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SIMPLE ARBITRAGE

BY CHRISTIAN BENDER

Saarland University

We characterize absence of arbitrage with simple trading strategies in a
discounted market with a constant bond and several risky assets. We show that
if there is a simple arbitrage, then there is a 0-admissible one or an obvious
one, that is, a simple arbitrage which promises a minimal riskless gain of ε, if
the investor trades at all. For continuous stock models, we provide an equiv-
alent condition for absence of 0-admissible simple arbitrage in terms of a
property of the fine structure of the paths, which we call “two-way crossing.”
This property can be verified for many models by the law of the iterated log-
arithm. As an application we show that the mixed fractional Black–Scholes
model, with Hurst parameter bigger than a half, is free of simple arbitrage on
a compact time horizon. More generally, we discuss the absence of simple
arbitrage for stochastic volatility models and local volatility models which
are perturbed by an independent 1/2-Hölder continuous process.

1. Introduction. The fundamental theorem of asset pricing characterizes ab-
sence of arbitrage in terms of the existence of equivalent martingale measures.
More precisely, the version of the fundamental theorem obtained by Delbaen and
Schachermayer [7] states that a locally bounded stock model does not admit a free
lunch with vanishing risk, if and only if the the model has an equivalent local mar-
tingale measure. As absence of arbitrage is generally considered as a minimum
requirement for a sensible stock model, nonsemimartingale models have widely
been ruled out in financial modeling. However, absence of arbitrage heavily de-
pends on the class of admissible strategies. In this respect the fundamental theorem
of asset prices assumes the largest possible class of admissible strategies, namely
all self-financing strategies with wealth processes which are bounded from below.

In this paper we discuss absence of arbitrage within the class of simple strate-
gies. The class of simple strategies consists of portfolios which cannot be rebal-
anced continuously in time, but only at a finite number of stopping times. These
simple strategies can actually be considered as a reasonable description of the trad-
ing opportunities which can be implemented in reality. Assuming a discounted
model with a constant bond and a finite number of risky assets, we first prove
that if there is a simple arbitrage (i.e., an arbitrage with a simple strategy), then
there must be one of two particularly favorable types: an obvious arbitrage, which
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promises a minimum gain of some ε in those scenarios, where the investor starts to
trade at all; or a 0-admissible arbitrage which can be obtained without running into
debt while waiting for the riskless gain (Theorem 2.6). For models with continu-
ous trajectories, we further characterize the absence of 0-admissible arbitrage in
terms of a property on the fine structure of the paths which we call two-way cross-
ing (Proposition 2.8). In the case of a single risky asset, this property means that
whenever the stock price moves from its present level, it crosses the level imme-
diately (i.e., infinitely often in arbitrarily short time intervals). In the multi-asset
case, this property must hold along all measurable directions; cf. Definition 3.1
below. We finally end with a full characterization of absence of simple arbitrage
in the case of continuous asset prices in terms of a condition on the fine struc-
ture of the paths (two-way crossing) and on the probability that the asset prices
stay close to their present level in the long run; see Definition 2.3 for a more pre-
cise statement of this property. We also discuss how these two properties can be
checked for some mixed models, that is, for some classical arbitrage-free model
whose log-prices are perturbed by adding some 1/2-Hölder continuous processes.
As a particular example we prove that the mixed fractional Black–Scholes model
(a Black–Scholes model whose log-price is perturbed by adding an independent
fractional Brownian motion) with Hurst parameter H > 1/2 is free of simple arbi-
trage. This model is known not to be a semimartingale if 1/2 < H ≤ 3/4; see [4].
Other model classes, which can be shown to have no simple arbitrage under ap-
propriate conditions, include mixed stochastic volatility models and mixed local
volatility models.

Our results can be seen in line with some recent papers which discuss the ab-
sence of arbitrage beyond the semimartingale setting, by either introducing market
friction, such as transaction costs (e.g., [12–14]), or by restricting the class of ad-
missible strategies, such as [2, 3, 5, 16]. In particular, the articles by Cheridito [5]
and Jarrow et al. [16] are closely related. They discuss absence of arbitrage for
a subclass of simple strategies, in which, additionally, a minimal waiting time is
imposed between two transactions. This class of strategies is called Cheridito class
in [16]. Bender et al. [3] show that the conditional full support property implies the
absence of arbitrage within the Cheridito class and even in a larger class of strate-
gies, where the waiting time is localized in a suitable way to include the first hitting
time of a given level. As conditional full support is easily seen to exclude obvious
arbitrage on finite time horizon, the two-way crossing property, discussed in the
present paper, can be interpreted as a key property to extend absence of arbitrage
from the Cheridito class to the class of all simple strategies for many models.

The paper is organized as follows. In Section 2 we introduce the general setting
and prove the first characterization of simple arbitrage in terms of obvious arbi-
trage and 0-admissible arbitrage. Section 3 is devoted to the study of 0-admissible
simple arbitrage for models with continuous paths. Several examples, including
the mixed fractional Black–Scholes model, are discussed in Section 4.
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2. A characterization of simple arbitrage for right-continuous processes.
In this section we provide a first characterization of simple arbitrage. We assume
that a discounted market with D + 1 securities is given. A constant bond Bt = 1
and D stocks modeled by a right-continuous adapted RD-valued stochastic process
Xt , t ∈ [0,∞), on a filtered probability space (�, F , (Ft )t∈[0,∞),P ). The filtered
probability space is assumed to satisfy the usual conditions of completeness and
right-continuity of the filtration.

An investor can trade in the market by choosing the number of shares held at
time t by a simple strategy of the form

�t = φ01{0}(t) +
n−1∑
j=0

φj 1(τj ,τj+1],

where n ∈ N, 0 = τ0 ≤ τ1 ≤ · · · ≤ τn are a.s. finite stopping times with respect to
(Ft ), and the φj are row vectors of D-dimensional, Fτj

-measurable random vari-
ables. Note that the trader is allowed to trade on an infinite time horizon because
we do not restrict to bounded stopping times for the reallocation of the capital.
Of course, trading on a finite time horizon [0, T ] is covered by switching to the
process (Xt∧T , Ft∧T ).

As the market is already discounted, the self-financing condition on the simple
strategy � enforces that the investor’s wealth at time t ∈ [0,∞) is given by

Vt(�;v) = v +
n−1∑
j=0

�τj+1(Xt∧τj+1 − Xt∧τj
),

where v is the investor’s initial capital. The wealth process Vt(�;v) inherits right-
continuity from X and satisfies

V∞(�;v) = lim
t→∞Vt(�;v) = v +

n−1∑
j=0

�τj+1(Xτj+1 − Xτj
),

because the stopping times τj , j = 1, . . . , n, are finite P -almost surely.

DEFINITION 2.1. A simple strategy � is:

• an arbitrage, if V∞(�;0) ≥ 0 P -a.s. and P({V∞(�;0) > 0}) > 0;
• c-admissible for some c ≥ 0, if

inf
t∈[0,∞)

Vt (�;0) ≥ −c P -almost surely.

We will speak of a simple arbitrage � if � is a simple strategy and an arbitrage.
The two types of arbitrage are 0-admissible arbitrage and obvious arbitrage,

each of which is illustrated by one of the examples.
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EXAMPLE 2.2. (i) Suppose Wt a Brownian motion, and for some fixed T > 0,

Xt =
⎧⎨
⎩

1√
2π(T − t)

e−W 2
t /(2(T −t)), 0 ≤ t < T ,

0, t ≥ T .

Then, Xt has continuous paths P -almost surely and is a local martingale, which
can be easily verified by an application of Itô’s formula. As X0 = 1√

2πT
> 0 and

XT = 0, we observe that the simple strategy �t = −1(0,T ](t) is an arbitrage.
Here the arbitrage is obtained in the “long run” by waiting up to time T . Bor-

rowing the terminology of Guasoni et al. [14] this arbitrage is an obvious arbitrage.
This means that the arbitrage is of the form H1(σ,τ ] with |H | = 1 almost surely,
and if the investor trades at all, that is, on the set {σ < τ }, she can be sure to have
a riskless gain of at least a given constant ε > 0 (here: 1√

2πT
); compare Defini-

tion 2.3 below. Note that in the present example, there is no c ≥ 0 such that the
arbitrage is c-admissible, thanks to the local martingale property of X. Notice that
a related example of a local martingale which admits simple arbitrage has already
been given in [8].

(ii) Suppose Xt = exp{Wt + tα} for some α < 1/2. By the law of the iterated
logarithm, we have

inf{t > 0; log(Xt) > 0} = 0 < inf{t > 0; log(Xt) < 0} =: τ.
Hence, for sufficiently large N , the stopping times

τN := τ ∧ 1/N

satisfy P({τN < τ }) > 0. As

P({XτN
> 1}) = P

({W1/N 	= −(1/N)α} ∩ {τN < τ }) = P({τN < τ }) > 0

and XτN
= 1 on {τN = τ }, the strategy �t = 1(0,τN ] is a simple arbitrage with

wealth process

Vt(�;0) = Xt∧τN
− X0

→
{

exp{W1/N + (1/N)α} − 1, τN < τ,

0, τN = τ
(t → ∞)

for sufficiently large N . Here, the arbitrage can be obtained by trading at arbitrarily
short time intervals. Moreover, it is 0-admissible, because Xt − X0 ≥ 0 on [0, τ ].

The two types of arbitrages, which were illustrated in the previous example,
are particularly favorable for an investor: Obvious arbitrages which guarantee a
minimum riskless gain if the investor starts to trade at all; 0-admissible arbitrages
which can be obtained without running into debt while waiting for the riskless gain.

The main result of this section shows that if there is a simple arbitrage, then
there must be one of these two favorable types.
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Before we state and prove the result, we first introduce the notion of no obvious
arbitrage on an infinite time horizon. The definition is in the spirit of Guasoni et
al. [14].

DEFINITION 2.3. X satisfies no obvious arbitrage (NOA) if for every stop-
ping time σ and for every ε > 0 we have: If P({σ < ∞}) > 0 and H is a D-
dimensional row vector of Fσ -measurable random variables such that |H | = 1
P -almost surely, then

P
(
{σ < ∞} ∩

{
sup

t∈[σ,∞)

H(Xt − Xσ ) < ε
})

> 0.(1)

REMARK 2.4. (i) We think of H as an Fσ -measurable “direction” (and will
call an H with the above properties Fσ -measurable direction from now on). Then,
(1) means that, starting from Xσ at time σ , along each direction the probability
that the stocks do not increase by more than ε is positive. Note that by passing
from H to −H , we also get

P
(
{σ < ∞} ∩

{
inf

t∈[σ,∞)
H(Xt − Xσ) > −ε

})
> 0.

Hence, along each direction the probability that the stocks do not decrease by more
than ε is also positive.

(ii) In the case of a single stock D = 1, it is clearly sufficient to check (NOA)
along the directions +1 and −1. In this case, (1) simplifies to

P
(
{σ < ∞} ∩

{
inf

t∈[σ,∞)
Xt > Xσ − ε

})
> 0(2)

and

P
(
{σ < ∞} ∩

{
sup

t∈[σ,∞)

Xt < Xσ + ε
})

> 0.(3)

Condition (2) was introduced by Bayraktar and Sayit [1] in their study of sim-
ple arbitrage in the case of a single stock modeled by a nonnegative, strict local
martingale.

(iii) In the general case D > 1, it is not sufficient to check (NOA) along rational
directions. Here is a simple example with two stocks:

X1
t = Wt∧1, X2

t = UWt∧1 + (t ∧ 1),

where W is a Brownian motion, and U is uniformly distributed on [0,1] and inde-
pendent of W . Given any stopping time σ of the filtration Ft = σ(U,Ws,0 ≤ s ≤
(t ∧ 1)) and H = (q1, q2) ∈ Q2, we get

H(Xt − Xσ) = (q1 + q2U)(Wt∧1 − Wσ∧1) + q2(t ∧ 1) − q2(σ ∧ 1), t ≥ σ.
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As (q1 +q2U) 	= 0 P -almost surely, condition (1) is clearly satisfied along rational
directions. However, choosing σ = 0 and H̃ = (−U,1), we have

H̃ (Xt − Xσ ) = t ∧ 1,

which shows that (NOA) is violated along the direction H̃ /|H̃ |.

The next straightforward proposition explains how to obtain an obvious arbi-
trage, if (NOA) is violated. The simple idea is to buy H shares of the stocks at
time σ and wait until the stock prices have increased by some ε in direction H .
This will happen with probability 1 if (NOA) is violated at time σ in direction H .

PROPOSITION 2.5. If X is right-continuous and does not satisfy (NOA),
then X has a simple arbitrage.

PROOF. We suppose that (NOA) is violated, that is, there is a stopping time σ ,
an ε > 0 and an Fσ -measurable direction H such that P({σ < ∞}) > 0 and

P
(
{σ < ∞} ∩

{
sup

t∈[σ,∞)

H(Xt − Xσ) < ε
})

= 0.

We fix a sufficiently large K such that P({σ ≤ K}) > 0 and define the stopping
time ρ := inf{t ≥ σ ;H(Xt − Xσ) > ε/2}, which is a.s. finite on the set {σ ≤ K}.
Then, with τ := ρ1{σ≤K} + K1{σ>K} and H̃ = H1{σ≤K} + (1,0, . . . ,0)1{σ>K},
H̃1(σ∧K,τ ] is a simple arbitrage. Indeed, V∞(H̃1(σ∧K,τ ]) = H(Xρ − Xσ) ≥ ε/2
on {σ ∧ K < τ }, and V∞(H̃1(σ∧K,τ ]) = 0 on {σ ∧ K = τ }. So this arbitrage is
obvious in the terminology of Example 2.2(i). �

The following theorem is our first characterization of simple arbitrage, which is
valid for right-continuous stock models.

THEOREM 2.6. Suppose X has right-continuous paths. Then the following
assertions are equivalent:

(i) X is free of arbitrage with simple strategies.
(ii) X satisfies (NOA), and X has no 0-admissible arbitrage of the form H1(σ,τ ]

with bounded stopping times σ ≤ τ and an Fσ -measurable direction H .

As a preparation we prove two propositions which are interesting in their own
rights.

PROPOSITION 2.7. Suppose X has right-continuous paths. If (NOA) holds,
then every simple arbitrage is 0-admissible.
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PROOF. Here, the main idea is the following: If there is an arbitrage which
is not 0-admissible, then the value of the strategy will, at some time, drop below
some negative level, say −δ, with positive probability. However then the wealth
process must eventually increase by at least δ again because it must end with a
nonnegative value (due to the arbitrage property). This turns out to be in conflict
with the (NOA) property.

In more detail, suppose �t = φ01{0}(t)+∑n−1
j=0 φj 1(τj ,τj+1] is a simple arbitrage

which is not zero admissible. We define

j0 = max
{
j = 0, . . . , n − 1;P

(
inf

t∈[τj ,τj+1)
Vt (�;0) < 0

)
> 0

}
.

Setting τ := τj0+1, we observe that Vτ (�;0) ≥ 0 P -almost surely. Moreover, there
is a δ > 0 such that

P
(

inf
t∈[τj0 ,τ )

Vt (�;0) ≤ −2δ
)

> 0.(4)

Define a stopping time ρ by

ρ = inf{t > τj0;Vt(�;0) ≤ −δ} ∧ τ.

By right-continuity of X [and hence V (�;0)], we have Vρ(�;0) ≤ −δ on {ρ < τ }.
The latter set has positive probability by (4). We now choose M sufficiently large
such that

P({ρ < τ } ∩ {0 < |φj0 | ≤ M}) > 0.(5)

If this probability were not positive for sufficiently large M , then P(φj0 = 0|ρ <

τ) = 1, which contradicts Vρ(�;0) < 0 ≤ Vτ (�;0) on {ρ < τ }. We now define
A := {ρ < τ } ∩ {0 < |φj0 | ≤ M} ∈ Fρ and

H(ω) =
{

φj0(ω)/|φj0(ω)|, ω ∈ A,

(1,0, . . . ,0), ω /∈ A.

Then, on A,

δ ≤ Vτ (�;0) − Vρ(�;0) = φj0(Xτ − Xρ) ≤ MH(Xτ − Xρ).

Consequently,

P
(
A ∩

{
sup

t∈[ρ,∞)

H(Xt − Xρ) < δ/M
})

≤ P
(
A ∩ {H(Xτ − Xρ) < δ/M}) = 0.

Defining the stopping time

σ(ω) =
{

ρ(ω), ω ∈ A,

∞, ω /∈ A,
we get

P
(
{σ < ∞} ∩

{
sup

t∈[σ,∞)

H(Xt − Xσ) < δ/M
})

= 0

in contradiction to the definition of (NOA). �
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PROPOSITION 2.8. Suppose X is right-continuous. If X has a 0-admissible
simple arbitrage, then it has a 0-admissible arbitrage of the form H1(σ,τ ] with
bounded stopping times σ ≤ τ and an Fσ -measurable direction H .

In particular, this proposition shows that the study of 0-admissible arbitrage can
be restricted to bounded random time intervals.

PROOF. Suppose �t = φ01{0}(t)+∑n−1
j=0 φj 1(τj ,τj+1] is a 0-admissible simple

arbitrage. We define

j0 = max
{
j = 0, . . . , n − 1;P (

Vτj
(�;0) = 0

) = 1
}
.

We consider the strategy �̄t = φj01(τj0 ,τj0+1]. As P(Vτj0
(�;0) = 0) = 1, we obtain

Vt(�̄;0) =
⎧⎪⎨
⎪⎩

0, t ≤ τj0,

Vt (�;0), τj0 < t ≤ τj0+1,

Vτj0+1(�;0), t > τj0+1.

The value process of �̄ cannot drop below zero because it coincides with zero or
with the value process of the 0-admissible strategy �. Moreover, it is an arbitrage
because P(Vτj0+1(�;0) > 0) > 0 by the definition of j0. We now define

τ =
{

τj0+1, φj0 	= 0,

τj0, otherwise

and

H =
{

φj0/|φj0 |, τ > τj0,

(1,0, . . . ,0), otherwise.

Then Vt(H1(τj0 ,τ ];0) = |φj0 |Vt(�̄;0), which immediately implies that H1(τj0 ,τ ]
is a zero-admissible arbitrage, too.

If τ is bounded, the assertion of the proposition is proved. Otherwise, we now
consider the strategies HK1(τj0∧K,τ∧K] for K ∈ N, where HK = H1{τj0≤K} +
(1,0, . . . ,0)1{τj0>K}. Then

Vt

(
HK1(τj0∧K,τ∧K];0

) = H(Xτ∧K∧t − Xτj0∧K∧t ) = Vt∧K

(
H1(τj0 ,τ ];0

)
.

Consequently, HK1(τj0∧K,τ∧K] is 0-admissible. As{
V∞

(
H1(τj0 ,τ ];0

)
> 0

} ∩ {τ ≤ K} ↑ {
V∞

(
H1(τj0 ,τ ];0

)
> 0

}
(K ↑ ∞),

we get

P
({

V∞
(
H1(τj0 ,τ ];0

)
> 0

} ∩ {τ ≤ K}) > 0

for sufficiently large K . Now, V∞(H1(τj0 ,τ ];0) = V∞(HK1(τj0∧K,τ∧K];0) on
{τ ≤ K}, which implies that

P
({

V∞
(
HK1(τj0∧K,τ∧K];0

)
> 0

} ∩ {τ ≤ K}) > 0.
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Thanks to the 0-admissibility of HK1(τj0∧K,τ∧K], we conclude that this strategy is
an arbitrage. �

With these propositions at hand, the proof of Theorem 2.6 is immediate:

PROOF OF THEOREM 2.6. (ii) ⇒ (i) immediately follows from Proposi-
tions 2.7 and 2.8.

(i) ⇒ (ii): It suffices to show that (NOA) is a necessary condition for absence
of simple arbitrage, which is the assertion of Proposition 2.5. �

As a corollary we obtain a multidimensional and infinite time horizon version
of a result by Bayraktar and Sayit [1] for local martingales.

COROLLARY 2.9. Suppose X is right-continuous, and there is a probability
measure Q equivalent to P such that X is a Q-local martingale. Then the following
assertions are equivalent:

(i) X has no simple arbitrage.
(ii) X satisfies (NOA).

PROOF. In view of Theorem 2.6 it suffices to show that the existence of an
equivalent local martingale measure rules out the existence of a 0-admissible arbi-
trage of the form H1(σ,τ ] with bounded stopping times σ ≤ τ and Fσ -measurable
directions H . This follows from a routine application of the optional sampling
theorem applied to the Q-supermartingale Vt(H1(σ,τ ];0), which is justified by the
boundedness of τ . �

REMARK 2.10. In the setting of the previous corollary, absence of simple ar-
bitrage cannot be deduced directly from the existence of an equivalent local mar-
tingale measure. As we do not require that the wealth process of a simple strategy
is bounded from below, simple arbitrage is possible under local martingale dy-
namics as illustrated in Example 2.2(i), even on a finite time horizon. Moreover,
we emphasize that Corollary 2.9 covers the infinite time horizon case because we
allow trading at unbounded stopping times.

3. A characterization of simple arbitrage for continuous processes.
Throughout this section we assume that the stock model X has continuous paths.
Under this assumption we will characterize the absence of 0-admissible simple ar-
bitrage. In this way we will achieve a second characterization of simple arbitrage
in terms of the concept of “two-way crossing,” which we introduce next.

DEFINITION 3.1. Suppose σ is an a.s. finite stopping time, and H is an Fσ -
measurable direction. Let

σH = inf{t ≥ σ,H(Xt − Xσ) > 0}.
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(i) X satisfies two-way crossing at σ along direction H if

σH = σ−H P -a.s.(6)

(ii) X satisfies two-way crossing (TWC) at bounded stopping times (at a.s. fi-
nite stopping times) if it satisfies two-way crossing at every bounded (a.s. finite)
stopping time σ in every Fσ -measurable direction H .

REMARK 3.2. (i) (TWC) is a condition on the fine structure of the paths.
Whenever the stock price moves from Xσ along direction H , HXt will cross the
level HXσ infinitely often in time intervals of length ε for every ε > 0.

(ii) It is obvious that in the case of a single stock D = 1, (TWC) must only be
checked in direction H = 1.

(iii) In the multi-asset case, it is not sufficient to check (TWC) along rational
directions. The same counterexample as in Remark 2.4(iii), applies.

PROPOSITION 3.3. Suppose X is continuous. Then the following assertions
are equivalent:

(i) X satisfies (TWC) at a.s. finite stopping times.
(ii) X satisfies (TWC) at bounded stopping times.

(iii) X has no 0-admissible arbitrage of the form H1(σ,τ ] with bounded stop-
ping times σ and τ and Fσ -measurable direction H .

(iv) X has no 0-admissible simple arbitrage.

PROOF. We first introduce the notation

σH,n = inf{t ≥ σ,H(Xt − Xσ ) ≥ 1/n}(7)

for n ∈ N, and note that σH,n ↓ σH P -almost surely as n → ∞.

(i) ⇒ (ii): Obvious.
(ii) ⇒ (iii): Suppose a strategy of the form H1(σ,τ ] with a.s. finite stopping

times σ ≤ τ is an arbitrage. Of course, we can and shall assume P({τ > σ }) > 0
because otherwise V∞(H1(σ,τ ];0) = 0 P -almost surely.

We first consider the case P({σ−H = σ }|{τ > σ }) = 1: Then σ−H,n ↓ σ on
{τ > σ } and thus τn := τ ∧ σ−H,n ↓ σ P -a.s. Hence, P({σ < τn < τ }) > 0 for
sufficiently large n. For such an τn we have, on {σ < τn < τ },

Vτn

(
H1(σ,τ ];0

) = H(Xτ∧τn − Xσ∧τn) = H(Xσ−H,n
− Xσ) = −1/n.

Thus, H1(σ,τ ] is not 0-admissible. Note that in this first case we did not assume
boundedness of σ and τ , and did not not apply (TWC).

Now suppose that P({σ− = σ }|{τ > σ }) < 1 and σ is bounded. We observe
that, thanks to (TWC) at the bounded stopping time σ and the continuous paths
of X, Xt = Xσ on (σ, σ−H ] and, hence, Vt(H1(σ,τ ];0) = H(Xτ∧t − Xσ∧t ) = 0
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for t ∈ [0, σ−H ]. If H1(σ,τ ] is a 0-admissible arbitrage, then so is H1(σ−H ∧τ,τ ].
However, (σ−H )−H = σ−H , and so the first case applies.

(iii) ⇒ (iv): Proposition 2.8.
(iv) ⇒ (i): Here the idea is as follows: If (TWC) is violated, then there is a

portfolio, whose value goes up before going down. A 0-admissible arbitrage can
be obtained by buying this portfolio today and selling it once it has increased by
some ε, or else when its price returns to the current level.

Precisely, suppose that X does not satisfy (TWC) at some a.s. finite stopping
time σ in direction H . By passing to −H , if necessary, we can assume with-
out loss of generality that the set A = {ω,σH (ω) < σ−H (ω)} has strictly positive
probability. Note that A ∈ FσH

. We define the sequence of stopping times

τn = (σ−H ∧ σH,n)1A + σH 1Ac .

Then, τn ≥ σH a.s. and τn > σH on A. By construction and continuity of X, we
have H(Xt − Xσ) ≥ 0 for t ∈ (σH , τn]. Therefore the strategies H1(σH ,τn], n ∈ N,
are 0-admissible. As σH,n ↓ σH P -a.s., we get τn ↓ σH P -a.s. Therefore,

P({σH < τn < σ−H }) = P(A ∩ {τn < σ−H }) > 0

for sufficiently large n. However, on {σH < τn < σ−H },
V∞

(
H1(σH ,τn];0

) = H(Xτn − XσH
) = H(XσH,n

− Xσ ) = 1/n.

Consequently, H1(σH ,τn] is a 0-admissible arbitrage for suffciently large n. �

A combination of the previous proposition with Theorem 2.6 yields the follow-
ing characterization of simple arbitrage for continuous stock models.

THEOREM 3.4. Suppose X is continuous. Then, the following assertions are
equivalent:

(i) X does not admit a simple arbitrage.
(ii) X satisfies (TWC) at bounded stopping times and (NOA).

We now briefly discuss the two-way crossing property (TWC). It follows from
Lemma V.46.1 in [20] that (TWC) holds for one-dimensional regular diffusions.
Moreover, it is a direct consequence of Proposition 3.3 above that every local mar-
tingale satisfies (TWC), because local martingale models are clearly free of 0-
admissible arbitrage. We now provide a sufficient condition for (TWC) for mixed
models, that is, models of type Mt + Yt where M is a local martingale, and Y is
possibly a nonsemimartingale. The key assumption is that the quadratic variation
of the local martingale is sufficiently large in order to compensate for the path
irregularity of Y .
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THEOREM 3.5. Suppose Xt = Mt + Yt , where M is a D-dimensional contin-
uous (Ft )-local martingale, and Yt is a D-dimensional (Ft )-adapted process. We
assume that:

(1) For every K ∈ N, there is a strictly positive random variable εK such that
for every 0 ≤ s ≤ t ≤ K ,

〈M〉t − 〈M〉s ≥ εK(t − s)ID,

where ID is the unit matrix in RD ;
(2) Y is 1/2-Hölder continuous on compacts, that is, for every K ∈ N, there is

a positive random variable CK such that for every 0 ≤ s ≤ t ≤ K ,

|Yt − Ys | :=
√√√√ D∑

d=1

|Yd
t − Yd

s |2 ≤ CK |t − s|1/2.

Then, X satisfies (TWC) at bounded stopping times.

PROOF. We fix an arbitrary stopping time σ , which is bounded by some K ∈
N, and an Fσ -measurable direction H . Considering the real valued process

Zt = HXσ+t = HMσ+t + HYσ+t , 0 ≤ t ≤ 1,

with respect to the filtration Gt = Fσ+t , it is sufficient to show that

inf{t ≥ 0,Zt − Z0 > 0} = 0.(8)

Indeed, this implies σH = σ and, replacing H by −H , σ−H = σ .
In order to show (8), we introduce the process M

H,σ
t = HMσ+t − HMσ , 0 ≤

t ≤ 1, which is an Gt -local martingale with quadratic variation

〈MH,σ 〉t − 〈MH,σ 〉s = H(〈M〉σ+t − 〈M〉σ+s)H
′ ≥ εK+1(t − s),

0 ≤ s ≤ t ≤ 1,

by assumption (1). In particular, 〈MH,σ 〉t is strictly increasing on [0,1]. We extend
MH,σ to a local martingale on [0,∞) with strictly increasing quadratic variation
which satifies 〈MH,σ 〉t → ∞ as t → ∞, for example, by setting M

H,σ
t = M

H,σ
1 +

W̃t − W̃1 for t ≥ 1, where W̃ is a Brownian motion. Denoting by

T (t) = inf{s ≥ 0, 〈MH,σ 〉s = t}
the inverse of 〈MH,σ 〉, the Dambis–Dubins–Schwarz Theorem (see Karatzas
and Shreve [17], Theorem 3.4.6) yields that the process Wt = M

H,σ
T (t) is an

(GT (t))t∈[0,∞)-Brownian motion. By the law of the iterated logarithm (see, e.g.,
Theorem 2.9.23 in [17]) applied to Wt there is a set �′ of full P -measure such that
for every ω ∈ �′ there is a sequence tn ↓ 0 satisfying

lim
n→∞

Wtn(ω)√
2tn(ω) log log(1/tn(ω))

= 1.
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We define sn = T (tn) and notice that sn ↓ 0 and tn = 〈MH,σ 〉sn , because the
quadratic variation of MH,σ is strictly increasing. For suffciently large n ≥ N0(ω),
we then obtain, on �′,

Zsn − Z0 = MH,σ
sn

+ H(Yσ+sn − Yσ ) = Wtn + H(Yσ+sn − Yσ )

≥ 1

2

√
2〈MH,σ 〉sn log log(1/〈MH,σ 〉sn) − |Yσ+sn − Yσ |

≥
(√

εK+1

2

√
log log(1/〈MH,σ 〉sn) − CK+1

)√
sn.

As the right-hand side is strictly positive for sufficiently large n (depending on
ω ∈ �′), we get (8), and the proof is finished. �

4. Examples. We finally present some examples of models which are free
of simple arbitrage, although they may fail to be semimartingales. The models,
which we discuss here, can be considered as mixed models in the sense that some
well-known arbitrage-free semimartingale models are combined with some Hölder
continuous processes such as fractional Brownian motion.

Throughout the section we shall work on finite time horizons. To simplify the
terminology we say that a model (Xt , Ft ) is free of simple arbitrage on finite time
horizons if for every T > 0, the model (Xt∧T , Ft∧T ) has no simple arbitrage. In
view of Theorem 3.4 it is straightforward to deduce:

COROLLARY 4.1. Suppose X is continuous. Then the following assertions are
equivalent:

(i) X is free of simple arbitrage on finite time horizons.
(ii) X satisfies (TWC) at bounded stopping times and (NOA) holds on [0, T ] for

every T > 0; that is, For every [0, T ]-valued stopping time σ and for every ε > 0
we have the following: If P({σ < T }) > 0, and H is an Fσ -measurable direction,
then

P
(
{σ < T } ∩

{
sup

t∈[σ,T ]
H(Xt − Xσ ) < ε

})
> 0.(9)

4.1. Mixed Black–Scholes models. Our first class of examples concerns
“mixed Black–Scholes models,” that is, the log-prices of a multidimensional
Black–Scholes model are perturbed by adding Hölder continuous processes.

THEOREM 4.2. Suppose (Wt , Ft ) is an N -dimensional Brownian motion,
and Zt is a D-dimensional (Ft )-adapted process independent of W , which is
α-Hölder continuous on compacts for some α > 1/2. Further assume that the ma-
trix σσ ∗ is strictly positive definite, where σ = (σd,ν)d=1,...,D,ν=1,...,N . Define D
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stocks by

Xd
t = xd

0 exp

{
N∑

ν=1

σd,νW
ν
t + Zd

t

}

with initial values xd
0 > 0 for d = 1, . . . ,D. Then the D-dimensional mixed Black–

Scholes model Xt = (X1
t , . . . ,X

D
t )∗ is free of simple arbitrage on finite time hori-

zons.

PROOF. In view of Corollary 4.1 we have to show (TWC) at bounded stopping
times and (NOA) on [0, T ] for T > 0. In order to verify (TWC) we are going to
check the assumptions of Theorem 3.5. As each component Zd

t is α-Hölder con-
tinuous for some α > 1/2, we can conclude that Zd has zero quadratic variation.
Applying Itô’s formula (for Dirichlet processes), we hence obtain Xd

t = Md
t + Yd

t

with

Md
t = xd

0 +
N∑

ν=1

∫ t

0
σd,νX

d
s dWν

s ,

Y d
t = 1

2

N∑
ν=1

∫ t

0
σ 2

d,νX
d
s ds +

∫ t

0
Xd

s dZd
s .

Here, the last integral exists as Young–Stieltjes integral (see [10]), because Xd is
β-Hölder continuous on compacts for every β < 1/2, and Zd is α-Hölder con-
tinuous for some α > 1/2. It is then an easy consequence of the Young–Love
inequality (Theorem 2.1 in [10]) that

∫ t
0 Xd

s dZd
s inherits the α-Hölder continuity

on compacts of the integrator Zd . In particular, Y satisfies the Hölder condition (2)
in Theorem 3.5.

Now notice that the cross-variation of the components of M is given by

〈Md,Mq〉t =
∫ t

0
Xq

s (σσ ∗)q,dXd
s ds, d, q = 1, . . . ,D.

As σσ ∗ ≥ εID for some constant ε > 0, we derive

〈M〉t − 〈M〉s ≥ (t − s)
(
ε min

d=1,...,D
inf

s∈[0,K] |X
d
s |2

)
ID

for 0 ≤ s ≤ t ≤ K . Hence condition (1) of Theorem 3.5 is satisfied as well. Apply-
ing this theorem we get (TWC) at bounded stopping times.

It remains to check the no obvious arbitrage condition on [0, T ] for T > 0. To
this end we fix T > 0, a [0, T ]-valued stopping time σ with P({σ < T }) > 0 and
an Fσ -measurable direction H . Notice that, due to the independence of W and
Z, Wσ+t − Wσ is a Brownian motion independent of Fσ ∨ F Z , where F Z is the
σ -field generated by the process (Zt , t ≥ 0). Applying the full support property of
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this Brownian motion and recalling that σσ ∗ is positive definite, we get for every
ε > 0,

P
(

sup
t∈[0,T −σ ]

H(Xσ+t − Xσ) < ε
∣∣Fσ ∨ F Z

)

≥ P

(
sup

t∈[0,T −σ ]

D∑
d=1

|HdXd
σ |

×
∣∣∣∣∣exp

{
N∑

ν=1

σd,ν(W
ν
σ+t − Wν

σ ) + (Zd
σ+t − Zd

σ )

}
− 1

∣∣∣∣∣ < ε
∣∣∣Fσ ∨ F Z

)

> 0

P -almost surely. This immediately implies

P
(
{σ < T } ∩

{
sup

t∈[σ,T ]
H(Xt − Xσ ) < ε

})
> 0.

Hence, (NOA) holds on [0, T ]. �

REMARK 4.3. (i) In the univariate case D = 1 the Hölder condition on Z

can be weakened to 1/2-Hölder continuous on compacts in the previous theorem.
Indeed, in this case it is straightforward that (TWC) for X is equivalent to (TWC)
for log(X). However, (TWC) for log(X) then is an immediate consequence of
Theorem 3.5.

(ii) Theorem 4.2 does not hold if Z is only Hölder continuous with expo-
nent α < 1/2. A simple counterexample in the one-dimensional case is Xt =
exp{Wt + tα}. For α < 1/2, this model admits a 0-admissible simple arbitrage;
see Example 2.2(ii). For α ≥ 1/2, this model is free of simple arbitrage by (i); see
also Delbaen und Schachermayer [9] or Jarrow et al. [16]. The former paper also
contains a construction of an arbitrage for α = 1/2 in the larger class of strategies
with continuous readjustment of the portfolio. This arbitrage satisfies the usual
admissibility condition which requires that the wealth process of the portfolio is
bounded from below. For α > 1/2, such arbitrage cannot exist because the model
has an equivalent martingale measure.

EXAMPLE 4.4 (Mixed fractional Black–Scholes model). A fractional Brown-
ian motion Z with Hurst parameter H ∈ (0,1) is a centered Gaussian process with
covariance

E[ZtZs] = 1
2(t2H + s2H − |t − s|2H ), t, s ≥ 0.

By the Kolmogorov–Centsov criterion (e.g., [17], Theorem 2.2.8), Z can be chosen
(H − ε)-Hölder continuous on compacts for every ε > 0. In particular Z can be
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chosen α-Hölder continuous on compacts for some α > 1/2, whenever H > 1/2.
The mixed fractional Black–Scholes model is of the form

Xt = x0 exp{σWt + ηZt + νt + μt2H }
for constants σ,η, x0 > 0 and μ,ν ∈ R, where W is a Brownian motion, and Z is a
fractional Brownian motion with Hurst parameter H > 1/2 independent of W . An
application of Theorem 4.2 shows that the mixed fractional Black–Scholes model
with H > 1/2 does not admit simple arbitrage on finite time horizons. Note that X

is not a semimartingale with respect to its own augmented filtration if 1/2 < H ≤
3/4, but is equivalent to the Black–Scholes model for H > 3/4; see, for example,
Cheridito [4]. Theorem 4.2 also implies that a multi-asset version of the mixed
fractional Black–Scholes model has no simple arbitrage on finite time horizons,
provided σσ ∗ is positive definite.

4.2. Mixed stochastic volatility models. We now discuss the absence of simple
arbitrage for stochastic volatility models. In order to simplify the presentation, we
only treat the case of a single risky asset.

THEOREM 4.5. Suppose (W,B) is a two-dimensional Brownian motion with
respect to the filtration (Ft ), and Z and V are (Ft )-adapted processes such that V

is continuous, and Z is 1/2-Hölder continuous on compacts. Assume that W is
independent of (B,V,Z). Then, for −1 < ρ < 1 and f,g ∈ C([0,∞) × R) such
that g(t,Vt ) is strictly positive,

Xt = X0 exp
{∫ t

0
f (s,Vs) ds + ρ

∫ t

0
g(s,Vs) dBs

+
√

1 − ρ2
∫ t

0
g(s,Vs) dWs + Zt

}

is free of simple arbitrage on finite time horizons with respect to the augmentation
of the filtration (F X

t ) generated by X.

PROOF. In the single asset case, simple arbitrage is easily seen to be stable
with respect to composition with stricty increasing functions. Hence it suffices to
show the assertion for log(Xt). By Theorem 3.1 in Pakkanen [19], log(Xt) satisfies
conditional full support on compact time intervals with respect to the augmentation
of (F X

t ). However, it is a straightforward consequence Lemma 2.9 in Guasoni et
al. [13] that conditional full support on [0, T ] implies (NOA) on [0, T ]. In view of
Corollary 4.1, it is now sufficient to prove that (log(Xt), Ft ) satisfies (TWC). We
decompose log(Xt) = Mt + Yt with

Mt = log(X0) + ρ

∫ t

0
g(s,Vs) dBs +

√
1 − ρ2

∫ t

0
g(s,Vs) dWs,

Yt = Zt +
∫ t

0
f (s,Vs) ds.
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Then M is a local martingale with quadratic variation 〈M〉t = ∫ t
0 g2(s,Vs) ds, and

along each path infs∈[0,K] g2(s,Vs) is strictly positive for every K > 0. More-
over, Y is 1/2-Hölder continuous on compacts. Therefore Mt +Yt satisfies (TWC)
thanks to Theorem 3.5. �

EXAMPLE 4.6 (A mixed Heston model). In the Heston model [15], the dis-
counted stock price St has the dynamics

St = S0 exp
{
μt − 1

2

∫ t

0
Vs ds + ρ

∫ t

0

√
Vs dBs +

√
1 − ρ2

∫ t

0

√
Vs dWs

}
,

Vt = V0 +
∫ t

0
κ(θ − Vs) ds + σ

∫ t

0

√
Vt dBs,

where (W,B) is a two-dimensional Brownian motion, −1 < ρ < 1, μ is the drift
of the discounted stock, θ > 0 is the long-term limit of the volatility, κ > 0 is the
mean reversion speed of the volatility and σ > 0 is the volatility of volatility. We
assume the positivity condition 2κθ ≥ σ 2 which ensures the strict positivity of Vt .
We now define a mixed fractional version of the Heston model by

Xt = Ste
Zt ,

where Z is a fractional Brownian motion with Hurst parameter H > 1/2 (adapted
to some filtration with respect to which (W,B) is a two-dimensional Brownian mo-
tion) independent of W . Then, by the previous theorem, Xt does not admit simple
arbitrage on finite time horizons with respect to the augmentation of the filtration
(F X

t ). Of course, the fractional Brownian motion can be replaced by any other
1/2-Hölder continuous processes independent of W . Moreover, mixed versions of
many other stochastic volatility can be cast in the framework of Theorem 4.5 in
a similar way as we demonstrated for the Heston model. These include classical
stochastic volatility models such as the Hull–White model, the Stein–Stein model
and the Wiggins model (see [18], Chapter 7.4 for more details), but also the model
by Comte and Renault [6], where volatility is driven by a fractional Brownian
motion and exhibits long memory effects. See also the discussion in Section 4 of
Pakkanen [19] in the context of conditional full support.

4.3. Mixed local volatility models. Local volatility models were introduced by
Dupire [11] in order to capture the smile effect. Again, we will focus on the case
of a single stock S and recall that its price is governed by an SDE

dSt = μ(t, St )dt + σ(t, St ) dWt, S0 = s0,

where W is a Brownian motion. Note that the drift μ and the volatility σ depend
on time t and the spot price St . More generally, we will now consider models,
where μ and σ may depend on the whole past of the stock price, that is,

dSt = μ(t, S)dt + σ(t, S) dWt, S0 = s0,(10)
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where μ,σ : [0,∞) × C([0,∞)) → R are progressive functions satisfying

|μ(t, x)| ≤ μ̄x(t), σ̄−1x(t) ≤ |σ(t, x)| ≤ σ̄ x(t)

for some constants μ̄ > 0 and σ̄ > 0 for every t ∈ [0,∞) and every x ∈ C([0,∞))

with x(0) = s0. We shall assume that the SDE (10) has a weak solution. It is shown
by Pakkanen [19], Section 4.2, that log(St ) has conditional full support on [0, T ]
for every T > 0 with respect to the filtration (F (S,W)

t ) generated by S and W . We
now suppose that a stochastic process Z independent of (S,W) is given, which is
1/2-Hölder continuous on compacts. As stock model we now consider

Xt = Ste
Zt .

Making use of the independence of Z and (S,W), the conditional full support
property can be transferred from log(St ) to log(Xt) by conditioning additionally
on the σ -field generated by Z. Hence we can again conclude that log(Xt) satis-
fies (NOA) on [0, T ] for every T > 0 with respect to its own augmented filtration.
Moreover, by Theorem 3.5, it is straightforward to verify that log(Xt) satisfies
(TWC) with respect to the augmented filtration generated by (S,W,Z) and hence
also with respect to the augmented filtration generated by X. Appealing to Corol-
lary 4.1 we have thus proved the following result:

THEOREM 4.7. Suppose Xt = Ste
Zt , where S is given by (10), and Z is in-

dependent of (S,W) and 1/2-Hölder continuous on compacts. Then, Xt is free of
simple arbitrage on finite time horizons with respect to the augmentation of the
filtration (F X

t ) generated by X.
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