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THE ASYMPTOTIC DISTRIBUTION OF THE LENGTH OF
BETA-COALESCENT TREES

BY GÖTZ KERSTING

Goethe Universität

We derive the asymptotic distribution of the total length Ln of a Beta(2−
α,α)-coalescent tree for 1 < α < 2, starting from n individuals. There are
two regimes: If α ≤ 1

2 (1 + √
5), then Ln suitably rescaled has a stable limit

distribution of index α. Otherwise Ln just has to be shifted by a constant (de-
pending on n) to get convergence to a nondegenerate limit distribution. As a
consequence, we obtain the limit distribution of the number Sn of segregation
sites. These are points (mutations), which are placed on the tree’s branches
according to a Poisson point process with constant rate.

1. Introduction and result. In this paper we investigate the asymptotic distri-
bution of the suitably normalized length Ln of a n-coalescent of the Beta(2−α,α)-
type with 1 < α < 2. As a corollary we obtain the asymptotic distribution of the
associated number Sn of segregating sites, which is the basis of the Watterson es-
timator [19] for the rate θ of mutation of the DNA. Here we recall that coalescents
with multiple merging such as Beta-coalescents have been considered in the litera-
ture as a model for the genealogical relationship within certain maritime species [7,
10].

Beta-coalescents (and more generally �-coalescents, as introduced by Pit-
man [16] and Sagitov [17]) possess a rich underlying partition structure, which
is nicely presented in detail in Berestycki [3]. For our purposes it is not necessary
to recall all these details, and we refer to the following condensed description of a
n-coalescent:

Imagine n particles (blocks in a partition), which coalesce into a single particle
within a random number of steps. This happens in the manner of a continuous time
Markov chain. Namely, if there are currently m > 1 particles, then they merge to l

particles at a rate ρm,l with 1 ≤ l ≤ m − 1. Thus

ρm = ρm,1 + · · · + ρm,m−1

is the total merging rate, and

Pm,l = ρm,l

ρm

, 1 ≤ l ≤ m − 1

gives the probability of a jump from m to l.
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In these models the rates ρm,l have a specific consistency structure arising from
the merging mechanism. As follows from Pitman [16], they are, in general, of the
form

ρm,m−k+1 =
(

m

k

)∫ 1

0
tk−2(1 − t)m−k�(dt), 2 ≤ k ≤ m,

where �(dt) is a finite measure on [0,1]. The choice � = δ0 corresponds to the
original model due to Kingman [13], then ρm,l = 0 for l �= m − 1. In this paper we
assume

�(dt) = 1

�(2 − α)�(α)
t1−α(1 − t)α−1 dt,

thus

ρm,m−k+1 = 1

�(2 − α)�(α)

(
m

k

)
B(k − α,m − k + α),

where B(a, b) denotes the ordinary Beta-function. Then the underlying coalescent
is called the Beta(2 − α,α)-coalescent. For α = 1 it is the Bolthausen–Sznitman
coalescent [6] and the case α → 2 can be linked with Kingman’s coalescent.

The situation can be described as follows: There are the merging times 0 = T0 <

T1 < · · · < Tτn and there is the embedded time discrete Markov chain n = X0 >

X1 > · · · > Xτn = 1, where Xi is the number of particles (partition blocks) after i

merging events, and τn is the number of all merging events. This Markov chain has
transition probabilities Pm,l and, given the event Xi = m with m > 1, the waiting
time Ti+1 − Ti to the next jump is exponential with expectation 1/ρm. Since a
point process description is convenient later, and we name the point process

μn =
τn−1∑
i=0

δXi
(1)

on {2,3, . . .} the coalescent’s point process downwards from n, abbreviated
CPP(n).

These dynamics can be visualized by a coalescent tree with a root and n leaves.
The leaves are located at height T0 = 0 and the root at height Tτn above. At
height Ti there are Xi nodes representing the particles after i coalescing events.
The total branch length of this tree is given by

Ln =
τn−1∑
i=0

Xi(Ti+1 − Ti).(2)

For 1 < α < 2, the asymptotic magnitude of Ln is obtained by Berestycki et al.
in [2]; it is proportional to n2−α . The asymptotic distribution of Ln is easily de-
rived for Kingman’s coalescent (see [8]); it is Gumbel. The case of a Bolthausen–
Sznitman coalescent is treated by Drmota et al. [9], here Ln properly normalized
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is asymptotically stable. The case 0 < α < 1 of a Beta-coalescent is contained in
more general results of Möhle [14]. Partial results for the Beta-coalescent with
1 < α < 2 have been obtained by Delmas et al. [8].

In this paper we derive the asymptotic distribution of the length of the Beta-
coalescent for 1 < α < 2. Let ς denote a real-valued stable random variable with
index α, which is normalized by the properties

E(ς) = 0, P(ς > x) = o(x−α), P(ς < −x) ∼ x−α(3)

for x → ∞. Thus it is maximally skewed among the stable distributions of index α.
Also let

c1 = �(α)α(α − 1)

2 − α
, c2 = �(α)α(α − 1)1+1/α

�(2 − α)1/α
.

THEOREM 1. For the Beta-coalescent with 1 < α < 2:

(i) If 1 < α < 1
2(1 + √

5) (thus 1 + α − α2 > 0), then

Ln − c1n
2−α

n1/α+1−α

d→ c2ς

(1 + α − α2)1/α
.

(ii) If α = 1
2(1 + √

5), then

Ln − c1n
2−α

(logn)1/α

d→ c2ς.

(iii) If 1
2(1 + √

5) < α < 2, then

Ln − c1n
2−α d→ η,

where η is a nondegenerate random variable.

In fact it is not difficult to see from the proof that η has a density with respect
to Lebesgue measure.

This transition at the golden ratio 1
2(1 +√

5) is manifested in the results of Del-
mas et al. [8]. They also show that the number τn of collisions, properly rescaled,
has an asymptotically stable distribution. This latter result has been independently
obtained by Gnedin and Yakubovitch [12].

The region within the coalescent tree, where the random fluctuations of Ln

asymptotically arise, are different in the three cases. In case (i) fluctuations come
from everywhere between the root and the leaves, whereas in case (iii) they mainly
originate at the neighborhood of the root. Then we have to take care of those sum-
mands Xi(Ti+1 −Ti) within Ln, which have an index i close to τn. In the interme-
diate case (ii) the primary contribution stems from summands with index i such
that τn − n1−ε ≤ i ≤ τn − nε with 0 < ε < 1

2 .
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To get hold of these fluctuations, in proving the theorem, we, loosely speaking,
turn around the order of summation in Ln = ∑τn−1

i=0 Xi(Ti+1 −Ti). We shall handle
the reversed order by means of two point processes μ and ν on {2,3, . . .}. The first
one, which we call the coalescent’s point process downwards from ∞ [CPP(∞)],
gives the asymptotic particle numbers seen from the root of the tree. Here we use
Schweinsberg’s result [18] implying that the Beta-coalescent comes down from
infinity for 1 < α < 2; see [3], Corollary 3.2. (Therefore our method of proof does
not apply to the case of the Bolthausen–Sznitman coalescent.) The second one is a
classical stationary renewal point process, which can be reversed without difficulty.
Two different couplings establish the links. Thereby the exponential holding times
are left aside at first stage. In this respect, our approach to the Beta-coalescent
differs from others as in Birkner et al. [5] or Berestyki et al. [1]. Certainly our
proof can be extended to a larger class of �-coalescents having regular variation
with index α between 1 and 2 (compare Definition 4.1 in [3]), which would require
some additional technical efforts. It seems less obvious, whether our concept of a
coalescent’s point process downwards from ∞ can be realized for a much broader
family of �-coalescents coming down from infinity.

Coalescent trees are used as a model for the genealogical relationship of n indi-
viduals backward to their most recent ancestor. Then one imagines that mutations
are assigned to positions on the tree’s branches in the manner of a Poisson point
process with rate θ . Let Sn be the number of these segregation sites; see [3], Sec-
tion 2.3.4. Given Ln the distribution of Sn is Poisson with mean θLn. To get the
asymptotic distribution one splits Sn into parts.

Sn − θc1n
2−α = (Sn − θLn) + θ(Ln − c1n

2−α).

Since Ln/c1n
2−α converges to 1 in probability, the first summand is asymptotically

normal and also asymptotically independent from the second one. Its normalizing
constant is (θLn)

−1/2 ∼ (θc1)
−1/2nα/2−1. Again there are two regimes. n1−α/2 =

o(n1/α+1−α), if and only if α <
√

2. Partial results are contained in Delmas et
al. [8]. We obtain

COROLLARY 2. Let ζ denote a standard normal random variable, which is
independent of ς .

(i) If 1 < α <
√

2, then

Sn − θc1n
2−α

n1/α+1−α

d→ θc2ς

(1 + α − α2)1/α
.

(ii) If α = √
2, then

Sn − θc1n
2−α

n1−α/2
d→ √

θc1ζ + θc2ς

(1 + α − α2)1/α
.
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(iii) If
√

2 < α < 2, then

Sn − θc1n
2−α

n1−α/2
d→ √

θc1ζ.

This is the organization of the paper: Section 2 contains an elementary coupling
of two N-valued random variables. It is used in Section 3, where we introduce
and analyze coalescent’s point processes, and in Section 4, where we couple these
point processes to stationary point processes. Section 5 assembles two auxiliary
results on sums of independent random variables. Finally the proof of Theorem 1
is given in Section 6.

2. A coupling. In this section, let the natural number m be fixed. We introduce
a coupling of the transition probabilities Pm,l and a distribution, which does not
depend on m. From the representation of the Beta-function by means of the �-
function and its functional equation, we have

ρm,m−k+1 = 1

�(2 − α)�(α)

m!
�(m)

�(k − α)

k!
�(m − k + α)

(m − k)!
= 1

�(2 − α)�(α)

�(k − α)

�(k + 1)

(m − k + 1) · · ·m
(m − k + α) · · · (m − 1 + α)

�(m + α)

�(m)
,

thus

Pm,m−k = dmk

�(k + 1 − α)

�(k + 2)
, k ≥ 1

with

dmk = dm

(m − k) · · · (m − 1)

(m + α − k − 1) · · · (m + α − 2)

and a normalizing constant dm > 0 (also dependent on α). Recall from the Intro-
duction that given X0 = m the quantities Pm,m−k are the weights of the distribution
of the downward jump U = X0 − X1. For a more detailed discussion of this “law
of first jump,” we refer to Delmas et al. [8].

It is natural to relate this distribution to the distribution of some random vari-
able V with values in N and distribution given by

P(V = k) = α

�(2 − α)

�(k + 1 − α)

�(k + 2)
, k ≥ 1.(4)

This kind of distribution appears for Beta-coalescents already in Bertoin and Le
Gall [4] (see their Lemma 4), in Berestycki et al. [1] (in the context of frequency
spectra) as well as in Delmas et al. [8]. There the normalizing constant is deter-
mined and the following formulas derived:

E(V ) = 1

α − 1
and P(V ≥ k) = 1

�(2 − α)

�(k + 1 − α)

�(k + 1)
.(5)
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From Stirling’s approximation,

P(V = k) ∼ α

�(2 − α)
k−α−1 and P(V ≥ k) ∼ 1

�(2 − α)
k−α.(6)

The sequence dmk is decreasing in k for fixed m, and thus the same is true for
Pm,m−k/P(V = k). Therefore V stochastically dominates the jump size U , that is,
for all k ≥ 1,

P(U ≥ k | X0 = m) ≤ P(V ≥ k).(7)

We like to investigate a coupling of U and V , where U ≤ V a.s. It is fairly obvious
that this can be achieved in such a way that

P(U = k | V = k) = 1 ∧ Pm,m−k

P(V = k)
= 1 ∧ dmk

d
.(8)

[Indeed one may put

P(U = j | V = k) =
(

1 − Pm,m−k

P(V = k)

)+ (Pm,m−j − P(V = j))+

P(U < km) − P(V < km)

for j �= k with km = min{k ≥ 1 :Pm,m−k ≤ P(V = k)}. There are other possibili-
ties; later it will only be important that we commit to one of them.]

LEMMA 3. For a coupling (U,V ) fulfilling (8), it holds

P(U �= V ) ≤ 1

(α − 1)m
and P(V ≥ k | U �= V ) ≤ ck1−α

for all k ≥ 1 and some c < ∞, which does not depend on m.

PROOF. Because of α < 2,

(m − k) · · · (m − 1)

(m + α − k − 1) · · · (m + α − 2)
≥ (m − k) · · · (m − 1)

(m − k + 1) · · ·m = m − k

m
,

and because of α > 1

(m + α − k − 1) · · · (m + α − 2)

(m − k) · · · (m − 1)
≥

(
m + α − 1

m

)k

≥ 1 + k
α − 1

m
,

consequently

1 − k

m
≤ dmk

dm

≤ 1

1 + (α − 1)k/m
.

It follows (
1 − k

m

)
P(V = k) ≤ d

dm

Pm,m−k ≤ P(V = k)
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for all k ≥ 1 with d = α/�(2 − α). Summing over k yields

1 − 1

m
E(V ) ≤ d

dm

≤ 1 or 1 ≤ dm

d
≤ 1

(1 − 1/((α − 1)m))+
.

Combining the estimates, we end up with

1 − k

m
≤ dmk

d
≤ 1

(1 + (α − 1)k/m)(1 − 1/((α − 1)m))+
(9)

for all k ≥ 1.
Now from (8), (9)

P(U �= V ) = ∑
k≥1

(
P(V = k) − Pm,m−k

)+

= ∑
k≥1

P(V = k)

(
1 − dmk

d

)+
≤ ∑

k≥1

P(V = k)
k

m
,

and thus from (5),

P(U �= V ) ≤ 1

(α − 1)m

which is our first claim.
Also, letting m ≥ 2/(α − 1) and k′ = 2�(α − 1)−2 + (α − 1)−1�, then(

1 + (α − 1)
k′

m

)(
1 − 1

(α − 1)m

)+
= 1 + (α − 1)

k′

m
− 1

(α − 1)m
− k′

m2

≥ 1 + α − 1

2

k′

m
− 1

(α − 1)m
≥ 1 + 1

m
.

From (9),

1 − dmk′

d
≥ 1 − 1

1 + 1/m
≥ 1

2m
,

and from (8),

P(U �= V ) ≥ P(U �= k′,V = k′) =
(

1 − dmk′

d

)+
P(V = k′) ≥ 1

2m
P(V = k′)

for m ≥ 2/(α − 1). It follows that there is a η > 0 such that for all m ≥ 1

P(U �= V ) ≥ 1

ηm
.

Now from (8) and (9),

P(V = k | U �= V ) = P(U �= k,V = k)

P(U �= V )

= (1 − dmk/d)+

P(U �= V )
P(V = k) ≤ ηkP(V = k),

and the second claim follows from (6). �
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3. The coalescent’s point process. Let μ denote a point process on {2,3, . . .}.
For any interval I , let μI be the point process on {2,3, . . .} given by

μI (B) = μ(B ∩ I ), B ⊂ {2,3, . . .}.
We call μ a coalescent’s point process downwards from ∞, shortly a CPP(∞),

if the following properties hold:

• μ({2,3, . . .}) = ∞ and μ({n}) = 0 or 1 for any n ≥ 2 a.s.
• For n ≥ 2 we have that, given the event μ({n}) = 1, and given μ[n+1,∞) the

point process μ[2,n] is a CPP(n) a.s.

Recall that a point process is called a CPP(n), if it can be represented as in (1).

THEOREM 4. Let 1 < α < 2. Then the CPP(∞) exists and is unique in distri-
bution.

We prepare the proof by two lemmas.

LEMMA 5. Let μ be a CPP(n) with 1 < n ≤ ∞. Then for any ε > 0 there is
a natural number r such that for any interval I = [a, b] with 2 ≤ a < b < n and
b − a ≥ r , we have

P
(
μ(I) = 0

) ≤ ε.

PROOF. For I = [a, b],

{μ(I) = 0} =
n⋃

m=b+1

{
μ({m}) = 1,μ([a,m − 1]) = 0

}
a.s.,

since μ({n}) = 1 for n < ∞ and μ({2,3, . . .}) = ∞ a.s. for n = ∞. Thus from (1),

P
(
μ(I) = 0

) ≤
n∑

m=b+1

P(X1 < a | X0 = m).

Applying (7) to U = X0 − X1 it follows that

P
(
μ(I) = 0

) ≤
n∑

m=b+1

P(V > m − a) ≤
∞∑

k=1

P(V > b − a + k).(10)

Since E(V ) < ∞, this series is convergent and the claim follows. �

The next lemma prepares a coupling of CPPs.

LEMMA 6. Let μ,μ′ be two independent CPPs coming down from n,n′ ≤ ∞.
Then for any ε > 0 there is a natural number s such that for any b sufficiently large
and n,n′ > b, we have

P
(
μ({j}) = μ′({j}) = 1 for some j = b − s, . . . , b

) ≥ 1 − ε.
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PROOF. First let n < ∞. We construct a coupling of a CPP(n) μ to an
i.i.d. random sequence. Consider random variables U1,V1,U2,V2, . . . and n =
X0,X1, . . . with Xi = n − U1 − · · · − Ui , which are constructed inductively as
follows: If U1,V1, . . . ,Ui,Vi are already gotten, then given the values of these
random variables let Vi+1 be a copy of the random variable V from Section 2 and
couple Ui+1 to Vi+1 as in Section 2, with m = Xi . For definiteness, put Ui+1 = 0
if Xi = 1. Then V1,V2, . . . are i.i.d. random variables with distribution (4), and
X0 > X1 > · · · > Xτn−1 are the points of a CPP(n) μ down from n, where τn is
the natural number i such that Xi = 1 for the first time.

Now let k be a natural number. Then Xi−1 ≥ n − U1 − · · · − Uk for i ≤ k. Thus
for any η > 0 and n ≥ 6kη−1E(V ) + 2, from Lemma 3,

P
(
Ui �= Vi for some i ≤ k,U1 + · · · + Uk ≤ 6kη−1E(V )

)

≤
k∑

i=1

P
(
Ui �= Vi,Xi−1 ≥ n − 6kη−1E(V )

) ≤ k

(α − 1)(n − 6kη−1E(V ))
,

thus

P
(
Ui �= Vi for some i ≤ k,U1 + · · · + Uk ≤ 6kη−1E(V )

) ≤ η

6
if n is large enough. Also E(Ui) ≤ E(V ) because of (7). Thus from Markov’s
inequality,

P
(
U1 + · · · + Uk > 6kη−1E(V )

) ≤ η

6
,(11)

and consequently

P(Ui �= Vi for some i ≤ k) ≤ η

3
if n is sufficiently large (depending on η and k).

Next let l be a natural number and n′ = n + l. Let U ′
1,V

′
1,U

′
2,V

′
2, . . . and n′ =

X′
0,X

′
1, . . . an analog construction with random variables, which are independent

of U1,V1,U2,V2, . . . . Then also

P(U ′
i �= V ′

i for some i ≤ k) ≤ η

3
.

Moreover because V has finite expectation and because of independence from
classical results on recurrent random walks,

P

( j∑
i=1

Vi �=
j∑

i=1

V ′
i − l for all j ≤ k

)
≤ η

6
,

if only k is sufficiently large (depending on l). Combining the estimates we obtain

P

( j∑
i=1

Ui �=
j∑

i=1

U ′
i − l for all j ≤ k

)
≤ 5η

6
.
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For the corresponding independent CPPs μ and μ′ coming down from n and n′ =
n + l, this implies, together with (11),

P
(
μ({j}) = μ′({j}) = 1 for some j ∈ [n − 6kη−1E(V ), n]) ≥ 1 − η.

Leaving aside the coupling procedure we have proved the following: Let η > 0,
let l be a natural number and let μ and μ′ denote independent CPPs coming down
from n < ∞ and n′ = n + l. Then there is a natural number r ′ such that

P
(
μ({j}) = μ′({j}) = 1 for some j = n − r ′, . . . , n

) ≥ 1 − η,(12)

if only n is large enough.
With this preparation we come to the proof of the lemma. Let ε > 0, b ≥ 2 and

let n,n′ > b. Denote

M = max
{
k ≤ b :μ({k}) = 1

}
, M ′ = max

{
k ≤ b :μ′({k}) = 1

}
(with the convention M = 1, if μ([2, b]) = 0). From Lemma 5,

P(M,M ′ ∈ [b − r, b]) ≥ 1 − ε

2

for some r and b > r + 2. Then

P
(
μ({j}) = μ′({j}) = 1 for no j ∈ [b − r ′ − r, b])

≤ ε

2
+ P

(
μ({j}) = μ′({j}) = 1

for no j ∈ [b − r ′ − r, b];b − r ≤ M,M ′ ≤ b
)

≤ ε

2
+ 2

∑
b−r≤m<m′≤b

P
(
μ({j}) = μ′({j}) = 1

for no j = m − r ′, . . . ,m | X0 = m,X′
0 = m′).

From (12) it follows that the right-hand probabilities are bounded by η = ε/4r2,
if b is only sufficiently large. Then

P
(
μ({j}) = μ′({j}) = 1 for no j ∈ [b − r ′ − r, b]) ≤ ε,

which is our claim with s = r + r ′. �

As a corollary, we note:

LEMMA 7. Let μ and μ′ be two independent CPP(∞). Then a.s. μ({j}) =
μ′({j}) = 1 for infinitely many j ∈ N.

PROOF. From the preceding lemma there are numbers b1 < b2 < · · · such that

P
(
μ({j}) = μ′({j}) = 1 for no j = bk, . . . , bk+1

) ≤ 2−k.
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Now an application of the Borel–Cantelli lemma gives the claim. �

PROOF OF THEOREM 4. The existence follows from the fact that for α > 1
the corresponding Beta-coalescent (�t)t≥0 comes down from infinity [18], which
means that the number of blocks in �t is a finite number Nt for each t > 0. Put
μ({k}) = 1, if and only if Nt = k for some t > 0.

Uniqueness follows from the last lemma and a standard coupling argument. �

4. A bigger coupling. Now let ν be a stationary renewal point process on
{2,3, . . .}; that is, if we denote the points of ν by 2 ≤ R1 < R2 < · · ·, then the
increments Ri+1 − Ri are independent for i ≥ 0 (with R0 = 1) and Ri+1 − Ri

has for i ≥ 1 the distribution (4). A stationary version of the process exists, since
E(V ) < ∞, such that the distribution of R1 may be adjusted in the usual way to
obtain stationarity, that is,

P(R1 = r) = P(V ≥ r − 1)

E(V )
, r = 2,3, . . . .(13)

Stationarity is of advantage for us. Then ν may be considered as restriction of a
stationary point process on Z. Such a process is invariant in distribution under the
transformation z �→ z0 − z, z ∈ Z with z0 ∈ Z. Therefore ν, restricted to {2, . . . , n}
looks the same, when considered upwards or downwards.

In this section we introduce a coupling between ν and the CPP(∞) μ, which
allows us later to replace μ by ν. Given b ≥ 2 let, as above,

M = max
{
k ≤ b :μ({k}) = 1

}
, M ′ = max

{
k ≤ b :ν({k}) = 1

}
.

Again, if there is no k ≤ b such that μ({k}) = 1, we put M = 1, and similary for
M ′. Let λb and λ′

b denote the distributions of M and M ′ (both dependent on b).
Now for r ∈ N we consider the following construction of μ and ν, restricted to

[2r−1 +1,2r ]. Take any coupling (M,M ′) of λ2r and λ′
2r . Given (M,M ′) construct

random variables U1,V1,U2,V2, . . . inductively as in the proof of Lemma 6, using
the coupling of Section 2. Here we start with X0 = M . Also let Y0 = M ′,

Xi = M − U1 − · · · − Ui, Yi = M ′ − V1 − · · · − Vi, i ≥ 1,(14)

and

N = min{i ≥ 0 :Xi ≤ 2r−1}, N ′ = min{i ≥ 0 :Yi ≤ 2r−1}.(15)

The whole construction is interrupted at the moment N ∨ N ′. Maybe M,M ′ ≤
2r−1, then no step of the construction is required. Clearly the following statements
are true:

• The point process
∑N−1

i=0 δXi
is equal in distribution to μ, restricted to [2r−1 +

1,2r ].
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• The point process
∑N ′−1

i=0 δYi
is equal in distribution to ν, restricted to [2r−1 +

1,2r ].
• XN and YN ′ ∨ 1 have the distributions λ2r−1 and λ′

2r−1 .

The complete coupling is

�r(M,M ′) =
(

N−1∑
i=0

δXi
,

N ′−1∑
i=0

δYi
,XN,YN ′ ∨ 1

)

(16)
= (φr

1, φ
r
2, φ

r
3, φ

r
4) (say).

Its distribution is uniquely determined by the distribution of the coupling (U,V )

from Section 2. The following continuity property is obvious:

• If we have a sequence (Mn,M
′
n) of couplings of λ2r and λ′

2r such that

(Mn,M
′
n)

d→ (M,M ′), then (M,M ′) is also a coupling of λ2r and λ′
2r and

�r(Mn,M
′
n)

d→ �r(M,M ′).
Another obvious fact is that this construction can be iterated: Given �r(M,M ′)

we construct �r−1(φr
3, φ

r
4) and so forth. Thus starting with the independent cou-

pling (M,M ′) (i.e., M and M ′ are independent), we obtain the tupel

�r = (�1,r (M1,r ,M
′
1,r ),�

2,r (M2,r ,M
′
2,r ), . . . ,�

r,r (Mr,r ,M
′
r,r )),

where (Mr,r ,M
′
r,r ) = (M,M ′) and (Ms,r ,M

′
s,r ) = (φ

s+1,r
3 , φ

s+1,r
4 ) for s < r .

Since Ms,r and M ′
s,r are no longer independent in general, the tupels �r are ini-

tially not consistent for different r . To enforce consistency note that for fixed s the
distributions of (Ms,r ,M

′
s,r ) are tight for r ≥ s, since they take values in the finite

set {1, . . . ,2s} × {1, . . . ,2s}. Thus by a diagonalization argument, we may obtain
a sequence 1 ≤ r1 < r2 < · · · such that

(Ms,rn,Ms,rn)
d→ (Ms,∞,M ′

s,∞)

for certain couplings (Ms,∞,M ′
s,∞) of λ2s and λ′

2s .
If we make use instead of the independent coupling (M,M ′), now (Mr,∞,

M ′
r,∞) as starting configuration in the construction of �r , then we gain consis-

tency in the sense that

�r−1 d= (�1,r (M1,r ,M
′
1,r ),�

2,r (M2,r ,M
′
2,r ), . . . ,�

r−1,r (Mr−1,r ,M
′
r−1,r )).

Proceeding to the projective limit, we obtain the “big coupling,”

�∞ = (�1,∞(M1,∞,M ′
1,∞),�2,∞(M2,∞,M ′

2,∞), . . .).(17)

It has the property that

μ =
∞∑

r=1

φ
r,∞
1 and ν =

∞∑
r=1

φ
r,∞
2(18)
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are coupled copies of our CPP(∞) and stationary point process.
In order to estimate the difference between both point processes, we go back

to (14), (15) and estimate the tail of the distribution of

Dr = max
i≤N∧N ′ |Xi − Yi |.(19)

LEMMA 8. There is a constant c > 0 such that for all r ≥ 1 and all t > 0,

P(Dr > t) ≤ ct1−α.

PROOF. For i ≤ N ∧ N ′, we have

|Xi − Yi | ≤ ∑
j≤N∧N ′

|Uj − Vj | + |X0 − Y0|
(20)

≤ ∑
j≤N∧N ′

|Uj − Vj | + (2r − M) + (2r − M ′).

From (6), (10),

P(2r − M > t) ≤ ∑
k≥t

P(V ≥ k) ≤ ct1−α(21)

for a suitable c > 0.
Because of stationarity 2r −M ′ and (R1 −2)∧ (2r −1) are equal in distribution,

therefore because of (6), (13)

P(2r − M ′ > t) ≤ P(R1 > t) ≤ ct1−α(22)

for a suitable c > 0.
Finally from Lemma 3 Uj �= Vj occurs for j ≤ N at most with probability p =

21−r/(α − 1) and then |Uj −Vj | ≤ Vj a.s. Also because of Lemma 3 these Vj can
be stochastically dominated by random variables a + bζj with constants a, b > 0
and positive i.i.d. random variables ζj , which possess a stable distribution of index
α − 1 and Laplace transform exp(−λα−1). Also N ∧ N ′ ≤ 2r−1 = w (say). Thus∑

j≤N∧N ′ |Uj − Vj | is stochastically dominated by the random variable

W =
w∑

j=0

(a + bζj )Ij ,

where Ij are i.i.d. Bernoulli with success probability p. Let ϕ(λ) = exp(−aλ −
(bλ)α−1) be the Laplace transform of a + bζj . Then W has the Laplace transform

σ(λ) = (
1 − p

(
1 − ϕ(λ)

))w
.
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It follows 1 − σ(λ) ≤ wp(1 − ϕ(λ)) ≤ (1 − ϕ(λ))/(α − 1). From the well-known
identity λ

∫ ∞
0 e−λxP(W > x)dx = 1 − σ(λ), it follows that

e−1P(W > t) ≤ t−1
∫ ∞

0
e−x/tP(W > x)dx

= 1 − σ(1/t) ≤ 1

α − 1

(
1 − exp

(−at−1 − (bt)1−α))
.

Thus

P
( ∑

j≤N∧N ′
|Uj − Vj | > t

)
≤ P(W > t) ≤ ct1−α(23)

for a suitable c > 0. Using estimates (21) to (23) in (20) yields our claim. �

Additionally, we note that

|N − N ′| ≤ Dr.(24)

Indeed, if N < N ′, then XN ≤ 2r−1, thus YN ≤ 2r−1 + Dr . Further YN ′−1 > 2r−1,
which implies N ′ − 1 −N ≤ YN −YN ′−1 ≤ Dr − 1. The case N ′ < N is treated in
the same way.

5. On sums of independent random variables. The following lemma can be
deduced from well-known results (see, e.g., Petrov [15]), but a direct proof seems
more convenient. Let

γ = 1

α − 1
.

LEMMA 9. Let V1,V2, . . . be i.i.d. copies of the random variable (4). Then for
any β ∈ R and any ε > 0 a.s.,

n∑
k=1

k−β(Vk − γ ) = ηn + o(n1/α−β+ε),

where ηn is a.s. convergent.

PROOF. Let ε > 0. A short calculation gives that E(V 2
k ;Vk ≤ k1/α+ε) is of

order k2/α−1+(2−α)ε; thus
∞∑

k=1

k−1/α−ε(Vk1Vk≤k1/α+ε − E(Vk;Vk ≤ k1/α+ε)
)

is a.s. convergent. Also E(Vk;Vk > k1/α+ε) is of order less than k1/α−1 and
P(Vk > k1/α+ε) is of order k−1−αε such that Vk > k1/α+ε occurs only finitely
often a.s. Thus

∞∑
k=1

k−1/α−ε(Vk − γ )
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is a.s. convergent for all ε > 0.
For β > 1

α
, it follows that the sum

∑n
k=1 k−β(Vk − γ ) is a.s. convergent, which

is our claim [then the term o(n1/α−β+ε) is superfluous]. In the case β ≤ 1
α

by
Kronecker’s lemma a.s.,

n∑
k=1

k−β(Vk − γ ) = o(n1/α−β+ε),

which again is our claim (now ηn is superfluous). �

Next recall that ς denotes a random variable with maximally skewed stable dis-
tribution of index α as in (3). The following result can be deduced from a general
statement on triangular arrays of independent random variables; see [11], Chap-
ter XVII, Section 7; however, a direct proof seems easier.

LEMMA 10. Let V1,V2, . . . be independent copies of the random variable (4).
Then the following holds true:

(i) Let 1 < α < 1
2(1 + √

5). Then

nα−1−1/α
n∑

k=1

k1−α(Vk − γ )
d→ −cς,

where

c = (
(1 + α − α2)�(2 − α)

)−1/α
.

(ii) For α = 1
2(1 + √

5)

(logn)−1/α
n∑

k=1

k1−α(Vk − γ )
d→ −ς

�(2 − α)1/α
.

PROOF. (i): From (5), (6) and the theory of stable laws, it follows that

n−1/α(V1 + · · · + Vn − γ n)
d→ −ς

�(2 − α)1/α
.

We express this relation by means of the characteristic functions ϕ(u) and eψ(u) of
V − γ and −ς/�(2 − α)1/α :ϕ(n−1/αu)n → eψ(u) for all u ∈ R, or slightly more
generally,

ϕ(vnn
−1/αu)n → eψ(u),

if vn → 1. Since ϕn(u) = ϕ(vnn
−1/αu) is again a characteristic function, it follows

from Feller [11], Chapter XVII.1, Theorem 1, that for n → ∞
n
(
ϕ(vnn

−1/αu) − 1
) → ψ(u)



LENGTH OF BETA-COALESCENT 2101

or

ϕ(su) − 1 ∼ sαψ(u) as s → 0

for all real u. Since α − α2 > −1 for α < 1
2(1 + √

5), it follows that with ζ =
(1 + α − α2)1/α

n∑
k=1

(
ϕ

(
ζk1−α

n1−α+1/α
u

)
− 1

)
∼ ψ(u)

n∑
k=1

(
ζk1−α

n1−α+1/α

)α

→ ψ(u).

Similarly,
n∑

k=1

∣∣∣∣ϕ
(

ζk1−α

n1−α+1/α
u

)
− 1

∣∣∣∣ → |ψ(u)|,

and consequently,
n∑

k=1

∣∣∣∣ϕ
(

ζk1−α

n1−α+1/α
u

)
− 1

∣∣∣∣
2

≤ max
k=1,...,n

∣∣∣∣ϕ
(

ζk1−α

n1−α+1/α
u

)
− 1

∣∣∣∣
n∑

k=1

∣∣∣∣ϕ
(

ζk1−α

n1−α+1/α
u

)
− 1

∣∣∣∣ → 0

for n → ∞.
In order to transfer these limit results to characteristic functions we use that for

all complex numbers z with |z| ≤ 1,

|z − ez−1| ≤ c|z − 1|2
for some c > 0. Therefore, if |z1|, . . . , |zn| ≤ 1,

∣∣z1 · · · zn − e(z1−1)+···+(zn−1)
∣∣ ≤

n∑
k=1

|zk − ezk−1| ≤ c

n∑
k=1

|zk − 1|2.

We put zk = zkn(u) = ϕ(
ζk1−α

n1−α+1/α u). Then the right-hand side goes to zero, and we
obtain

z1n(u) · · · znn(u) → eψ(u).

Since the product on the left-hand side is the characteristic function of ζnα−1−1/α×∑n
k=1 k1−α(Vk − 1

α−1) the claim follows.
(ii): This proof goes along the same lines using

n∑
k=1

(
ϕ

(
k1−α

(logn)1/α
u

)
− 1

)
∼ ψ(u)

n∑
k=1

(
k1−α

(logn)1/α

)α

.

Now α − α2 = −1, thus
n∑

k=1

(
ϕ

(
k1−α

(logn)1/α
u

)
− 1

)
∼ ψ(u)

1

logn

n∑
k=1

1

k
∼ ψ(u),

and the claim follows. �
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6. Proof of Theorem 1. Again let 2 ≤ R1 < R2 < · · · be the points of the
stationary point process ν, and denote

Vj = Rj+1 − Rj , j ≥ 1.

The random variables V1,V2, . . . are i.i.d. with distribution (4).

LEMMA 11. We have∫
[2,n]

x1−αν(dx) = n2−α

γ (2 − α)
− γ −α

∑
k≤n/γ

k1−α(Vk − γ ) + δn

with

δn = ηn + oP (n1/α2+1−α+ε)

for any ε > 0, where the random variables ηn are convergent in probability.

PROOF. Our starting point is∫
[2,n]

x1−αν(dx) =
rn∑

i=1

R1−α
i ,

where rn is such that Rrn ≤ n < Rrn+1. From Lemma 9 we have Rn − γ n =
o(n1/α+ε) a.s., which implies rn − n

γ
= o(n1/α+ε) a.s.

By a Taylor expansion,

R1−α
i = (γ i)1−α + (1 − α)(γ i)−α(Ri − γ i) + δ′

i
(25)

= (γ i)1−α + (1 − α)(γ i)−α
i−1∑
j=1

(Vj − γ ) + δ′′
i ,

where the remainder is a.s. of the order

δ′′
i = O

(
i−α−1(Ri − γ i)2) + O(i−α) = o(i2/α−α−1+ε).

We consider now the sums of the different terms in (25).
rn∑

i=1

(γ i)1−α = γ 1−α

2 − α
r2−α
n + η′

n,(26)

where η′
n is a.s. convergent. Further, putting an = (α − 1)

∑
i>n i−α ,

(1 − α)

rn∑
i=1

i−α
i−1∑
j=1

(Vj − γ ) = (1 − α)

rn−1∑
j=1

(Vj − γ )

rn∑
i=j+1

i−α

= arn(Rrn+1 − R1 − γ rn) −
rn∑

j=1

aj (Vj − γ ).
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The distribution of Rrn+1 − n does not depend on n because of stationarity, thus
arn(Rrn+1 −R1 − n) = OP (n1−α). Also

∑n
j=1(aj − j1−α)(Vj − γ ) is a.s. conver-

gent for α > 1, since an − n1−α = O(n−α) and since V has finite expectation. It
follows

(1 − α)

rn∑
i=1

i−α
i−1∑
j=1

(Vj − γ )

(27)

= r1−α
n (n − γ rn) −

rn∑
j=1

j1−α(Vj − γ ) + η′′
n + OP (n1−α),

where η′′
n is a.s. convergent. Next

rn∑
i=1

δ′′
i = η′′′

n + o(n2/α−α+ε) a.s.(28)

for all ε > 0, where η′′′
n is a.s. convergent. Note that this formula covers two cases:

If 2
α

< α, then the sum is a.s. convergent and the right-hand term is superfluous.
Otherwise the term η′′′

n can be neglected.
Furthermore another Taylor expansion gives

n2−α

2 − α
= (γ rn)

2−α

2 − α
+ (γ rn)

1−α(n − γ rn) + o(n2/α−α+ε) a.s.(29)

Combining (25) to (29) gives
rn∑

i=1

R1−α
i = n2−α

γ (2 − α)
− γ −α

rn∑
j=1

j1−α(Vj − γ )

(30)
+ ηn + o(n2/α−α+ε) a.s.,

where ηn is convergent in probability.
Finally we consider the (loosely notated) difference

n/γ∑
j=rn+1

j1−α(Vj − γ ) = ∑
j≤n/γ

j1−α(Vj − γ ) −
rn∑

j=1

j1−α(Vj − γ ).

For any random sequence of natural numbers sn such that sn = o(n1/α+ε) a.s. for
all ε > 0,∑

i≤sn

(Vi − γ ) = Rsn+1 − R1 − γ sn = o(s1/α+ε
n ) = o(n1/α2+2ε+ε2

) a.s.

Since rn − n/γ = o(n1/α+ε) a.s. for any ε > 0, this implies for any ε > 0 in prob-
ability,

n/γ∑
j=rn+1

(Vj − γ ) = oP (n1/α2+ε).
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This implies
∑n/γ

j=rn+1(Vj + γ ) = oP (n1/α+ε). Therefore

∣∣∣∣∣
n/γ∑

j=rn+1

j1−α(Vj − γ )

∣∣∣∣∣
≤ r1−α

n

∣∣∣∣∣
n/γ∑

j=rn+1

(Vj − γ )

∣∣∣∣∣ +
∣∣∣∣
(

n

γ

)1−α

− r1−α
n

∣∣∣∣
n/γ∑

j=rn+1

(Vj + γ )

= oP (n1/α2+1−α+ε) + O
(
n−α(n − γ rn)

)
oP (n1/α+ε)

= oP (n1/α2+1−α+ε) + oP (n2/α−α+2ε).

Since 1
α2 + 1 ≥ 2

α
, we end up with

n/γ∑
j=rn+1

j1−α(Vj − γ ) = oP (n1/α2+1−α+ε).

Combining this estimate with (30) gives the claim. �

PROOF OF THEOREM 1. The total length (2) of the n-coalescent can be rewrit-
ten as

Ln =
τn−1∑
i=0

Xi

ρXi

Ei,

where E0,E1, . . . denote exponential random variables with expectation 1, inde-
pendent among themselves and from the Xi .

From Lemma 2.2 in Delmas et al. [8], we have for m → ∞
ρm = 1

α�(α)
mα + O(mα−1).(31)

In the first step we replace the points n = X0 > X1 > · · · of a CPP(n) by points
of a CPP(∞): If we take independent versions of both then for given ε > 0 by
Lemma 6, there is a natural number s ≥ 1 such that with probability at least 1 −
ε they meet before n − s. From this moment both CPPs can be coupled. Thus,
letting n ≥ X′

0 > X′
1 > · · · be the points of the coupled CPP(∞) within [2, n],

independent of E0,E1, . . . , and

L′
n =

τ ′
n−1∑
i=0

X′
i

ρX′
i

Ei,

then due to the the coupling and (31) for n sufficiently big

P
(|Ln − L′

n| > 3α�(α)n1−α(E0 + · · · + Es)
) ≤ ε.
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Since α > 1, Ln − L′
n = oP (1), thus we may replace Ln by L′

n in our asymptotic
considerations.

Thus we work now with a CPP(∞) μ, which we couple to a stationary point
process ν according to (17) and (18). Also let E0,E1, . . . be independent of the
whole coupling. We use the formula

L′
n =

∫
[2,n]

xEx

ρx

μ(dx),(32)

in which the exponential random variables now are ordered differently. Since∑
x≥1 x−αEx < ∞ a.s., it follows from (31) that

L′
n = α�(α)

∫
[2,n]

Ex

xα−1 μ(dx) + η1,n,

where η1,n is a.s. convergent.
Next

∑
x≥2 x−1/2−ε(Ex − 1) is a.s. convergent for any ε > 0. It follows

that
∑

x≥2 x1−α(Ex − 1) is a.s. convergent for α > 3
2 and else a.s. of order

O(n3/2−α+ε). Given μ, the same holds true for
∫
[2,n]

Ex−1
xα−1 μ(dx), thus

L′
n = α�(α)

∫
[2,n]

x1−αμ(dx) + η2,n + o(n3/2−α+ε) a.s.,

where again η2,n is a.s. convergent.
Next from (18) with 2s < n ≤ 2s+1∫

[2,n]
x1−αμ(dx) =

∫
[2,n]

x1−αν(dx)

+
s∑

r=1

∫
[2r−1+1,2r ]

x1−α(
φ

r,∞
1 (dx) − φ

r,∞
2 (dx)

)

+
∫
[2s+1,n]

x1−α(
φ

s,∞
1 (dx) − φ

s,∞
2 (dx)

)
.

From (19) and (24) we see that∣∣∣∣
∫
[2r−1+1,2r ]

x1−α(
φ

r,∞
1 (dx) − φ

r,∞
2 (dx)

)∣∣∣∣
≤ 2r−1(α − 1)(2r−1)−αDr + 2(2r−1)1−αDr,

and the same estimate holds for the last term above. In view of Lemma 8 and the
Borel–Cantelli lemma, we conclude that∫

[2,n]
x1−αμ(dx) =

∫
[2,n]

x1−αν(dx) + η3,n

with η3,n a.s. convergent. Altogether

L′
n = α�(α)

∫
[2,n]

x1−αν(dx) + η4,n + o(n3/2−α+ε),
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where η4,n is a.s. convergent. Finally Lemma 11 gives a.s.

L′
n = �(α)α(α − 1)

(2 − α)
n2−α − �(α)α(α − 1)α

∑
k≤n/γ

k1−α(Vk − γ )

(33)
+ ηn + oP (n1/α2+1−α+ε) + o(n3/2−α+ε)

for all ε > 0, where ηn now is convergent in probability.
We are ready to treat the different cases of Theorem 1:
If 1 < α < (1 +√

5)/2, then we use that 1/α > 1/α2 and 1/α > 1/2. Therefore
the three remainder terms in (33) are all of order oP (n1/α+1−α) and thus may be
neglected. The result follows from an application of Lemma 10. The case α =
(1 + √

5)/2 is treated in the same way.
If α > (1 + √

5)/2, then 1
α2 + 1 − α < 0 and 3/2 − α < 0. Also from Lemma 9

it follows that
∑

k≤n/γ k1−α(Vk − γ ) is a.s. convergent. Thus it follows from (33)

that L′
n − �(α)α(α−1)

(2−α)
n2−α is convergent in probability. To see that the limit of L′

n

(and thus Ln) is nondegenerate, we go back to (32), respectively,

L′
n − �(α)α(α − 1)

(2 − α)
n2−α

= 2α�(α)

ρ2
μ({2})E2 +

(
α�(α)

∫
[3,n]

xEx

ρx

μ(dx) − �(α)α(α − 1)

(2 − α)
n2−α

)
.

As shown the term in brackets in convergent in probability. Also μ({2}) = 1 with
positive probability. Since the exponential variable E2 is independent from the rest
on the right-hand side, the whole limit has to be nondegenerate. This finishes the
proof. �
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