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ACHLIOPTAS PROCESS PHASE TRANSITIONS ARE CONTINUOUS

BY OLIVER RIORDAN AND LUTZ WARNKE

University of Oxford

It is widely believed that certain simple modifications of the random
graph process lead to discontinuous phase transitions. In particular, starting
with the empty graph on n vertices, suppose that at each step two pairs of
vertices are chosen uniformly at random, but only one pair is joined, namely,
one minimizing the product of the sizes of the components to be joined. Mak-
ing explicit an earlier belief of Achlioptas and others, in 2009, Achlioptas,
D’Souza and Spencer [Science 323 (2009) 1453–1455] conjectured that there
exists a δ > 0 (in fact, δ ≥ 1/2) such that with high probability the order of
the largest component “jumps” from o(n) to at least δn in o(n) steps of the
process, a phenomenon known as “explosive percolation.”

We give a simple proof that this is not the case. Our result applies to
all “Achlioptas processes,” and more generally to any process where a fixed
number of independent random vertices are chosen at each step, and (at least)
one edge between these vertices is added to the current graph, according to
any (online) rule.

We also prove the existence and continuity of the limit of the rescaled
size of the giant component in a class of such processes, settling a number of
conjectures. Intriguing questions remain, however, especially for the product
rule described above.

1. Introduction and results. At a Fields Institute workshop in 2000, Dimitris
Achlioptas suggested a class of variants of the classical random graph process,
defining a random sequence (G(m))m≥0 of graphs on a fixed vertex set of size n,
usually explained in terms of the actions of a hypothetical purposeful agent: start
at step 0 with the empty graph. At step m, two potential edges e1 and e2 are cho-
sen independently and uniformly at random from all

(n
2

)
possible edges [or from

those edges not present in G(m − 1)]. The agent must select one of these edges,
setting G(m) = G(m − 1) ∪ {e} for e = e1 or e2. Any possible strategy, or “rule,”
for the agent gives rise to a random graph process. Such processes are known as
“Achlioptas processes.”

If the agent always chooses the first edge, then (ignoring the minor effect of
repeated edges) this is, of course, the classical random graph process, studied im-
plicitly by Erdős and Rényi and formalized by Bollobás. In this case, as is well
known, there is a phase transition around m = n/2. More precisely, writing L1(G)

for the number of vertices in the (a, if there is a tie) largest component of a graph G,
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Erdős and Rényi [8] showed that there is a function ρ = ρER : [0,∞) → [0,1)

such that for any fixed t ≥ 0, whenever m = m(n) satisfies m/n → t as n → ∞,

then L1(G(m))/n
p→ ρ(t), where

p→ denotes convergence in probability. More-
over, ρ(t) = 0 for t ≤ 1/2, ρ(t) > 0 for t > 1/2 and ρ(t) (the solution to a simple
equation) is continuous at t = 1/2 with right-derivative 4 at this point.

Achlioptas originally asked whether the agent could shift the critical point of
this phase transition by following an appropriate edge-selection rule. One natural
rule to try is the “product rule”: of the given potential edges, pick the one mini-
mizing the product of the sizes of the components of its endvertices. This rule was
suggested by Bollobás as the most likely to delay the critical point.

Bohman and Frieze [3] quickly showed, using a much simpler rule, that the
transition could indeed be shifted, but more complicated rules such as the product
rule remained resistant to analysis. By 2004 at the latest (see [15]), extensive simu-
lations of D’Souza and others strongly suggested that the product rule in particular
shows much more interesting behavior than simply a slightly shifted critical point;
it exhibits a phenomenon known as “explosive percolation.”

As usual, we say that an event E (formally a sequence of events En) holds with
high probability (whp) if P(E) → 1 as n → ∞. Explosive percolation is said to
occur if there is a critical tc and a positive δ such that for any fixed ε > 0, whp L1
jumps from o(n) to at least δn in fewer than εn steps around m = tcn. Recently,
Achlioptas, D’Souza and Spencer [1] presented “conclusive numerical evidence”
for the conjecture that the product rule exhibits explosive percolation, suggesting
indeed that the largest component grows from size at most

√
n to size at least n/2

in at most 2n2/3 steps. Bohman [2] describes this explosive percolation conjecture
as an important and intriguing mathematical question.

Our main result disproves this conjecture. The result applies to all Achlioptas
processes as defined at the start of the section (including the product rule) and,
in fact, to a more general class of processes (�-vertex rules) defined in Section 2.
A form of this result first appeared in [13], with more restrictive assumptions, and
without full technical details.

THEOREM 1. Let R be an �-vertex rule for some � ≥ 2. For each n, let
(G(m))m≥0 = (GR

n (m))m≥0 be the random sequence of graphs on {1,2, . . . , n}
associated to R. Given any functions hL(n) and hm(n) that are o(n), and any con-
stant δ > 0, the probability that there exist m1 and m2 with L1(G(m1)) ≤ hL(n),
L1(G(m2)) ≥ δn and m2 ≤ m1 + hm(n) tends to 0 as n → ∞.

Let Nk(G) denote the number of vertices of a graph G in components with
k vertices, so Nk(G) is k times the number of k-vertex components. Similarly,
N≤k(G) and N≥k(G) denote the number of vertices in components with at most
(at least) k vertices. Having a rule R in mind, and suppressing the dependence
on n, we write Nk(m) for the random quantity Nk(G(m)), and similarly L1(m) for
L1(G(m)).
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Under a mild additional condition (which holds for all Achlioptas processes),
a slight modification of the proof of Theorem 1 shows, roughly speaking, that the
giant component is unique. In fact, we obtain much more; whp there is no time
at which there are “many” vertices in “large” components but not in the single
largest component. For the precise definition of a “merging” rule see Section 3;
any Achlioptas process is merging.

THEOREM 2. Let R be a merging �-vertex rule for some � ≥ 2. For each n,
let (G(m))m≥0 = (GR

n (m))m≥0 be the random sequence of graphs on {1,2, . . . , n}
associated to R. For each ε > 0 there is a K = K(ε, �) such that

P
(∀m :N≥K(m) < L1(m) + εn

) → 1

as n → ∞.

With � fixed, our proof gives a value for K of the form exp(exp(cε−(�−1))) for
some positive c = c(�). Furthermore, we can allow ε to depend on n, as long as
ε = ε(n) ≥ d/(log logn)1/(�−1), where d = d(�) > 0.

For the classical random graph process it is well known that at any fixed time,
whp there will be at most one “giant” component. Indeed, the maximum size of the
second largest component throughout the evolution of the process is whp o(n); this
can be read out of the original results of Erdős and Rényi [8] or (more easily) the
more precise results of Bollobás [5]. Spencer’s “no two giants” conjecture (per-
sonal communication) states that this should also hold for Achlioptas processes.
Theorem 2 proves this conjecture for the larger class of merging �-vertex rules;
indeed, it readily implies that, with high probability, the second largest component
has size at most max{K,εn} = εn. Allowing ε to vary with n as noted above, the
bound we obtain is of the form d(�)n/(log logn)1/(�−1).

Before turning to the proofs of Theorems 1 and 2, let us discuss some related
questions of convergence.

We say that the rule R is locally convergent if there exist functions ρk =
ρR

k : [0,∞) → [0,1] such that, for each fixed k ≥ 1 and t ≥ 0, we have

Nk(	tn
)
n

p→ ρk(t)(1)

as n → ∞. The rule R is globally convergent if there exists an increasing function
ρ = ρR : [0,∞) → [0,1] such that for any t at which ρ is continuous we have

L1(	tn
)
n

p→ ρ(t)

as n → ∞.
Theorem 1 clearly implies that if a rule R is globally convergent, then the limit-

ing function ρ is continuous at the critical point tc = inf{t :ρ(t) > 0}. Using Theo-
rem 2, it is not hard to establish continuity elsewhere for merging rules; see Theo-
rem 7 and Corollary 8 in Section 3. Unfortunately, we cannot show that the product
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rule is globally convergent. However, as we shall see in Section 4, Theorem 2 im-
plies the following result.

THEOREM 3. Let R be a merging �-vertex rule for some � ≥ 2. If R is lo-
cally convergent, then R is globally convergent, and the limiting function ρR is
continuous and satisfies ρR(t) = 1 − ∑

k≥1 ρR
k (t).

The conditional result above is, of course, rather unsatisfactory. However, for
many Achlioptas processes, local convergence is well known; global convergence
had not previously been established for any nontrivial rule. In particular, Theo-
rem 3 settles two conjectures of Spencer and Wormald [15] concerning so-called
“bounded size Achlioptas processes” (see Section 5).

Recently, in a paper in the physics literature, da Costa, Dorogovtsev, Goltsev
and Mendes [6] announced a version of Theorem 1. However, their actual analy-
sis concerned only one specific rule (not the product rule, though they claim that
“clearly” the product rule is less likely to have a discontinuous transition). More
importantly, even the “analytic” part of it is heuristic, and of a type that seems to
us very hard (if at all possible) to make precise. Crucially, the starting point for
their analysis is not only to assume convergence, but also to assume that the phase
transition is continuous! From this, and some further assumptions, by solving ap-
proximations to certain equations they deduce certain “self-consistent behavior,”
which apparently justifies the assumption of continuity. The argument (which is
considerably more involved than the simple proof presented here) is certainly very
interesting, and the conclusion is (as we now know) correct, but it seems to be very
far from a mathematical proof.

In the next section we prove Theorem 1. In Section 3, restricting the class of
rules slightly, we prove Theorem 2 and deduce that jumps in L1 are also impossible
after a giant component first emerges. Next, in Section 4, we prove Theorem 3.
Finally, in Section 5 we consider more restrictive rules such as bounded size rules,
and discuss the relationship of our results to earlier work.

2. Definitions and proof of Theorem 1. Throughout, we fix an integer � ≥ 2.
For each n, let (v1, v2, . . .) be an i.i.d. sequence where each vm is a sequence
(vm,1, . . . , vm,�) of � vertices from [n] = {1,2, . . . , n} chosen independently and
uniformly at random. Suppressing the dependence on n, informally, an �-vertex
rule is a random sequence (G(m))m≥0 of graphs on [n] satisfying (i) G(0) is the
empty graph, (ii) for m ≥ 1 G(m) is formed from G(m − 1) by adding a (possibly
empty) set Em of edges, with all edges in Em between vertices in vm and (iii) if
all � vertices in vm are in distinct components of G(m − 1), then Em �= ∅. The set
Em may be chosen according to any deterministic or random online rule.

Formally, we assume the existence of a filtration F0 ⊆ F1 ⊆ · · · such that vm is
Fm-measurable and independent of Fm−1, and require Em [and hence, G(m)] to
be Fm-measurable.
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In other words, the agent is presented with the random list (set) vm of vertices,
and, unless two or more are already in the same component, must add one or more
edges between them, according to any deterministic or random rule that depends
only on the history. In the original examples of Achlioptas, the rule always adds
either the edge {vm,1, vm,2} or the edge {vm,3, vm,4}. Note that (for now) no con-
nection between the algorithms used for different n (or indeed at different steps m)
is assumed.

The arguments that follow are robust to small changes in the definition, since
they can be written to rely only on deterministic properties of (G(m)), plus bounds
on the probabilities of certain events at each step. The latter always have �(1)

elbow room. It follows that we may weaken the conditions on (vm); it suffices if,
for m = O(n), say, the conditional distribution of vm given the history (i.e., given
Fm−1) is close to [at total variation distance o(1) from, as n → ∞] that described
above. This covers variations such as picking an �-tuple of distinct vertices, or
picking (the ends of) �/2 randomly selected (distinct) edges not already present in
G(m − 1).

The proof of Theorem 1 is based on two observations, which we first present in
heuristic form.

Observation 1: If at some time t (i.e., when m ∼ tn) there are αn vertices in
components of order at least k, then within time γ = O(1/(α�−1k)) a component
of order at least αn/�2 = βn will emerge. Indeed, fix a set W with |W | ≥ αn

consisting of components of order at least k. At every subsequent step we have
probability at least α� of choosing only vertices in W , and if no component has
order more than βn, it is likely that all these vertices are in different components,
so the rule is forced to join two components meeting W . This cannot happen more
than |W |/k times.

(A form of Observation 1 appears in a paper of Friedman and Landsberg [9] as
a key part of a heuristic argument for explosive percolation. It is not quite stated
correctly, although this does not seem to be why the heuristic fails.)

Observation 2: Components of order k have a half-life that may be bounded in
terms of k; in an individual step, such a component disappears (by joining another
component) with probability at most k�/n. Assuming (which we shall not assume
in the actual proof) that the rule R is locally convergent, it follows easily that for
all t1, t2 and k we have ρk(t1 + t2) ≥ ρk(t1)e

−k�t2 .
We place vertices into “bins” corresponding to component sizes between 2j

and 2j+1 − 1, writing σj (t) for
∑

2j≤k<2j+1 ρk(t). Let α > 0 be constant and sup-
pose that σj (t) ≥ α for some t < tc. Writing k = 2j , by Observation 1 we have
tc − t = O(1/k), with the implicit constant depending on α, since the ≥ αn ver-
tices in components of size at least k will quickly form a giant component. Using
Observation 2, it follows that σj (tc) ≥ g(α) > 0, for some (explicit but irrelevant)
function g(α).
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Let σj = supt≤tc
σj (t). If σj > α, then σj (tc) ≥ g(α). Counting vertices, we

have
∑

j σj (tc) ≤ 1. Hence, for each α > 0, only a finite number of σj can ex-
ceed α. Thus σj → 0 as j → ∞. It follows that for any constant B ≥ 2 and any
k = k(n) → ∞, at no t = t (n) < tc can there be �(n) vertices in components of
size between k and Bk.

Using Observation 1, it is easy to deduce that there cannot be a discontinuous
transition. Indeed, if limt→t+c ρ(t) ≥ δ > 0, then for any k, at time tk = tc−δ/(�2k),
there must be at least δn/2 vertices in components of order at least k, so ρ≥k(tk) ≥
δ/2, where ρ≥k = 1 − ∑

k′<k ρk′ . For any constant B ≥ 2, if k is large it follows
that ρ≥Bk(tk) ≥ δ/3. Taking B large enough, Observation 1 then implies that tc − tk
is much smaller than δ/(�2k).

We now make the above argument precise, without assuming convergence. This
introduces some minor additional complications, but they are easily handled. We
start with two lemmas corresponding to the two observations above.

LEMMA 4. Given 0 < α ≤ 1, let C(α) denote the event that for all 0 ≤ m ≤ n2

and 1 ≤ k ≤ α
16

n
logn

the following holds: N≥k(m) ≥ αn implies L1(m + �) > α
�2 n

for � = � 4
α�−1

n
k
�. Then P(C(α)) ≥ 1 − n−1.

PROOF. It suffices to consider fixed m and k and show that, conditional on Fm,
if G(m) satisfies N≥k(m) ≥ αn, then we have L1(m + �) > α

�2 n with probability

at least 1 − n−4.
Condition on Fm. Let W be the union of all components with size at least k in

G(m), set α̃ = |W |/n ≥ α and let β = α̃/�2. We now consider the next � steps.
We say that a step is good if (a) all � randomly chosen vertices are in W and (b)

all these vertices are in different components. Let Xj denote the indicator function
of the event that step m + j is good. Set X = ∑

1≤j≤� Xj and Y = ∑
1≤j≤� Yj ,

where

Yj =
{

Xj, if L1(m + j − 1) ≤ βn,
1, otherwise.

Clearly, in each step (a) holds with probability α̃�. Furthermore, whenever L1(m+
j − 1) ≤ βn holds, in step m + j the probability that (a) holds and (b) fails is at
most

(�
2

)
α̃�−1β < α̃�/2 (there must be va and vb with 1 ≤ a < b ≤ � such that vb

lies in the same component as va ; all vc must also be in W ) and so in this case
step m + j is good with probability at least α̃�/2. Since, otherwise, Yj = 1 by
definition, we deduce that Y stochastically dominates a binomial random variable
with mean �α̃�/2 ≥ 2α̃n/k. Standard Chernoff bounds now imply that P(Y ≤
α̃n/k) ≤ e−α̃n/(4k) ≤ e−αn/(4k) ≤ n−4.

Assume that L1(m + �) ≤ βn. Then by monotonicity L1(m + j − 1) ≤ βn

for every 1 ≤ j ≤ �, so X = Y . Note that W contains at most |W |/k = α̃n/k

components in G(m). Since every good step joins two components meeting W



1456 O. RIORDAN AND L. WARNKE

[at least one such edge must be added since by (a) all endpoints are in W and by
(b) all endpoints are in distinct components] we deduce that Y ≤ α̃n/k. Hence,
P(L1(m + �) ≤ βn) ≤ P(Y ≤ α̃n/k) ≤ n−4, as required. �

Applying Lemma 4 with m = 0, k = 1 and α = 1, we readily deduce that whp a
giant component exists after at most 4n steps. In fact, it is easy to see that for any
ε > 0, whp there is a giant component after at most (1 + ε)n steps (see the proof
of Lemma 6).

LEMMA 5. Fix 0 < α ≤ 1, D > 0 and an integer B ≥ 2. Define MB
k (m) =

N≥k(m) − N≥Bk(m). Let L(α,B,D) denote the event that for all 0 ≤ m ≤ n2

and 1 ≤ k ≤ min{α2e−4�BD

8�2B2D
n

logn
, n

2B
} the following holds: MB

k (m) ≥ αn implies

MB
k (m + �) > α

2B
e−2�BDn for every 0 ≤ � ≤ D n

k
. Then P(L(α,B,D)) ≥ 1 −

n−1.

PROOF. As in the proof of Lemma 4, it suffices to consider fixed m and k, and
show that conditional on Fm, if G(m) satisfies MB

k (m) ≥ αn, then with probability
at least 1 − n−4 we have MB

k (m + �) > α
2B

e−2�BDn for every 0 ≤ � ≤ �̃, where
�̃ = 	Dn/k
.

Condition on Fm, and let C1, . . . ,Cr be the components of G(m) with sizes
between k and Bk − 1. Note that r ≥ MB

k (m)/(Bk) ≥ αn/(Bk).
Starting from G(m), we now analyze the next �̃ steps. We say that Ci is safe if

in each of these steps none of the � randomly chosen vertices is contained in Ci ,
and we denote by X the number of safe components. Using |Ci | ≤ Bk ≤ n/2, note
that Ci is safe with probability

(1 − |Ci |/n)��̃ > e−2��̃|Ci |/n ≥ e−2�BD,

which gives EX ≥ re−2�BD . Clearly, the random variable X can be written as
X = f (vm+1, . . . , vm+�), where the vj denote the �-tuples generated by the �-
vertex process in each step (uniformly and independently). The function f satisfies
|f (ω) − f (ω̃)| ≤ � whenever ω and ω̃ differ in one coordinate. So, using r ≥
αn/(Bk), McDiarmid’s inequality [11] implies that P(X ≤ re−2�BD/2) is at most

exp
(
−2[re−2�BD/2]2

�̃�2

)
≤ exp

(
−α2e−4�BD

2�2B2D

n

k

)
≤ n−4.

Suppose that X > re−2�BD/2. Since every safe component contributes at least
k vertices to every MB

k (m + �) with 0 ≤ � ≤ �̃ (in each step all edges which can
be added are disjoint from safe components), using r ≥ αn/(Bk) we deduce that
for all such � we have MB

k (m + �) ≥ kX > αe−2�BDn/(2B), and the proof is
complete. �
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Note that by considering instead the number Y of vertices in safe components
one can prove the slightly stronger bound MB

k (m + �) > (1 − ε)αe−2�BDn, for k

not too large.
We are now ready to prove Theorem 1.

PROOF OF THEOREM 1. Let hL(n) and hm(n) be nonnegative functions sat-
isfying hL(n) = o(n) and hm(n) = o(n), and let δ > 0 be constant. Let X =
Xn(δ, hL,hm) denote the event that there exist m1 and m2 satisfying L1(m1) ≤
hL(n), L1(m2) ≥ δn, and m2 ≤ m1 + hm(n), so our aim is to show that P(X ) → 0
as n → ∞. We shall define a “good” event G = Gn(δ) such that P(G) → 1 as
n → ∞ and show deterministically that there is some n0 such that for n ≥ n0,
when G holds, X does not.

To be totally explicit, set α = δ/4, A = 5/α�−1 and D = 1. Set B = �2A�2/δ�,
and let β = αe−2�B/(2B) > 0. Finally, let K = B1+�1/β�, noting that K does not
depend on n.

Let G be the event that C(1), C(δ/4) and L(δ/4,B,D) all hold simultaneously.
By Lemmas 4 and 5, P(G) ≥ 1−3n−1 = 1−o(1). The definition of G ensures that
if n is large enough (larger than some constant depending only on δ and �), then
for all m ≤ 5n and k ≤ K the following hold:

(i) N≥k(m) ≥ δn/4 implies (ii) L1(m + 	An/k
) ≥ δn/(4�2)

and

(iii) MB
k (m) ≥ δn/4 implies (iv) MB

k (m′) ≥ βn for all m ≤ m′ ≤ m+n/k.

Suppose that G holds, and that m− = max{m :L1(m) ≤ hL(n)} and m+ =
min{m :L1(m) ≥ δn} differ by at most hm(n). It suffices to show deterministically
that if n is large enough, then this leads to a contradiction.

Since N1(0) = n and C(1) holds, we have L1(4n) ≥ n/�2. If n is large enough,
it follows that m− ≤ 4n, so m+ ≤ 5n.

For k ≤ K/B set mk = m+ − δn/(�2k), which is easily seen to be positive; we
ignore the irrelevant rounding to integers. Since at most

(�
2

)
(m+ −mk) < �2(m+ −

mk)/2 edges are added passing from G(mk) to G(m+), the components of G(mk)

with size at most k together contribute at most k�2(m+ − mk)/2 ≤ δn/2 vertices
to any one component of G(m+). It follows that

N≥k(mk) ≥ L1(m
+) − δn/2 ≥ δn/2.

Suppose that N≥Bk(mk) ≥ δn/4. Then (i) holds at step mk with Bk ≤ K in place
of k, so (ii) tells us that by step

m∗ = mk + 	An/(Bk)
 ≤ mk + δn/(2�2k) = m+ − δn/(2�2k) = m+ − �(n),

we have L1(m
∗) > δn/(4�2), which is larger than hL(n) if n is large enough. Since

m+ − m− ≤ hm(n) = o(n), if n is large enough we have m∗ < m−, contradicting
the definition of m−.
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It follows that MB
k (mk) = N≥k(mk) − N≥Bk(mk) ≥ δn/4. Using (iii) im-

plies (iv), this gives MB
k (m+) ≥ βn. Applying this for k = 1,B,B2, . . . ,B�1/β�

shows that G(m+) has more than n vertices, a contradiction. �

Setting D = 2δ/�2 (instead of D = 1), the proof above shows that the number of
steps between m− = max{m :L1(m) ≤ δ/(4�2)n} and m+ = min{m :L1(m) ≥ δn}
is at least δn/(2�2B�1/β�) = f (δ)n, where f (δ) essentially grows like the inverse
of a double exponential in δ−(�−1) for δ → 0.

3. Results for merging rules. Although Theorem 1 applies to any �-vertex
rule, for many questions, this class is too broad. Indeed, consider a rule which only
joins two components when forced to (i.e., when presented with � vertices from
distinct components) and then joins the two smallest components presented. Such a
rule will never join two of the �−1 largest components, and it is not hard to see that
during the process �−1 giant components [with order �(n)] will emerge and grow
simultaneously, with their sizes keeping roughly in step. In what follows we could
replace “the largest component” by “the union of the � − 1 largest components”
and work with arbitrary �-vertex rules, but this seems rather unnatural.

By an r-Achlioptas rule we mean an �-vertex rule with � = 2r that always joins
(at least) one of the pairs {v1, v2}, {v3, v4}, . . . , {v�−1, v�}. (How we treat the case
where one or more of these pairs is in fact a single vertex will not be relevant.)
An Achlioptas rule is an r-Achlioptas rule for any r ≥ 1. Taking r = 2 and in-
sisting that only one edge is added gives the original class of rules suggested by
Achlioptas.

Let us say that an �-vertex rule is merging if, whenever C, C ′ are distinct com-
ponents with |C|, |C′| ≥ εn, then in the next step we have probability at least ε� of
joining C to C′. This implies that the probability that they are not united after m

further steps is at most e−ε�m. [We could replace ε� by any f (ε) > 0, and it suf-
fices if the chance of merging in one of the next few steps, rather than the next step,
is not too small.] Clearly, any Achlioptas rule is merging; with probability at least
ε� all r = �/2 potential edges join C to C′. There are other interesting examples
of merging rules (see Section 5).

For merging rules we have the following variant of Lemma 4. We write V≥k(m)

for the union of all components with size at least k in G(m), so |V≥k(m)| =
N≥k(m).

LEMMA 6. Let R be a merging �-vertex rule, let ε > 0, let k ≥ 1 and m be

integers, and set � = 2� 2�

ε�−1
n
k
�. Conditioned on Fm, with probability at least 1 −

� exp(−cn/k) there is a component of G(m+�) containing at least N≥k(m)− εn

vertices from V≥k(m), where c = c(ε, �) > 0.

PROOF. Let W = V≥k(m), so |W | = N≥k(m). We may assume that |W | −
εn ≥ 0. Let α = |W |/n ≥ ε. Until the point that there are � − 1 components be-
tween them containing at least (α − ε/2)n vertices from W , at each step we have
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probability at least α(ε/2)�−1 of choosing � vertices of W in distinct components
to form vj , in which case the number of components meeting W must decrease by
(at least) one. As in the proof of Lemma 4, it follows that off an event whose prob-
ability is exponentially small in n/k, after �/2 steps we do have �−1 components
C1, . . . ,C�−1 together containing at least (α − ε/2)n vertices of W . Ignoring any
containing fewer than εn/(2�) vertices of W , using the property of merging rules
noted above, the probability that some pair of the remaining Ci are not joined in
the next �/2 steps is exponentially small in n/k. �

It is easy to check that we may take c(ε, �) = ε/��. With this technical result in
hand, we now prove Theorem 2.

PROOF OF THEOREM 2. We outline the argument, much of which is very
similar to the proof of Theorem 1 given in the previous section.

Let ε > 0 be given and set δ = ε/5. Lemma 6 implies that there is some A =
A(δ, �) such that for any fixed k, it is very likely that (i) there is a component of
G(m+	An/k
) containing at least N≥k(m)− δn vertices. By Lemma 5, for every
fixed B there is some β = β(δ, �,B) > 0 such that if (ii) MB

k (m) = N≥k(m) −
N≥Bk(m) ≥ δn, then it is very likely that (iii) MB

k (m′) ≥ βn for all m ≤ m′ ≤
m + n/k, say.

To be more precise, let B = �A�2/δ� and K = B1+�1/β�. Then it follows easily
from Lemma 5, Lemma 6 and the union bound that for n large enough there is a
good event G = Gn(δ) such that P(G) → 1 and such that whenever G holds, then
for all m ≤ n2 and k ≤ K , (i) holds and (ii) implies (iii).

Suppose that G holds and that m+ = min{m :N≥K(m) ≥ L1(m) + εn} exists.
It suffices to show deterministically that if n is large enough, then this leads to a
contradiction. Since G holds, considering (i) with m = 0 and k = 1 shows that for
some C = C(δ, �) we have L1(Cn) ≥ (1 − δ)n > (1 − ε)n, so m+ ≤ Cn.

For k ≤ K/B , set mk = m+ − 2δn/(�2k). Recall that V≥k(m) denotes the the
union of all components with size at least k in G(m). Since at most

(�
2

)
(m+−mk) <

δn/k edges are added passing from G(mk) to G(m+), vertices outside of V≥k(mk)

contribute at most 2δn vertices to V≥k(m
+). Hence,

N≥k(mk) ≥ N≥k(m
+) − 2δn ≥ N≥K(m+) − 2δn ≥ L1(m

+) + (ε − 2δ)n.

Suppose that N≥Bk(mk) ≥ N≥k(mk)− δn. Then (i) (with Bk in place of k) tells us
that by step

m = mk + 	An/(Bk)
 ≤ mk + δn/(�2k) = m+ − δn/(�2k) < m+

there exists a component of G(m) containing at least

N≥Bk(mk) − δn ≥ N≥k(mk) − 2δn ≥ L1(m
+) + (ε − 4δ)n > L1(m

+)
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vertices, which contradicts G(m+) ⊇ G(m). It follows that MB
k (mk) ≥ δn. Us-

ing (ii) implies (iii) we deduce that MB
k (m+) ≥ βn. Applying this for k = 1,B ,

B2, . . . ,B�1/β� and counting vertices in G(m+) gives a contradiction. �

Working through the conditions on the constants in the proof above, and using
D = 3δ/�2 instead of D = 1 when applying Lemma 5, one can check that for some
positive constants c and d depending only on � the result holds for any ε = ε(n) ≥
d/(log logn)1/(�−1), with K = K(ε) ≤ exp(exp(cε−(�−1))).

THEOREM 7. Let R be a merging �-vertex rule. For each n, let (G(m))m≥0 =
(GR

n (m))m≥0 be the random sequence of graphs on {1,2, . . . , n} associated to R.
Given any function hm(n) that is o(n), and any constants 0 ≤ a < b, the probability
that there exist m1 and m2 with L1(G(m1)) ≤ an, L1(G(m2)) ≥ bn and m2 ≤
m1 + hm(n) tends to 0 as n → ∞.

Note that for merging rules, Theorem 7 implies the conclusion of Theorem 1;
a “jump” from o(n) to ≥ δn implies a “jump” from ≤ δn/2 to ≥ δn.

PROOF OF THEOREM 7. Let a < b be given, and set ε = (b − a)/2. Using
Theorem 2 we may assume that there exists K = K(ε, �) such that N≥K(m) <

L1(m) + εn for all m. Suppose that m− = max{m :L1(m) ≤ an} and m+ =
min{m :L1(m) ≥ bn} differ by at most hm(n). Set m∗ = m+ − εn/(2�2K). As
before, we have

N≥K(m∗) ≥ L1(m
+) − �2K(m+ − m∗) > (b − ε)n = (a + ε)n.(2)

If n is large enough, which we assume, then m+ ≤ m− +hm(n) implies m∗ < m−.
This gives N≥K(m∗) ≤ N≥K(m−) < L1(m

−) + εn ≤ (a + ε)n, contradicting (2).
�

Let us remark that Theorem 7 (which can be proved without first proving Theo-
rem 2) gives an alternative proof of Spencer’s “no two giants” conjecture; if at any
time there are two components with at least εn vertices, then in the step after the
last such time, L1 must increase by at least εn in a single step. Hence, Theorem 7
implies that if R is merging, then for any ε > 0 we have maxm L2(m) ≤ εn whp.

COROLLARY 8. Let R be a merging �-vertex rule. If R is globally convergent,
then ρR is continuous on [0,∞).

PROOF. Let ρ(t) = ρR(t). We have 0 ≤ ρ(t) ≤ (�
2

)
t , so ρ is continuous at 0.

Suppose ρ is discontinuous at some t > 0. Since ρ is increasing, supt ′<t ρ(t ′) <

inft ′>t ρ(t ′), so we may pick a < b with supt ′<t ρ(t ′) < a < b < inft ′>t ρ(t ′). By
definition of global convergence, for any fixed ε > 0,

P
(
L1

(	(t − ε)n
) ≤ an and L1
(	(t + ε)n
) ≥ bn

) ≥ 1 − ε,(3)
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if n is large enough. It follows as usual that there is some ε(n) → 0 such that (3)
holds with ε = ε(n). But this contradicts Theorem 7. �

4. Convergence considerations. From the beginning, a key question about
Achlioptas processes has been which rules are globally convergent. In some cases,
local convergence has been established, but as far as we are aware, global conver-
gence has not been shown for any nontrivial rules.

We now turn to the proof of Theorem 3, that local convergence implies global
convergence for merging rules (in particular, for Achlioptas rules). We comment
further on local convergence below. Theorem 3 is easy to deduce from Theorem 2;
we shall give a more direct proof that seems more informative.

PROOF OF THEOREM 3. Suppose R is locally convergent. Then there exist
functions ρk : [0,∞) → [0,1] such that (1) holds for any fixed k ≥ 1 and t ≥ 0.
Since Nk changes by at most 2k when an edge is added to a graph, it follows
easily that each ρk is continuous (indeed Lipschitz). From monotonicity of the un-
derlying process, it is easy to see that for each k, the function ρ≤k(t) = ∑

j≤k ρj (t)

is decreasing.
Define ρ = ρR by

ρ(t) = 1 −
∞∑

k=1

ρk(t) = 1 − lim
k→∞ρ≤k(t),

so ρ : [0,∞) → [0,1] is increasing. We claim that for any fixed t > 0 and ε > 0,
the probability that

sup
0≤t ′<t

ρ(t ′) − ε ≤ L1(	tn
)
n

≤ ρ(t) + ε(4)

tends to 1 as n → ∞. This clearly implies that L1(	tn
)/n
p→ ρ(t) whenever ρ

is continuous at t , which is the definition of global convergence. Corollary 8 then
implies that ρ is continuous.

The upper bound in (4) is immediate; by definition of ρ there is some K

such that ρ≤K(t) ≥ 1 − ρ(t) − ε/4. Summing (1) up to K gives N≤K(	tn
)/n ≥
1 − ρ(t) − ε/2 whp. When n is large enough, this bound implies L1(	tn
)/n ≤
ρ(t) + ε.

For the lower bound, we combine the “sprinkling” argument of Erdős and
Rényi [8] with Lemma 6. Choose t ′ < t such that ρ(t ′) is within ε/2 of the
supremum, and let m1 = 	t ′n
 and m2 = 	tn
, so m2 − m1 = �(n). It suf-
fices to show that L1(m2)/n ≥ ρ(t ′) − ε/2 holds whp. In doing so we may as-
sume that ρ(t ′) − ε/2 ≥ 0. For any constant K , whp we have N≤K(m1)/n ≤
ρ≤K(t ′)+ ε/4 ≤ 1 −ρ(t ′)+ ε/4, so N≥K(m1)/n ≥ ρ(t ′)− ε/4 whp. If K is large
enough (depending only on t ′ and ε), Lemma 6 then gives L1(m2)/n ≥ ρ(t ′)−ε/2
whp, as required. �
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REMARK 9. Since nonmerging �-vertex rules have received some attention
(see, e.g., [12]), let us spell out what our method gives for such rules. Lemma 6
applies in this case provided “there is a component containing” is changed to “there
are � − 1 components together containing.” Let L(m) denote the sum of the sizes
of the � − 1 largest components in G(m). With this modified Lemma 6, the proof
of Theorem 2 goes through with L1 replaced by L. The same is true of Theorem 7
[with an extra −(� − 2)K in (2), since the largest � − 1 components may not all
be large]. Finally, Corollary 8 and Theorem 3 similarly go through, now with ρ

defined using L rather than L1.

5. Size rules. So far, even in the Achlioptas-rule case our rules have been
very general, making choices between the given edges using any information about
the current graph. There is a natural much smaller class (of vertex or Achlioptas
rules) called size rules, where only the sequence c1, . . . , c� of the orders of the
components containing the presented vertices v1, . . . , v� may be used to decide
which edge(s) to add. (Here we suppress the dependence on the step m in the
notation.) Note that the product rule is a size rule.

In fact, most past results concern bounded size rules; here there is a constant B

such that all sizes ci > B are treated the same way by the rule, so the rule only
“sees” the data (min{ci,B + 1})�i=1. Perhaps the simplest example is the Bohman–
Frieze process, the bounded size rule with B = 1 in which the edge v1v2 is added if
c1 = c2 = 1, and otherwise v3v4 is added. Bohman and Frieze [3] showed that for
a closely related rule there is no giant component when m ∼ 0.535n. [The actual
rule they used considered whether v1 and v2 are isolated in the graph formed by all
pairs offered to the rule, rather than the graph G(m) formed by the pairs accepted
so far.]

Considering, for simplicity, rules in which one edge is added at each step, a key
property of bounded size rules is that at each step, the expected change in Nk

can be expressed as a simple function of N1,N2, . . . ,Nmax{k,B}. (It is clear that
the rate of formation of k-vertex components can be so expressed; for the rate of
destruction, consider separately the cases k joins to k′ for each k′ ≤ B and the case
k joins to some k′ > B .) Spencer and Wormald [15], who considered bounded
size Achlioptas rules, and Bohman and Kravitz [4], who considered a large subset
of such rules, noted that in this case one can easily use Wormald’s “differential
equation method” [16] to show that the rule is locally convergent, and that the
ρk(t) satisfy certain differential equations. This remark applies to all bounded size
�-vertex rules.

Resolving a conjecture of Spencer [14], Spencer and Wormald [15] proved that
any bounded size 2-Achlioptas rule exhibits a phase transition: there is some tc,
depending on the rule, such that for t < tc, whp L1(	tn
) = o(n) [in fact O(logn)],
while for t > tc, L1(	tn
) = 
(n) whp. They conjectured that any bounded size
2-Achlioptas rule is globally convergent, and that the phase transition is second
order (continuous). Theorem 3 establishes both these conjectures.
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Very recently, Janson and Spencer [10] established bounds on the size of the
giant component in the Bohman–Frieze process just above the (known) critical
point tc. They deduce that if it is globally convergent, then the right derivative of ρ

at tc has a certain specific value. The required “if” part is established by Theorem 3.
Informally, let us call a size rule nice if there is some K such that, for each k,

the expected change in Nk is a function of N1,N2, . . . ,Nmax{k,K}. [More precisely,
the individual decisions whether to create or destroy a component of size k depend
only on the data (min{ci, k

′ +1})�i=1 where k′ = max{k,K} and ci is the size of the
component containing vi .] Just as in the bounded size case, using the differential
equation method, it is easy to show that any nice rule is locally convergent. Hence,
by Theorem 3, any nice merging rule is globally convergent with continuous phase
transition; this applies to all nice Achlioptas rules.

The simplest examples of nice rules have K = 1, that is, only compare compo-
nent sizes. One example is “join the two smallest.” For � = 3 this rule is mentioned
briefly by Friedman and Landsberg [9] as another example of a rule that should be
explosive, and discussed by D’Souza and Mitzenmacher [7], who “established”
the explosive nature of the transition for this and a related nice rule numerically;
Theorem 1 contradicts these predictions.

Another nice rule is the following: join the smaller of C1 and C2 to the smaller
of C3 and C4, where Ci is the component containing vi . We call this the “dCDGM”
rule since it was introduced by da Costa, Dorogovtsev, Goltsev and Mendes [6].
Note that this is not an Achlioptas rule, but it is merging; if |C|, |C ′| ≥ εn then with
probability at least ε4 we choose v1, v2 ∈ C and v3, v4 ∈ C′ and so join C to C′.
Hence, the dCDGM rule, which is locally convergent by the differential equation
method, is globally convergent and has a continuous phase transition. Da Costa,
Dorogovtsev, Goltsev and Mendes [6] proposed this rule as simpler to analyze than
the product rule, but at least as likely to have a discontinuous phase transition. For
a brief discussion of their arguments, see the end of the Introduction.

There are many open questions concerning the precise nature of the phase tran-
sitions in various Achlioptas and related processes. One of the most intriguing is
the following: Is the product rule globally convergent?
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