical path argument to bound τ ∗ =
O(b2+1/Ck) for any C > 0. Instead, here we use two different coupling arguments
to show the following two theorems for τ ∗.

THEOREM 4. For any C < 1, there exists b0 > 0 such that, for any b > b0, the
mixing and relaxation times of the Glauber dynamics on G∗ using k = Cb/ lnb

colors are O(b1/C ln2 b). When C = 1, the mixing and relaxation times are
O(b ln4 b).

THEOREM 5. For any C > 1, there exists b0 > 0 such that, for any b > b0, the
mixing and relaxation times of the Glauber dynamics on G∗ using k ≥ Cb/ lnb

colors are O(b lnb).

REMARK. It can be shown that the relaxation time is actually O(b) when
C > 1, from our analysis. However, unless we can also eliminate the constant
factors and thereby show a very sharp bound of at most b, the extra lnb factor
makes little difference to the relaxation time of the dynamics on the whole tree.

The most difficult (and also interesting) case turns out to be when C ≤ 1. We
will prove Theorem 4 in Section 4 and Theorem 5 in Section 5. We sketch the high-
level idea of the proof of Theorem 4 in Section 4.1. Having Theorems 4 and 5 in
hand, we can then apply Theorem 3 to get the upper bounds on the relaxation time
as stated in Theorem 1. We get

Trelax =
⎧⎪⎨
⎪⎩

O(b lnb)H = O
(
n1+(ln lnb+O(1))/lnb

)
, if C > 1,

O(b ln4 b)H = O
(
n1+(4 ln lnb+O(1))/lnb

)
, if C = 1,

O(b1/C ln2 b)H = O
(
n1/C+(2 ln lnb+O(1))/lnb

)
, if C < 1.
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To then get the desired upper bounds on the mixing time of the whole tree,
we need a slightly more advanced tool, the logarithmic Sobolev constant of the
Markov chain; we define the log-Sobolev constant formally in the next section
along with the other technical preliminaries. By adapting Theorem 5.7 in Mar-
tinelli, Sinclair and Weitz [23] to our setting of colorings, we establish and improve
(in Section 8) the following relationship between the inverse of the log-Sobolev
constant c−1

sob and the relaxation time Trelax of the Glauber dynamics on trees.

THEOREM 6.

c−1
sob ≤ Trelax · 2b ln(k).

Since the inverse of the log-Sobolev constant gives a relatively tight upper
bound on the mixing time [see inequality (2) in Section 3], using Theorem 6 we
are able to complete the proofs of the upper bounds in Theorem 1.

2.2. Lower bounds. Our proof of the lower bound in Theorem 1 when C < 1
builds upon the approach used in [11]. They lower bounded the relaxation time
by upper bounding the conductance of the Glauber dynamics on the subset S ⊆ �

where the root is frozen (meaning that the configuration at the leaves uniquely
determine the color of the root) to some color in {1,2, . . . , �k/2	}. They showed
the conductance of S satisfies 	S = O(n−1/6C) when 0 < C < 1/2, which implies
[by (1) and (3) in Section 3] that Tmix ≥ �(Trelax) = �(n1/6C).

We improve their bound on the conductance of S by analyzing the probability
that for a given leaf z, in a random coloring σ of the complete tree, the root is
frozen and changing the color of z in σ to some other color unfreezes the root.
We prove that the number of such leaves in most colorings that freeze the root
is O(n−1/C+1+ob(1)). Since the probability of recoloring a specific leaf is 1/n,
then intuitively we have 	S = O(n−1/C+ob(1)), and hence Tmix ≥ �(Trelax) =
�(n1/C−ob(1)). A complete analysis of the lower bound is in Section 6, and in
the analysis we will see that the ob(1) error term is b1−1/C/C when 1/2 < C < 1
and zero when C ≤ 1/2.

Finally, we will show in Section 7 how all of the proofs generalize for k =
o(b/ lnb), and thus prove Theorem 2.

3. Technical preliminaries. Let P(·, ·) denote the transition matrix of the
Glauber dynamics, and P t(·, ·) denote the t-step transition probability. The total
variation distance at time t from initial state σ is defined as

‖P t(σ, ·) − π‖TV := 1

2

∑
η

|P t(σ, η) − π(η)|.

The mixing time Tmix for a Markov chain is then defined as

Tmix = min
t

{
max

σ
{‖P t(σ, ·) − π‖TV} ≤ 1/2e

}
.
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Given two copies, (Xt) and (Yt ), of the Markov chain at time t > 0, recall
that a (one-step) coupling of (Xt) and (Yt ) is a joint distribution whose left and
right marginals are identical to the (one-step) evolution of (Xt) and (Yt ), re-
spectively. The Coupling lemma [2] (cf. Theorem 5.2 in [19]) guarantees that if
there is a coupling and time t > 0, so that for every pair (X0, Y0) of initial states
Pr[Xt �= Yt ] ≤ 1/2e under the coupling, then Tmix ≤ t .

Let λ1 ≥ λ2 ≥ · · · ≥ λ|�| be the eigenvalues of the transition matrix P . The
spectral gap cgap is defined as 1 − λ2. The relaxation time Trelax of the Markov
chain is then defined as c−1

gap, the inverse of the spectral gap. It is an elementary
fact that the mixing time gives a good upper bound on the relaxation time (see,
e.g., [9] for the following bound), which we will use in our analysis.

Trelax = O(Tmix).(1)

Note that our definition of relaxation time following [3, 23] is slightly different
from the standard definition, the inverse of the absolute spectral gap (see, e.g.,
Chapter 13 in [19]), that is, (1 − max{|λ2|, |λ|�||})−1. It would be easier for us to
state the results related to the block dynamics under our current definition, and it
is a standard fact that by passing to a lazy chain, the two definitions are identical.
Introducing the laziness to the Glauber dynamics only puts an extra factor of two
to the mixing time, and therefore it will not affect our asymptotic results.

Since we will also work with the logarithmic Sobolev constant of a (finite)
Markov chain, we briefly recall here the variational definition of both the spec-
tral gap and the log-Sobolev constant.

Let f be a function (vector) from � to R, π be the uniform distribution over �

and μ be any probability distribution over �. Let D(f ) be the standard Dirichlet
form of the heat-bath Glauber dynamics defined as

D(f ) = 1

2

∑
σ

∑
σ ′

(
f (σ) − f (σ ′)

)2
π(σ)P (σ,σ ′).

Let Eμ(f ) be the average of f under the distribution μ, and let Varμ(f ) :=
Eμ(f 2) − E2

μf be the corresponding variance, which can also be written as

Varμ(f ) = 1

2

∑
σ

∑
σ ′

(
f (σ) − f (σ ′)

)2
μ(σ)μ(σ ′).

Let Entμ(f ) := Eμ(f logf ) − Eμ(f ) log(Eμ(f )). When it is clear what the
underlying distribution is we will drop the subscript μ in the notation Ent(f ).

The spectral gap cgap is equivalently defined as (see, e.g., Chapter 13, in [19])

cgap = inf
f

D(f )

Var
(f ),

and the log-Sobolev constant csob is defined as (see, e.g., [5]),

csob = inf
f ≥0

D(
√

f )

Ent(f )
,



THE MIXING OF GLAUBER DYNAMICS ON COLORING REGULAR TREES 2217

where the infimum in both equations is over nonconstant functions f .
For the upper bounds on the mixing time of the dynamics on the whole tree, we

also use the following well-known relationship between the mixing time and the
inverse of the log-Sobolev constant (see, e.g., [5] for more details):

Tmix = O

(
c−1

sob ln ln
1

minσ∈�{π(σ)}
)
.(2)

To lower bound the mixing and relaxation times we analyze the conductance.
The conductance of the Markov chain on � with transition matrix P is given by
	 = minS⊆�{	S}, where 	S is the conductance of a specific set S ⊆ � defined as

	S =
∑

σ∈S

∑
η∈S̄ π(σ )P (σ, η)

π(S)π(S̄)
.

Thus, a general way to find a good upper bound on the conductance is to find
a set S such that the probability of escaping from S is relatively small. The well-
known relationship between the relaxation time and the conductance is established
in [17] and [28], and we will use the form

Trelax = �(1/	),(3)

for proving the lower bounds.

4. Upper bound on mixing time for C ≤ 1: Proof of Theorem 4. In this
section, we upper bound the mixing time of the Glauber dynamics on the star
graph G∗ = (V ,E) when k = Cb/ lnb for any C ≤ 1. To be more precise, let
V = {r, �1, . . . , �b}, where r refers to the root and �1, . . . , �b are the b leaves and
E = {(r, �1), . . . , (r, �b)}. For convenience, here we let

ε := 1/C − 1,

and hence k = b/((1 + ε) lnb).
We use the maximal one-step coupling, originally studied for colorings by Jer-

rum [15], to upper bound the mixing time of the Glauber dynamics on general
graphs. For a coloring X ∈ �, let AX(v) denote the set of available colors of v

in the coloring X, that is, Aσ (v) = {c ∈ C :∀u ∈ N(v), σ (u) �= c}. The coupling
(Xt , Yt ) of the two chains is done by choosing the same random vertex vt for
recoloring at step t and maximizing the probability of the two chains choosing
the same update for the color of vt . Thus, for each color c ∈ AXt (v) ∩ AYt (v),
with probability 1/max{|AXt (v)|, |AYt (v)|} we set Xt+1(v) = Yt+1(v) = c. With
the remaining probability, the color choices for Xt+1(v) and Yt+1(v) are coupled
arbitrarily.

We prove the theorem by analyzing the coupling in rounds, where each round
consists of T := 20b lnb steps. Our main result is the following lemma which
says that in each round, we have a good probability of coalescing (i.e., achieving
Xt = Yt ).
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LEMMA 7. For all ε ≥ 0, there exists b0(ε) such that for all b > b0(ε) if
k = b/((1+ ε) lnb) and T = 20b lnb for all (x0, y0) ∈ �×�, the following holds:

Pr[XT = YT | X0 = x0, Y0 = y0] ≥
{(

20(1 + ε)bε lnb
)−1

, if ε > 0,

(20 ln3 b)
−1

, if ε = 0.

It is then straightforward to prove Theorem 4.

PROOF OF THEOREM 4. For ε > 0, let pT := (20(1 + ε)bε lnb)−1; and for
ε = 0 let pT := (20 ln3 b)−1. By repeatedly applying Lemma 7 we have, for all
(x0, y0),

Pr[X2iT �= Y2iT | X0 = x0, Y0 = y0] ≤ (1 − pT )2i ≤ 1/2e

for i = 1/pT . Therefore, by applying the coupling lemma, mentioned in Section 3,
the mixing time is O((1 + ε)b1+ε ln2 b) for ε > 0 and O(b ln4 b) for ε = 0. �

4.1. Overview of the coupling argument. Before formally proving Lemma 7
we give a high-level overview of its proof. We will analyze the maximal one-step
coupling on the star graph G∗. We say a vertex v “disagrees” at time t if Xt(v) �=
Yt (v), otherwise we say the vertex v “agrees.” We denote the set of disagreeing
vertices at time t of our coupled chains by

Dt = {v ∈ V :Xt(v) �= Yt (v)},
and we use DL

t = Dt \ {r} to represent the set of disagreeing leaves. When we use
the term “with high probability” in this section, it means that the probability goes
to 1 as b goes to infinity.

If the coupling selects a leaf � to recolor at time t , then the probability that �

disagrees in Xt and Yt is at most 1/(k − 1), and with probability at least (k −
2)/(k − 1), the leaf will use the same color that is chosen uniformly at random
from C \ {Xt(r), Yt (r)}. We also know that if we simply assign a random color
from C to each leaf, with probability at least �(1/(bε lnb)), there is a color in C
that is unused in any leaf. This last point hints at the success probability in the
statement of Lemma 7.

We analyze the T -step epoch in three stages. The warm-up round is of length
Tw := 8(b + 1) lnb steps. We will show in Lemmas 10 and 11 that with good
probability, after the warm up, all of the leaf disagreements will be of the same
form in the sense that they will have the same pair of colors.

The next stage is of a random length T1, which is defined as the first time (after
Tw) where we are recoloring the root, and the root has a common available color
in (Xt) and (Yt ). We prove in Lemma 12 that with probability �(1/bε lnb), T1 <

4(b + 1) lnb. We then have probability at least 1/2 of the root agreeing after it
is updated, and then after at most T2 := 4(b + 1) lnb further steps we are likely
to coalesce since we just need to recolor each leaf at least once before the root
changes back to a disagreement.
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4.2. Coupling argument: Proof of Lemma 7. We begin with a basic observa-
tion about the maximal one-step coupling.

OBSERVATION 8. Let C(DL
t ) := ⋃

�∈DL
t
{Xt(�), Yt (�)} denote the set of colors

that appear in the disagreeing leaves at time t . Then AXt (r) ⊕ AYt (r) ⊆ C(DL
t ).

This is simply because those colors that appear on the leaves with agreements
are both unavailable in Xt and Yt for the root. We now analyze the first stage of
the T -step epoch.

PROPOSITION 9. The probability that in T0 = 4(b+1) lnb steps, the coupling
(Xt , Yt ) [or the Glauber dynamics (Xt)] will recolor the root at most 20 lnb times
and recolor every leaf at least once is at least 1 − 2b−3.

PROOF. Using the union bound the probability that there is a leaf which is not
recolored in T0 steps is at most

b

(
1 − 1

b + 1

)4(b+1) lnb

≤ b−3.

Now, let N be the number of times the root is recolored in T0 steps. The expectation
E[N ] is 4 lnb. Then, by the Chernoff bound (see, e.g., Theorem 4.5, Part 2 in [25]),

Pr[N ≥ 20 lnb] ≤ Pr
[
N ≥ (1 + 4)E[N ]] ≤ b−3.

Therefore the lemma holds by the union bound. �

Then we will prove that in Tw = 2T0 steps, with high probability all of the leaf
disagreements are of the same type when ε > 0.

LEMMA 10. For any ε > 0 and k > (1+ε)b/ lnb, for any pair of initial states
(x0, y0),

Pr[∀� ∈ DL
Tw

,XTw(�) = YTw(r) ∧ YTw(�) = XTw(r) | x0, y0] ≥ 1 − O

(
1

bε

)
.

PROOF. The idea is that if we just look at one chain, say (Xt), then after T0
steps, with high probability the root is frozen. Moreover, the root is likely to con-
tinue to be frozen for the remainder of the Tw steps since we recolor the root at most
O(lnb) times. In the worst case the root is frozen to a disagreement, say Xt(r) = 2
and Yt (r) = 1. Then after recoloring a leaf � at time t ′ where t < t ′ < Tw, the only
possible disagreement is Xt ′(�) = 1, Yt ′(�) = 2. Hence, it suffices to recolor each
leaf at least once.

Let E be the event that in the first T0 steps, every leaf is recolored at least once
and in another 4(b + 1) lnb steps, every leaf is recolored again at least once, and
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the root is recolored at most 20 lnb times. We are first going to bound that for
t > T0,

Pr[|AXt (r)| > 1 | E ] ≤ 1

(1 + ε)bε lnb
:= p0,(4)

and the same thing happens for Yt .
Let GW be the graph with b isolated vertices {v1, . . . , vb}, corresponding to the

leaves {�1, . . . , �b}. Let (Wt) be a Glauber process on GW using k − 1 colors from
another color set CW . We are going to define W0 and couple (Wt) with (Xt) such
that |AXt (r)| = |AWt | + 1 at any time t , where AWt := {c ∈ CW :∀vi,Wt(vi) �= c}.
To do this, for every t we are going to define a bijection ft : C \ {Xt(r)} → CW

such that ft (Xt(�i)) = Wt(vi) for all i. Notice that if such a bijection exists, then
|AXt (r)| = |AWt | + 1.

At time t = 0, pick any bijection f0 from CW to C \ {X0(r)}. Define W0 by
W0(vi) = f (X0(�i)) for all i. We will update ft only when we choose the root to
recolor at time t in the coupling of (Wt) and (Xt). To do the coupling at time t +1,
we first choose a vertex v in G∗ to recolor:

• If v = �i , then we choose a random color c that is different from Xt(r) to re-
color v. Correspondingly, we choose the vertex vi in GW to recolor using color
ft (c).

• If v = r , then we choose a random color c from AXt (r) to recolor the root
in G∗. Correspondingly, we update the mapping ft in the following natural way:
ft (Xt−1(r)) = ft−1(c) [and ft (c) is undefined].

Since (Wt) itself is a Glauber process that recolors the vertices of GW uniformly
at random from CW , conditioning on E , simple calculations yield that for any
t > T0,

Pr[|AWt | ≥ 1 | E ] ≤ 1

(1 + ε)bε lnb
.

Then (4) follows by coupling.
Since the same thing happens for (Yt ), and the root is recolored at most 20 lnb

times, then by the union bound, conditioning on E , the probability that at each time
we try to recolor the root after T0 steps, the root is always frozen in both copies is at
least 1 − (40 lnb)(p0) = 1 − 40/((1 + ε)bε). Finally, by Proposition 9, E happens
with high probability, and hence the lemma holds. �

Note that for the warm-up stage, we need to show, with probability at least
1/poly(logb), that for ε ≥ 0, all of the leaf disagreements are of the same type
in O(b lnb) steps. This is easier to prove for the ε > 0 case – that this happens
with high probability, if we run the dynamics for Tw = 8(b + 1) lnb steps. For the
threshold case when ε = 0, we will prove a slightly weaker lemma, in the sense
that the successful probability will be at least �(1/ ln2 b).
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LEMMA 11. Let T ′
w = T0 + 2b ln lnb. For k = b/ lnb, for any pair of initial

states (x0, y0),

Pr[∀� ∈ DL
T ′

w
,XT ′

w
(�) = YT ′

w
(r) ∧ YT ′

w
(�) = XT ′

w
(r) | x0, y0] ≥ 1/(2 ln2 b).

PROOF. We use a different approach to prove this lemma, since it is not true
that the root will still always be frozen during T ′

w steps with high probability.
Let T0 = 4(b + 1) lnb. We first prove that after T0 steps, with high probability,

the number of disagreeing leaves is at most O(lnb), namely,

Pr[|DL
T0

| ≥ 4 lnb | X0 = x0, Y0 = y0] ≤ 2

b2 .(5)

To prove (5), we construct a simpler process that stochastically upper bounds
the number of disagreements. We define the following Markov chain (Ut ) on 2-
colorings of the graph GU which consists of b isolated vertices {v1, . . . , vb}. We
view the set of colors as {0,1}. In each step, a random vertex vi is chosen, then
with probability 1/(k −1), vi is recolored to 1, and with probability 1−1/(k −1),
vi is recolored to 0. Let DU

t = {v ∈ {v1, v2, . . . , vb} :Ut(v) = 1}. The initial state
U0 is constructed in the following way: for any i > 0, U0(vi) = 1 if and only if
x0(�i) �= y0(�i). By associating the b vertices of GU with the leaves of G∗, we can
easily couple the process (Ut ) with (Xt , Yt ) such that |DU

t | ≥ |DL
t |.

Let E denote the event that all of the vertices of GU are recolored at least once
in T0 steps. Note Pr[E ] ≥ 1 − 1/b2. Conditioned on E , the expected size of |DU

T0
|

is b/(k − 1) ≈ lnb. Then we have

Pr[|DU
T0

| ≥ 4 lnb] ≤ Pr[|DU
T0

| ≥ 4 lnb | E ] + Pr[E ]

≤ 2

b2 .

Here, for the last inequality, we have used the Chernoff bounds (see, e.g., Theo-
rem 4.5 Part 2 in [25]). Since |DU

t | ≥ |DL
t |, this proves (5).

Hence, with high probability there are O(lnb) disagreeing leaves in G∗ at
time T0. Notice that from time T0, if we recolor all of the disagreeing leaves before
we recolor the root again, then all of the remaining disagreements in the leaves will
be of the same type [more precisely, for such a leaf � that becomes a disagreement
at time t , we will have that Xt(�) = YT0(r) and Yt (�) = XT0(r)], and this implies
the desired conclusion of the lemma. To this end, let E2 be the event that the root
is not chosen from recoloring from time T0 to T ′

w. Let E3 be the event that each
leaf in DL

T0
is recolored at least once in the interval of times [T0, T

′
w]. By simple

calculations, we have that

Pr[E2] ≥ ln−2 b, Pr[E3 | E2] ≥ 1 − O(1)

lnb
.(6)
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Therefore, conditioned on |DL
T0

| ≤ 4 lnb, from time T0 to T ′
w with probability at

least 2/(3 ln2 b), both E2 and E3 happen, which implies all of the leaf disagree-
ments will be of the same type at time T ′

w.
In conclusion, combining the above bounds with (5), we proved that with prob-

ability at least 1/(2 ln2 b), all of the uncoupled leaves are of the same type at
time T ′

w. �

After we succeed in the warm-up stage, meaning that all of the leaf disagree-
ments are of the same type, we enter the root-coupling stage, where we try to
couple the root. Let T1 be the first time that there is a common available color in
the root, and the coupling chain selects the root to recolor, that is,

T1 := T XY
1 = min{t :AXt (r) ∩ AYt (r) �= ∅ and the root r is selected at step t}.

LEMMA 12. For ε ≥ 0, for any pair of initial states (x0, y0) where all of the
leaf disagreements are of the same type [i.e., there is a pair of colors c1, c2 such
that for all � ∈ DL

0 , we have x0(�) = c1 and y0(�) = c2], we have

Pr[T XY
1 < 4(b + 1) lnb | (X0, Y0) = (x0, y0)] >

1

4(1 + ε)bε lnb
.

PROOF. First of all, by Proposition 8, |AX0(r) ⊕ AY0(r)| ≤ 2. We are inter-
ested in the time t when there is a common color available for the root in (Xt , Yt ).

Let (Zt ) be a Glauber process on the graph GZ of b + 1 isolated vertices
{v0, v1, v2, . . . , vb} in which v0 corresponds to the root and vi corresponds to the
leaves �i for any i > 0. The color set used in the process (Zt ) is CZ = [k] \ {c1, c2}.
In each step, (Zt ) chooses a random vertex and recolors it with a random color
from the set CZ . Let TZ be the stopping time on Z, satisfying

T Z
1 = min{t > 2(b + 1) lnb : |AZt | ≥ 1 and v0 is selected at the step t},

where AZt = {c ∈ CZ :∀i ∈ [1, . . . , b],Zt (vi) �= c} is the set of unused colors in
the vertices {v1, v2, . . . , vb}. We want to couple (Zt ) with (Xt , Yt ) in such a way
that T Z

1 ≥ T XY
1 for all the runs, and then if we show that for any initial state z0, we

have

Pr[T Z
1 < 4(b + 1) lnb | Z0 = z0] >

1

4(1 + ε)bε lnb
.(7)

Then by the coupling, we know that the lemma is also true.
Now we are going to construct the coupling between (Zt ) and (Xt , Yt ) for

t ≤ T XY
1 . Let z0 be the initial state satisfying that for any i ∈ [1, . . . , b], if

x0(�i) = y0(�i) ∈ CZ then z0(vi) = x0(�i), otherwise we give an arbitrary color
to the vertex vi . On each step t , we first randomly select a vertex in G∗ to update
in (Xt , Yt ), and accordingly, we select the corresponding vertex in GZ to update
in Zt :
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• If the vertex is a leaf �i , (Xt , Yt ) selects a random color c or a disagreement to
update. If c ∈ CZ , then we give the same color to vi in Zt ; otherwise we give a
random color to vi .

• If the vertex is the root r , recolor the root on (Xt , Yt ) according to the maximal
one-step coupling and pick a random color in CZ to recolor v0 in Z.

Observe that AZt ⊆ AXt (r) ∩ AYt (r) for any 0 ≤ t ≤ T XY
1 , which implies that

T Z
1 ≥ T XY

1 holds with probability 1. Now we will show that (7) holds. Let E be
the event that, in (Zt ), every vertex in the graph GZ will be recolored at least once
within the first 2(b + 1) lnb steps. Let tz be the first time after time 2(b + 1) lnb

when the dynamics (Zt ) recolors the root. For each color c ∈ CZ , define the in-
dicator function 1c := 1{c �= Ztz(vi),∀1 ≤ i ≤ b}. These indicator functions are
negatively associated to each other (cf. Theorem 14 in [7]). It follows by elemen-
tary calculation that, conditioned on tz = t for some t > 2(b + 1) lnb and for large
enough b, we have

Pr[AZt �= ∅ | tz = t]
≥ Pr[E ] · Pr[AZt �= ∅ | tz = t, E ]
≥ 0.99 Pr[AZt �= ∅ | tz = t, E ] (since Pr[E ] > 1 − 1/b2)

(8)

≥ 0.99
(

1 − ∏
c∈Cz

Pr[1c = 0 | tz = t, E ]
)

(negative association)

≥ 0.99
(

1 −
(

1 −
(

1 − 1

|CZ|
)b)|CZ |)

≥ 1

3(1 + ε)bε lnb
.

Since Pr[tz ≤ 4(b + 1) lnb] > 1 − 1/b2, by applying (8), we have

Pr[T Z
1 < 4(b + 1) lnb | Z0 = z0] ≥

4(b+1) lnb∑
t=2(b+1) lnb

Pr[AZt �= ∅ | tz = t] · Pr[tz = t]

≥ Pr[tz ≤ 4(b + 1) lnb]
3(1 + ε)bε lnb

≥ 1

4(1 + ε)bε lnb
.

This completes the proof of Lemma 12. �

We also know that when the root is recolored, if |AX(r) ⊕ AY (r)| ≤ 2 and
|AX(r) ∩ AY (r)| ≥ 1 holds, then the probability that the root will be recolored
to the same color in both X and Y is at least 1/2. Hence, at time T1 = T XY

1 ,
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with probability at least 1/2, the root will become an agreement. Combining
with Lemma 10, we prove that with probability at least 1/O((1 + ε)bε lnb) when
ε > 0, starting from arbitrary initial states (x0, y0), the root will couple in at most
12(b + 1) lnb steps and by that time all the disagreements (if there is any) in the
leaves are of the same type. When ε = 0, combining with Lemma 11, we get that
the probability of the same event happening is at least 1/O(ln3 b).

The last step is to let all of the disagreements in the leaves go away without
changing the root to a disagreement, again with constant probability, after T2 =
4(b + 1) lnb more steps. Here is the precise statement of the lemma.

LEMMA 13. For ε ≥ 0, consider a pair of initial states (x0, y0) where the root
r agrees [i.e., x0(r) = y0(r)] and all of the leaf disagreements are of the same type
[i.e., there is a pair of colors c1, c2 such that for all � ∈ DL

0 , we have x0(�) = c1
and y0(�) = c2]. Then, with probability at least 1/2 after T2 = 4(b + 1) lnb steps,
we have XT2 = YT2 .

PROOF. First, observe that with high probability after T2 steps, all of the leaves
will be recolored at least once. Assuming all of the leaves are recolored at least
once, if the root does not become a disagreement within these T2 steps, then all of
the leaves will be agreements. Therefore, we just need to show that the root will
not change to a disagreement in T2 steps with probability at least 3/5. This is done
by a coupling argument.

Let t2 be the first time when the root becomes a disagreement, that is, Xt2(r) �=
Yt2(r). Note, since any disagreements on the leaves are colored c1 in X0 and c2 in
Y0, either Xt2(r) = c2 and/or Yt2(r) = c1. Therefore, we define the stopping times
T X

2 and T Y
2 as follows:

T X
2 = min{t :Xt(r) = c2}, T Y

2 = min{t :Yt (r) = c1}.
We can assume without loss of generality that X0(r) [and hence Y0(r)] does not
equal either c1 or c2. Otherwise, by the hypothesis of the lemma, there are no
disagreements in the leaves, and hence X0 = Y0. Hence, our goal is to show that

Pr[T X
2 ≤ T2 or T Y

2 ≤ T2] < 2
5 .

And the main step is to show that

Pr[T X
2 ≤ T2] < 1

5 .(9)

Let (St ) be a random subset process on V (G∗). Each time it picks a vertex v:

• if v �= r , with probability 1/(k − 1), St+1 = St ∪ {v} and with probability 1 −
1/(k − 1), St+1 = St \ {v};

• if v = r , if St = ∅, then St+1 = {r}, otherwise St+1 = St .
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Let us define T S = mint {t : r ∈ St }. We are going to couple (St ) with (Xt) such
that {v ∈ V (G∗) :Xt(v) = c2} ⊆ St . This implies T S ≤ T X

2 . And if we can show
that Pr[T S ≤ T2] ≤ 1/5, then we have proved inequality (9).

The coupling (Xt , St ) is defined as follows. We start with S0 = X−1
0 (c2), the set

of vertices of color c2 in the initial coloring. Each time both processes picks the
same vertex v to update.

• If v = r , Xt and St act independently at this time.
• If v �= r and Xt(r) �= c2, then Xt chooses a random color different from the root

to recolor v, and if that color is not c2, St+1 = St \{v} otherwise St+1 = St ∪{v}.
• If v �= r and Xt(r) = c2, then Xt chooses a random color different from c2 to

recolor v, and if that color is not c1, St+1 = St \ {v}, otherwise St+1 = St ∪ {v}.
It is easy to see that this is a valid coupling. More importantly, it satisfies
X−1

t (c2) ⊆ St .
Now we are going to show that Pr[T S ≤ T2] < 1/5 holds. It is not hard to show

that with probability at least 0.9, the first time when the root is updated is later than
0.1b steps. We now condition on this event. The indicators of whether each leaf
is in St or not during those 0.1b steps are negatively associated (cf. Theorem 14
in [7]). Then by using the Chernoff bound with negative association among the
random variables (cf. Proposition 7 in [7]), it can be shown that with high prob-
ability at least ≥ 0.01b many different leaves are recolored before the first time
we recolor the root. Thus, together with the proof of Proposition 9, we can claim
that with probability at least 0.85, before the first t such that r ∈ St , at least 0.01b

many leaves have been recolored, and root will be recolored at most 20 lnb times
before T2. Denote this event as E . We have

Pr[T S ≤ T2] ≤ Pr[T S ≤ T2 | E ] + Pr[Ē ] ≤ Pr[T S ≤ T2 | E ] + 0.15.

In fact Pr[T S ≤ T2 | E ] can be arbitrarily small when b grows, since at each time t

we update the root in (St ), we know that the probability of St−1 = ∅ is at most
b−0.01(1+ε), and we know that the root updates at most 20 lnb times.

In conclusion, we proved inequality (9) and hence the lemma. �

Finally, by combining Lemmas 10, 12 and 13 together, we can conclude that:
when ε > 0, with probability at least 1/(20(1 + ε)bε lnb) after t = Tw + T1 +
T2 < T steps of the coupling, we have Xt = Yt ; when ε = 0, from Lemmas 11,
12 and 13, we have that with probability at least 1/(20 ln3 b) after t = T ′

w + T1 +
T2 < T steps of the coupling, we have Xt = Yt , which proves Lemma 7.

5. Upper bound on mixing time for C > 1: Proof of Theorem 5. In this
section we analyze the upper bound of the mixing time of the Glauber dynamics
on the star graph G∗ when k = Cb/ lnb for C > 1. Here, let

δ := C − 1,
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and hence, k = (1 + δ)b/ lnb.
We will analyze the maximal one-step coupling using a weighted Hamming

distance. The root r will have weight w(r) = bδ/2 > 1 and the leaves will have
weight w(v) = 1. For a set of vertices S, let w(S) = ∑

v∈S w(v). Let Dr
t denote

whether there is a disagreement at the root.
We want to show that the coupling decreases the distance in expectation. Hence,

we say a pair of colorings (X0, Y0) are η-distance-decreasing if there exists a cou-
pling (X0, Y0) → (X1, Y1) such that

E[w(D1) | X0, Y0] < (1 − η)w(D0).

To simplify the analysis of the coupling, we will use the following theorem of
Hayes and Vigoda [14] to utilize properties of the stationary distribution. The
quantity diam(�) is the diameter of � with respect to the Glauber dynamics. In
our case, a trivial bound is diam(�) ≤ 2b.

THEOREM 14 ([14], Theorem 1.2). Let η > 0. Suppose S ⊆ � such that every
(X0, Y0) ∈ S × � is η-distance-decreasing, and

π(S) ≥ 1 − η

16 diam(�)
,

then the mixing time is

Tmix ≤ 3η−1�ln(32 diam(�))�.
We use S as the set of colorings where the root has many available colors.

Along the lines of the Dyer–Frieze [8] local uniformity results, we will prove the
following statement about the available colors for the root r in a random coloring.

LEMMA 15. Let X be a random coloring of the star graph on b vertices. For
every δ > 0, there exists b0, such that for all b > b0 and k = (1 + δ)b/ lnb,

Pr[|AX(r)| > b0.9δ] > 1 − exp(−b0.99δ/10).

Hence, we let the set S be those colorings X ∈ � where |AX(r)| ≥ b0.9δ .

5.1. Analyzing the coupling. We need to analyze E[w(D1) | X0, Y0]. Note,
when a leaf v is recolored, if the root is a disagreement [i.e., X0(r) �= Y0(r)],
then with probability 1/(k − 1) we have X1(v) �= Y1(v). Hence,

E[w(DL
1 ) | X0, Y0]

= ∑
v∈V \{r}

w(v)
[
Pr[v is recolored]

· Pr[X1(v) �= Y1(v) | v is recolored, X0, Y0]
+ (1 − Pr[v is recolored])1[X0(v) �= Y0(v)]]

= b

b + 1

1[r ∈ D0]
k − 1

+
(

1 − 1

b + 1

)
w(DL

0 ).
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There is probability at most |DL
0 |/max{|AX0(r)|, |AY0(r)|} that X1(r) �= Y1(r),

when the root r is recolored. Hence, for X0 ∈ S, we have

E[w(Dr
1) | X0, Y0]

≤ w(r)
1

b + 1

|DL
0 |

max{|AX0(r)|, |AY0(r)|}
+

(
1 − 1

b + 1

)
w(Dr

0)

≤ |DL
0 |b−δ/3

b + 1
+

(
1 − 1

b + 1

)
w(Dr

0).

Therefore, for (X0, Y0) ∈ S × �, we have

E[w(D1) | X0, Y0]
≤ 1

b + 1

(
1[r ∈ D0] b

k − 1
+ b−δ/3|DL

0 |
)

+
(

1 − 1

b + 1

)
w(D0)

≤ w(D0) + 1

b + 1

(−w(D0) + 1[r ∈ D0]w(r)b−δ/3 + b−δ/3|DL
0 |)

≤ w(D0) + 1

b
(−1 + b−δ/4)w(D0).

Thus, they are η-distance-decreasing for η = (1 − b−δ/4)/b.
Now applying Theorem 14, by Lemma 15 we have the necessary bound on

π(S), and thus conclude, for b sufficiently large, we have

Tmix ≤ (6b lnb)/(1 − b−δ/4) ≤ 12b lnb.

This completes the proof of Theorem 5, except for the proof of Lemma 15.

PROOF OF LEMMA 15. Fix the color of the root to be c. Let σ be a random
coloring conditional on the root receiving color c. We are going to prove that

Pr[|Aσ (r)| ≤ b0.9δ | σ(r) = c] < exp(−b0.99δ/10).

For each color i ∈ C \ {c}, let Zi be the indicator function that c ∈ Aσ (r).
|Aσ (r)| = ∑

i∈C Zi . By Theorem 14 in [7], the Zi’s are negatively associated with
each other once the root is fixed. Note that for b sufficiently large,

E[|Aσ (r)|] ≥ k exp
(−b/(k − 1)

)
≥ b0.99δ.

Now applying the Chernoff bound, which holds for negatively associated random
variables (cf. Proposition 7 in [7]), we have

Pr[|Aσ (r)| ≤ b0.9δ | σ(r) = c] < exp(−b0.99δ/10). �
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6. Proof of the lower bounds below the threshold in Theorem 1. In this
section we prove that when C < 1,

Trelax = �
(
n1/C−o(1)).(10)

In the remainder of this section, let L(T ), or simply L, denote the leaves of T , and
the root is denoted by r . For a vertex v of T , let Tv denote the subtree of T rooted
at v, and T ∗

v denote Tv \ {v}. For convenience, in this section, let ε := 1/C − 1,
and hence k = b/(1 + ε) lnb.

In coloring σ ∈ �(T ), we say a vertex v is frozen in σ if, in the subtree Tv , the
coloring σ(L(Tv)) of the leaves of Tv forces the color for v. In other words, v is
frozen in σ if for all η ∈ � where η(L(Tv)) = σ(L(Tv)), we have η(v) = σ(v).
Note, by definition, the leaves are always frozen. Observe that for a vertex to be
frozen, its frozen children must “block” all other color choices. This is formalized
in the following observation as in [11].

OBSERVATION 16. A vertex v where h(v) > 0 is frozen in coloring σ if and
only if, for every color c �= σ(v), there is a child w of v where σ(w) = c and w is
frozen.

Using this inductional way of defining a vertex being “frozen” in a coloring, we
can further show the following lemma. It is a generalization of Lemma 8 in [11],
whichis only applied to the case ε ≥ 1, that is, C ≤ 1/2.

LEMMA 17. For any ε ∈ (0,1), in a random coloring of tree T , the probability
that a vertex of T is not frozen is at most b−ε . For the leaves in T , by definition,
they are always frozen.

6.1. Upper bound on the conductance. Let Sc = Sc(T ) denote those colorings
in �(T ) where the root of T is frozen to color c. Let S = ⋃

1≤c≤k/2 Sc. We will
analyze the conductance of S to lower bound the mixing time.

To upper bound the conductance of S, we need to bound the number of col-
orings σ ∈ S which can leave S with one transition, and also the total number of
transitions leaving S. To unfreeze the root, we need to recolor a leaf. Thus, we need
to bound the number of colorings frozen at the root which can become unfrozen
by one recoloring, and in that case, we need to bound the number of leaves which
can be recolored to unfreeze the root. For a coloring σ , vertex v and color c, let
σv→c denote the coloring obtained by recoloring v to c.

We capture the colorings on the “frontier” of S as follows. For tree T , coloring
σ ∈ �(T ), a vertex v and a leaf z of Tv , let E σ

v,z denote the event that the color-
ing σ is frozen at the vertex v of T and there exists a color c where the coloring
σz→c is not frozen at the vertex v. By definition, this event only depends on the
configurations at the leaves of the subtree Tv . In particular, for the root of the tree,
let E (σ, z) := E σ

r,z and 1σ,z be the indicator of it.
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We can convert the above intuition into the following upper bound on conduc-
tance of S (similarly to Lemma 10 in [11]).

LEMMA 18.

	S ≤ 6

n

∑
z∈L(T )

Prσ∈�[E (σ, z)].

Now if we can prove that

Prσ∈�[E (σ, z)] ≤ b−(1+ε−o(1))H ,(11)

where o(1) is an inverse polynomial of b when ε < 1 and equals to zero when
ε ≥ 1. This will be clarified later in the proof of Lemma 19. Then by plugging this
back into the upper bound (18), we get

	S ≤ 6

n
· bH · b−(1+ε−o(1))H ≤ 20n−1−ε+o(1).

Therefore, we can conclude that the conductance of this Glauber dynamics is
O(n−1−ε+o(1)), and hence by (1) and (3), the mixing time and the relaxation time
is �(n1/C−o(1)).

6.2. Proof of (11). Let �∗ = {σ ∈ � :σ(r) = c∗} be the set of colors where
the root is colored c∗. By symmetry, it is easy to see that Prσ∈�[E (σ, z)] =
Prσ∈�∗[E (σ, z)]. Therefore, for the remainder of the proof we condition on the
root being colored c∗. To simplify the notation, we denote B := b−(1+ε−o(1)). Let
w0 = r,w1, . . . ,wH−1,wH = z denote the path in T from the root r down to the
leaf z. We will show by induction that

Prσ∈�∗[E σ
r,z] ≤ B Prσ∈�∗[E σ

w1,z
] ≤ B2 Prσ∈�∗[E σ

w2,z
]

≤ · · · ≤ BH Prσ∈�∗[E σ
wH ,z] = BH .

For the event E (σ, z) to occur, we need that along the path from the leaf z to the
root r , unfreezing each of these vertices will “free” a color for their parent. More
precisely, for σ to be in E (σ, z), w1 has to be frozen because the color of z only
affects the root through w1, and if w1 is not frozen, then it cannot affect the root
becoming unfrozen. In order for the root to become unfrozen by changing the color
of the leaf z, it must also occur that w1 becomes unfrozen at the same time, hence
σ ∈ E σ

w1,z
, that is, E (σ, z) ⊆ E σ

w1,z
and more generally, E σ

wi,z
⊆ E σ

wi+1,z
.

For each 1 ≤ i ≤ H , let Aσ
wi,z

denote the event that no sibling y of wi satisfies
both of the following: σ(y) = σ(wi) and σ is frozen at y. By the siblings of wi ,
as usual we mean the children (other than wi ) of wi−1. The event E σ

wi,z
implies

the fact that wi+1 is the only child that causes wi simultaneously being frozen and
being blocked from using color σ(wi+1), which means E σ

wi,z
⊆ Aσ

wi+1,z
. We will

show the following lemma for bounding the probability of Aσ
w1,z

.
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LEMMA 19. Let C∗ = C − c∗. For a fixed color c1 ∈ C∗,

Prσ∈�∗[Aσ
w1,z

| σ(w1) = c1] ≤ B = b−(1+ε−o(1)).

Observe that the events Aσ
1,z and E σ

w1,z
are independent, conditioned on the fixed

colors of the root and w1, because they depend on the configurations of different
parts of leaves. Then we have that for each c1 ∈ C∗,

Prσ∈�∗
[(

σ(w1) = c1
) ∩ E σ

w1,z
∩ Aσ

1,z

]
= Prσ∈�∗[E σ

w1,z
| σ(w1) = c1] · Prσ∈�∗[Aσ

1,z | σ(w1) = c1] · 1

k − 1
(12)

≤ BH−1 · B
k − 1

,

where the last inequality is by the inductive hypothesis applied on the complete
tree Tw1 of height H − 1 and Lemma 19.

Finally, by the fact that E σ
r,z ⊆ E σ

w1,z
∩ Aσ

1,z and (12) above, we have

Prσ∈�∗[E σ
r,z] ≤ Prσ∈�∗[E σ

w1,z
∩ Aσ

w1,z
]

= ∑
c1∈C∗

Prσ∈�∗
[(

σ(w1) = c1
) ∩ E σ

w1,z
∩ Aσ

w1,z

]

≤ BH .

This completes the proof of (11). To complete the proof of the lower bounds when
C < 1 in Theorem 1, we need to prove Lemmas 17, 18 and 19.

6.3. Proofs of lemmas.

PROOF OF LEMMA 17. The proof is very similar to the proof of Lemma 8
in [11]. We include it here for completeness.

Let U� be the probability that a vertex at the height � is not frozen. We are going
to prove that U� < b−ε by induction.

First of all, by definition, U0 = 0 since they are leaves. Let v be a vertex at
height � > 0. Since the probability that the color of v equals c is independent from
the probability that v is frozen, therefore we can just fix the color of v to some
c∗ ∈ C , and hence

U� = Pr[v is not frozen in σ | σ(v) = c∗].
Let w be a child of v. Again by the same argument using the independency, the
probability that w is frozen to color c equals 1−U�−1

k−1 . Thus, the probability that
all the children of v are either not frozen or not colored by using c is (1 − (1 −
U�−1)/(k − 1))b.
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By the union bound and induction, U� is bounded by

(k − 1)

(
1 − 1 − U�−1

k − 1

)b

≤ (k − 1) exp
(
−b(1 − b−ε)

k − 1

)
≤ b−ε,

where the last inequality holds for large b. �

PROOF OF LEMMA 18. Let F := ⋃
c∈C Sc be the set of colorings that freeze

the root. As we discussed before, by symmetry, π(Sc1) = π(Sc2) for c1, c2 ∈ C .
Then π(S̄) ≥ 1/2. Also, by Lemma 17, we know that π(F) ≥ 1 − b−ε . Therefore
for any ε > 0, there exists a b0 such that for all b > b0, π(S)π(S̄) ≥ 1/6. From the
definition of 	S , we know that

	S ≤ 6
(∑

σ∈S

∑
η∈S̄

π(σ )P (σ, η)

)
.

Notice that, for any σ ∈ Sc1 , η ∈ Sc2 and c1 �= c2, we have P(σ,η) = 0, be-
cause it is impossible to change the color of the frozen root by just one move.
Further, in order to unfreeze the root in one step, the Glauber dynamics has
to first recolor a leaf and change the color of the leaf so as to unfreeze the
root. That is, η can only be σz→c for some z ∈ L(T ) and c ∈ C∗, where C∗ =
C − {the color of the parent of z in σ }. Therefore,

	S ≤ 6
∑
σ∈F

∑
η∈F̄

π(σ )P (σ, η)

(13)
≤ 6

∑
σ∈F

∑
z∈L(T )

(1σ,zπ(σ )P (σ, η)),

where 1σ,z is the indicator for the event that the root in coloring σ is frozen, and
there exists a color c where the root in the coloring σz→c is not frozen.

By the definition of the Glauber dynamics, we know that π(σ) = 1/|�| and
P(σ,η) = 1/(n(k − 1)) for the case that the change of color happens at a leaf.
Therefore, from (13), we have

	S ≤ 6

n

∑
σ∈�

∑
z∈L(T )

1σ,z

|�| = 6

n

∑
z∈L(T )

∑
σ∈�(T )

1σ,z

|�(T )| . �

PROOF OF LEMMA 19. When ε < 1, the probability that all the siblings of w1
are either not frozen or not colored with c1 is upper bounded by(

1 − 1 − UH−1

k − 1

)b−1

≤ exp
(
−(b − 1)(1 − b−ε)

k − 1

)

≤ b−(1+ε)(1−b−ε).

Now we can see that o(1) is actually (1 + ε)/bε when ε < 1.
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Note that, when ε ≥ 1, in the same way it is easy to see that(
1 − 1 − UH−1

k − 1

)b−1

≤ b−(1+ε). �

7. A Simple generalization to k = o(b/ lnb): Proof of Theorem 2. In all
of the previous sections, we assumed k = Cb/ lnb where C is constant. But we
are also interested in the case when k is constant, say a hundred colors, and what
the mixing time of the Glauber dynamics will be in this case. Let α = α(k, b) :=
b/(k lnb). We would also like to see how to generalize the upper bound and lower
bound analysis assuming α is any function growing with b, that is, when k is
o(b/ lnb). Actually, all of our proofs will be the same, and we just need to slightly
modify the statements.

For the upper bound, we change Lemma 7 and Lemma 12 into the following
ones.

LEMMA 20. Let T = 20b lnb. There exists b0, for all (x0, y0) ∈ � × �, all
α(k, b) ≥ 2 and all b > b0 the following holds:

Pr[XT = YT | X0 = x0, Y0 = y0] ≥ 1/
(
20α(k, b)bα(k,b) lnb

)
.

LEMMA 21. For any pair of initial states (x0, y0) where all of the leaf dis-
agreements are of the same type, then

Pr[T XY
1 < 4b lnb | (X0, Y0) = (x0, y0)] ≥ 1/

(
4α(k, b)bα(k,b)−1 lnb

)
.

Then by the same argument as in Section 4, we are able to show that the relax-
ation time of the Glauber dynamics on G∗ is upper bounded by O(αbα lnb). Thus,
the mixing time of the Glauber dynamics on the complete tree is bounded by

Tmix = O
(
nα+(lnα+2 ln lnb+20)/lnb lnn

)
,

and the relaxation time is bounded by

Trelax = O
(
nα+(lnα+2 ln lnb+20)/lnb)

.

For the lower bound, we again place Lemma 17 and Lemma 19 into the follow-
ing lemmas.

LEMMA 22. In a random coloring of the tree T , the probability that a vertex
of T is not frozen is at most b−1.

LEMMA 23.

Prσ∈�∗[Aσ
w1,z

| σ(w1) = c1)] ≤ b−α(k,b).

Then, in exactly the same way as in Section 6, we can show that the mixing
time and the relaxation time of the Glauber dynamics on the complete tree T when
α ≥ 2 is lower bounded by �(nα) = �(nb/(k lnb)).
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8. Bounding the log-Sobolev constant: Proof of Theorem 6. In this section
we will analyze the log-Sobolev constant csob of the heat-bath Glauber dynamics
on the complete tree by comparing it with the spectral gap cgap. For completeness,
we prove Theorem 6, which is an improvement over the proof of Theorem 5.7 in
Martinelli, Sinclar and Weitz [23]. In their paper, they proved it for the case of the
Ising model on the complete tree with a fixed boundary condition, although they
observed that it holds more generally. For convenience, we will use the same nota-
tion for the complete tree and its vertices; that is, T� stands for both the complete
tree of height � and its vertices V (T�).

Let B ⊆ A ⊆ T be two subsets of the vertices on tree T . Let η ∈ � be a config-
uration. Let Eη

A(f ) be the expectation of f under a prefixed distribution μ in the
region A with boundary condition η. That is,

Eη
A(f ) = ∑

σ

μ(σ)

Z
f (σ),

where σ ranges over the configurations that are the same as η outside A (denoted as
σ ∼A η), and Z is the normalizing factor. The quantities VarηA and EntηA are defined
similarly. If we drop η, then EA(f ),VarA(f ),EntA(f ) become functions from �

to R. The following are standard facts concerning variance and entropy: the first is
the chain rule, and the second follows from the so-called tensoring property over
a product distribution; see, for example, Proposition 5.6 of [18]. In the following,
we will use the fact that the distribution on configurations over the tree with the
root removed, has a product form over the subtrees rooted at the children of the
root, to satisfy the hypothesis for the tensoring property.

PROPOSITION 24.

VarηA(f ) = Eη
A(VarB(f )) + VarηA(EB(f )),

EntηA(f ) = Eη
A(EntB(f )) + EntηA(EB(f )).

PROPOSITION 25. Let A = ⋃
Ai where Ai are disjoint, and suppose that con-

ditioning on the boundary being η, the probability of Ai ’s being in any configura-
tion for different i’s is completely independent. Then

VarηA(f ) ≤ ∑
i

Eη
A(VarAi

(f ))

and

EntηA(f ) ≤ ∑
i

Eη
A(EntAi

(f )).

LEMMA 26. Let csob(�) be the log-Sobolev constant of the heat-bath Glauber
dynamics on the complete tree of height � > 0 with the root being attached to an
external vertex with a fixed color, then

csob(�)
−1 ≤ csob(� − 1)−1 + α · cgap(�)

−1,
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where α = log(k−2)
1−2/(k−1)

= csob(0)−1.

PROOF. Let f be any nonnegative function. Let I be the set of vertices in the
complete tree T� without the root, that is, I = T� \ {root}. Let us first use Proposi-
tion 24 to analyze the Ent(f ).

Ent(f ) = E(EntI (f )) + Ent(EI (f )).

We will bound E(EntI (f )) and Ent(EI (f )) separately. For E(EntI (f )), by
Proposition 25, it can be upper bounded as

E(EntI (f )) ≤ ∑
v

E(EntTv (f )),(14)

where v ranges over all the children of the root of T�, and Tv denotes the subtree
of T� rooted at the vertex v. Let η ∈ �(T�), then for a specific EntηTv

(f ), we then
have

EntηTv
(f ) ≤ csob(� − 1)−1DTv

(√
f

)
,(15)

where DTv (
√

f ) is the corresponding Dirichlet form for the dynamics on the sub-
tree Tv . For the heat-bath Glauber dynamics, since P(σ, τ) �= 0 only if they differ
at a single vertex, we can further derive that

DTv (f ) = 1

2

∑
σ,τ

(
f (σ) − f (τ)

)2
μ(σ)P (σ, τ )

(16)

= 1

2

∑
x∈Tv

Eη
Tv

(
Var{x}(f )

)
,

where μ(σ) is the marginal distribution with respect to η.
Then, from (14), (15) and the above, we have

E(EntI (f )) ≤ ∑
v

E(EntTv (f )) [by (14)]

≤ ∑
v

csob(� − 1)−1E
(

DTv

(√
f

))
[by (15)]

= ∑
v

csob(� − 1)−1E
( ∑

x∈Tv

Eη
Tv

[
Var{x}(f )

])
[by (16)]

= csob(� − 1)−1
∑
x∈I

E
(
Var{x}(f )

)

≤ csob(� − 1)−1D
(√

f
)

[by applying (16) again].

For Ent(EI (f )), EI (f ) can be viewed as a function from {1,2, . . . , k − 1} to R

since those k − 1 values can represent the colors of the root (boundary). Therefore
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Ent(EI (f )) is the entropy of the random variable EI (f ) taking k − 1 values uni-
formly at random. It is well known (see, e.g., the Appendix of [5]) that log(k−2)

1−2/(k−1)

is the inverse of the log-Sobolev constant of the random walk R on the complete
graph Kk−1, which jumps to stationarity in one step. Thus, letting α = log(k−2)

1−2/(k−1)
,

we may upper bound Ent(EI (f )) as follows:

Ent(EI (f ))

≤ αD R
(√

EI (f )
)

(by the log-Sobolev inequality)

= α VarR
(√

EI (f )
)

[for the complete graph P(x, y) = πR(y)]

= α VarT
(√

EI (f )
)

≤ α
(
E[EI (f )] − E2(√

EI (f )
))

(by the definition of the variance)

≤ αE
(√

f
)2 − E2(√

f
) (

by the concavity of
√

x
)

≤ αcgap(�)
−1D

(√
f

)
(by the definition of the spectral gap).

Putting everything together, we prove

Ent(f ) = E(EntI (f )) + Ent(EI (f ))

≤ csob(� − 1)−1D
(√

f
) + αcgap(�)

−1D
(√

f
)
,

and then by the definition of csob, we get

csob(�)
−1 ≤ csob(� − 1)−1 + αcgap(�)

−1. �

LEMMA 27. Let csob(�) be the spectral gap of the heat-bath Glauber dynam-
ics on the complete tree of height � > 0 with the root being attached to an external
vertex with a fixed color; then for � > 0, we have cgap(�) ≤ cgap(� − 1)/b.

PROOF. Let D�(f ) and Var�(f ) be the Dirichlet form and the variance of
function f :�(T�) → R for the Glauber dynamics on the complete tree of height �

with the root attached to an external vertex with a fixed color. Let P� denote the
probability transition of the dynamics, and let π� denote its unique stationary dis-
tribution.

Let g be the eigenfunction such that cgap(� − 1) = D�−1(g)/Var�−1(g). Now
we are going to construct a function f :�(T�) → R, such that D�(f ) ≤ D�−1(g)

and Var�(f ) = Var�−1(g). Then, since

cgap(�) ≤ D�(f )

Var�(f )
≤ D�−1(g)

b · Var�−1(g)
= cgap(� − 1),

we prove the lemma.
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Let A ⊆ T� be the set of nonleaf vertices of T�, that is, A = T� \ L(T�), where
L(T�) is the set of leaves in the tree T�. There is a natural correspondence between
vertices in A and in T�−1. The function f is then defined in the following way: for
σ ∈ �(T�) and σ ′ ∈ �(T�−1), f (σ) = g(σ ′) if the configuration σ agrees with σ ′
on the subset A.

It is straightforward to show that Var�(f ) = Var�−1(g). We will show D�(f ) ≤
D�−1(g)/b. By definition,

D�(f ) = ∑
σ,η∈�(T�)

π�(σ )P�(σ, η)
(
f (σ) − f (η)

)2
.

For a subset of vertices S ⊂ T�, let

�(S) = {σ ′ ∈ [k]S : there exists σ ∈ �(T�) where σ(A) = σ ′}.
Let σ ′, η′ ∈ �(A) be colorings of the internal vertices. Let φ,ψ ∈ �(L(T�)) be
colorings of the leaves. Finally, let ◦ be the concatenation operator, thus σ ′ ◦ ψ =
σ ∈ �(T�) where σ(A) = σ ′ and σ(L(T�)) = φ. Then we can rewrite the Dirichlet
form as

D�(f ) = ∑
σ ′,η′∈�(A)

∑
φ,ψ∈�(L(T�))

π�(σ
′ ◦ φ)P�(σ

′ ◦ φ,η′ ◦ ψ)

× (
f (σ ′ ◦ φ) − f (η′ ◦ ψ)

)2
.

According to the definition of the Glauber dynamics, for configurations σ,η ∈
�(T�) which differ at more than one vertex, we have P�(σ, η) = 0. Let ⊕ denote
the symmetric difference. Now we can rewrite the Dirichlet form as

D�(f ) = ∑
v∈A

∑
σ ′,η′∈�(A) :
σ ′⊕η′={v}

∑
φ∈�(L(T�))

[(
f (σ ′ ◦ φ) − f (η′ ◦ φ)

)2
π�(σ

′ ◦ φ)

× P�(σ
′ ◦ φ,η′ ◦ φ)

]
+ ∑

v∈L(T�)

∑
σ ′∈�(A)

∑
φ,ψ∈�(L(T�)) :

φ⊕ψ={v}

[(
f (σ ′ ◦ φ) − f (σ ′ ◦ ψ)

)2
π�(σ

′ ◦ φ)

× P�(σ
′ ◦ φ,σ ′ ◦ ψ)

]
= ∑

v∈A

∑
σ ′,η′∈�(A) :
σ ′⊕η′={v}

[(
g(σ ′) − g(η′)

)2 ∑
φ∈�(L(T�))

π�(σ
′ ◦ φ)

× P�(σ
′ ◦ φ,η′ ◦ φ)

]
,

since g(σ ′ ◦ φ) = g(σ ′ ◦ ψ) = f (σ ′).
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Thus we only need to consider the case when the sole disagreement is at an
internal vertex. We can further decompose based on whether the disagreement is
an internal vertex of the tree T�−1, which we denote as I , or a leaf of T�−1.

For v ∈ L(T�−1), the goal is to bound the sum
∑

φ π�(σ
′ ◦φ)P�(σ

′ ◦φ,η′ ◦φ) by
π�−1(σ

′)/(|T�−1|(k−1)b), that is, π�−1(σ
′)P�−1(σ

′, η′)/b. We have the following
observation: Fix the vertex v, for each color c such that σ ′⊕η′ = {v} and η′(v) = c,
the quantity Q(c) := ∑

φ π�(σ
′ ◦φ)P�(σ

′ ◦φ,η′ ◦φ) are the same, that is, Q(c) =
Q(c′) for any two colors c �= c′ because of the symmetry. Therefore, in order to
bound Q(c), it is easier to bound

∑
c �=σ ′(v) Q(c) by π�−1(σ

′)/(|T�−1|b). Then, by
taking the average over k−1 colors, we are done. It is a straightforward calculation
to upper bound the sum of Q(c):∑
c �=σ ′(v)

Q(c) = π�−1(σ
′)

∑
φ

π�(σ
′ ◦ φ)

π�−1(σ ′)
∑

c �=σ ′(v)

1{c ∈ Aσ ′◦φ(v)}P�(σ
′ ◦ φ,η′ ◦ φ)

= π�−1(σ
′)

∑
φ

π�(σ
′ ◦ φ)

π�−1(σ ′)
|Aσ ′◦φ(v)| − 1

|T�||Aσ ′◦φ(v)|(17)

≤ π�−1(σ
′) 1

|T�−1|b ,

where by definition, Aσ ′◦φ(v) is the set of available colors for vertex v in the
configuration σ ′ ◦ φ.

Recall that I denotes the internal vertices of T�−1, that is, I = V (T�−1) \
L(T�−1). Similarly, for v ∈ I we have∑

σ ′,η′∈�(A) : σ ′⊕η′={v}

[(
g(σ ′) − g(η′)

)2

× ∑
φ∈�(L(T�))

π�(σ
′ ◦ φ)P�(σ

′ ◦ φ,η′ ◦ φ)

]′
(18)

= ∑
σ ′,η′∈�(T�−1) :

σ ′⊕η′={v}

(
g(σ ′) − g(η′)

)2
π�−1(σ

′)P�−1(σ
′, η′)/b.

Combining (17) and (18), and summing over v ∈ T�−1, we have shown that
D�(f ) ≤ D�−1(g)/b, which implies the lemma. �

PROOF OF THEOREM 6. Now we apply Lemma 26 inductively, and we get

c−1
sob = c−1

sob(H) ≤ α
(
1 + c−1

gap(1) + · · · + c−1
gap(�logb n	)).

Then by applying Lemma 27 on the spectral gaps, we can conclude that

c−1
sob ≤ bαc−1

gap(H) ≤ c−1
gap · 2b log k. �

9. Conclusions. Recently, Restrepo et al. [27] studied the analogous problem
for the hard-core model which is defined on independent sets weighted by an ac-
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tivity λ > 0. In contrast to the picture we have shown for colorings, Martinelli et
al. [24] has shown that on the complete tree with branching factor b, the Glauber
dynamics has O(n logn) mixing time for all λ. Thus, there is no slow-down at the
reconstruction threshold. However, Restrepo et al. [27] show that there is a bound-
ary condition for the complete tree so that the Glauber dynamics has a slow-down
that appears to coincide with the reconstruction threshold.
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