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TRACKING A RANDOM WALK FIRST-PASSAGE TIME
THROUGH NOISY OBSERVATIONS

BY MARAT V. BURNASHEV1 AND ASLAN TCHAMKERTEN2

Russian Academy of Sciences and Telecom ParisTech

Given a Gaussian random walk (or a Wiener process), possibly with
drift, observed through noise, we consider the problem of estimating its first-
passage time τ� of a given level � with a stopping time η defined over the
noisy observation process.

Main results are upper and lower bounds on the minimum mean absolute
deviation infη E|η − τ�| which become tight as � → ∞. Interestingly, in this
regime the estimation error does not get smaller if we allow η to be an ar-
bitrary function of the entire observation process, not necessarily a stopping
time.

In the particular case where there is no drift, we show that it is impossible
to track τ�: infη E|η − τ�|p = ∞ for any � > 0 and p ≥ 1/2.

1. Introduction. The tracking stopping time (TST) problem, recently intro-
duced in [5], is formulated as follows. Let X = {Xt }t≥0 be a stochastic process and
let τ be a stopping time defined over X. A statistician has access to X only through
correlated observations Y = {Yt }t≥0 and wishes to find a stopping η that gets close
to τ , for instance, so as to minimize the average absolute deviation E|η − τ |. For
specific applications of the TST problem formulation related to monitoring, fore-
casting and communication, we refer to [5].

In [5], an algorithmic solution is proposed for discrete-time settings where the
(Xt , Yt )’s take on values in a common finite alphabet (otherwise X and Y are arbi-
trary processes) and where τ is bounded. What motivated an algorithmic approach
to this problem is that the TST problem generalizes the Bayesian change-point
detection problem, a long-studied problem that dates back to the 1940s, and for
which nonasymptotic solutions are known to be hard to obtain.

In the Bayesian change-point problem, there is a random variable θ , taking
on values in the positive integers, and two probability distributions P0 and P1.
Under P0, the conditional density function of Zt given Z1,Z2, . . . ,Zt−1 is
f0(Zt |Z1,Z2, . . . ,Zt−1), for every t ≥ 0. Under P1, the conditional density func-
tion of Zt given Z1,Z2, . . . ,Zt−1 is f1(Zt |Z1,Z2, . . . ,Zt−1), for every t ≥ 0. The
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observed process Y = {Yt }t≥0 is distributed according to P0 for all t < θ and ac-
cording to P1 for all t ≥ θ . The problem typically consists in finding a stopping
time η, with respect to {Yt }, that is, close to τ .

Nonasymptotic results for the Bayesian change-point problem have been re-
ported mostly for the i.i.d. case where, conditioned on the change-point value, ob-
servations are independent with common distribution P0 and P1 before and after
the change [6, 7].3

The TST problem can be seen as a Bayesian change-point problem whose
change-point τ is a stopping time defined with respect to an unobserved process X

that depends on the observed process Y . What specifically differentiates a TST
problem from a Bayesian change-point problem is that for the latter we always
have the identity

P(θ = k|Y0, Y1, . . . , Yn, k > n) = P(θ = k|k > n), k > n.

In contrast, the above identity with θ = τ need not hold for a TST problem. Be-
cause of this, past observations are in general useful for estimating τ . Furthermore,
the observed process Y has usually memory once conditioned on τ .4 This is what
makes the TST problem hard.

In this paper, we investigate the natural setting case where X is a Gaussian
random walk (or a Wiener process) possibly with drift, where Y is a noisy version
of X, and where τ is the first time when X reaches a given level �. We establish a
lower bound on infη E|η − τ |, where the infimum is over all stopping times with
respect to Y , then exhibit a stopping rule that achieves this bound as � → ∞. In
the case where X does not drift, we show that E|η − τ | = ∞ for any � > 0 and any
estimator η, not necessarily a stopping time.

Throughout the paper the following notational conventions are adopted. We
use η to denote a function of the observation process Y = Y∞

0 . When η has no
argument, we mean that η is a stopping time with respect to Y . Instead, if η has
an argument, we mean that η is a function of its argument which need not be a
stopping time with respect to Y . For example, η(Yt ) refers to a function of obser-
vation Yt .

Further, we frequently omit arguments of functions (or estimators) that appear
in expressions to be optimized. For instance, instead of

inf
η(Yt )

E|η(Yt ) − τ�|p,

we simply write

inf
η(Yt )

E|η − τ�|p

to denote an optimization over estimators of τ� that depend only on observation Yt .
Section 2 contains the main results and Section 3 is devoted to the proofs.

3An exception is [8] which considers Markov chains, but of finite state.
4Unless the TST problem under consideration reduces to a Bayesian change-point problem with

independent observations before and after the change.
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2. Main results. Consider the discrete-time processes

X : X0 = 0, Xt =
t∑

i=1

Vi + st, t ≥ 1,

Y : Y0 = 0, Yt = Xt + ε

t∑
i=1

Wi, t ≥ 1,

where V1,V2, . . . and W1,W2, . . . are two independent sequences of independent
standard (i.e., zero-mean unit variance) Gaussian random variables, and where
s ≥ 0 and ε ≥ 0 are arbitrary constants.

Given the first-passage time

τ� = inf{t ≥ 0 :Xt ≥ �}
for some arbitrary known level � ≥ 0, we aim at finding a stopping time with
respect to the observation process Y that best tracks τ�. Specifically, we consider
the optimization problem

inf
η

E|η − τ�|,(2.1)

where the infimum is over all stopping times η defined with respect to the natural
filtration induced by the Y process.

To avoid trivial situations, we restrict � and ε to be strictly positive. When � = 0
or ε = 0, (2.1) is equal to zero: for � = 0, η = 0 is optimal, and for ε = 0, η = τ� is
optimal.

Define the stopping time

η∗
�

def= inf{t ≥ 0 : X̂t ≥ �},
where

X̂0
def= 0 and X̂t

def= st + 1

1 + ε2 (Yt − st), t ≥ 1,

is the minimum mean square estimator of Xt given observation Yt .
The following theorem provides a nonasymptotic upper bound on (2.1):

THEOREM 2.1 (Upper bound). Given 0 < ε < ∞, 0 < s < ∞ and 0 < � < ∞,
we have

E|η∗
� − τ�| ≤

√
2�ε2

πs3(1 + ε2)

+
√

4ε2

s2(1 + ε2)

[
3
(

�

2πs3

)1/4

+ 3

√
3

s
+ √

3s + 6

]
(2.2)

+ 4

s
√

1 + ε2
+ 4

s
+ 4.
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The next theorem provides a nonasymptotic lower bound on E|η(Y∞
0 ) − τ�| for

any estimator η(Y∞
0 ) of τ� that has access to the entire observation sequence Y∞

0 .
The function Q(x) is defined as

Q(x)
def= 1√

2π

∫ ∞
x

exp(−u2/2) du.

THEOREM 2.2 (Lower bound). Given 0 < ε < ∞, 0 < s < ∞ and 0 < � < ∞,
and any integer n such that 1 ≤ n < �/s,

inf
η(Y∞

0 )
E|η − τ | ≥

√
2nε2

πs2(1 + ε2)

−
(

2n

π3s6

)1/4

−
√

2(� − sn)+
πs3 − 2 − 6

s
(2.3)

− (2n3/2 + n/s + n1/2�/s)Q
(
(� − sn)/

√
n
)1/2

.

When n approaches �/s and �/s tends to infinity in a suitable way, the upper and
lower bounds (2.2) and (2.3) become tight. The following result is an immediate
consequence of these bounds by considering n of the form n = ��/s − (�/s)q	,
1/2 < q < 1, in Theorem 2.25:

THEOREM 2.3 (Asymptotics). Let q be a constant such that 1/2 < q < 1. In
the asymptotic regime where

s

(
�

s

)q−1/2
−→ ∞,

(
�

s

)1−q ε2

1 + ε2 −→ ∞,

s�
ε4

(1 + ε2)2 −→ ∞,

we have

inf
η(Y∞

0 )
E|η − τ�| = (

1 + o(1)
)
E|η∗

� − τ�|
(2.4)

=
√

2�ε2

πs3(1 + ε2)

(
1 + o(1)

)
.

In particular, the equalities in (2.4) hold in the limit � → ∞ for fixed 0 < ε < ∞
and 0 < s < ∞.

5�x	 denotes the largest integer not greater than x.
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Theorem 2.3 says that the sequential estimator η∗
� does as well as the best es-

timators with the foreknowledge of the entire observation process Y , asymptoti-
cally.6 Part of the reason for this is that τ� concentrates around �/s. Hence, re-
stricting estimators to depend only on finitely many observations induces no loss
of optimality, asymptotically.

Consider now the setting where
∑t

i=1 Vi and
∑t

i=1 Wi are replaced by standard
Wiener processes, that is, with the X and the Y processes defined as

X : X0 = 0, Xt = Bt + st for t > 0,

Y : Y0 = 0, Yt = Xt + εNt for t > 0,

where {Bt }t>0 and {Nt }t>0 are two independent standard Wiener processes. The
previous results easily extend to the Wiener process setting. Indeed, the analysis
is simpler than for the Gaussian random walk setting as there is no excess over
the boundary (variously known as overshoot) for a Wiener process—the value of
a Wiener process the first time it reaches a certain level is equal to this level.

Theorems 2.4, 2.5 and 2.6 are analogous to Theorems 2.1, 2.2 and 2.3, respec-
tively.

THEOREM 2.4 (Upper bound, Wiener process). Given 0 < ε < ∞, 0 < s < ∞
and 0 < � < ∞, we have

E|η∗
� − τ�| ≤

√
2�ε2

π(1 + ε2)s3 +
√

36ε2

(1 + ε2)s2

(
�

2πs3

)1/4

.(2.5)

THEOREM 2.5 (Lower bound, Wiener process). Given 0 < ε < ∞, 0 < s <

∞, 0 < � < ∞, and n such that 0 < n < �/s, we have

inf
η(Y∞

0 )
E|η − τ | ≥

√
2nε2

πs2(1 + ε2)
−

(
2n

π3s7

)1/4

−
√

2(� − sn)+
πs3

− (2n3/2 + n/s + n1/2�/s)Q
(
(� − sn)/

√
n
)1/2

.

The following theorem is an immediate consequence of Theorems 2.4 and 2.5.

THEOREM 2.6 (Asymptotics, Wiener process). Theorem 2.3 is also valid in
the Wiener process setting.

When there is no drift, that is, s = 0, it turns out that (2.1) is infinite for all � > 0
and ε > 0. In fact, Theorem 2.7 below, which is valid in both the Gaussian random
walk and the Wiener process settings, provides a stronger statement:

6η(Y∞
0 ) need not be a stopping time according to our notational conventions.
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THEOREM 2.7. Let s = 0, 0 < ε < ∞ and � > 0, and let f (x), x ≥ 0, be a
nonnegative and nondecreasing function such that

Ef (τh/2) = ∞(2.6)

for some constant h > 0. Then,

(i) Ef (|τ� − η(Y∞
0 )|) = ∞ for any estimator η(Y∞

0 ).
(ii) If f (x) = xp , p ≥ 1/2, then (2.6) holds for all h > 0. Hence,

E|τ� − η|p = ∞
for any estimator η(Y∞

0 ) of τ� whenever p ≥ 1/2.

A heuristic justification for Theorem 2.7, claim (ii) is as follows. When s = 0,
Eτ� = ∞ for any � > 0. So, when s = 0, it is likely that τ� takes some very large
value. When this happens, the estimate of τ� is poor because of the noise in the
observation process whose variance grows proportionally with time.

3. Proofs of results. In this section we prove Theorems 2.1, 2.2 and 2.7. The-
orems 2.4 and 2.5 are proved in the same way as Theorems 2.1 and 2.2 by merely
ignoring overshoots.

The proofs of Theorems 2.4 and 2.5 are therefore omitted.
In this section, V and W always denote standard Gaussian random variables.
Before proving Theorems 2.1, 2.2 and 2.7, we establish a few auxiliary results

related to overshoot estimates. These results are based on the following theorem,
given in [4], Theorem 2, equation (7), which provides an upper bound on overshoot
which is uniform in the threshold level �.

THEOREM 3.1 ([4]). Let Z1,Z2, . . . be i.i.d. random variables such that
EZ1 ≥ 0. Define St = Z1 + Z2 + · · · + Zt , μ� = inf{t ≥ 1 :St ≥ �}, and the over-
shoot Oμ�

= Sμ�
− �. Then,

sup
�≥0

E(Op
μ�

) ≤ 2(p + 2)

(p + 1)

E|Z1|p+2

E(Z2
1)

for all p > 0.

Overshoot has been extensively studied and various other bounds have been
exhibited (see, e.g., [1–3]). However, to the best of our knowledge, the bound
given by Theorem 3.1 has not been improved for all s ≥ 0 and p > 0. In particular,
it is tighter than Lorden’s bound [3] for small values of s.

COROLLARY 3.1. Let Z1,Z2, . . . be i.i.d. random variables according to a
mean s > 0 and variance σ 2 ≥ 0 Gaussian distribution, and let St , μ� and Oμ�

be
defined as in Theorem 3.1. Then,

sup
�≥0

E(Oμ�
) ≤ 2s + 4σ,(3.1)
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and
�

s
≤ 1

s
ESμ�

= Eμ� ≤ �

s
+ 2 + 4σ

s
.(3.2)

PROOF. Since

E(Z1)
2 = s2 + σ 2 and E|Z1|4 = E(s + σV )4 = s4 + 6s2σ 2 + 3σ 4,

we have

sup
�≥0

E(O2
μ�

) ≤ 8

3

[
s2 + 5σ 2 − 2σ 4

s2 + σ 2

]
,

from Theorem 3.1 with p = 2. Therefore,

sup
�≥0

E(Oμ�
) ≤

√
sup
�≥0

E(O2
μ�

)

≤
√

8

3

[
s2 + 5σ 2 − 2σ 4

s2 + σ 2

]

≤ 2s + 4σ,

which gives (3.1).
Now ESμ�

= sEμ� by Wald’s equation since 0 < s < ∞ and Eμ� < ∞. Hence,
since

� ≤ ESμ�
≤ � + sup

�≥0
E(Oμ�

),

inequality (3.2) follows from (3.1). �

LEMMA 3.1. The following inequalities hold for all 0 < s < ∞ and
0 < � < ∞:

E(�/s − τ�)+ ≤ E(τ� − �/s)+ ≤
√

�

2πs3 + 1 + 3

s
,(3.3)

E|τ� − �/s| ≤
√

2�

πs3 + 2 + 6

s
,(3.4)

E(Xτ�
− sτ�)+ ≤

√
�

2πs
+ 3s + 7.(3.5)

PROOF. From Wald’s equation EXτ�
= sEτ�, since 0 < s < ∞ and Eτ� < ∞,

hence � ≤ EXτ�
= sEτ�. Therefore, using the identity x = x+ − (−x)+,7 we get

0 ≤ E(τ� − �/s) = E(τ� − �/s)+ − E(�/s − τ�)+,

7x+ def= max{0, x}.
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that is,

E(�/s − τ�)+ ≤ E(τ� − �/s)+.(3.6)

We upper bound the right-hand side of (3.6) as8

E(τ� − �/s)+ ≤ E(τ� − 
�/s�)+ + 1

= E
(
τ� − 
�/s�; τ� > 
�/s�,X
�/s� < �

) + 1
(3.7)

= E
(
ν� − 
�/s�;X
�/s� < �

) + 1

= E(νG;G > 0) + 1,

where ν�
def= inf{t ≥ 
�/s� :Xt ≥ �} and G

def= � − X
�/s�.

Since G ≤ −∑
�/s�
i=1 Vi

d= √
�/s�V , using equation (3.2) of Corollary 3.1 with
σ 2 = 1 yields

E(νG;G > 0) ≤ E

[
G

s
+ 2 + 4

s
;G > 0

]

≤ E

[√
�/s�V
s

+ 2 + 4

s
;V > 0

]
(3.8)

≤
√


�/s�
s2 E(V )+ + 1 + 2

s

≤
√

�

2πs3 + 1 + 3

s
.

From (3.6), (3.7) and (3.8) we get

E(�/s − τ�)+ ≤ E(τ� − �/s)+ ≤
√

�

2πs3 + 1 + 3

s
,(3.9)

which gives (3.3).
Inequality (3.4) is an immediate consequence of (3.3).
Since Xτ�

≥ �, we have

E(Xτ�
/s − τ�)+ ≤ E(Xτ�

/s − �/s) + E(�/s − τ�)+.

This, together with (3.9) and the inequality

E(Xτ�
/s − �/s) ≤ 2 + 4/s(3.10)

obtained from equation (3.2) of Corollary 3.1, establishes (3.5). �

8
x� denotes the smallest integer not smaller than x.
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PROOF OF THEOREM 2.1. We prove Theorem 2.1 by considering estimators
of the form

η(c) = inf
{
t ≥ 1 : X̂(c)

t ≥ �
}
,

where X̂ is defined as

X̂
(c)
0 = 0, X̂

(c)
t = st + c(Yt − st) = st + c

[
t∑

i=1

Vi + ε

t∑
i=1

Wi

]
, t ≥ 1,

for some constant c ≥ 0. We upper bound E|η(c) − τ�|, c ≥ 0, and show that the
optimal value of c is 1/(1 + ε2), which shall prove the theorem.

For c = 0, we have η(0) = 
�/s�, and equation (3.4) of Lemma 3.1 gives

E
∣∣η(0) − τ�

∣∣ ≤
√

2�

πs3 + 3 + 6

s
.(3.11)

We now bound E|η(c) − τ�| for arbitrary values of c ≥ 0. Since

|x| = 2x+ − x,

we have

E
∣∣η(c) − τ�

∣∣ = 2E
(
η(c) − τ�

)
+ − E

(
η(c) − τ�

)
.(3.12)

Applying equation (3.4) of Corollary 3.1 to τ� and η yields

E
(
η(c) − τ�

) ≥ −2 − 4

s
,

hence from (3.12)

E
∣∣η(c) − τ�

∣∣ ≤ 2E
(
η(c) − τ�

)
+ + 2 + 4

s
.(3.13)

Below, we upper bound E(η(c) − τ�)+ then use (3.13) to deduce a bound on
E|η(c) − τ�|.

For notational convenience, throughout the calculations we sometimes omit the
superscript (c) and simply write X̂t and η in place of X̂

(c)
t and η(c).

Let us introduce the auxiliary stopping time

ν
def= inf{t ≥ τ� : X̂t ≥ �}.

It follows that

E(η − τ�)+ ≤ E(ν − τ�;η > τ�)

≤ E(ν − τ�; X̂τ�
≤ �)(3.14)

= 1

s
E(X̂ν − X̂τ�

; X̂τ�
≤ �),
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where the second inequality holds since {η > τ�} ⊆ {X̂τ�
≤ �} and where for the

last equality we used Wald’s equation since 0 < s < ∞ and both ν and τ� have
finite expectation.

Since the random walk X̂ has incremental steps with mean s and variance c2(1+
ε2), from equation (3.1) of Corollary 3.1 and the strong Markov property of X̂ at
time τ�, we get

E(X̂ν − X̂τ�
; X̂τ�

≤ �) ≤ E
[
� + 2s + 4c

√
1 + ε2 − X̂τ�

; X̂τ�
≤ �

]
≤ E

[
Xτ�

+ 2s + 4c

√
1 + ε2 − X̂τ�

; X̂τ�
≤ Xτ�

]
≤ E(Xτ�

− X̂τ�
)+ + s + 2c

√
1 + ε2,

hence from (3.14)

E
(
η(c) − τ�

)
+ ≤ 1

s
E

(
X(c)

τ�
− X̂τ�

)
+ + s + 2c

√
1 + ε2

s
.(3.15)

Before we compute an upper bound on E(Xτ�
− X̂

(c)
τ� )+ for general values of c ≥ 0,

we consider the case c = 1.
Case c = 1: We have X̂

(1)
t = Yt and η(1) = inf{t ≥ 0 :Yt ≥ �}. Since Yt

d= Xt +
ε
√

tW with W independent of Xt , it follows that

E(Xτ�
− X̂τ�

)+ = E
(
ε
√

τ�W
)
+

= εE
(√

τ�

)
E(W)+

= ε√
2π

E
(√

τ�

)
(3.16)

≤ ε√
2π

√
E(τ�)

≤ ε√
2π

√
� + 2s + 4

s
,

where for the first inequality we used Jensen’s inequality, and where the second
inequality follows from equation (3.2) of Corollary 3.1.

Combining (3.16) with (3.15) (c = 1) yields

E
(
η(1) − τ�

)
+ ≤ ε

√
� + 2s + 4

2πs3 + s + 2
√

1 + ε2

s

which, together with (3.13), gives

E
∣∣η(1) − τ�

∣∣ ≤ 2ε

√
� + 2s + 4

2πs3 + 4(s + 1 + √
1 + ε2)

s
.(3.17)
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Comparing (3.17) with (3.11), we note that for fixed s > 0, if ε  1, then E|η(1) −
τ�|  E|η(0) − τ�| for large values of �.

General case c ≥ 0: We compute a general upper bound on E(Xτ�
− X̂

(c)
τ� )+,

c ≥ 0, and use (3.13) and (3.15) to obtain an upper bound on E|η(c) − τ�|.
Let Ui be the increment of the random walk Zt = Xt − X̂

(c)
t , that is,

Ui = Zi − Zi−1 = (1 − c)Vi − cεWi.

Given the fixed time horizon m = ��/s	, we have

Xτ�
− X̂(c)

τ�
=

m∑
i=1

Ui − 1{τ� < m}
m∑

i=τ�+1

Ui + 1{τ� > m}
τ�∑

i=m+1

Ui,(3.18)

and therefore

E
(
Xτ�

− X̂(c)
τ�

)
+ ≤ E

(
m∑

i=1

Ui

)
+

+ E

(
−1{τ� < m}

m∑
i=τ�+1

Ui

)
+

(3.19)

+ E

(
1{τ� > m}

τ�∑
i=m+1

Ui

)
+
.

We bound each term on the right-hand side of (3.19). For the first term, since∑m
i=1 Ui

d= √
m[(1 − c)2 + c2ε2]V , we have

E

(
m∑

i=1

Ui

)
+

=
√

m[(1 − c)2 + c2ε2]E(V )+
(3.20)

=
√

m[(1 − c)2 + c2ε2]
2π

≤
√

�[(1 − c)2 + c2ε2]
2πs

.

For the second term on the right-hand side of (3.19), since τ� is independent of
Uτ�+1,Uτ�+2, . . . , we have

E

(
−1{τ� < m}

m∑
i=τ�+1

Ui

)
+

= E
[√

(m − τ�)+[(1 − c)2 + c2ε2]V+
]

=
√

(1 − c)2 + c2ε2

2π
E

√
(m − τ�)+

(3.21)

≤
√

[(1 − c)2 + c2ε2]
2π

E(m − τ�)+

≤
√√√√ [(1 − c)2 + c2ε2]

2π

[√
�

2πs3 + 1 + 3

s

]
,
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where the first inequality holds by Jensen’s inequality and where the last inequality
follows from equation (3.3) of Lemma 3.1.

For the third term on the right-hand side of (3.19), we have

E

(
1{τ� > m}

τ�∑
i=m+1

Ui

)
+

≤ cεE

(
1{τ� > m}

τ�∑
i=m+1

Wi

)
+

(3.22)

+ (1 − c)+E

(
1{τ� > m}

τ�∑
i=m+1

Vi

)
+
.

Since τ� and {Wi} are independent, we have

1{τ� > n}
τ�∑

i=m+1

Wi
d=

√
(τ� − m)+W,

and a similar calculation as for (3.21) shows that

E

[
1{τ� > m}

τ�∑
i=m+1

Wi

]
+

≤
√√√√ 1

2π

[√
�

2πs3 + 2 + 3

s

]
.(3.23)

We now focus on the second expectation on the right-hand side of (3.22). Note first
that, on {τ� > m}, we have

τ�∑
i=m+1

Vi = (Xτ�
− Xm) − s(τ� − m).

Therefore, to bound E(1{τ� > m}∑τ�

i=m+1 Vi)+, we consider the “shifted” se-
quence {St = Xt − Xm}t≥m, and its crossing of level � − Xm. Using (3.5) (with
� − Xm instead of �) we have

E

(
1{τ� > m}

τ�∑
i=n+1

Vi

)
+

≤ E
([Xτ�

− Xm − s(τ� − m)]+;Xm ≤ �
)

≤ E

√
(� − Xm)+

2πs
+ 3s + 7(3.24)

≤
√

E(� − Xm)+
2πs

+ 3s + 7

≤ �1/4

(2πs)3/4 + 1√
2πs

+ 3s + 7,
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where the third inequality follows from Jensen’s inequality. Combining (3.22) to-
gether with (3.23) and (3.24) yields

E

(
1{τ� > m}

τ�∑
i=m+1

Ui

)
+

≤ cε

√√√√ 1

2π

[√
�

2πs3 + 2 + 3

s

]
(3.25)

+ (1 − c)+
(

�1/4

(2πs)3/4 + 1√
2πs

+ 3s + 7
)
,

and from (3.15), (3.19)–(3.21) and (3.25), we get

E
(
η(c) − τ�

)
+ ≤

√
�[(1 − c)2 + c2ε2]

2πs3 + cε

√√√√ 1

2πs2

[√
�

2πs3 + 2 + 3

s

]

+
√√√√ [(1 − c)2 + c2ε2]

2πs2

[√
�

2πs3 + 1 + 3

s

]
(3.26)

+ (1 − c)+
s

[
�1/4

(2πs)3/4 + 1√
2πs

+ 3s + 7
]

+ 1 + 2c
√

1 + ε2

s
.

To minimize the first term on the right-hand side of (3.26) (which is the dominant
term as a function of �), we set c = c̄ = 1/(1 + ε2) so as to minimize the factor
(1 − c)2 + c2ε2. With c = c̄ we have (1 − c)2 + c2ε2 = ε2/(1 + ε2) and η(c̄) = η∗

� ,
hence, from (3.26),

E(η∗
� − τ�)+ ≤

√
�ε2

2π(1 + ε2)s3 + ε

1 + ε2

√√√√ 1

2πs2

[√
�

2πs3 + 2 + 3

s

]

+
√√√√ ε2

2π(1 + ε2)s2

[√
�

2πs3 + 1 + 3

s

]

+ ε2

s(1 + ε2)

[
�1/4

(2πs)3/4 + 1√
2πs

+ 3s + 7
]

+ 1 + 2

s
√

1 + ε2
.
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Combining the second, third and fourth terms on the right-hand side of the above
inequality, we get

E(η∗
� − τ�)+ ≤

√
�ε2

2π(1 + ε2)s3

+ ε

s
√

1 + ε2

[
3
(

�

2πs3

)1/4

+ 3

√
3

s
+ √

3s + 6

]
(3.27)

+ 2

s
√

1 + ε2
+ 1.

Finally, combining (3.27) with (3.13) yields

E|η∗
� − τ�| ≤

√
2�ε2

π(1 + ε2)s3

+ 2ε

s
√

1 + ε2

[
3
(

�

2πs3

)1/4

+ 3

√
3

s
+ √

3s + 6

]

+ 4

s
√

1 + ε2
+ 4

s
+ 4,

from which Theorem 2.1 follows. �

PROOF OF THEOREM 2.2. We prove Theorem 2.2 by establishing a lower
bound on E|η(Y∞

0 ) − τ�| for any estimator η(Y∞
0 ) that has access to the entire

observation process Y∞
0 .

Pick an arbitrary integer n such that 1 ≤ n < �/s. Then, we have

inf
η(Y∞

0 )
E|η − τ�| = inf

η(Y∞
0 )

E

∣∣∣∣
(
η − n − � − Xn

s

)
+

(
n + � − Xn

s
− τ�

)∣∣∣∣
≥ inf

η(Y∞
0 )

E

∣∣∣∣η − n − � − Xn

s

∣∣∣∣ − E

∣∣∣∣n + � − Xn

s
− τ�

∣∣∣∣(3.28)

= 1

s
inf

η(Y∞
0 )

E|η − Xn| − E

∣∣∣∣n + � − Xn

s
− τ�

∣∣∣∣.
The first expectation on the right-hand side of (3.28) is lower bounded as fol-

lows. Since Xn and Yn are jointly Gaussian, we may represent Xn as

Xn
d=

√
nε2/(1 + ε2)V + c · Yn + d,

where V is a standard Gaussian random variable independent of {Yn}, and where c

and d are (nonnegative) constants (that depend on s and ε). Using this alternative
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representation of Xn yields

inf
η(Y∞

0 )
E|η − Xn| = inf

η(Y∞
0 )

E
∣∣η − c · Yn − d −

√
nε2/(1 + ε2)V

∣∣

=
√

nε2

1 + ε2 inf
η(Y∞

0 )
E|η − V |

=
√

nε2

1 + ε2 inf
e

E|e − V |(3.29)

=
√

nε2

1 + ε2 E|V |

=
√

2nε2

π(1 + ε2)
,

where the infimum on the right-hand side of the third equality is over constant
estimators (i.e., independent of Y∞

0 ) since V is independent of Y∞
0 , and where for

the fourth equality we used the fact that the median of a random variable is its best
estimator with respect to the average absolute deviation.

We now upperbound the second expectation on the right-hand side of (3.28).
We have

E

∣∣∣∣n + � − Xn

s
− τ�

∣∣∣∣ = E

[∣∣∣∣n + � − Xn

s
− τ�

∣∣∣∣; τ� > n

]
(3.30)

+ E

[∣∣∣∣n + � − Xn

s
− τ�

∣∣∣∣; τ� ≤ n

]
.

For the first term on the right-hand side of (3.30), we use (3.4) to get

E

[∣∣∣∣n + � − Xn

s
− τ�

∣∣∣∣∣∣∣Xn, τ� > n

]
≤

√
2(� − Xn)

πs3 + 2 + 6

s
(3.31)

on {Xn ≤ �}. Since Xn
d= sn + √

nV ,

E(� − Xn)+ = E
(
� − sn − √

nV
)
+

≤ √
nEV+ + (� − sn)+

=
√

n

2π
+ (� − sn)+.

Hence, from Jensen’s inequality

E

√
(� − Xn)+ ≤

√
E(� − Xn)+ ≤

(√
n

2π
+ (� − sn)+

)1/2

,
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and therefore, by taking expectation on both sides of (3.31) we get

E

[∣∣∣∣n + � − Xn

s
− τ�

∣∣∣∣; τ� > n

]
(3.32)

≤
√

2

πs3

(√
n

2π
+ (� − sn)+

)1/2

+ 2 + 6

s
.

For the second term on the right-hand side of (3.30),

E

[∣∣∣∣n + � − Xn

s
− τ�

∣∣∣∣; τ� ≤ n

]

≤ (n + �/s)P(τ� ≤ n) + (1/s)E(|Xn|; τ� ≤ n)

≤ (n + �/s)P(τ� ≤ n) + (1/s)
(
E(Xn)

2
P(τ� ≤ n)

)1/2(3.33)

= (n + �/s)P(τ� ≤ n) + (1/s)
(
(n + s2n2)P(τ� ≤ n)

)1/2

≤ (
2n + √

n/s + �/s
)
P(τ� ≤ n)1/2,

where the second inequality follows from the Cauchy–Schwarz inequality. Further,

P(τ� ≤ n) =
n∑

i=1

P(τ� = i)

≤
n∑

i=1

P(Xi ≥ �)

≤ nQ
(
(� − sn)/

√
n
)
.

Hence, from (3.33),

E

[∣∣∣∣n + � − Xn

s
− τ�

∣∣∣∣; τ� ≤ n

]
(3.34)

≤ (2n3/2 + n/s + n1/2�/s)Q
(
(� − sn)/

√
n
)1/2

.

Combining (3.28)–(3.30), (3.32) and (3.34), we get

inf
η(Y∞

0 )
E|η − τ�| ≥

√
2nε2

πs2(1 + ε2)

−
(

2n

π3s6

)1/4

−
√

2(� − sn)+
πs3 − 2 − 6

s

− (2n3/2 + n/s + n1/2�/s)Q
(
(� − sn)/

√
n
)1/2

,

yielding the desired result. �
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PROOF OF THEOREM 2.7. We prove the result only for the Gaussian random
walk setting. The proof for the Wiener process setting follows the same arguments
and is therefore omitted.

Let s = 0 and fix 0 < ε < ∞ and 0 < � < ∞. We show that given h > 0,

inf
η(Y∞

0 )
Ef (|η − τ�|) ≥ kEf (τh/2)

for some strictly positive constant k. Hence, if Ef (τh/2) = ∞ for some h > 0,
then infη(Y∞

0 ) Ef (|η − τ�|) = ∞, which yields claim (i).
The first step consists in removing the noise in the observation process Y from

time t = 2 onward; that is, instead of {Yt }t≥0, we consider the better observation
process {Zt }t≥0 defined as

Z0 = 0,

Z1 = X1 + εW1 = V1 + εW1,

Zt = Xt − Xt−1 = Vt , t ≥ 2.

Clearly, it is easier to estimate τ� based on Z∞
0 than based on Y∞

0 ; one gets Yt −
Yt−1 by artificially adding the “noise” εWt to Zt , t ≥ 1. Therefore,

inf
η(Y∞

0 )
Ef (|η − τ�|) ≥ inf

η(Z∞
0 )

Ef (|η − τ�|).(3.35)

Given Z∞
0 , estimation errors on τ� are only due to the unknown value of X1 be-

cause of the unknown value of the noise εW1. In turn, given Z∞
0 , it is sufficient to

consider only Z1 in order to estimate X1 (Z1 is a sufficient statistic for X1).
Below, we are going to make use of the important property that the conditional

density function of X1(= V1) given Z1 is not degenerated since it is given by

p(x|z) =
√

1 + ε2

ε
√

2π
exp

{
−(1 + ε2)

2ε2

(
x − z

1 + ε2

)2}
,

and since ε > 0 by assumption.
Define C = C(Z1) = Z1/(1 + ε2) − h/2 and D = D(Z1) = Z1/(1 + ε2) + h/2

where h > 0 is some arbitrary constant. From the above nondegeneration property
it follows that

P(X1 ≤ C) = P(X1 ≥ D)
def= δ1 = δ1(h, ε) > 0.

Using this, we lower bound

inf
η(Z∞

0 )
Ef (|η − τ�|)

by considering the following three-hypothesis problem: with probability 1 − 2δ1,
X1 is known exactly (hence τ� is known exactly as well), and with equal probabil-
ity δ1, X1 is either equal to C or equal to D (and no additional information on X1
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is available). More specifically, denoting by τC
� the value of τ� when X1 = C, and

by τD
� the value of τ� when X1 = d , we have

inf
η(Z∞

0 )
Ef (|η − τ�|)

≥ inf
η(Z∞

0 )
{E[f (|η − τ�|);X1 ≤ C] + E[f (|η − τ�|);X1 ≥ D]}

≥ inf
η(Z∞

0 )
{E[f (|η − τC

� |);X1 ≤ C] + E[f (|η − τD
� |);X1 ≥ D]}(3.36)

= δ1 inf
η(Z∞

0 )
E[f (|η − τC

� |) + f (|η − τD
� |)]

≥ δ1Ef

(
τC
� − τD

�

2

)
,

where the second and third inequalities follow from the assumption that f (x) is

nonnegative and nondecreasing. Further, since τC
�

d= τ(�−C)+ and since τ�1 − τ�2
d=

τ�1−�2 , �1 ≥ �2, from (3.36) we get

inf
η(Z∞

0 )
Ef (|η − τ�|) ≥ δ1Ef

(
τC
� − τD

�

2

)

= δ1Ef

(
τ(�−C)+ − τ(�−D)+

2

)
(3.37)

= δ1Ef

(
τ(�−C)+−(�−D)+

2

)
.

Now, on {D ≤ �} we have

(� − C)+ − (� − D)+ = D − C = h,

therefore from (3.37) we get

inf
η(Z∞

0 )
Ef (|η − τ�|) ≥ δ1δ2Ef

(
τh

2

)
,(3.38)

where

δ2
def= δ2(h, l, ε) = P(D ≤ �) > 0.

Claim (i) follows from (3.38) and (3.35).
We now prove claim (ii). Let {Bt }t≥0 be the standard Wiener process whose

value at integer times t = 0,1,2, . . . corresponds to process X, and let

τ̃h
def= inf{t ≥ 0 :Bt = h}.

Since τ̃h ≤ τh for all h ≥ 0, had we proved that Ef (τ̃�/2) = ∞, equation

Ef (τh/2) = ∞
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would hold since f (x) is nondecreasing.
From the reflection principle we get

P(τ̃h ≤ t) = 2P(Bt ≥ h) = 2Q

(
h√
t

)
, h > 0, t > 0,

hence for h > 0,

Ef (τ̃h/2) = 2
∫ ∞

0
f (t/2) dQ

(
h√
t

)

= h√
2π

∫ ∞
0

f (t/2)

t3/2 e−h2/2t dt

>
he−h/2
√

2π

∫ ∞
h

f (t/2)

t3/2 dt.

Therefore, if f (x) = xp with p ≥ 1/2, then Ef (τ̃h/2) = ∞ for all h > 0.
Claim (ii) follows. �

4. Concluding remarks. We considered the problem of sequentially estimat-
ing a random walk first-passage time through noisy observations. Nonasymptotic
upper and lower bounds on minimum mean absolute deviation have been derived
that coincide in certain asymptotic regimes.

Extensions to other loss functions or non-Gaussian settings may be envisioned.
For the latter, an interesting problem is the derivation of a good lower bound. In
fact, a main step in the proof of Theorem 2.2 [see argument after equation (3.28)]
takes advantage of the fact that Xn and Yn are jointly Gaussian.

Finally, note that at least some of the presented arguments apply to stopping
times other than first-passage times since the basic property that we used is that τ

concentrates around its mean (assuming a positive drift).
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