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ERGODICITY AND STABILITY OF THE CONDITIONAL
DISTRIBUTIONS OF NONDEGENERATE MARKOV CHAINS1

BY XIN THOMSON TONG AND RAMON VAN HANDEL

Princeton University

We consider a bivariate stationary Markov chain (Xn,Yn)n≥0 in a Pol-
ish state space, where only the process (Yn)n≥0 is presumed to be observable.
The goal of this paper is to investigate the ergodic theory and stability prop-
erties of the measure-valued process (�n)n≥0, where �n is the conditional
distribution of Xn given Y0, . . . , Yn. We show that the ergodic and stability
properties of (�n)n≥0 are inherited from the ergodicity of the unobserved
process (Xn)n≥0 provided that the Markov chain (Xn,Yn)n≥0 is nondegen-
erate, that is, its transition kernel is equivalent to the product of independent
transition kernels. Our main results generalize, subsume and in some cases
correct previous results on the ergodic theory of nonlinear filters.

1. Introduction. In this paper we will consider a bivariate Markov chain
(Xn,Yn)n≥0 taking values in a Polish state space. Only the process (Yn)n≥0 is
presumed to be directly observable to us, and we aim to estimate the state Xn

of the unobserved process given the observed data Y0, . . . , Yn to date. This is the
quintessential setup in problems with partial information, and models of this type
can therefore be found in a wide range of applications [6].

We will be concerned, in particular, with the ergodic theory and stability prop-
erties of the measure-valued process (�n)n≥0 defined by the conditional distribu-
tions �n = P(Xn ∈ · |Y0, . . . , Yn), which is called the nonlinear filter. It is not diffi-
cult to show that, in general, the processes (�n,Yn)n≥0 as well as (�n,Xn,Yn)n≥0
are themselves Markovian, and a typical question that we will aim to answer is
whether ergodicity of the underlying model (Xn,Yn)n≥0 implies ergodicity of the
extended Markov chain (�n,Xn,Yn)n≥0 in a suitable sense. Questions of this type
date back at least to the work of Blackwell [2] and Kunita [14]. Beside the in-
trinsic probabilistic interest in the development of a conditional ergodic theory of
Markov chains, ergodicity of the filter has substantial practical relevance to under-
standing the performance of nonlinear filtering and its numerical approximations
over a long time horizon; cf. [5, 14, 21], and see [8, 20] for further references.

Much of the literature on the topic of this paper is concerned with the setting of
a classical hidden Markov model whose dependence structure is illustrated in Fig-
ure 1(a); here the unobserved process (Xn)n≥0 is assumed to be itself Markovian
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FIG. 1. Dependence structure of (a) a classical hidden Markov model [6]; (b) a generalized hidden
Markov model [10, 11]; (c) a hidden Markov model with correlated noise [3]; (d) a general Markov
model.

and the observations (Yn)n≥0 are conditionally independent.2 In this special case
(�n)n≥0 is also Markovian, and two basic questions have been considered.

(1) Does (�n)n≥0 possess a unique invariant measure, assuming (Xn)n≥0 does?

For the second question, let P̃ and P be the laws of the Markov chain (Xn,Yn)n≥0

with initial laws P̃(X0 ∈ ·) � P(X0 ∈ ·), and let �̃n = P̃(Xn ∈ · |Y0, . . . , Yn).

(2) Is (�n)n≥0 asymptotically stable in the sense that |�̃n(f ) − �n(f )| n→∞−−−→
0 in P̃-probability for every bounded continuous function f ?

These and related questions were studied in great generality by Kunita [14, 15],
Stettner [19], and Ocone and Pardoux [17] (see [1, 4, 8, 20] for further references).
Kunita and Stettner state that the answer to the first question is affirmative provided

2The continuous time version of this model, known as a Markov additive process, is also widely
studied in the literature in various special cases (such as white noise or counting observations; see
[25] for a unified view). We have restricted ourselves in this paper to discrete time models for sim-
plicity. All our results are easily extended to the continuous time setting as in [20], Section 6.
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that the stationary process (Xn)n∈Z is purely nondeterministic, that is,⋂
n≥0

FX−n is P-trivial,

where P is the stationary law of the two-sided process (Xn,Yn)n∈Z and FX
n =

σ {Xk :−∞ < k ≤ n}. Ocone and Pardoux state that the answer to the second ques-
tion is affirmative under the same assumption. Unfortunately, the proofs of these
results contain a serious error, as was pointed out by Baxendale, Chigansky and
Liptser [1]. Indeed, the crucial step in the proofs is the identity⋂

n≥0

FY
0 ∨ FX−n

?=FY
0 , P-a.s.,

where FY
0 = σ {Yk :−∞ < k ≤ 0}. It is tempting to exchange the order of the in-

tersection ∩ and supremum ∨ of σ -fields, which would allow us to conclude this
identity from the assumption that (Xn)n∈Z is purely nondeterministic. But such
an exchange cannot be taken for granted (see [7], page 30) and requires proof. In
the filtering setting, various counterexamples given in [1, 22] show that the an-
swers to the above questions may indeed be negative even when (Xn)n∈Z is purely
nondeterministic, in contradiction with the conclusions of [14, 15, 17, 19].

Before we proceed, let us briefly recall a simple counterexample from [1, 22]
that will be helpful in understanding the problems addressed in this paper.

EXAMPLE 1.1. Let (ξn)n∈Z be an i.i.d. sequence of random variables taking
the values {0,1} with equal probability under P, and define

Xn = (ξn, ξn+1), Yn = |ξn+1 − ξn|.
Then (Xn)n∈Z is an ergodic Markov chain in {00,01,10,11} that is purely nonde-
terministic by the Kolmogorov zero–one law, and (Xn,Yn)n≥0 is a hidden Markov
model as in Figure 1(a). But clearly ξn = (ξ1 + Y1 + · · · + Yn−1)mod 2, so that

�̃n(f ) = f (Xn), �n(f ) = f (Xn) + f (11 − Xn)

2
, P̃-a.s.

where we defined P̃(·) = P(· |X0 = 00). Thus the filter is not asymptotically stable,
and one may similarly establish that it admits distinct invariant measures.

One feature of the model of Example 1.1 is that it possesses degenerate observa-
tions in the sense that Yn is a function of Xn without any additional noise. The phe-
nomenon illustrated here turns out to disappear when some independent noise is
added to the observations, for example, Yn = |ξn+1 − ξn|+ ηn where (ηn)n∈Z is an
i.i.d. sequence such that the law of η0 has a nowhere vanishing density. In [20], one
of the authors developed this idea to establish ergodicity and stability properties
of the nonlinear filter under very general assumptions. To this end, let (Xn,Yn)n∈Z

be a stationary hidden Markov model under P, and assume that:
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(1) (Xn)n∈Z is absolutely regular: E(‖P(Xn ∈ · |X0) − P(Xn ∈ ·)‖TV) → 0.
(2) The observations are nondegenerate: P(Yn ∈ A|Xn) = ∫

A g(Xn, y)ϕ(dy)

for some strictly positive density g(x, y) > 0 and reference measure ϕ.

Then the above exchange of intersection and supremum of σ -fields is permitted,
and the filter is stable [20] and uniquely ergodic [22]. Intuitively, nondegeneracy
(which formalizes the notion of “noisy” observations) rules out the singular obser-
vation structure that causes the exchange of intersection and supremum to fail in
Example 1.1. However, this intuition should not be taken too literally, as a more
difficult example in [22] shows that the result may still fail if absolute regularity
is replaced with the weaker purely nondeterministic assumption. Therefore, the
assumptions in [14, 15, 17, 19] (which implicitly assume nondegeneracy, though
this is not used in the proofs) are genuinely too weak to yield the desired results.

The results discussed above all assume the classical hidden Markov model set-
ting illustrated in Figure 1(a). Such models are quite flexible and appear in a wide
array of applications [6]. Nonetheless, there are many applications in which the
need arises for more general classes of partially observed Markov models. For
example, two common generalizations of the classical hidden Markov model are
illustrated in Figure 1(b) and (c). The model of Figure 1(b) is a generalized hidden
Markov model [10] or an autoregressive process with Markov regime [11]. This
model is similar to a hidden Markov model in that the dynamics of (Xn)n≥0 do
not depend on the observations (Yn)n≥0; however, here the observations are not
conditionally independent but may possess their own dynamics. Such models are
common in financial mathematics, where (Yn)n≥0 might represent a sequence of
investment returns while (Xn)n≥0 models the state of the underlying economy. On
the other hand, in the model of Figure 1(c) there is feedback from the observations
to the dynamics of the unobserved process (Xn)n≥0. Such models arise when the
noise driving the unobserved process and the observation noise are correlated.

In these more general models, the process (�n)n≥0 is no longer Markovian, but
the pair (�n,Yn)n≥0 is still Markov. It is therefore natural, and of significant inter-
est for applications, to investigate the ergodicity of (�n,Yn)n≥0 and the asymptotic
stability of (�n)n≥0 in a more general setting. It has been shown by Di Masi and
Stettner [10] for the model of Figure 1(b), and by Budhiraja [3] for the model of
Figure 1(c), that these problems can be reduced to establishing the validity of the
exchange of intersection and supremum of σ -fields along the lines of the earlier
approach for classical hidden Markov models in [14, 15, 17, 19]. The generaliza-
tion of the positive results in [20] is far from straightforward, however.

To illustrate one of the complications that arises in generalized models, let us
consider the setting of Budhiraja [3]. Budhiraja considers a model of the form

Xn = f (Xn−1, Yn−1, ξn), Yn = h(Xn) + ηn,

where (ξn)n≥1 and (ηn)n≥0 are independent i.i.d. sequences. It is assumed that f,h

are continuous functions and that η0 possesses a bounded and continuous den-
sity with respect to some reference measure ϕ. This is evidently a hidden Markov
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model with correlated noise of the type illustrated in Figure 1(c). The main result
in [3] states that if this model admits a unique stationary law P and if (Xn)n∈Z

is purely nondeterministic, then (�n,Yn)n≥0 possesses a unique invariant mea-
sure. Budhiraja’s proof contains the same gap as in [14, 15, 19]; indeed, the result
is clearly erroneous in light of Example 1.1. Nonetheless, it seems reasonable to
guess that if we assume nondegeneracy of the observations (i.e., that the density of
η0 is strictly positive) and absolute regularity of the unobserved process, then the
result will hold as in [20]. Even this, however, turns out to be false.

EXAMPLE 1.2. Define the {00,01,10,11}-valued process (Xn)n∈Z and real-
valued process (Yn)n∈Z such that X0 is uniformly distributed in {00,01,10,11},

(X1
n,X

2
n) = (

X2
n−1,

∣∣X2
n−1 − I[0,∞[(Yn−1)

∣∣), Yn = ηn,

where (ηn)n∈Z are i.i.d. N(0,1)-distributed random variables. Then the process
(Xn, I[0,∞[(Yn−1))n∈Z has the same law as the classical hidden Markov model of
Example 1.1, so stability and unique ergodicity of the filter must fail.

Even though the observations are ostensibly nondegenerate in this example, the
feedback from the observations affects the dynamics of the unobserved process in
a singular fashion that recreates the problems of Example 1.1. We thus need at
least a different notion of nondegeneracy in order to rule out such phenomena.

The goal of this paper is to develop a general ergodic and stability theory for
nonlinear filters that subsumes all of the models discussed above. Indeed, we do
not impose any structural assumptions other than that (Xn,Yn)n≥0 is a Markov
chain that possesses a stationary law P [as is illustrated in Figure 1(d)]. The main
assumptions of this paper generalize those of [20]; we assume that the model is:

(1) absolutely regular: E(‖P((Xn,Yn) ∈ · |X0, Y0) − P((Xn,Yn) ∈ ·)‖TV) → 0;
(2) nondegenerate: there exist kernels P0,Q and a density g(x′, y′, x, y) > 0

so that P((Xn+1, Yn+1) ∈ A|Xn,Yn) = ∫
A g(Xn,Yn, x, y)P0(Xn, dx)Q(Yn, dy).

The latter assumption states that the dynamics of the observed and unobserved pro-
cesses can be made independent (on finite time intervals) by an equivalent change
of measure. It is easily seen that the notion of nondegenerate observations for the
classical hidden Markov model is a special case of this assumption; on the other
hand, the present assumption also rules out the phenomenon observed in Exam-
ple 1.2. This general nondegeneracy property appears to be precisely the right as-
sumption required to generalize the results of [20], and seems very natural in view
of Examples 1.1 and 1.2. The absolute regularity assumption on (Xn,Yn)n∈Z can
in fact be weakened somewhat; see Sections 2.4 and 2.5 for a precise statement.

With the above assumptions in place, we will show that Kunita’s exchange of
intersection and supremum of σ -fields is permitted in our setting, and we can con-
sequently develop general asymptotic stability and unique ergodicity results. The
intuition behind the proofs is similar in spirit to the classical hidden Markov model
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setting in [20, 22], and we refer to those papers for a discussion of the basic ideas.
Nonetheless, to our surprise, key parts of the proofs in [20] break down completely
in the generalized setting of this paper and almost all arguments in [20] require sub-
stantial modification, as we can no longer exploit many simplifying properties that
hold trivially in classical hidden Markov models. The proofs in the present paper
rely on the ergodic properties of nondegenerate Markov chains that are developed
in Section 3 below. Though this paper is almost entirely self-contained, the reader
may find it helpful to familiarize herself first with the simpler setting of [20].

This paper is organized as follows. Section 2 introduces the general model used
throughout the paper and states our main results. We also give useful sufficient con-
ditions for the models in Figure 1(a)–(d). Section 3 develops the ergodic properties
of nondegenerate Markov chains that play a central role in our proofs. Sections 4–7
are devoted to the proofs of our main results. Appendices A and B collect auxiliary
results and a notation list that is used throughout the paper.

2. Preliminaries and main results.

2.1. The canonical setup. Throughout this paper we consider the bivariate
stochastic process (Xn,Yn)n∈Z, where Xn takes values in the Polish space E and
Yn takes values in the Polish space F . We realize this process on the canonical path
space � = �X ×�Y with �X = EZ and �Y = FZ, such that Xn(x, y) = x(n) and
Yn(x, y) = y(n). Denote by F the Borel σ -field of �, and define

FX
I = σ {Xk :k ∈ I }, FY

I = σ {Yk :k ∈ I }, FI = FX
I ∨ FY

I

for I ⊂ Z. For simplicity of notation, we define the natural filtrations

FX
n = FX]−∞,n], FY

n = FY]−∞,n], Fn = F]−∞,n] (n ∈ Z)

and the σ -fields

FX = FX
Z

, FY = FY
Z
, FX+ = FX[0,∞[, FY+ = FY[0,∞[.

Finally, we denote by Y the FZ-valued random variable (Yk)k∈Z, and the canonical
shift � :� → � is defined as �(x,y)(m) = (x(m + 1), y(m + 1)).

For any Polish space Z, we denote by B(Z) its Borel σ -field and by P(Z)

the space of all probability measures on Z endowed with the weak convergence
topology [thus P(Z) is again Polish]. Let us recall that any probability kernel
ρ :Z × B(Z′) → [0,1] may be equivalently viewed as a P(Z′)-valued random
variable z → ρ(z, ·) on (Z,B(Z)). For notational convenience, we will implicitly
identify probability kernels and random probability measures in the sequel.
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2.2. The model. The basic model of this paper is defined by a Markov transi-
tion kernel P :E ×F ×B(E ×F) → [0,1] and a P -invariant probability measure
π on (E ×F,B(E ×F)), which we presume to be fixed throughout the paper. We
now define the probability measure P on (�,F) such that, under P, the process
(Xn,Yn)n∈Z is the stationary Markov chain with transition kernel P and station-
ary distribution π . We interpret Yn to be the observable component of the model,
while Xn is the unobservable component.

As (Xn,Yn)n∈Z is a stationary Markov chain under P, the reverse time process
(X−n, Y−n)n∈Z is again a stationary Markov chain. We fix throughout the paper
a version P ′ :E × F × B(E × F) → [0,1] of the regular conditional probability
P((X−1, Y−1) ∈ · |X0, Y0). Thus, by construction, the process (X−n, Y−n)n∈Z is a
stationary Markov chain with transition kernel P ′ and invariant measure π .

In addition to the probability measure P, we introduce the probability kernel
P· :E × F × F → [0,1] with the following properties: under Pz,w ,

(1) (Xn,Yn)n≥0 is Markov with transition kernel P and initial measure δz ⊗δw;
(2) (X−n, Y−n)n≥0 is Markov with transition kernel P ′ and initial measure δz ⊗

δw;
(3) (Xn,Yn)n≥0 and (X−n, Y−n)n≥0 are independent.

Clearly Pz,w is a version of the regular conditional probability P(· |X0, Y0). Finally,
for any probability measure ν on (E × F,B(E × F)), we define

Pν(A) =
∫

IA(x, y)Pz,w(dx, dy)ν(dz, dw) for all A ∈ F.

Note, in particular, that Pπ coincides with P by construction.

2.3. The nonlinear filter. As Xn is not directly observable, we are interested
in the conditional distribution of Xn given the history of observations to date
Y0, . . . , Yn. To this end, we define for every probability measure μ on E × F and
n ≥ 0 the nonlinear filter �

μ
n :�Y × B(E) → [0,1] to be a version of the regular

conditional probability Pμ(Xn ∈ · |FY[0,n]). The nonlinear filter is the central object
of interest throughout this paper.

We now state some basic properties of the nonlinear filter. The first property
establishes that the filter can be computed recursively.

LEMMA 2.1. There is a measurable map U :P(E) × F × F → P(E) such
that �

μ
n = U(�

μ
n−1, Yn−1, Yn) Pμ-a.s. for every n ≥ 1 and μ ∈ P(E × F).

REMARK 2.2. In the proof of our main results, it will be convenient to assume
that the identity �

μ
n = U(�

μ
n−1, Yn−1, Yn) holds everywhere on �Y and not just

Pμ-a.s. This corresponds to the choice of a particular version of the nonlinear filter.
However, as none of our results will depend on the choice of version of the filter,
there is clearly no loss of generality in fixing such a convenient version for the
purposes of our proofs, as we will do in Section 5.
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We now consider (�
μ
n )n≥0 as a P(E)-valued stochastic process. The second

property establishes that this measure-valued process inherits certain Markovian
properties from the underlying model (Xn,Yn)n≥0.

LEMMA 2.3. There exist Markov transition kernels  on P(E)×F and � on
P(E) × E × F such that the following hold: for every μ ∈ P(E × F),

(1) (�
μ
n ,Yn)n≥0 is a Markov chain under Pμ with transition kernel ; and

(2) (�
μ
n ,Xn,Yn)n≥0 is a Markov chain under Pμ with transition kernel �.

For any m ∈ P(P(E) × F), define the barycenter bm ∈ P(E × F) as

bm(A × B) =
∫

ν(A)IB(w)m(dν, dw).

We finally state some properties of - and �-invariant measures.

LEMMA 2.4. For any -invariant probability measure m ∈ P(P(E)×F), the
barycenter bm is a P -invariant probability measure. Conversely, there exists at
least one -invariant probability measure with barycenter π .

Similarly, for any �-invariant probability measure M ∈ P(P(E) × E × F), the
marginal M(P(E) × ·) is a P -invariant probability measure. Conversely, there ex-
ists at least one �-invariant probability measure with marginal π .

In general, there may be multiple -invariant measures with barycenter π , etc.
Our main results will establish uniqueness under suitable assumptions.

REMARK 2.5. For the purposes of this paper it suffices to establish the above
results for the case where Assumption 2.8 below is assumed to hold. In this setting,
these results will be proved in Sections 6.1 and 7.1. In fact, the results in this
subsection hold very generally as stated without any further assumptions, but the
proofs in the general setting are somewhat more abstract. Such generality will not
be needed in this paper, and we therefore leave the generalization of the proofs
(along the lines of [22], Appendix A.1) to the interested reader.

2.4. Main results. We begin by introducing the fundamental model assump-
tions that are required by our main results. Let us emphasize that we will at no
point in the paper automatically assume that any of these assumptions is in force;
all assumptions will be imposed explicitly where they are needed. Some useful
sufficient conditions will be given in Section 2.5 below.

ASSUMPTION 2.6 (Marginal ergodicity). The following holds:∫
‖Pz,w(Xn ∈ ·) − P(Xn ∈ ·)‖TVπ(dz, dw)

n→∞−−−→ 0.
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ASSUMPTION 2.7 (Reversed marginal ergodicity). The following holds:∫
‖Pz,w(X−n ∈ ·) − P(X−n ∈ ·)‖TVπ(dz, dw)

n→∞−−−→ 0.

ASSUMPTION 2.8 (Nondegeneracy). There exist transition probability ker-
nels P0 :E × B(E) → [0,1] and Q :F × B(F ) → [0,1] such that

P(z,w,dz′, dw′) = g(z,w, z′,w′)P0(z, dz′)Q(w,dw′)

for some strictly positive measurable function g :E × F × E × F → ]0,∞[.

We now proceed to state the main results of this paper. Our results address in
turn each of the problems discussed in the Introduction: the exchange of inter-
section and supremum of σ -fields, asymptotic stability of the nonlinear filter and
unique ergodicity of the processes (�

μ
n ,Yn)n≥0 and (�

μ
n ,Xn,Yn)n≥0.

Our first result establishes the validity of Kunita’s exchange of intersection and
supremum, and its time-reversed cousin, in the generalized setting of this paper.

THEOREM 2.9. Suppose that Assumptions 2.6–2.8 are in force. Then⋂
n≥0

FY+ ∨ FX[n,∞[ = FY+ and
⋂
n≥0

FY
0 ∨ FX−n = FY

0 , P-a.s.

Our second result concerns filter stability which can be established in our setting
(as in [20]) in a very strong sense: pathwise and in the total variation topology.

THEOREM 2.10. Suppose that Assumptions 2.6–2.8 are in force. Let μ be a
probability measure on E × F such that μ(E × ·) � π(E × ·) and

Eμ(∥∥Pμ(Xn ∈ · |Y0) − P(Xn ∈ ·)∥∥TV

) n→∞−−−→ 0.

Then ‖�μ
n − �π

n ‖TV
n→∞−−−→ 0 Pμ-a.s. [and P-a.s. if μ(E × ·) ∼ π(E × ·)].

REMARK 2.11. The assumptions of Theorem 2.10 may be more intuitive
when phrased in terms of the filtering recursion in Lemma 2.1. Let ρ :F ×B(E) →
[0,1] be a probability kernel, and define the random measures (�n)n≥0 by the re-
cursion

�0 = ρ(Y0, ·), �n = U(�n−1, Yn−1, Yn).

Suppose that the dynamics of (Xn)n≥0 are such that the random initial law ρ is in
the domain of attraction of the stationary distribution π in the sense that∥∥Pρ(w,·)⊗δw(Xn ∈ ·) − P(Xn ∈ ·)∥∥TV

n→∞−−−→ 0 in π(E × dw)-probability.
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Then ‖�n − �π
n ‖TV

n→∞−−−→ 0 P-a.s. Indeed, this follows immediately from Theo-
rem 2.10 by setting μ(dz, dw) = ρ(w,dz)π(E × dw). Therefore, we may inter-
pret Theorem 2.10 as follows: the filtering recursion of Lemma 2.1 is asymptoti-
cally stable inside the domain of attraction of the stationary distribution.

The result of Theorem 2.10 is easily extended to show ‖�μ
n − �ν

n‖TV
n→∞−−−→ 0

Pγ -a.s. whenever all three initial measures μ,ν, γ are in the domain of attraction
of the stationary distribution in the above sense, using Corollary 3.6 below.

Our third result concerns uniqueness of the -invariant measure.

THEOREM 2.12. Suppose that Assumptions 2.6–2.8 are in force. Then there
exists a unique -invariant probability measure with barycenter π . In particular,
if P has a unique invariant probability measure, then so does .

Our fourth result concerns uniqueness of the �-invariant measure. The situation
here is a little more complicated; Assumptions 2.6–2.8 only ensure uniqueness
within a restricted class of measures (cf. [15]), while a somewhat stronger variant
of Assumption 2.6 yields uniqueness in the class of all probability measures.

THEOREM 2.13. Suppose that Assumptions 2.6–2.8 hold. Then there exists a
unique �-invariant probability measure with marginal π on E × F in the class{

M ∈ P
(
P(E) × E × F

)
: for every A ∈ B(P(E)),B ∈ B(E),C ∈ B(F ),

M(A × B × C) =
∫

ν(B)IA×C(ν,w)M(dν, dz, dw)

}
.

If, in addition, we have∫
‖Pz,w(Xn ∈ ·) − P(Xn ∈ ·)‖TVμ(dz, dw)

n→∞−−−→ 0

for every probability measure μ on E × F such that μ(E × ·) = π(E × ·), then
there exists a unique �-invariant probability measure with marginal π among all
probability measures in P(P(E) × E × F). If we assume even further that P has
a unique invariant probability measure, then so does �.

The following sections are devoted to the proofs of these results: Theorems 2.9,
2.10, 2.12 and 2.13 are proved in Sections 4, 5, 6 and 7, respectively.

2.5. Sufficient conditions. Our main results rely on the fundamental Assump-
tions 2.6–2.8. In most applications, the form of the transition kernel P is explicitly
(or semi-explicitly) given. Existence and uniqueness of an invariant measure π and
the ergodicity Assumption 2.6 can often be verified in terms of P only (cf. [16]),
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while the nondegeneracy Assumption 2.8 can be read off directly from the explicit
form of P . On the other hand, explicit expressions for the invariant measure π or
the reversed transition kernel P ′ are often not available, so that Assumption 2.7
may be difficult to verify directly. The goal of this section is to provide sufficient
conditions for our main results that are easily verified in practice.

2.5.1. General sufficient conditions. Our main sufficient condition is absolute
regularity (cf. [23]), of the process (Xn,Yn)n∈Z, which was the assumption stated
in the Introduction. This is slightly stronger than Assumptions 2.6 and 2.7, but has
the benefit that it is automatically time-reversible and therefore easily verifiable.

LEMMA 2.14. Suppose that (Xn,Yn)n∈Z is absolutely regular,∫ ∥∥Pz,w(
(Xn,Yn) ∈ ·) − π

∥∥
TVπ(dz, dw)

n→∞−−−→ 0.

Then both Assumptions 2.6 and 2.7 hold true.

PROOF. Absolute regularity trivially yields Assumption 2.6. On the other
hand, the absolute regularity property of a stationary Markov chain is invariant
under time reversal by [20], Proposition 4.4, so that Assumption 2.7 follows. �

Similarly, the convergence assumption in Theorem 2.10 also admits a slightly
stronger but potentially more easily verified counterpart.

LEMMA 2.15. Suppose that Assumption 2.6 holds. Let μ be a probability
measure on E × F such that ‖Pμ((Xn,Yn) ∈ ·) − π‖TV → 0 as n → ∞. Then

Eμ(∥∥Pμ(Xn ∈ · |Y0) − P(Xn ∈ ·)∥∥TV

) n→∞−−−→ 0.

PROOF. Define the quantity

�k(x, y) = ‖Px,y(Xk ∈ ·) − P(Xk ∈ ·)‖TV.

By the stationarity of P, the Markov property and ‖�k −1‖∞ ≤ 1, we can estimate

Eμ(∥∥Pμ(Xn+k ∈ · |Y0) − P(Xn+k ∈ ·)∥∥TV

)
≤ Eμ(‖PXn,Yn(Xk ∈ ·) − P(Xk ∈ ·)‖TV

)
= E(�k(Xn,Yn)) + {

Eμ(
�k(Xn,Yn) − 1

) − E
(
�k(Xn,Yn) − 1

)}
≤ E

(‖PX0,Y0(Xk ∈ ·) − P(Xk ∈ ·)‖TV
) + ∥∥Pμ(

(Xn,Yn) ∈ ·) − π
∥∥

TV.

This expression converges to zero as k,n → ∞ by our assumptions. �
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2.5.2. Generalized hidden Markov models. We now consider the special case
where the underlying model (Xn,Yn)n∈Z is a generalized hidden Markov model,
whose dependence structure is illustrated in Figure 1(b). Under Assumption 2.8,
this dependence structure is enforced by the additional requirement that∫

g(z,w, z′,w′)Q(w,dw′) = 1 for all w ∈ F, z, z′ ∈ E.

This implies that (Xn)n∈Z is itself Markovian under P with transition kernel P0,
and the probability measure π0 = π(· × F) must then be P0-invariant. In this set-
ting, it suffices to consider the ergodic properties of the unobserved process, pro-
vided that the reference transition kernel Q(w,dw′) does not depend on w.

LEMMA 2.16. Suppose that Assumption 2.8 holds with Q(w,dw′) = ϕ(dw′)
for some probability measure ϕ on F , and that (Xn,Yn)n∈Z is a generalized hidden
Markov model in the above sense. If (Xn)n∈Z is absolutely regular∫

‖P n
0 (z, ·) − π0‖TVπ0(dz)

n→∞−−−→ 0,

then both Assumptions 2.6 and 2.7 hold true.

PROOF. We reduce to the case of Lemma 2.14. A stationary Markov chain is
absolutely regular if and only if for almost every pair of initial conditions, there is
a finite time n at which the laws of the chain are not mutually singular (e.g., this
is a special case of Theorem 4.1 below). Therefore, our assumption implies that
for π0 ⊗ π0-a.e. (z, z′), there is an n ≥ 0 such that P n

0 (z, ·) and P n
0 (z′, ·) are not

mutually singular. But as Q(w,dw′) = ϕ(dw′) and by Assumption 2.8, we have
P n(z,w, ·) ∼ P n

0 (z, ·)⊗ϕ and P n(z′,w′, ·) ∼ P n
0 (z′, ·)⊗ϕ for every z,w, z′,w′. It

follows that for π ⊗ π -a.e. ((z,w), (z′,w′)) there is an n ≥ 0 such that P n(z,w, ·)
and P n(z′,w′, ·) are not mutually singular. We have therefore shown that the ab-
solutely regularity assumption of Lemma 2.14 holds. �

REMARK 2.17. By the generalized hidden Markov structure Pz,w(Xn ∈ ·) =
P n

0 (z, ·) is independent of w, so that Assumption 2.6 follows immediately from
the absolute regularity of (Xn)n∈Z. Unfortunately, the generalized hidden Markov
property is not invariant under time reversal, so this argument does not guarantee
that Assumption 2.7 holds. The additional assumption that Q(w,dw′) = ϕ(dw′)
allows us to circumvent this problem by reducing to the case of Lemma 2.14.

We also have a counterpart of Lemma 2.15.

LEMMA 2.18. Suppose the assumptions of Lemma 2.16 hold. Let μ be a prob-
ability measure on E × F so that ‖μ(· × F)P n

0 − π0‖TV → 0 as n → ∞. Then

Eμ(∥∥Pμ(Xn ∈ · |Y0) − P(Xn ∈ ·)∥∥TV

) n→∞−−−→ 0.
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PROOF. We reduce to the case of Lemma 2.15. As Q(w,dw′) = ϕ(dw′), we
obtain π ∼ π0 ⊗ ϕ and μP n ∼ μ(· × F)P n

0 ⊗ ϕ for all n > 0 by Assumption 2.8.
Choose Sn ∈ B(E) such that μ(· × F)P n

0 (· ∩ Sn) � π0 and π0(S
c
n) = 0 for all n

[so Sn defines the Lebesgue decomposition of μ(· × F)P n
0 with respect to π0].

Then clearly μP n(· ∩ Sn × F) � π and π(Sc
n × F) = 0. Therefore

‖μP k+n − π‖TV ≤ μP n(Sn × F)‖νnP
k − π‖TV + 2μP n(Sc

n × F)

≤ ‖νnP
k − π‖TV + ‖μ(· × F)P n

0 − π0‖TV,

where we have defined νn = μP n(· ∩ Sn × F)/μP n(Sn × F). But as (Xn,Yn)n∈Z

is absolutely regular (cf. Lemma 2.16) and νn � π , the first term converges to zero
as k → ∞. Letting n → ∞ and applying Lemma 2.15 yields the result. �

2.5.3. Hidden Markov models with correlated noise. We now turn to the spe-
cial case where the underlying model (Xn,Yn)n∈Z is a hidden Markov model with
correlated noise, whose dependence structure is illustrated in Figure 1(c). Under
Assumption 2.8, this dependence structure is enforced by the following require-
ment: there is a probability measure ϕ on F such that Q(w,dw′) = ϕ(dw′), and
there are measurable functions gX :E ×F ×E → R+ and gY :E ×F → R+ such
that

g(z,w, z′,w′) = gX(z,w, z′)gY (z′,w′),
∫

gY (z,w)ϕ(dw) = 1.

Unlike in the case of a generalized hidden Markov model, in the present model the
probabilities Pz,w(Xn ∈ ·) do depend on w. Nonetheless, in the present case the
unobserved process (Xn)n∈Z is still Markov under the stationary measure P with
respect to its own filtration, with transition kernel P̃0 given for A ∈ B(E) by

P̃0(z,A) =
∫

P(z,w,A × F)gY (z,w)ϕ(dw).

To see this, note that π(dz, dw) = gY (z,w)π(dz × F)ϕ(dw) by our assumption
on P and πP = π , so we can compute P(Xn+1 ∈ A|FX

n ) = P̃0(Xn,A).

REMARK 2.19. Unlike in the case of a generalized hidden Markov model,
where Q(w,dw′) = ϕ(dw′) is an additional assumption, in the present setting the
assumption Q(w,dw′) = ϕ(dw′) entails no loss of generality. Indeed, the hid-
den Markov structure with correlated noise can be generally formulated by the
requirement that P(z,w,dz′, dw′) = PX(z,w,dz′)PY (z′, dw′) for some proba-
bility kernels PX and PY . It is easily seen that any such model that also satisfies
Assumption 2.8 must have the above form for a suitable choice of ϕ.

The idea is now that in the present setting, it suffices to consider the ergodic
properties of the unobserved process (i.e., the transition kernel P̃0).
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LEMMA 2.20. Suppose that Assumption 2.8 holds and that (Xn,Yn)n∈Z is a
hidden Markov model with correlated noise in the above sense. If also∫

‖P̃ n
0 (z, ·) − π0‖TVπ0(dz)

n→∞−−−→ 0,

where π0 = π(· × F), then both Assumptions 2.6 and 2.7 hold true.

PROOF. Note that for all (z,w) ∈ E × F , B ∈ B(E × F) and n ≥ 1 we have

P n(z,w,B) =
∫ {∫

B
P̃ n−1

0 (z′, dz̃)gY (z̃, w̃)ϕ(dw̃)

}
gX(z,w, z′)P0(z, dz′).

Therefore, we have for n ≥ 1∫
‖P n(z,w, ·) − π‖TVπ(dz, dw) ≤

∫
‖P̃ n−1

0 (z, ·) − π0‖TV.

The result now follows directly from Lemma 2.14. �

In the present setting (as in the case of a classical hidden Markov model), the
most natural initial measures μ are those that are compatible with the observation
model in the sense that μ(dz, dw) = gY (z,w)μ0(dz)ϕ(dw) for some probability
measure μ0 on E. This yields the following counterpart of Lemma 2.18, whose
proof (by reduction to Lemma 2.15) is trivial and is therefore omitted.

LEMMA 2.21. Suppose the assumptions of Lemma 2.20 hold. Let μ0 be a
probability measure on E such that ‖μ0P̃

n
0 − π0‖TV → 0 as n → ∞. Then

Eμ(∥∥Pμ(Xn ∈ · |Y0) − P(Xn ∈ ·)∥∥TV

) n→∞−−−→ 0,

where we have defined μ(dz, dw) = gY (z,w)μ0(dz)ϕ(dw).

REMARK 2.22. Let us note that in all of the special cases discussed above the
process (Xn,Yn)n∈Z is absolutely regular so that Assumptions 2.6 and 2.7 hold by
virtue of Lemma 2.14. Absolute regularity of (Xn,Yn)n∈Z is not necessary, how-
ever, for Assumptions 2.6 and 2.7 to hold. For example, in the trivial case that As-
sumption 2.8 holds with g ≡ 1, it is easily seen that Assumptions 2.6 and 2.7 hold
if and only if the unobserved process (Xn)n∈Z is absolutely regular, while the pair
process (Xn,Yn)n∈Z need not even be ergodic [e.g., when Q(w,dw′) = δw(dw′)].
Thus Assumptions 2.6 and 2.7 are strictly weaker than the absolute regularity of
the pair process (Xn,Yn)n∈Z. Nonetheless, the latter assumption is very mild and
will likely hold in most applications of practical interest.

3. Nondegenerate Markov chains. The nondegeneracy Assumption 2.8 will
play an essential role in our theory. Before we can turn to the proofs of our main
results, we must therefore begin by establishing some general consequences of the
nondegeneracy assumption that will be needed throughout the paper.
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3.1. Product structure of the invariant measure. Assumption 2.8 states that
the transition kernel P of the Markov chain (Xn,Yn)n∈Z is equivalent to a prod-
uct of transition kernels of two independent Markov chains. Our first question is,
therefore, whether this forces the invariant measure π to possess a similar product
structure; that is, if a stationary Markov chain is nondegenerate, then is its invari-
ant measure necessarily equivalent to the product of its marginals? In general, of
course, the answer is negative (e.g., consider the case where P is the identity and
π is any probability measure that is not equivalent to a product measure). How-
ever, we will presently show that if, in addition to nondegeneracy, we assume that
the marginal process (Xn)n∈Z is ergodic in a suitable sense, then π is forced to
possess the desired product structure.

We need two lemmas. The first states that the nondegeneracy of the transition
kernel P implies that the iterates P n are also nondegenerate; in fact, we show that
P((Xn,Yn) ∈ · |X0, Y0) ∼ P(Xn ∈ · |X0) ⊗ P(Yn ∈ · |Y0).

LEMMA 3.1. Suppose that Assumption 2.8 is in force. Choose fixed ver-
sions πY (w,dz), πX(z, dw) of the regular conditional probabilities P(X0 ∈ · |Y0),
P(Y0 ∈ · |X0), respectively, and define the probability kernels

P X
n (z,A) =

∫
1A(z′)P n(z,w,dz′, dw′)πX(z, dw),

P Y
n (w,B) =

∫
1B(w′)P n(z,w,dz′, dw′)πY (w,dz).

Then we have for all n ∈ N

P n(z,w,dz′, dw′) = Gn(z,w, z′,w′)P X
n (z, dz′)P Y

n (w,dw′),

where Gn :E × F × E × F → ]0,∞[ are strictly positive measurable functions.

PROOF. From the Assumption 2.8, it follows directly that

P n(z,w,dz′, dw′) = gn(z,w, z′,w′)P n
0 (z, dz′)Qn(w,dw′)

for some strictly positive measurable function gn :E × F × E × F → ]0,∞[. But
then the result follows directly from the definition of P X

n , P Y
n with

Gn(z,w, z′,w′)
= gn(z,w, z′,w′)

×
(∫

gn(z, w̃, z′, w̃′)Qn(w̃, dw̃′)πX(z, dw̃)

×
∫

gn(z̃,w, z̃′,w′)P n
0 (z̃, dz̃′)πY (w,dz̃)

)−1

.

The proof is complete. �
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The second lemma states that if the unobserved process (Xn)n∈Z is ergodic in a
suitable sense, and if the nondegeneracy assumption holds, then every P -invariant
function is independent of its unobserved component.

LEMMA 3.2. Suppose that Assumption 2.8 is in force, and that∫
‖P X

n (z, ·) − π(· × F)‖TVπ(dz × F)
n→∞−−−→ 0.

Then for any bounded measurable function f :E × F → R that is P -invariant
(i.e., f = Pf ), there exists a bounded measurable function g :F → R such that
f (z,w) = g(w) for π -a.e. (z,w) ∈ E × F .

PROOF. As f is P -invariant, the process (f (Xn,Yn))n≥0 is a martingale un-
der P. By stationarity and the martingale convergence theorem,

E
(|f (Xn,Yn) − f (X0, Y0)|) = E

(|f (Xn+k, Yn+k) − f (Xk,Yk)|) k→∞−−−→ 0.

In particular, we have∫
Pz,w(

f (X0, Y0) = f (Xn,Yn) for all n ≥ 0
)
π(dz, dw) = 1.

Therefore, we may choose a set H1 ∈ B(E × F) with π(H1) = 1 such that

Pz,w(
f (z,w) = f (Xn,Yn) for all n ≥ 0

) = 1 for all (z,w) ∈ H1.

Next, let ρ :F × B(E) → [0,1] be a version of the regular conditional probability
P(X0 ∈ · |Y0). Then by our assumption and the triangle inequality,∫

‖P X
n (z, ·) − P X

n (z′, ·)‖TVρ(w,dz)ρ(w,dz′)π(E × dw)

≤ 2
∫

‖P X
n (z, ·) − π(· × F)‖TVπ(dz × F)

n→∞−−−→ 0.

Therefore, using Fatou’s lemma, we can choose a set H2 ∈ B(E × E × F) of
(ρ ⊗ ρ)π(E × ·)-full measure such that

lim inf
n→∞ ‖P X

n (z, ·) − P X
n (z′, ·)‖TV = 0 for all (z, z′,w) ∈ H2.

Now define the set H ∈ B(E × E × F) as follows:

H = {(z, z′,w) ∈ E × E × F : (z,w), (z′,w) ∈ H1} ∩ H2.

Then it is easily seen that the set H has (ρ ⊗ ρ)π(E × ·)-full measure.
We now claim that f (z,w) = f (z′,w) for every (z, z′,w) ∈ H . To see this, let

us fix some point (z, z′,w) ∈ H , and choose n ≥ 0 such that

‖P X
n (z, ·) − P X

n (z′, ·)‖TV < 1.
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Thus P X
n (z, ·) and P X

n (z′, ·) are not mutually singular. By Lemma 3.1

P n(z,w, ·) ∼ P X
n (z, ·) ⊗ P Y

n (w, ·), P n(z′,w, ·) ∼ P X
n (z′, ·) ⊗ P Y

n (w, ·).
Therefore, P n(z,w, ·) and P n(z′,w, ·) are not mutually singular. But note that, by
the definition of H , P n(z,w, ·) is supported on the set

�1 = {(z̃, w̃) ∈ E × F :f (z,w) = f (z̃, w̃)},
while P n(z′,w, ·) is supported on the set

�2 = {(z̃, w̃) ∈ E × F :f (z′,w) = f (z̃, w̃)}.
Thus the fact that P n(z,w, ·) and P n(z′,w, ·) are not mutually singular implies
that �1 ∩ �2 �= ∅, which establishes the claim.

To complete the proof, define g(w) = ∫
f (z,w)ρ(w,dz). Then∫

|f (z,w) − g(w)|π(dz, dw)

≤
∫

|f (z,w) − f (z′,w)|ρ(w,dz)ρ(w,dz′)π(E × dw) = 0.

Thus f (z,w) = g(w) for π -a.e. (z,w) ∈ E × F as desired. �

We can now prove the main result of this subsection: if the nondegeneracy
assumption holds, and if, in addition, the unobserved component (Xn)n∈Z is er-
godic, then the invariant measure π is necessarily equivalent to the product of its
marginals. Note that the ergodicity assumption in this result automatically holds
when Assumption 2.6 is in force.

PROPOSITION 3.3. Suppose that Assumption 2.8 is in force, and that∫
‖P X

n (z, ·) − π(· × F)‖TVπ(dz × F)
n→∞−−−→ 0.

Then there exists a strictly positive measurable function h :E × F → ]0,∞[ such
that π(dz, dw) = h(z,w)π(dz × F)π(E × dw).

PROOF. We begin by noting that

π(A × F) =
∫

π(dz × F)P X
n (z,A), π(E × B) =

∫
π(E × dw)P Y

n (w,B)

by the invariance of π . Now let C ∈ B(E × F) be a set such that π(C) = 0. As
πP n = π , it follows from Lemma 3.1 that∫

1C(z′,w′)P X
n (z, dz′)P Y

n (w,dw′)π(dz, dw) = 0
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for all n ∈ N. But note that∫
1C(z,w)π(dz × F)π(E × dw)

=
∫

1C(z′,w′)π(dz′ × F)P Y
n (w,dw′)π(dz, dw)

≤
∫

‖P X
n (z, ·) − π(· × F)‖TVπ(dz × F)

+
∫

1C(z′,w′)P X
n (z, dz′)P Y

n (w,dw′)π(dz, dw).

Letting n → ∞ and using the ergodicity assumption gives∫
1C(z,w)π(dz × F)π(E × dw) = 0.

As this holds for any set C such that π(C) = 0, we have evidently shown that
π(dz × F)π(E × dw) � π(dz, dw). Conversely, choose a set C such that∫

1C(z,w)π(dz × F)π(E × dw) = 0.

Then, by Lemma 3.1, we have∫
P n(z,w,C)π(dz × F)π(E × dw) = 0

for all n ∈ N. By the Birkhoff ergodic theorem,

1

N

N∑
n=1

P n(z,w,C)
N→∞−−−→ f (z,w) for π -a.e. (z,w) ∈ E × F,

where f is a P -invariant function with π(f ) = π(C). Moreover, by Lemma 3.2
we have f (z,w) = g(w) for π -a.e. (z,w) ∈ E × F for some function g. But as
we have already shown that π(dz×F)π(E ×dw) � π(dz, dw), these statements
hold π(dz × F)π(E × dw)-a.e. also. Therefore,

0 = 1

N

N∑
n=1

∫
P n(z,w,C)π(dz × F)π(E × dw)

N→∞−−−→
∫

g(w)π(E × dw) =
∫

f (z,w)π(dz, dw) = π(C).

As this holds for any C such that
∫

1C(z,w)π(dz × F)π(E × dw) = 0, we evi-
dently have π(dz, dw) � π(dz × F)π(E × dw), and the proof is complete. �
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3.2. Reversed nondegeneracy. One important consequence of Proposition 3.3
is that, if the unobserved process (Xn)n∈Z is ergodic and the transition kernel P is
nondegenerate, then the nondegeneracy Assumption 2.8 holds also in reverse time
(i.e., the backward transition kernel P ′ must be nondegenerate also). In particular,
this implies that the Assumptions 2.6–2.8 are invariant under time reversal.

LEMMA 3.4. Suppose that Assumption 2.8 is in force, and that∫
‖P X

n (z, ·) − π(· × F)‖TVπ(dz × F)
n→∞−−−→ 0.

Then P ′ is also nondegenerate; that is, there exist transition probability kernels
P ′

0 :E × B(E) → [0,1] and Q′ :F × B(F ) → [0,1] such that

P ′(z,w,dz′, dw′) = g′(z,w, z′,w′)P ′
0(z, dz′)Q′(w,dw′)

for some strictly positive measurable function g′ :E × F × E × F → ]0,∞[.
PROOF. Note that by Proposition 3.3 and Assumption 2.8

E
(
(X0, Y0,X1, Y1) ∈ B

) =
∫
B

h(x0, y0)g(x0, y0, x1, y1)ρ(dx0, dx1)κ(dy0, dy1),

where ρ(dx, dx′) = π(dx×F)P0(x, dx′), κ(dy, dy′) = π(E×dy)Q(y, dy′), and
where g,h are strictly positive measurable functions. Let us now fix any versions
r(x1, dx0) and k(y1, dy0) of the regular conditional probabilities ρ(X0 ∈ · |X1)

and κ(Y0 ∈ · |Y1), respectively. Then by the Bayes formula,

P
(
(X0, Y0) ∈ A|X1, Y1

) =
∫
A h(z,w)g(z,w,X1, Y1)r(X1, dz)k(Y1, dw)∫
h(z,w)g(z,w,X1, Y1)r(X1, dz)k(Y1, dw)

.

As P ′ is a version of P((X0, Y0) ∈ · |X1, Y1), the result follows. �

3.3. Equivalence of the observations. We now turn to a different consequence
of the nondegeneracy assumption. It is easily seen that when Assumption 2.8 holds,
the laws of (Y0, . . . , Yn) under Pz,w and Pz′,w are equivalent for any z, z′ ∈ E, w ∈
F , n < ∞. That is, the laws of the observed process under different initializations
of the unobserved process are equivalent on any finite time horizon. To prove our
main results, however, we will require such an equivalence to hold on the infinite
time horizon. The following result is therefore of central importance.

PROPOSITION 3.5. Suppose that Assumption 2.8 holds. Let ξ, ξ ′ be proba-
bility measures on (E,B(E)), let η be a probability measure on (F,B(F )) and
let v :E × F → ]0,∞[ and v′ :E × F → ]0,∞[ be strictly positive measurable
functions. Define the probability measures on (E × F,B(E × F))

ν(dx, dy) = v(x, y)ξ(dx)η(dy), ν′(dx, dy) = v′(x, y)ξ ′(dx)η(dy).

If lim infn→∞‖Pν(Xn ∈ ·) − Pν′
(Xn ∈ ·)‖TV = 0, then Pν |FY+ ∼ Pν′ |FY+ .
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PROOF. Choose any A ∈ FY+ such that Pν′
(A) = 0. It suffices to prove that

Pν(A) = 0. Indeed, this shows that Pν |FY+ � Pν′ |FY+ , while the reverse statement

follows as the assumptions are symmetric in ν and ν′.
Fix for the time being n ∈ N. Note that by construction

IA(x, y) = IA(y(0), . . . , y(n), (y(k))k>n).

Let us define the measurable function

a(y0, . . . , yn, xn) = Exn,yn(IA(y0, . . . , yn, (Yk)k≥1)).

Then, by the Markov property,

a(Y0, . . . , Yn,Xn) = Pρ(
A|FX[0,n] ∨ FY[0,n]

)
, Pρ-a.s.

for any initial probability measure ρ. In particular,

a(Y0, . . . , Yn,Xn) = 0, Pν′
-a.s.

Let Qη be the law of the Markov chain (Yk)k≥0 with initial measure η and transi-

tion kernel Q, and Pξ ′
0 be the law of the Markov chain (Xk)k≥0 with initial measure

ξ ′ and transition kernel P0. By our assumptions,

Pν′
(A) = (Pξ ′

0 ⊗ Qη)

[
IAv′(X0, Y0)

n−1∏
i=0

g(Xi, Yi,Xi+1, Yi+1)

]

for every A ∈ FX[0,n] ∨ FY[0,n]. In particular, the law of (Y0, . . . , Yn,Xn) under Pν′

and the law of Qη|FY[0,n]
⊗ ξ ′P n

0 are equivalent. Therefore,

a(Y0, . . . , Yn,Xn) = 0,
(
Qη|FY[0,n]

⊗ ξ ′P n
0

)
-a.s.

Choose Sn ∈ B(E) such that (ξP n
0 )(· ∩ Sn) � ξ ′P n

0 and (ξ ′P n
0 )(Sc

n) = 0 (so Sn

defines the Lebesgue decomposition of ξP n
0 with respect to ξ ′P n

0 ). Then

ISn(Xn)a(Y0, . . . , Yn,Xn) = 0,
(
Qη|FY[0,n]

⊗ ξP n
0

)
-a.s.

Therefore,

a(Y0, . . . , Yn,Xn) ≤ ISc
n
(Xn),

(
Qη|FY[0,n]

⊗ ξP n
0

)
-a.s.

But, as above, we find that the law of (Y0, . . . , Yn,Xn) under Pν is equivalent to
Qη|FY[0,n]

⊗ ξP n
0 . Therefore, we obtain immediately

a(Y0, . . . , Yn,Xn) ≤ ISc
n
(Xn), Pν-a.s.

Taking the expectation, we find that Pν(A) ≤ Pν(Xn ∈ Sc
n).
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At this point, we note that n ∈ N in the above construction was arbitrary. More-
over, we have already shown that for any n ∈ N, the law of Xn under Pν′

is equiv-
alent to ξ ′P n

0 . Therefore Pν′
(Xn ∈ Sc

n) = 0, and we find that

Pν(A) ≤ lim inf
n→∞ Pν(Xn ∈ Sc

n) ≤ lim inf
n→∞ ‖Pν(Xn ∈ ·) − Pν′

(Xn ∈ ·)‖TV = 0.

Thus the proof is complete. �

A useful corollary is the following result.

COROLLARY 3.6. Suppose that Assumptions 2.6 and 2.8 hold, and let μ be a
probability measure on E × F such that μ(E × ·) � π(E × ·) and

Eμ(∥∥Pμ(Xn ∈ · |Y0) − P(Xn ∈ ·)∥∥TV

) n→∞−−−→ 0.

Then Pμ|FY+ � P|FY+ . If μ(E × ·) ∼ π(E × ·), then Pμ|FY+ ∼ P|FY+ .

PROOF. We begin by noting that

E
(∥∥P(Xn ∈ · |Y0) − P(Xn ∈ ·)∥∥TV

) ≤ E
(‖PX0,Y0(Xn ∈ ·) − P(Xn ∈ ·)‖TV

)
.

Therefore, by Assumption 2.6,∥∥P(Xn ∈ · |Y0) − P(Xn ∈ ·)∥∥TV
n→∞−−−→ 0 in P-probability.

As Pμ(Y0 ∈ ·) � P(Y0 ∈ ·), this convergence is also in Pμ-probability. Therefore,
using dominated convergence and the triangle inequality,

Eμ(∥∥Pμ(Xn ∈ · |Y0) − P(Xn ∈ · |Y0)
∥∥

TV

) n→∞−−−→ 0.

By Fatou’s lemma, we obtain

lim inf
n→∞

∥∥Pμ(Xn ∈ · |Y0) − P(Xn ∈ · |Y0)
∥∥

TV = 0, Pμ-a.s.

Let ν :F × B(E) → [0,1], ν ′ :F × B(E) → [0,1] be versions of the regular con-
ditional probabilities Pμ(X0 ∈ · |Y0), P(X0 ∈ · |Y0), respectively. Then

lim inf
n→∞

∥∥Pν(w,·)⊗δw(Xn ∈ ·) − Pν′(w,·)⊗δw(Xn ∈ ·)∥∥TV = 0, μ(E × ·)-a.e. w.

By Proposition 3.5, it follows that

Pν(w,·)⊗δw |FY+ ∼ Pν′(w,·)⊗δw |FY+, μ(E × ·)-a.e. w.

By the Lebesgue decomposition for kernels ([9], Section V.58), there is a measur-
able version of the Radon–Nikodym derivative. It follows that

Pμ|FY+ = Pν⊗μ(E×·)|FY+ ∼ Pν′⊗μ(E×·)|FY+ � Pν′⊗π(E×·)|FY+ = P|FY+,

where we have used that μ(E×·) � π(E×·). If μ(E×·) ∼ π(E×·), then clearly
� can be replaced by ∼ in the previous equation. �
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4. Proof of Theorem 2.9. The goal of this section is to prove Theorem 2.9.
To this end, we begin by recalling the basic result from [20] on the ergodicity
of Markov chains in random environments. This result will be used to establish
that the unobservable process (Xn)n≥0 has trivial tail σ -field under the conditional
measure P(· |FY ). Finally, we show that P(X0 ∈ · |FY ) ∼ P(X0 ∈ · |FY+), which
allows us to complete the proof by applying a result of von Weizsäcker [24].

4.1. Markov chains in random environments. We begin by recalling the rel-
evant notions from [20], Section 2. A Markov chain in a random environment is
defined by the following three ingredients:

(1) A probability kernel P X :E × �Y × B(E) → [0,1].
(2) A probability kernel � :�Y × B(E) → [0,1] such that∫

P X(z, y,A)�(y, dz) = �(�y,A) for all y ∈ �Y ,A ∈ B(E).

(3) A stationary probability measure PY on (�Y ,FY ).

The process Xn is called a Markov chain in a random environment when

P X(Xn,Y ◦ �n,A) = P(Xn+1 ∈ A|FX
n ∨ FY ), P-a.s.,

�(Y ◦ �n,A) = P(Xn ∈ A|FY ), P-a.s.

for every A ∈ B(E) and n ∈ Z, and PY = P|FY . One should think of a Markov
chain in a random environment Xn as a process that is Markov conditionally on the
environment Y . The conditional chain is time-inhomogeneous but must satisfy cer-
tain stationarity properties: the environment is stationary and the (time-dependent)
conditional transition probabilities P X(·, Y ◦ �n, ·) and quasi-invariant measure
�(Y ◦ �n, ·) are themselves stationary processes with respect to the environment.
The stationarity properties ensure that Markov chains in random environments be-
have “almost” like time-homogeneous Markov chains; cf. Theorem 4.1 below.

Let us introduce a probability kernel P· :E × �Y × FX+ → [0,1] so that

Pz,y(A) =
∫

IA(x)P X(
x(n − 1),�n−1y, dx(n)

) × · · ·
× P X(x(1),�y, dx(2))P X(x(0), y, dx(1))δz(dx(0))

for A ∈ FX[0,n]. It is easily seen that Pz,y is a version of the regular conditional prob-

ability P((Xk)k≥0 ∈ · |FX
0 ∨ FY ). We can now state the following ergodic theorem

for Markov chains in random environments ([20], Theorem 2.3).

THEOREM 4.1. The following are equivalent.

(1) ‖Pz,y(Xn ∈ ·) − Pz′,y(Xn ∈ ·)‖TV
n→∞−−−→ 0 for (� ⊗ �)PY -a.e. (z, z′, y).
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(2) The tail σ -field TX = ⋂
n≥0 FX[n,∞[ is a.s. trivial in the following sense:

Pz,y(A) = Pz,y(A)2 = Pz′,y(A) for all A ∈ TX and (z, z′, y) ∈ H,

where H is a fixed set (independent of A) of (� ⊗ �)PY -full measure.
(3) For (� ⊗ �)PY -a.e. (z, z′, y), there is an n ∈ N such that the measures

Pz,y(Xn ∈ ·) and Pz′,y(Xn ∈ ·) are not mutually singular.

4.2. Weak ergodicity of the conditional process. Our first order of business is
to establish that, under the model defined in this paper, Xn is indeed a Markov
chain in a random environment in the sense of Section 4.1, where the observations
Y play the role of the environment; that is, we must show that the unobserved
process Xn is still a Markov chain conditionally on the observations Y satisfying
the requisite stationarity properties. This is the statement of the following lemma,
whose proof is omitted as it is identical to that in [20]. As everything that follows
is based on this elementary fact, however, let us briefly sketch why the result is
true for the convenience of the reader. It is easily seen that

P(Xn+1 ∈ · |FX
n ∨ FY ) ◦ �−n = P(X1 ∈ · |FX

0 ∨ FY ) = P(X1 ∈ · |σ {X0} ∨ FY ).

The first equality follows from stationarity of P, and the second equality follows
as F[1,∞[ is conditionally independent of F−1 given σ {X0, Y0} by the Markov
property of (Xn,Yn)n∈Z. We can therefore choose P X to be a regular version of
P(X1 ∈ · |σ {X0} ∨ FY ). Similarly, we can choose � to be a regular version of
P(X0 ∈ · |FY ), and PY to be the law of Y . It is now an elementary exercise to
check that these kernels do indeed characterize the process Xn as a Markov chain
in a random environment in the sense of Section 4.1.

LEMMA 4.2. There exist probability kernels P X :E × �Y × B(E) → [0,1]
and � :�Y × B(E) → [0,1], and a probability measure PY on (�Y ,FY ), such
that the conditions of Section 4.1 are satisfied.

PROOF. The proof is identical to that of [20], Lemma 3.3. �

The main goal of this subsection is to prove the following theorem.

THEOREM 4.3. Suppose that both Assumptions 2.6 and 2.8 are in force. Then
any (hence, all) of the conditions of Theorem 4.1 hold true.

The strategy of the proof of Theorem 4.3 is to show that condition (3) of Theo-
rem 4.1 follows from Assumptions 2.6 and 2.8. To this end, we begin by proving
that Theorem 4.3 would follow if we can establish equivalence of the conditional
and unconditional transition kernels P X and P .
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LEMMA 4.4. Suppose that Assumptions 2.6 and 2.8 are in force, and that
there exists a strictly positive measurable function h :E × �Y × E → ]0,∞[ such
that

P X(z, y,A) =
∫
E×F

IA(z̃)h(z, y, z̃)P (z, y(0), dz̃, dw̃) for all A ∈ B(E)

for �PY -a.e. (z, y). Then condition 3 of Theorem 4.1 holds.

PROOF. By Assumption 2.6 and the triangle inequality∫ ∥∥Pz,y(0)(Xn ∈ ·) − Pz′,y(0)(Xn ∈ ·)∥∥TV�(y,dz)�(y, dz′)PY (dy)
n→∞−−−→ 0.

By Fatou’s lemma, there is a set H1 of (� ⊗ �)PY -full measure such that

lim inf
n→∞

∥∥Pz,y(0)(Xn ∈ ·) − Pz′,y(0)(Xn ∈ ·)∥∥TV = 0 for all (z, z′, y) ∈ H1.

In particular, there is for every (z, z′, y) ∈ H1 an n ∈ N such that Pz,y(0)(Xn ∈ ·)
and Pz′,y(0)(Xn ∈ ·) are not mutually singular.

Now let H2 be a set of �PY -full measure such that the absolute continuity
condition in the statement of the lemma holds true for all (z, y) ∈ H2. By Lem-
ma A.1, there is a subset H3 ⊂ H2 of �PY -full measure such that for every (z, y) ∈
H3 we have Pz,y((Xn,�

ny) ∈ H3 for all n ≥ 0) = 1. It follows directly that for
every (z, y) ∈ H3, n ∈ N and A ∈ B(E), we have

Pz,y(Xn ∈ A) =
∫

IA(xn)f (x0, . . . , xn, y)

n−1∏
i=0

P0(xi, dxi+1)δz(dx0),

where we have defined the strictly positive measurable function

f (x0, . . . , xn, y) =
n−1∏
i=0

h(xi,�
iy, xi+1)

∫
g(xi, y(i), xi+1, w̃)Q(y(i), dw̃).

On the other hand, we have for every z, y

Pz,y(0)(Xn ∈ A) =
∫

IA(xn)f
′(x0, . . . , xn, y(0))

n−1∏
i=0

P0(xi, dxi+1)δz(dx0),

where we have defined the strictly positive measurable function

f ′(x0, . . . , xn, y0) =
∫ n−1∏

i=0

g(xi, yi, xi+1, yi+1)Q(yi, dyi+1).

Therefore Pz,y(Xn ∈ ·) ∼ Pz,y(0)(Xn ∈ ·) for all (z, y) ∈ H3 and n ∈ N.
To complete the proof, define the following set:

H4 = {(z, z′, y) : (z, z′, y) ∈ H1, (z, y), (z′, y) ∈ H3}.
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Then H4 has (� ⊗ �)PY -full measure, and for every (z, z′, y) ∈ H4, there is an
n ∈ N such that Pz,y(Xn ∈ ·) and Pz′,y(Xn ∈ ·) are not mutually singular. This
establishes condition (3) of Theorem 4.1. �

We now proceed to prove the following lemma, which verifies the assumption
of Lemma 4.4. This completes the proof of Theorem 4.3.

LEMMA 4.5. Suppose that Assumptions 2.6 and 2.8 hold. Then there exists a
strictly positive measurable function h :E × �Y × E → ]0,∞[ such that

P X(z, y,A) =
∫
E×F

IA(z̃)h(z, y, z̃)P (z, y(0), dz̃, dw̃) for all A ∈ B(E),

for �PY -a.e. (z, y).

PROOF. By definition, P X is a version of the regular conditional probability
P(X1 ∈ · |FX

0 ∨ FY ). But by the Markov property of (Xn,Yn)n∈Z, the σ -fields
F[1,∞[ and F−1 are conditionally independent given σ(X0, Y0). Therefore, P X

is, in fact, a version of the regular conditional probability P(X1 ∈ · |σ(X0, Y0) ∨
FY[1,∞[). Moreover, clearly the kernel P̃ defined as

P̃ (z,w,A) =
∫

IA(z̃)P (z,w,dz̃, dw̃) for all A ∈ B(E), (z,w) ∈ E × F

is a version of the regular conditional probability P(X1 ∈ · |σ(X0, Y0)). Finally,
we fix throughout the proof arbitrary versions R :E × F × FY+ → [0,1] and
RX :E×F ×E×FY+ → [0,1] of the regular conditional probabilities P((Yk)k≥1 ∈
· |σ(X0, Y0)) and P((Yk)k≥1 ∈ · |σ(X0, Y0,X1)), respectively. To complete the
proof, it suffices to show that RX(z,w, z′, ·) ∼ R(z,w, ·) for (z,w, z′) ∈ H with
P((X0, Y0,X1) ∈ H) = 1. Indeed, if this is the case, then by the Lebesgue de-
composition for kernels ([9], Section V.58), there is a strictly positive measurable
function h :E × �Y × E → ]0,∞[ such that

RX(z, y(0), z̃,A) =
∫

IA((y(i))i≥1)h(z, y, z̃)R(z, y(0), d(y(i))i≥1)

for all A ∈ FY[1,∞[ and (z, y(0), z′) ∈ H ′ with P((X0, Y0,X1) ∈ H ′) = 1. It remains
to apply Lemma A.2 to the law of the triple ((X0, Y0),X1, (Yk)k≥1).

It therefore remains to show that RX(z,w, z′, ·) ∼ R(z,w, ·). To this end, let us
introduce convenient versions of the regular conditional probabilities R and RX .
Note that we can write for A ∈ FY+

R(X0, Y0,A ◦ �) = E(PX1,Y1(A)|σ(X0, Y0)) = PνX0,Y0 (A)

by the Markov property of (Xn,Yn)n≥0, where we have defined

νz,w(dz̃, dw̃) = P(z,w,dz̃, dw̃) = g(z,w, z̃, w̃)P0(z, dz̃)Q(w,dw̃).
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On the other hand, using the Bayes formula, we can compute for A ∈ FY+
RX(X0, Y0,X1,A ◦ �) = P(PX1,Y1(A)|σ(X0, Y0,X1)) = PνX0,Y0,X1 (A),

where we have defined

νz,w,z′(dz̃, dw̃) = g(z,w, z′, w̃)∫
g(z,w, z′,w′)Q(w,dw′)

δz′(dz̃)Q(w,dw̃).

It therefore suffices to show that Pνz,w,z′ |FY+ ∼ Pνz,w |FY+ for (z,w, z′) ∈ H with

P((X0, Y0,X1) ∈ H) = 1. By Proposition 3.5, it suffices to show that

lim inf
n→∞ ‖Pνz,w,z′ (Xn ∈ ·) − Pνz,w (Xn ∈ ·)‖TV = 0

for (z,w, z′) ∈ H with P((X0, Y0,X1) ∈ H) = 1. But

E
(‖PνX0,Y0,X1 (Xn ∈ ·) − PνX0,Y0 (Xn ∈ ·)‖TV

)
= E

(∥∥P(Xn+1 ∈ · |X0, Y0,X1) − P(Xn+1 ∈ · |X0, Y0)
∥∥

TV

)
≤ E

(∥∥P(Xn+1 ∈ · |X0, Y0,X1, Y1) − P(Xn+1 ∈ ·)∥∥TV

)
+ E

(∥∥P(Xn+1 ∈ · |X0, Y0) − P(Xn+1 ∈ ·)∥∥TV

)
= E

(∥∥P(Xn ∈ · |X0, Y0) − P(Xn ∈ ·)∥∥TV

)
+ E

(∥∥P(Xn+1 ∈ · |X0, Y0) − P(Xn+1 ∈ ·)∥∥TV

)
,

where we have used the triangle inequality and the stationarity of P. Thus the result
follows from Assumption 2.6 and Fatou’s lemma. �

4.3. Exchange of intersection and supremum of σ -fields. Fix a version
�+ :�Y × B(E) → [0,1] of the regular conditional probability P(X0 ∈ · |FY+).
We begin by establishing the validity of the exchange of intersection and supre-
mum in Theorem 2.9 assuming that �+ has a positive density with respect to � .

PROPOSITION 4.6. Suppose Assumptions 2.6 and 2.8 hold, and that there
exists a strictly positive measurable function k :�Y × E → ]0,∞[ such that

�(y,A) =
∫

IA(z)k(y, z)�+(y, dz) for all A ∈ B(E)

for PY -a.e. y ∈ �Y . Then
⋂

n≥0 FY+ ∨ FX[n,∞[ = FY+ P-a.s.

PROOF. By Theorem 4.3, there is a set H of (� ⊗ �)PY -full measure with

Pz,y(A) = Pz,y(A)2 = Pz′,y(A) for all A ∈ TX and (z, z′, y) ∈ H.

As H has (� ⊗�)PY -full measure, there clearly exists a set HY ∈ B(�Y ) of PY -
full measure such that

∫
IH (z, z′, y)�(y, dz)�(y, dz′) = 1 for all y ∈ HY . Let us

now define Py(A) = ∫
Pz,y(A)�(y, dz). Then

Py(A) − Py(A)2 =
∫

IH (z, z′, y)Pz,y(A)
(
1 − Pz′,y(A)

)
�(y,dz)�(y, dz′) = 0
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for every y ∈ HY and A ∈ TX . Thus TX is Py -trivial for all y ∈ HY . Therefore,
defining P+

y (A) = ∫
Pz,y(A)�+(y, dz), our assumption that �+(y, ·) ∼ �(y, ·)

PY -a.e. y ∈ �Y implies that TX is P+
y -trivial for PY -a.e. y ∈ �Y .

Now recall that, by definition, Pz,y is a version of the regular conditional proba-
bility P((Xk)k≥0 ∈ · |σ(X0) ∨ FY ). But as FY−1 is conditionally independent of F+
given σ(X0, Y0) by the Markov property, it follows that Pz,y is even a version of
P((Xk)k≥0 ∈ · |σ(X0) ∨ FY+). It therefore follows that P+

y is a version of the regu-
lar conditional probability P((Xk)k≥0 ∈ · |FY+). We have therefore shown that TX

is P(· |FY+)-trivial P-a.s., which implies⋂
n≥0

FY+ ∨ FX[n,∞[ = FY+, P-a.s.

by Lemma A.4 in Appendix A. �

To prove Theorem 2.9, we must therefore establish that �+ has a postive den-
sity with respect to � . It is here that the time-reversed Assumption 2.7 enters the
picture; indeed, the alert reader will not have failed to notice that we have only
used Assumptions 2.6 and 2.8 up to this point.

LEMMA 4.7. Suppose that Assumptions 2.6–2.8 are in force. Then there exists
a strictly positive measurable function k :�Y × E → ]0,∞[ such that

�(y,A) =
∫

IA(z)k(y, z)�+(y, dz) for all A ∈ B(E)

for PY -a.e. y ∈ �Y .

PROOF. By the Markov property of (Xn,Yn)n∈Z, we find that Pz,y0((Yk)k<0 ∈
·) and P�+(y,·)⊗δy0 ((Yk)k<0 ∈ ·) are versions of the regular conditional probabil-
ities P((Yk)k<0 ∈ · |σ(X0) ∨ FY+) and P((Yk)k<0 ∈ · |FY+), respectively. Applying
Lemma A.2 to ((Yk)k≥0,X0, (Yk)k<0), it suffices to show that

Pz,y0
(
(Yk)k<0 ∈ ·) ∼ P�+(y,·)⊗δy0

(
(Yk)k<0 ∈ ·)

for �PY -a.e. (z, y). By Lemma 3.4, we may apply Proposition 3.5 to the reverse-
time model. Therefore, it suffices to prove that

lim inf
n→∞

∥∥Pz,y0(X−n ∈ ·) − P�+(y,·)⊗δy0 (X−n ∈ ·)∥∥TV = 0

for �PY -a.e. (z, y). To this end, let us note that

E
(∥∥PX0,Y0(X−n ∈ ·) − P�+(Y,·)⊗δY0 (X−n ∈ ·)∥∥TV

)
≤ E

(‖PX0,Y0(X−n ∈ ·) − P(X−n ∈ ·)‖TV
)

+ E
(∥∥P(X−n ∈ · |FY+) − P(X−n ∈ ·)∥∥TV

)
≤ 2E

(‖PX0,Y0(X−n ∈ ·) − P(X−n ∈ ·)‖TV
)
.
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Thus the result follows by Assumption 2.7 and Fatou’s lemma. �

We now complete the proof of Theorem 2.9.

PROOF. The first part of Theorem 2.9 follows immediately from Proposi-
tion 4.6 and Lemma 4.7. Now note that by Lemma 3.4, Assumptions 2.6–2.8
still hold if we replace the model (Xn,Yn)n∈Z by the time-reversed model
(X−n, Y−n)n∈Z. Therefore, the second part of Theorem 2.9 follows immediately
from the first part by time reversal. �

5. Proof of Theorem 2.10. The goal of this section is to prove Theorem 2.10.
We begin by recalling some basic properties of the filter. Then, we prove Theo-
rem 2.10 first for a special case, then in the general case by a recursive argument.

5.1. Preliminaries. Recall that �
μ
n is defined as a version of the regular condi-

tional probability Pμ(Xn ∈ · |FY[0,n]). Of course, we are free to choose an arbitrary
version of the filter, as the statement of Theorem 2.10 does not depend on the
choice of version (this follows from Corollary 3.6). Nonetheless, we will find it
convenient in our proofs to work with specific versions of these regular conditional
probabilities, which we define presently.

For notational simplicity, we introduce the following device: for every probabil-
ity measure ρ on E × F , we fix a probability kernel ρ· :F × B(E) → [0,1] such
that ρY0(A) = Pρ(X0 ∈ A|Y0) for all A ∈ B(E) [i.e., ρ· is a version of the regular
conditional probability Pρ(X0 ∈ · |Y0)].

LEMMA 5.1. Suppose that assumption 2.8 holds. For every probability mea-
sure μ on E × F , we define a sequence of probability kernels �

μ
n :�Y × B(E) →

[0,1] (n ≥ 0) through the following recursion:

�μ
n (y,A) =

∫
IA(z)g(z′, y(n − 1), z, y(n))P0(z

′, dz)�
μ
n−1(y, dz′)∫

g(z′, y(n − 1), z, y(n))P0(z′, dz)�
μ
n−1(y, dz′)

,

�
μ
0 (y,A) = μy(0)(A).

Then �
μ
n is a version of the regular conditional probability Pμ(Xn ∈ · |FY[0,n]) for

every n ≥ 0. Moreover, �
μ
n (y, ·) ∼ Pμy(0)⊗δy(0) (Xn ∈ ·) for all y,n.

PROOF. By construction, we have

Pμ(X0 ∈ dx0, . . . ,Xn ∈ dxn,Y0 ∈ dy0, . . . , Yn ∈ dyn)

= μ(E × dy0)μy0(dx0)

n−1∏
i=0

g(xi, yi, xi+1, yi+1)P0(xi, dxi+1)Q(yi, dyi+1).
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Therefore, the Bayes formula gives for any A ∈ B(E)

Pμ(
Xn ∈ A|FY[0,n]

)

=
∫

IA(xn)μY0(dx0)
∏n−1

i=0 g(xi, Yi, xi+1, Yi+1)P0(xi, dxi+1)∫
μY0(dx0)

∏n−1
i=0 g(xi, Yi, xi+1, Yi+1)P0(xi, dxi+1)

.

This clearly coincides with the recursive definition of �
μ
n . Moreover, it follows

directly that �
μ
n (y, ·) ∼ μy(0)P

n
0 for all y,n. But note that

Pμw⊗δw(Xn ∈ A) =
∫

IA(xn)μw(dx0)f (w,x0, . . . , xn)

n−1∏
i=0

P0(xi, dxi+1),

where we have defined

f (y0, x0, . . . , xn) =
∫ n−1∏

i=0

g(xi, yi, xi+1, yi+1)Q(yi, dyi+1).

Therefore, �
μ
n (y, ·) ∼ μy(0)P

n
0 ∼ Pμy(0)⊗δy(0) (Xn ∈ ·) for every y,n. �

Throughout the remainder of this section, the nonlinear filter �
μ
n will always be

assumed to be chosen according to the particular version defined in Lemma 5.1.
This entails no loss of generality in our final results.

REMARK 5.2. From the recursive formula for �
μ
n , we can read off that

�
μ
n+m(y,A) = �

�
μ
n (y,·)⊗δy(n)

m (�ny,A) for all n,m ≥ 0, y ∈ �Y ,A ∈ B(E).

This recursive property will play an important role in our proof. One of the ad-
vantages of our specific choice of version of the filter is that this property holds
pathwise, so that we need not worry about the joint measurability of �

μ
n (y, ·) with

respect to (y,μ). Of course, our choice of version is not essential and technicalities
of this kind could certainly be resolved more generally if one were so inclined.

5.2. The absolutely continuous case. We begin by obtaining an explicit for-
mula for the limit of ‖�μ

n − �ν
n‖TV for absolutely continuous measures μ � ν.

This result will be applied recursively in the proof of Theorem 2.10.

PROPOSITION 5.3. For any probability measures μ,ν on E × F with μ � ν

Eμ
[
lim sup
n→∞

‖�μ
n − �ν

n‖TV

]

= Eν

[∣∣∣∣Eν

(
dμ

dν
(X0, Y0)

∣∣∣ ⋂
n≥0

FY+ ∨ FX[n,∞[
)

− Eν

(
dμ

dν
(X0, Y0)

∣∣∣FY+
)∣∣∣∣

]
.
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PROOF. As dPμ/dPν = (dμ/dν)(X0, Y0) by the Markov property, we have

Pμ(
Xn ∈ A|FY[0,n]

) = Eν(IA(Xn)Eν((dμ/dν)(X0, Y0)|σ(Xn) ∨ FY[0,n])|FY[0,n])
Eν((dμ/dν)(X0, Y0)|FY[0,n])

Pμ-a.s. by the Bayes formula. Therefore, we evidently have

d�
μ
n

d�ν
n

(Xn) = Eν((dμ/dν)(X0, Y0)|σ(Xn) ∨ FY[0,n])
Eν((dμ/dν)(X0, Y0)|FY[0,n])

, Pμ-a.s.

In particular, we can write Pμ-a.s.

‖�μ
n − �ν

n‖TV =
∫ ∣∣∣∣d�

μ
n

d�ν
n

(x) − 1
∣∣∣∣�ν

n(dx) = Eν(Mn|FY[0,n])
Eν((dμ/dν)(X0, Y0)|FY[0,n])

,

where we have defined

Mn =
∣∣∣∣Eν

(
dμ

dν
(X0, Y0)

∣∣∣σ(Xn) ∨ FY[0,n]
)

− Eν

(
dμ

dν
(X0, Y0)

∣∣∣FY[0,n]
)∣∣∣∣.

Thus it is easily seen that

Eμ
[
lim sup
n→∞

‖�μ
n − �ν

n‖TV

]
= Eν

[
lim sup
n→∞

Eν(
Mn|FY[0,n]

)]
.

Now note that, by the Markov property, F[n+1,∞[ and σ(X0) ∨ FY[0,n−1] are condi-
tionally independent given σ(Xn,Yn). Therefore,

Mn =
∣∣∣∣Eν

(
dμ

dν
(X0, Y0)

∣∣∣FY+ ∨ FX[n,∞[
)

− Eν

(
dμ

dν
(X0, Y0)

∣∣∣FY[0,n]
)∣∣∣∣.

If dμ/dν were uniformly bounded, the result would follow directly from the mar-
tingale convergence theorem and Hunt’s lemma ([9], Theorem V.45).

In the case that dμ/dν is unbounded, define the truncated process

Mk
n =

∣∣∣∣Eν

(
dμ

dν
(X0, Y0) ∧ k

∣∣∣FY+ ∨ FX[n,∞[
)

− Eν

(
dμ

dν
(X0, Y0) ∧ k

∣∣∣FY[0,n]
)∣∣∣∣.

By Hunt’s lemma and dominated convergence,

lim
k→∞ lim

n→∞ Eν(
Mk

n |FY[0,n]
) = Eν(M∞|FY+), Pν-a.s.,

where M∞ = limn→∞ Mn. Therefore, we obtain Pν-a.s.

lim sup
n→∞

Eν(
Mn|FY[0,n]

) = Eν(M∞|FY+) + lim sup
k→∞

lim sup
n→∞

Eν(
Mn − Mk

n |FY[0,n]
)
.

It remains to note that the second term vanishes Pν-a.s.,∣∣∣lim sup
k→∞

lim sup
n→∞

Eν(
Mn − Mk

n |FY[0,n]
)∣∣∣

≤ 2 lim sup
k→∞

lim sup
n→∞

Eν

(
dμ

dν
(X0, Y0) − dμ

dν
(X0, Y0) ∧ k

∣∣∣FY[0,n]
)

= 0.

The proof is complete. �
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5.3. The general case. In the special case where μ � π , Theorem 2.10 fol-
lows directly from Proposition 5.3 and Theorem 2.9. An additional step is needed,
however, to prove Theorem 2.9 in the general case.

LEMMA 5.4. Let μ,ρ be probability measures on E, and choose S ∈ B(E)

such that μ(S) > 0. Define the probability measure ν = μ(· ∩ S)/μ(S). Then

‖�μ⊗δw
n − �ρ⊗δw

n ‖TV ≤ 2Pμ⊗δw
(
X0 /∈ S|FY[0,n]

)
+ Pμ⊗δw

(
X0 ∈ S|FY[0,n]

)‖�ν⊗δw
n − �ρ⊗δw

n ‖TV

Pμ⊗δw -a.s. for any w ∈ F .

PROOF. If μ(S) = 1, the proof is trivial. Otherwise, by the Bayes formula,

�μ⊗δw
n = Pμ⊗δw

(
X0 ∈ S|FY[0,n]

)
�ν⊗δw

n + Pμ⊗δw
(
X0 /∈ S|FY[0,n]

)
�ν⊥⊗δw

n

Pμ⊗δw -a.s., where ν⊥ = μ(· ∩ Sc)/μ(Sc). But obviously

�ρ⊗δw
n = Pμ⊗δw

(
X0 ∈ S|FY[0,n]

)
�ρ⊗δw

n + Pμ⊗δw
(
X0 /∈ S|FY[0,n]

)
�ρ⊗δw

n

Pμ⊗δw -a.s., so the result follows directly. �

REMARK 5.5. Even though we have fixed a version of the filter �
ρ⊗δw
n ,

our results should ultimately not depend on the choice of version. In this light,
Lemma 5.4 may appear somewhat suspicious as the regular conditional proba-
bility Pρ⊗δw(Xn ∈ · |FY[0,n]) is not Pμ⊗δw -a.s. uniquely defined. However, there is
no problem here, as the proof shows that the inequality in Lemma 5.4 holds for
any choice of version, even though different versions may be inequivalent. On the
other hand, we will ultimately apply this result only when ν � ρ, in which case
the expression is in fact independent of the choice of version.

The idea is now to apply the recursive property of the filter:

‖�μ
m+n − �π

m+n‖TV = ‖��
μ
m⊗δYm

n (Y ◦ �m, ·) − �
�π

m⊗δYm
n (Y ◦ �m, ·)‖TV

for any m ≥ 0. As �
μ
m ∼ Pμ(Xm ∈ · |Y0) and �π

m ∼ P(Xm ∈ · |Y0) by Lemma 5.1,
the assumption of Theorem 2.10 guarantees that the singular part of �

μ
m with re-

spect to �π
m vanishes as m → ∞. We can therefore use Lemma 5.4 to replace �

μ
m

by its absolutely continuous part, so that we have reduced the limit as n → ∞ to
the special case of Proposition 5.3. In order to apply Proposition 5.3, however, we
will require one additional result.

LEMMA 5.6. Suppose that Assumptions 2.6–2.8 hold. Then for any m ≥ 0⋂
n≥0

FY+ ∨ FX[n,∞[ = FY+, P�π
m(y,·)⊗δy(m)-a.s. for PY -a.e. y.
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PROOF. As in the proof of Proposition 4.6, it suffices to establish that TX is
P�π

m(y,·)⊗δy(m)(· |FY+)-trivial P�π
m(y,·)⊗δy(m)-a.s. for PY -a.e. y. Note that

P�π
m(Y,·)⊗δYm (A) = E

(
PXm,Ym(A)|FY[0,m]

) = P
(
A ◦ �m|FY[0,m]

)
for all A ∈ F+ by the Markov property. Therefore,

P�π
m(Y◦�−m,·)⊗δY0 (A) = P

(
A ◦ �m|FY[0,m]

) ◦ �−m = P
(
A|FY[−m,0]

)
,

where we used that P is stationary. It follows that P�π
m(Y◦�−m,·)⊗δY0 |F+ is a version

of P((Xn,Yn)n≥0 ∈ · |FY[−m,0]). By Lemma A.3

P
(
(Xn)n≥0 ∈ · |FY[−m,∞[

) = P�π
m(Y◦�−m,·)⊗δY0

(
(Xn)n≥0 ∈ · |FY+

)
, P-a.s.

Thus it suffices to show that TX is P(· |FY[−m,∞[)-trivial P-a.s., which is equivalent
(by virtue of Lemma A.4 in Appendix A) to⋂

n≥0

FY[−m,∞[ ∨ FX[n,∞[ = FY[−m,∞[, P-a.s.

But this follows directly from Theorem 2.9 and the stationarity of P. �

We can now complete the proof of Theorem 2.10.

PROOF. By the recursive property of the filter,

lim sup
k→∞

‖�μ
k − �π

k ‖TV

= lim sup
k→∞

∥∥��
μ
n (Y,·)⊗δYn

k (Y ◦ �n, ·) − �
�π

n (Y,·)⊗δYn

k (Y ◦ �n, ·)∥∥TV

for all n ≥ 0. Therefore, we obtain Pμ-a.s.

Eμ
(
lim sup
k→∞

‖�μ
k − �π

k ‖TV|FY[0,n]
)

= E�
μ
n (y,·)⊗δy(n)

(
lim sup
k→∞

∥∥��
μ
n (y,·)⊗δy(n)

k − �
�π

n (y,·)⊗δy(n)

k

∥∥
TV

)∣∣∣
y=Y

,

where we have used that �
μ
n (Y, ·) and �π

n (Y, ·) are FY[0,n]-measurable.
To proceed, let us first recall that

�μ
n (y, ·) ∼ Pμy(0)⊗δy(0) (Xn ∈ ·) and �π

n (y, ·) ∼ Pπy(0)⊗δy(0) (Xn ∈ ·)
for all y,n by Lemma 5.1. Choose a set Sn ∈ B(E × F) such that

Pμw⊗δw
(
Xn ∈ · ∩ Sn(w)

) � Pπw⊗δw(Xn ∈ ·)
and

Pπw⊗δw
(
Xn ∈ Sn(w)

) = 1
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for all w ∈ F , where ISn(w)(z) = ISn(z,w) (the existence of such a set follows
from the Lebesgue decomposition for kernels; [9], Section V.58). Define

�n(y, ·) = �μ
n

(
y, · ∩ Sn(y(0))

)
/�μ

n (y, Sn(y(0))).

Then clearly �n(y, ·) � �π
n (y, ·) for all y, and by Lemma 5.4

E�
μ
n (y,·)⊗δy(n)

(
lim sup
k→∞

∥∥��
μ
n (y,·)⊗δy(n)

k − �
�π

n (y,·)⊗δy(n)

k

∥∥
TV

)

≤ 2P�
μ
n (y,·)⊗δy(n)

(
X0 /∈ Sn(y(0))

)
+ E�n(y,·)⊗δy(n)

(
lim sup
k→∞

∥∥��n(y,·)⊗δy(n)

k − �
�π

n (y,·)⊗δy(n)

k

∥∥
TV

)
.

The last term vanishes for PY -a.e. y by Proposition 5.3 and Lemma 5.6, hence, for
Pμ(Y ∈ ·)-a.e. y by Corollary 3.6. We have therefore shown that

Eμ
(
lim sup
k→∞

‖�μ
k − �π

k ‖TV|FY[0,n]
)

≤ 2Pμ(
Xn /∈ Sn(Y0)|FY[0,n]

)
, Pμ-a.s.

for every n ≥ 0. In particular, we have

Eμ
(
lim sup
k→∞

‖�μ
k − �π

k ‖TV

)
≤ 2Pμ(

Xn /∈ Sn(Y0)
)

for all n ≥ 0.

But as P(Xn /∈ Sn(Y0)|Y0) = PπY0⊗δY0 (Xn /∈ Sn(Y0)) = 0, we obtain

Pμ(
Xn /∈ Sn(Y0)

) = Eμ(
Pμ(

Xn /∈ Sn(Y0)|Y0
) − P

(
Xn /∈ Sn(Y0)|Y0

))
≤ Eμ(∥∥Pμ(Xn ∈ · |Y0) − P(Xn ∈ · |Y0)

∥∥
TV

) n→∞−−−→ 0,

where convergence follows as in the proof of Corollary 3.6. Therefore,

lim sup
k→∞

‖�μ
k − �π

k ‖TV = 0, Pμ-a.s.,

which completes the main part of the proof. To obtain P-a.s. convergence (rather
than Pμ-a.s. convergence) in the case where μ(E × ·) ∼ π(E × ·), it suffices to
note that in this case Pμ|FY+ ∼ P|FY+ by Corollary 3.6. �

6. Proof of Theorem 2.12. The goal of this section is to prove Theorem 2.12.
We begin by developing some details of the basic properties of (�

μ
n ,Yn)n≥0 in

Section 2.3 under Assumption 2.8. We then complete the proof of Theorem 2.12.

6.1. Markov property of the pair (�
μ
n ,Yn)n≥0. Throughout this section, we

assume that Assumption 2.8 is in force. We begin by defining a measurable map
U :P(E) × F × F → P(E) as follows:

U(ν, y0, y1)(A) =
∫

IA(z)g(z′, y0, z, y1)P0(z
′, dz)ν(dz′)∫

g(z′, y0, z, y1)P0(z′, dz)ν(dz′)
.
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It follows immediately from Lemma 5.1 that �
μ
n = U(�

μ
n−1, Yn−1, Yn) Pμ-a.s. for

every n ≥ 1 and μ ∈ P(E × F).
Now define the transition kernel  :P(E) × F × B(P(E) × F) → [0,1] as

(ν, y0,A) =
∫

IA(U(ν, y0, y1), y1)P (z, y0, dz′, dy1)ν(dz).

Then we have the following lemma.

LEMMA 6.1. Suppose that Assumption 2.8 holds. Then the (P(E) × F)-
valued process (�

μ
n ,Yn)n≥0 is Markov under Pμ with transition kernel .

PROOF. It suffices to note that (�
μ
n ,Yn) is FY[0,n]-measurable and

Pμ(
(�

μ
n+1, Yn+1) ∈ A|FY[0,n]

)
= Pμ(

(U(�μ
n ,Yn,Yn+1), Yn+1) ∈ A|FY[0,n]

)
=

∫
IA(U(�μ

n ,Yn,w),w)P (z,Yn, dz′, dw)�μ
n (dz) = (�μ

n ,Yn,A)

for every A ∈ B(P(E) × F). �

We can now establish some basic properties of -invariant measures.

LEMMA 6.2. Suppose that Assumption 2.8 holds. Then for any -invariant
probability measure m, the barycenter bm is a P -invariant measure. Conversely,
there is at least one -invariant measure with barycenter π .

PROOF. First, let m ∈ P(P(E) × F) be a -invariant measure. Then

bm(A × B) =
∫

ν(A)IB(w)(ν′,w′, dν, dw)m(dν′, dw′)

=
∫

U(ν′,w′,w)(A)IB(w)P (z,w′, dz̃, dw)ν′(dz)m(dν′, dw′)

=
∫ ∫

IA(z̃)g(z,w′, z̃,w)P0(z, dz̃)ν′(dz)∫
g(z,w′, z̃,w)P0(z, dz̃)ν′(dz)

× g(z,w′, z̃,w)P0(z, dz̃)ν′(dz)IB(w)Q(w′, dw)m(dν′, dw′)

=
∫

P(z,w′,A × B)ν′(dz)m(dν′, dw′)

=
∫

P(z,w′,A × B)bm(dz, dw′).

Thus the barycenter bm is P -invariant.
To prove the converse, let �n be a version of the regular conditional probability

P(Xn ∈ · |FY
n ), and let �k,n be a version of the regular conditional probability
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P(Xn ∈ · |FY[k,n]). Applying the Bayes formula as in the proof of Lemma 5.1, we
find that U(�k,n, Yn,Yn+1) = �k,n+1 P-a.s. for every k ≤ n. By the martingale
convergence theorem, it follows directly that

U(�n,Yn,Yn+1)(A) = lim
k→−∞U(�k,n, Yn,Yn+1)(A) = �n+1(A)

P-a.s. for every A ∈ B(E). As B(E) is countably generated, a standard monotone
class argument shows that U(�n,Yn,Yn+1) = �n+1 P-a.s. Therefore, the proof of
Lemma 6.1 shows that (�n,Yn)n∈Z is Markov under P with transition kernel .
But as P is stationary, the process (�n,Yn)n∈Z is stationary also. Therefore, the
law of (�0, Y0) is a -invariant measure whose barycenter is obviously π . �

6.2. Uniqueness of the -invariant measure. Given m ∈ P(P(E) × F), define
the probability measure Pm on the space P(E) × EN × F N as

Pm
(
(m0,X0, . . . ,Xn,Y0, . . . , Yn) ∈ A

)
=

∫
IA(ν, x0, . . . , xn, y0, . . . , yn)ν(dx0)P (x0, y0, dx1, dy1)

× · · · × P(xn−1, yn−1, dxn, dyn)m(dν, dy0).

We now choose regular versions of the following conditional probabilites:

I Imin
n = Pm

(
Xn ∈ · |FY[0,n]

)
,

I Imn = Pm
(
Xn ∈ · |σ(m0) ∨ FY[0,n]

)
,

I Imax
n = Pm

(
Xn ∈ · |σ(m0,X0) ∨ FY[0,n]

)
.

The following result is straightforward.

LEMMA 6.3. The laws of (I Imin
n , Yn) and (I Imax

n , Yn) under Pm coincide with
the laws of (Pbm(Xn ∈ · |FY[0,n]), Yn) and (Pbm(Xn ∈ · |σ(X0) ∨ FY[0,n]), Yn) under

Pbm, respectively. Moreover, the process (I Imn , Yn)n≥0 is Markov under Pm with
transition kernel  and initial measure m.

PROOF. By definition of the barycenter, the law of (Xn,Yn)n≥0 under Pm co-
incides with the law of (Xn,Yn)n≥0 under Pbm. Moreover, it is easily seen that
I Imax

n = Pm(Xn ∈ · |σ(X0)∨FY[0,n]) by the Markov property, so I Imax
n and I Imin

n de-
pend on (Xn,Yn)n≥0 only. This establishes the first part of the result. The second
part follows as in the proof of Lemma 6.1. �

We can now complete the proof of Theorem 2.12.

PROOF. Throughout the proof, let m be a fixed -invariant probability mea-
sure with barycenter π . We will show that, by virtue of Theorem 2.9, this invariant
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measure must necessarily coincide with the invariant measure obtained in the proof
of Lemma 6.2.

Let p ∈ N, choose arbitrary bounded measurable functions f :E → R
p and

g :F → R, and let κ : Rp+1 → R be a convex function. Then κ is necessarily
continuous, so the function F :P(E) × F → R defined by

F(ν,w) = κ

(
g(w),

∫
f (x)ν(dx)

)

is bounded and measurable. By Jensen’s inequality,

Em(F (I Imin
n , Yn)) ≤ Em(F (I Imn , Yn)) ≤ Em(F (I Imax

n , Yn))

for all n ≥ 0. Therefore, by Lemma 6.3 and the -invariance of m, we obtain

E
(
κ
(
g(Yn),E

(
f (Xn)|FY[0,n]

))) ≤
∫

F(ν,w)m(dν, dw)

≤ E
(
κ
(
g(Yn),E

(
f (Xn)|σ(X0) ∨ FY[0,n]

)))
.

But using stationarity of P and the Markov property of (Xn,Yn)n∈Z,

E
(
κ
(
g(Yn),E

(
f (Xn)|FY[0,n]

))) = E
(
κ
(
g(Y0),E

(
f (X0)|FY[−n,0]

)))
,

E
(
κ
(
g(Yn),E

(
f (Xn)|σ(X0) ∨ FY[0,n]

))) = E
(
κ
(
g(Y0),E

(
f (X0)|FY

0 ∨ FX−n

)))
for all n ≥ 0. Thus martingale convergence and Theorem 2.9 yield∫

F(ν,w)m(dν, dw) = E(κ(g(Y0),E(f (X0)|FY
0 ))) =

∫
F(ν,w)m0(dν, dw),

where m0 denotes the distinguished -invariant measure obtained in the proof of
Lemma 6.2. But a standard approximation argument shows that class of functions
of the form F(ν,w) = κ(g(w),

∫
f (x)ν(dx)) is measure-determining (see, e.g.,

the proof of Proposition A.7 [22]), so we can conclude that m = m0. Thus we have
shown that any -invariant probability measure with barycenter π must coincide
with m0, which establishes uniqueness.

To complete the proof, it remains to consider the case when P has unique in-
variant probability measure (i.e., π is the only P -invariant probability measure).
As the barycenter of any -invariant probability measure must be P -invariant, this
implies that any -invariant measure must have barycenter π . Therefore, in this
case,  has a unique invariant probability measure. �

7. Proof of Theorem 2.13. The goal of this section is to prove Theorem 2.13.
We begin by developing some details of the basic properties of (�

μ
n ,Xn,Yn)n≥0 in

Section 2.3 under Assumption 2.8. We then complete the proof of Theorem 2.13.
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7.1. Markov property of the triple (�
μ
n ,Xn,Yn)n≥0. In this section we use

the notation of Section 6.1, and we again assume that Assumption 2.8 is in force.
Define the transition kernel � :P(E) × E × F × B(P(E) × E × F) → [0,1] as

�(ν, x0, y0,A) =
∫

IA(U(ν, y0, y1), x1, y1)P (x0, y0, dx1, dy1).

Then we have the following lemma.

LEMMA 7.1. Suppose that Assumption 2.8 holds. Then (�
μ
n ,Xn,Yn)n≥0 is a

(P(E) × E × F)-valued Markov chain under Pμ with transition kernel �.

PROOF. It suffices to note that (�
μ
n ,Xn,Yn) is F[0,n]-measurable and

Pμ(
(�

μ
n+1,Xn+1, Yn+1) ∈ A|F[0,n]

)
=

∫
IA(U(�μ

n ,Yn,w), z,w)P (Xn,Yn, dz, dw)

= �(�μ
n ,Xn,Yn,A)

for every A ∈ B(P(E) × E × F). �

For any probability measure M ∈ P(P(E)×E ×F), we define probability mea-
sures mM ∈ P(E × F) and γ M ∈ P(P(E) × F) as follows:

mM(A × B) = M
(
P(E) × A × B

)
, γ M(C × B) = M(C × E × B).

Moreover, we define the class

M =
{

M ∈ P
(
P(E) × E × F

)
:∀A ∈ B(P(E)),B ∈ B(E),C ∈ B(F ),

M(A × B × C) =
∫

ν(B)IA×C(ν,w)M(dν, dz, dw)

}
.

We can now establish some basic properties of �-invariant measures.

LEMMA 7.2. Suppose that Assumption 2.8 holds. Then for any �-invariant
probability measure M, the marginal mM is a P -invariant measure. If, in addition,
M ∈ M, then γ M is a -invariant measure with barycenter mM. Conversely, there
is at least one �-invariant M ∈ M with marginal π .

PROOF. Let M ∈ P(P(E) × E × F) be a �-invariant probability measure. It
is trivial that mM is P -invariant. Now suppose that also M ∈ M. Then

γ M(A) =
∫

IA(ν,w)M(dν, dz, dw)

=
∫

IA(ν′,w′)�(ν, z,w,dν′, dz′, dw′)M(dν, dz, dw)
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=
∫

IA(U(ν,w,w′),w′)P (z,w,dz′, dw′)M(dν, dz, dw)

=
∫

IA(U(ν,w,w′),w′)P (z,w,dz′, dw′)ν(dz)γ M(dν, dw)

=
∫

IA(ν′,w′)(ν,w,dν′, dw′)γ M(dν, dw),

where we have used that M ∈ M in the penultimate equality. Thus γ M is a -
invariant measure. Moreover, it follows from the definition of M that∫

ν(B)IC(w)γ M(dν, dw) = M
(
P(E) × B × C

) = mM(B × C),

so mM is the barycenter of γ M. Finally, let �0 be a version of the regular condi-
tional probability P(X0 ∈ · |FY

0 ). Then as in the proof of Lemma 6.2, the law of
(�0,X0, Y0) is a �-invariant measure in M with marginal π . �

7.2. Uniqueness of the �-invariant measure. The first part of the proof of The-
orem 2.13 follows easily from Theorem 2.12 and Lemma 7.2.

LEMMA 7.3. Suppose that Assumptions 2.6–2.8 hold. Then there is a unique
�-invariant probability measure with marginal π in the class M.

PROOF. Lemma 7.2 guarantees the existence of a �-invariant measure in M

with marginal π . To prove uniqueness, note that every probability measure M ∈ M

is uniquely determined by γ M as

M(A × B × C) =
∫

ν(B)IA×C(ν,w)γ M(dν, dw).

Therefore, by Lemma 7.2, if there were to exist two distinct �-invariant measures
in M with marginal π , then there must exist two distinct -invariant measures
with barycenter π , in contradiction with Theorem 2.12. �

The second part of the proof of Theorem 2.13 relies on Theorem 2.10 instead of
Theorem 2.12. To prepare for the proof, we begin by showing that the strengthened
variant of Assumption 2.6 in Theorem 2.13 is equivalent to the requirement that
the assumption of Theorem 2.10 holds universally.

LEMMA 7.4. The following are equivalent:

(1) For every probability measure μ on E × F such that μ(E × ·) = π(E × ·)∫
‖Pz,w(Xn ∈ ·) − P(Xn ∈ ·)‖TVμ(dz, dw)

n→∞−−−→ 0.

(2) For every probability measure μ on E × F such that μ(E × ·) � π(E × ·)
Eμ(∥∥Pμ(Xn ∈ · |Y0) − P(Xn ∈ ·)∥∥TV

) n→∞−−−→ 0.
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PROOF. (1) ⇒ (2). Let μ be any probability measure on E × F with μ(E ×
·) � π(E × ·), let μw(dz) be a version of the regular conditional probability
Pμ(X0 ∈ · |Y0) and define μ′(dz, dw) = μw(dz)π(E × dw). Then μ′(E × ·) =
π(E × ·), so the first statement of the lemma implies that we have

‖PX0,Y0(Xn ∈ ·) − P(Xn ∈ ·)‖TV
n→∞−−−→ 0 in Pμ′

-probability.

But μ � μ′ by construction, so the convergence also holds in Pμ-probability.
Therefore, we obtain by dominated convergence

Eμ(∥∥Pμ(Xn ∈ · |Y0) − P(Xn ∈ ·)∥∥TV

)
≤ Eμ(‖PX0,Y0(Xn ∈ ·) − P(Xn ∈ ·)‖TV

) n→∞−−−→ 0.

Thus the second statement of the lemma follows.
(2) ⇒ (1). Let μ be any probability measure on E × F such that μ(E ×

·) = π(E × ·) and let μw(dz) be a version of the regular conditional prob-
ability Pμ(X0 ∈ · |Y0). By [13], Lemma 3.22, there is a measurable function
ι :F × [0,1] → E such that

∫
f (z)μw(dz) = ∫ 1

0 f (ι(w,x)) dx for all w. Apply-
ing the second statement of the lemma to μx(dz, dw) = δι(w,x)(dz)μ(E × dw) =
δι(w,x)(dz)π(E × dw) gives∫ ∥∥Pι(w,x),w(Xn ∈ ·) − P(Xn ∈ ·)∥∥TVμ(E × dw)

n→∞−−−→ 0 for all x ∈ [0,1].

Thus the first statement of the lemma follows by integrating with respect to
∫ 1

0 ·dx

and applying the dominated convergence theorem. �

Let us note that only the first half of this result is needed in what follows. How-
ever, the equivalence of the two assumptions shows that we have not unnecessarily
strengthened the assumptions of Theorem 2.13.

For the proof of Theorem 2.13, we require another lemma.

LEMMA 7.5. Suppose that Assumptions 2.6–2.8 are in force and that

Eμ(∥∥Pμ(Xn ∈ · |Y0) − P(Xn ∈ ·)∥∥TV

) n→∞−−−→ 0

for every probability measure μ on E × F with μ(E × ·) � π(E × ·). Then∫
Ez,w(∥∥�m(z,w)⊗δw

n − �π
n

∥∥
TV

)
π(dz, dw)

n→∞−−−→ 0

for any measurable function m :E × F → P(E).

PROOF. By Proposition 3.3 and the Bayes formula, there is a strictly positive
measurable function h :E × F → R+ such that the probability kernel

πX(z,A) =
∫

IA(w)h(z,w)π(E × dw)∫
h(z,w)π(E × dw)

for all z ∈ E,A ∈ B(F )



1534 X. T. TONG AND R. VAN HANDEL

is a version of the regular conditional probability P(Y0 ∈ · |X0). In particular,
πX(z, ·) ∼ π(E × ·) for all z ∈ E, so by our assumptions and Corollary 3.6 we
obtain Pδz⊗πX(z,·)|FY+ ∼ P|FY+ for all z ∈ E.

Fix a measurable function m :E × F → P(E). For every z ∈ E, define
μz(dz′, dw) = m(z,w)(dz′)π(E × dw). Then by Theorem 2.10, we have

‖�μz

n − �π
n ‖TV

n→∞−−−→ 0, P-a.s.

for all z ∈ E. Thus by Pδz⊗πX(z,·)|FY+ ∼ P|FY+ and dominated convergence,
∫

Ez,w(‖�μz

n − �π
n ‖TV)πX(z, dw)

n→∞−−−→ 0

for all z ∈ E. But by Lemma 5.1 we have �
μz

n = �
m(z,w)⊗δw
n Pz,w-a.s. for all n ≥ 0.

Integrating with respect to π(dz × F) and applying the dominated convergence
theorem completes the proof. �

We now proceed to the proof of Theorem 2.13. Let Z be any Polish space en-
dowed with the complete metric dZ . Recall that the space P(Z) is Polish when
endowed with the metric (cf. [12], Theorem 11.3.3 and Corollary 11.5.5)

dP(Z)(ν, ν′) = sup
{∣∣∣∣

∫
f (z)ν(dz) −

∫
f (z)ν′(dz)

∣∣∣∣ : sup
x∈Z

|f (x)| ≤ 1,

sup
x,y∈Z

|f (x) − f (y)|
dZ(x, y)

≤ 1
}
.

In particular, the complete metric

D((ν, z,w), (ν′, z′,w′)) = dP(E)(ν, ν′) + dE(z, z′) + dF (w,w′)

metrizes the topology of P(E) × E × F .

PROOF OF THEOREM 2.13. The first part of the theorem was established in
Lemma 7.3. For the remainder of the proof, let us assume that one of the equivalent
assumptions in Lemma 7.4 is in force. We will show that any two �-invariant
probability measures with marginal π must coincide.

To this end, let M and M′ be two �-invariant probability measures with
marginal π . By [13], Lemma 3.22, there exist measurable functions m :E × F ×
[0,1] → P(E) and m′ :E × F × [0,1] → P(E) such that∫

f (ν, z,w)M(dν, dz, dw) =
∫ 1

0

∫
f (m(z,w,x), z,w)π(dz, dw)dx,

∫
f (ν, z,w)M′(dν, dz, dw) =

∫ 1

0

∫
f (m′(z,w,x), z,w)π(dz, dw)dx
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for every bounded measurable function f :P(E) × E × F → R. Moreover, note
that by the definition of � and Lemma 5.1∫

f (ν′, z′,w′)�n(ν, z,w,dν′, dz′, dw′) = Ez,w(f (�ν⊗δw
n ,Xn,Yn)).

Let us now fix a bounded function f such that

|f (ν, z,w) − f (ν′, z′,w′)| ≤ D((ν, z,w), (ν′, z′,w′))

for all ν, ν′ ∈ P(E), z, z′ ∈ E, w,w′ ∈ F . We can now estimate∣∣∣∣
∫

f (ν, z,w)M(dν, dz, dw) −
∫

f (ν, z,w)M′(dν, dz, dw)

∣∣∣∣
≤

∫ 1

0

∫
Ez,w(

dP(E)

(
�m(z,w,x)⊗δw

n ,�m′(z,w,x)⊗δw
n

))
π(dz, dw)dx

≤
∫ 1

0

∫
Ez,w(∥∥�m(z,w,x)⊗δw

n − �m′(z,w,x)⊗δw
n

∥∥
TV

)
π(dz, dw)dx

for every n ≥ 0, where we used that M�n = M and M′�n = M′. By the triangle
inequality, Lemma 7.5 and the dominated convergence theorem, the right-hand
side of this inequality converges to zero as n → ∞. Therefore, we have shown that∣∣∣∣

∫
f (ν, z,w)M(dν, dz, dw) −

∫
f (ν, z,w)M′(dν, dz, dw)

∣∣∣∣ = 0

for all bounded functions f that are 1-Lipschitz for the metric D. In other words,
dP(P(E)×E×F)(M,M′) = 0, so M = M′. Thus we have shown that all �-invariant
probability measures with marginal π must coincide, establishing uniqueness.

To complete the proof, it remains to consider the case when P has unique in-
variant probability measure (i.e., π is the only P -invariant probability measure).
As the marginal of any �-invariant probability measure must be P -invariant, this
implies that any �-invariant measure must have marginal π . Therefore, in this
case, � has a unique invariant probability measure. �

REMARK 7.6. It is instructive to note that Assumptions 2.6–2.8 are not suffi-
cient to ensure uniqueness of the �-invariant probability measure even in the case
that P has a unique invariant probability measure. Let us briefly sketch a coun-
terexample. Let E = R × {0,1} and F = R, and consider the filtering model

X1
n = 2X1

n−1X
2
n−1 + ξn, X2

n = X2
n−1, Yn = X1

n + ηn,

where (ξn)n≥0, (ηn)n≥0 are i.i.d. N(0,1)-distributed random variables. It is clear
that the corresponding transition kernel P has a unique invariant probability mea-
sure π [with π(· × F) = N(0,1) ⊗ δ0] and that Assumptions 2.6–2.8 hold.

Now let μ = δ0 ⊗ δ1 ⊗ N(0,1). Then �
μ
n = N(mn,σ

2
n ) ⊗ δ1, where mn and σ 2

n

can be computed recursively using the Kalman filtering equations corresponding
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to the model Xn = 2Xn−1 + ξn, Yn = Xn +ηn. It is easily verified by inspection of
the Kalman filtering equations that the law of (�

μ
n ,Xn,Yn) converges weakly as

n → ∞ under the stationary measure P. The limiting law is therefore a �-invariant
probability measure that is supported on P(R × {1}) × E × F . On the other hand,
the �-invariant measure defined in the proof of Lemma 7.2 is clearly supported on
P(R × {0}) × E × F . Therefore, � has distinct invariant measures.

This example illustrates that the stronger assumption of Theorem 2.13 is indeed
required to establish uniqueness of the �-invariant measure in the class of all prob-
ability measures. Of course, the first part of Theorem 2.13 is not contradicted as
the additional �-invariant measure obtained in this example is not in M.

APPENDIX A: AUXILIARY RESULTS

The goal of this Appendix is to collect for easy reference a few auxiliary results
that are used throughout the paper.

The following result on the existence of invariant sets for stationary Markov
chains is given in [20], Lemma 2.6. The construction of the set H follows closely
along the lines of [18], pages 1636 and 1637, so the proof is omitted.

LEMMA A.1. Let Pz be the law of a Markov process (Zk)k≥0 given Z0 = z,
and let ν be a stationary probability for this Markov process. Then for any set H̃

of ν-full measure, there is a subset H ⊂ H̃ of ν-full measure such that

Pz(Zn ∈ H for all n ≥ 0) = 1 for all z ∈ H.

The following elementary can be found in [20], Lemma 3.6.

LEMMA A.2. Let G1, G2 and K be Polish spaces and set � = G1 × G2 ×
K . We consider a probability measure P on (�,B(�)). Denote by γ1 :� → G1,
γ2 :� → G2, and κ :� → K the coordinate projections, and let G1, G2, and K be
the σ -fields generated by γ1, γ2 and κ , respectively. Choose fixed versions of the
following regular conditional probabilities:

�K
1 (g1, ·) = P(κ ∈ · |G1)(g1), �K

12(g1, g2, ·) = P(κ ∈ · |G1 ∨ G2)(g1, g2),

�2
1(g1, ·) = P(γ2 ∈ · |G1)(g1), �2

1K(g1, k, ·) = P(γ2 ∈ · |G1 ∨ K)(g1, k),

where g1 ∈ G1, g2 ∈ G2, k ∈ K . Suppose that there exists a nonnegative mea-
surable function h :G1 × G2 × K → [0,∞[ and a set H ⊂ G1 × G2 such that
E(IH (γ1, γ2)) = 1 and for every (g1, g2) ∈ H

�K
12(g1, g2,A) =

∫
IA(k)h(g1, g2, k)�K

1 (g1, dk) for all A ∈ K.

Then there is H ′ ⊂ G1 × K with E(IH ′(γ1, κ)) = 1 so that for all (g1, k) ∈ H ′

�2
1K(g1, k,B) =

∫
IB(g2)h(g1, g2, k)�2

1(g1, dg2) for all B ∈ G2.
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We now recall two results of von Weizsäcker that are of central importance in
our proofs. The first result is a special case of the result in [24], pages 95 and 96.

LEMMA A.3. Let G, G′ and H be Polish spaces, and denote by g, g′ and h

the canonical projections from G×G′ ×H on G, G′ and H , respectively. Let Q be
a probability measure on G × G′ × H , and let q·,· :G × G′ × B(H) → [0,1] and
q· :G × B(G′ × H) → [0,1] be versions of the regular conditional probabilities
Q[h ∈ · |g,g′] and Q[(g′, h) ∈ · |g], respectively. Then for Q-a.e. x ∈ G, the kernel
qx,g′ [·] is a version of the regular conditional probability qx[h ∈ · |g′].

Though the second result is not given precisely in this form in [24], its proof
follows easily from [24] modulo minor modifications (see also [20], Section 4.1).

LEMMA A.4. Let G and H be Polish spaces, let (Xn)n≥0 be a sequence of
random variables with values in G and let Y be a random variable with values in
H on some underlying probability space (�,F,P). Define the σ -field H = σ {Y }
and the decreasing filtration Gn = σ {Xk :k ≥ n}. Then⋂

n≥0

H ∨ Gn = H, P-a.s.

if and only if ⋂
n≥0

Gn is PH-trivial, P-a.s.,

where PH is a version of the regular conditional probability P((Xn)n≥0 ∈ · |H).

APPENDIX B: NOTATION LIST

The following list of frequently used notation, together with the page numbers
where they are defined, is included for easy reference.

E State space of unobservable component Xn . . . . . . . . . . . . . . . . . . . . . . 1500

F State space of observable component Yn . . . . . . . . . . . . . . . . . . . . . . . . . 1500

P Transition kernel of (Xn,Yn)n∈Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1501

P ′ Transition kernel of the reversed model (X−n, Y−n)n∈Z . . . . . . . . . . . .1501

P X Conditional transition kernel of (Xn)n∈Z given (Yn)n∈Z . . . . . . . . . . . 1516

P0 Reference kernel on E such that P ∼ P0 ⊗ Q (Assumption 2.8) . . . . 1503

P X
n Version of P(Xn ∈ · |X0) (Lemma 3.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1509

P Y
n Version of P(Yn ∈ · |Y0) (Lemma 3.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1509



1538 X. T. TONG AND R. VAN HANDEL

Q Reference kernel on F such that P ∼ P0 ⊗ Q (Assumption 2.8) . . . . 1503

U Filter recursion (Lemma 2.1; cf. Section 6.1) . . . . . . . . . . . . . . . . . . . . . 1501

Xn Unobservable component of model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1501

Y Observation path (Yk)k∈Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1500

Yn Observable component of model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1501

 Transition kernel of (�
μ
n ,Yn)n≥0 (Lemma 2.3; cf. Section 6.1) . . . . . 1502

� Transition kernel of (�
μ
n ,Xn,Yn)n≥0 (Lemma 2.3; cf. Section 7.1) . 1502

� Canonical path space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1500

�X Canonical path space of unobservable component . . . . . . . . . . . . . . . . . 1500

�Y Canonical path space of observable component . . . . . . . . . . . . . . . . . . . 1500

�
μ
n The nonlinear filter Pμ(Xn ∈ · |FY[0,n]) (cf. Lemma 5.1) . . . . . . . . . . . . 1501

� The canonical shift on � . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1500

P Law of (Xn,Yn)n∈Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1501

PY Law of the observations (Yn)n∈Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1516

Pμ
∫

Pz,wμ(dz, dw) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1501

Pz,w Conditional law of (Xn,Yn)n∈Z given X0 = z, Y0 = w . . . . . . . . . . . . . 1501

Pz,y Conditional law of (Xn)n≥0 given X0 = z, Y = y . . . . . . . . . . . . . . . . . 1516

B(G) Borel σ -field of G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1500

F Borel σ -field of � . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1500

FZ FZ
Z

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1500

FZ+ FZ[0,∞[ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1500

FI FX
I ∨ FY

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1500

FZ
I σ {Zk :k ∈ I } . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1500

Fn FX
n ∨ FY

n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1500

FZ
n FZ]−∞,n] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1500

P(G) Space of probability measures on G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1500

μw Version of Pμ(X0 ∈ · |Y0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1522

π Invariant measure of (Xn,Yn)n∈Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1501

πX Version of P(Y0 ∈ · |X0) (Lemma 3.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1509
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