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We analyze the general Lévy insurance risk process for Lévy measures
in the convolution equivalence class S (α), α > 0, via a new kind of path de-
composition. This yields a very general functional limit theorem as the initial
reserve level u → ∞, and a host of new results for functionals of interest
in insurance risk. Particular emphasis is placed on the time to ruin, which
is shown to have a proper limiting distribution, as u → ∞, conditional on
ruin occurring under our assumptions. Existing asymptotic results under the
S (α) assumption are synthesized and extended, and proofs are much simpli-
fied, by comparison with previous methods specific to the convolution equiva-
lence analyses. Additionally, limiting expressions for penalty functions of the
type introduced into actuarial mathematics by Gerber and Shiu are derived as
straightforward applications of our main results.

1. Introduction. Let X = {Xt : t ≥ 0}, X0 = 0, be a Lévy process defined
on (�, F ,P ), with triplet (γ, σ 2,�X), �X being the Lévy measure of X. Thus
the characteristic function of X is given by the Lévy–Khintchine representation,
EeiθXt = et�X(θ), where

�X(θ) = iθγ − σ 2θ2/2 +
∫

R\{0}
(
eiθx − 1 − iθx1{|x|<1}

)
�X(dx) for θ ∈ R.

We will be concerned with the case where Xt → −∞ a.s. We have in mind
an insurance risk model with premiums and other income producing a downward
drift in X, while claims are represented by positive jumps. Thus the process X,
called the claim surplus process, represents the excess in claims over premium.
We think of an insurance company starting with an initial positive reserve u, and
ruin occurring if this level is exceeded by X. We will refer to this as the general
Lévy insurance risk model. It is a generalization of the classical Cramér–Lundberg
model, which arises when the claim surplus process is taken to be

Xt =
Nt∑
1

Ui − rt,(1.1)
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where Nt is a Poisson process, Ui > 0 form an independent i.i.d. sequence and
r > 0. Here r represents the rate of premium inflow and Ui the size of the ith
claim. The general model allows for income other than through premium inflow
and a more realistic claims structure; see Section 2.7.1 of Kyprianou [17]. The
assumption Xt → −∞ a.s. is a reflection of premiums being set to avoid almost
certain ruin for finite u.

The primary focus of this paper is on when and how ruin occurs for large reserve
levels, that is, as u → ∞. Introduce

Xt = sup
0≤s≤t

Xs, Gt = sup{0 ≤ s ≤ t :Xs = Xs}(1.2)

and

τ(u) = inf{t ≥ 0 :Xt > u}.(1.3)

(In cases where possible confusion might arise, we will indicate the dependence
on the process under consideration by a superscript, as in GX

t .) These variables
play a central role in fluctuation theory for Lévy processes, and give rise to the
main variables of interest in insurance risk:

• Ruin time: τ(u),
• Shortfall at ruin (overshoot): Xτ(u) − u,
• Surplus immediately prior to ruin (undershoot): u − Xτ(u)−,
• Minimum surplus prior to ruin: u − Xτ(u)−,
• Time of minimum surplus prior to ruin: Gτ(u)−,
• Time remaining to ruin from the time of minimum surplus: τ(u) − Gτ(u)−.

Our main interest is in the behavior of the process when ruin occurs, that is,
when τ(u) < ∞. Crucial questions, for example, are “how long does it take for
ruin to occur?” and “what do the paths look like leading up to ruin?” We pay
particular attention to these issues. We will exclude the trivial case that X is the
negative of a subordinator, so P(τ(u) < ∞) > 0 for finite u; cf. (2.16) below. On
the other hand, the assumption Xt → −∞ a.s. implies P(τ(u) < ∞) → 0 as the
initial level u → ∞. Consequently, it is convenient to introduce, by elementary
means, a new probability measure P (u) given by

P (u)(·) = P
(·|τ(u) < ∞)

,

and to state our results as limit theorems conditional on τ(u) < ∞, that is, un-
der P (u).

Some further background is useful to place our results in context. The origi-
nal work on the Cramér–Lundberg model was done under the Cramér–Lundberg
condition

EeαX1 = 1 for some α > 0,(1.4)
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which among other things implies Xt → −∞ a.s. Embrechts, Klüppelberg and
Mikosch [12] call (1.4) the small claims condition. The major results in this area
include a large deviation estimate for the probability of ruin

eαuP
(
τ(u) < ∞) → C,(1.5)

where C is a constant which can be identified, and C > 0 if

EX1e
αX1 < ∞.(1.6)

In addition, the asymptotic behavior under P (u) of several of the variables listed
above is known (see, e.g., [1] or [12]). The ruin estimate (1.5) was extended to
general Lévy insurance risk processes satisfying (1.4) by Bertoin and Doney [4].

A second regime under which the Cramér–Lundberg model has been studied is
the subexponential or large claims case (see Asmussen and Klüppelberg [2]). In
this scenario, the claim size distribution is subexponential and, roughly speaking,
ruin occurs solely due to the realization of one extremely large claim.

The small and large claims models each have their various strengths and weak-
nesses. A third, intermediate, regime was introduced recently in the general model
by Klüppelberg, Kyprianou and Maller [16]. To motivate this model, observe that
in the small claims case (1.4) holds, while in the large claims (subexponential) case

EeαX1 = ∞ for all α > 0.(1.7)

Thus, to obtain a new model we must either consider processes whose distributions
satisfy (1.7) and which are not subexponential or processes which satisfy EeαX1 <

∞ for some α > 0 but for which (1.4) fails. It is the latter alternative that we will
focus on. Since Xt → −∞ a.s., it is easy to see that such processes must satisfy
that, for some α > 0,

EeαX1 < 1 and Ee(α+ε)X1 = ∞ for all ε > 0.(1.8)

For example, those with distribution tails of the form

P(X1 > x) ∼ e−αx

xp
for p > 1(1.9)

satisfy (1.8). A natural class of distributions which include those of the form (1.9)
is the class of convolution equivalent distributions of index α, which we now
briefly describe. As in [16], we will restrict ourselves to the nonlattice case, with
the understanding that the alternative can be handled by obvious modifications.
A distribution F on [0,∞) with tail F = 1 − F belongs to the class S (α), α > 0,
if F(u) > 0 for all u > 0,

lim
u→∞

F(u + x)

F (u)
= e−αx for x ∈ (−∞,∞)(1.10)

and

lim
u→∞

F 2∗(u)

F (u)
exists and is finite,(1.11)
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where F 2∗ = F ∗ F . Distributions in S (α) are called convolution equivalent with
index α. When F ∈ S (α), the limit in (1.11) must be of the form 2δF

α , where δF
α :=∫

[0,∞) e
αxF (dx) is finite. Much is known about the properties of such distributions.

In particular, the class is closed under tail equivalence, that is, if F ∈ S (α) and G

is a distribution function for which

lim
u→∞

G(u)

F (u)
= c for some c ∈ (0,∞),

then G ∈ S (α).
Although the exponential distribution with parameter α is not in S (α), distribu-

tions in S (α) are “near to exponential;” for example, distributions with tails com-
parable to x−pe−αx , where p > 1, are in S (α). The inverse Gaussian distributions,
with appropriate choices of parameters, form an important class of distributions
which are convolution equivalent. These in turn are a special case of the tempered
stable distributions, which have been the subject of considerable recent activity.
For further examples and more on convolution equivalence see [8, 11, 15, 18]
and [19].

We can take the tail of any Lévy measure, assumed nonzero on some interval
(x0,∞), x0 > 0, to be the tail of a distribution function on [0,∞), after renormal-
ization. With this convention, we say then that the measure (or its tail) is in S (α)

if this is true for the distribution with the corresponding (renormalized) tail. The
convolution equivalent model introduced in [16] is then one in which

�
+
X ∈ S (α) and EeαX1 < 1 for some α > 0,(1.12)

where �+
X is the restriction of �X to (0,∞), and �

+
(x) = �X((x,∞)), x > 0.

The condition EeαX1 < 1 implies eαXt is a nonnegative supermartingale, from
which it follows immediately that Xt → −∞ a.s. (This is also true when
EeαX1 = 1.)

By way of comparison with the small claims model, consider a one parame-
ter family of Cramér–Lundberg models (1.1), in which the claim size distribution
U ∈ S (α). Let

X
(r)
t =

Nt∑
1

Ui − rt, r ≥ 0,

and set

rL = ln(EeαX
(0)
1 )

α
.

Then EeαX
(r)
1 = 1 if r = rL and EeαX

(r)
1 < 1 if r > rL. Thus the convolution equiv-

alent models correspond to larger premium rates (faster drift of X to −∞, lower
probability of ruin), than under the small claims condition (1.4). In general, for any
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convolution equivalent model, there is an associated model in which (1.4) holds,
obtained by adding an appropriate positive drift, which corresponds to decreasing
the premium rate. However, this change in premium rate leads to quite different
behavior in the two models.

Conditional on ruin occurring, the qualitative behavior of the claims surplus
process is very different in the convolution equivalent model as opposed to either
the small or large claims models. In these latter two cases, the time to ruin, τ(u),
is of order u as u → ∞. In the small claims case, under mild assumptions, there is
a constant b > 0 such that

τ(u)

u
→ b−1 in P (u) probability

and

sup
t∈[0,1]

∣∣∣∣X(tτ(u))

τ (u)
− bt

∣∣∣∣ → 0 in P (u) probability,

indicating that ruin occurs owing to the build up of small claims which tend to
cause X to behave as though it had positive drift (see [1] or [12]). In the subex-
ponential case, the ruin time is again of order u (in distribution). However, in this
case the process evolves quite normally, that is, like a sample path for which ruin
does not occur, until a very large claim suddenly causes ruin. This claim is so large

that the shortfall Xτ(u) − u
P (u)−→∞ (see [2] or [12]).

An obvious shortcoming of the small claims model is that it does not allow
for disasters, that is large jumps, which are observed in real insurance data. On
the other hand, the subexponential model is very extreme and uninformative in
the sense that paths leading to ruin look quite normal until suddenly a large claim
occurs, which results in ruin with an arbitrarily large shortfall.

By contrast, the convolution equivalent model allows for disasters to occur, but
they are not so ruinous as to be disproportionate in size relative to the reserve
level. We will show that, in this model, asymptotically, ruin occurs in finite time
(in distribution), and for ruin to occur, the claims surplus process must take a large
jump from a neighborhood of the origin to a neighborhood of u. This jump may
result in ruin, but if not, the process X−u subsequently behaves like X conditioned
to hit (0,∞). In either case, the shortfall at ruin converges in distribution to a finite
random variable as u → ∞. These results will follow from a path decomposition
and asymptotic analysis of the distribution of X, conditional on ruin, in a way
described below. The idea of studying ruin through a description of the entire path
leading up to ruin, seems to have first appeared in Asmussen [1], where the small
claims case for random walk is investigated. For work in the subexponential case,
see Asmussen and Klüppelberg [2].
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2. Skorohod space and notation. Fix � /∈ R and let E = R ∪ {�}. Define a
metric d on E by

d(x, y) =
⎧⎨
⎩

|x − y| ∧ 1, x, y ∈ R,
1, x ∈ R, y = �,
0, x = y = �.

Thus � is an isolated point, which will act as a cemetery state, and for x, y ∈ R,
|x − y| → 0 if and only if d(x, y) → 0. Let D be the Skorohod space of functions
on [0,∞), taking values in the metric space E, and which are right continuous
with left limits. It is often convenient to assume that X is given as the coordinate
process on D. We will interchangeably write X or w depending on which seems
clearer in the context. The usual right continuous completion of the filtration gener-
ated by the coordinate maps will be denoted by {Ft }t≥0. Pz denotes the probability
measure induced on F = ∨

t≥0 Ft by the Lévy process starting at z ∈ R. We some-
times write just P for P0. The shift operators θt :D → D, t ≥ 0, are defined by
(θt (w))s = w(t + s).

For a given function w = (wt )t≥0 ∈ D, and r ≥ 0, let w[0,r) = (w[0,r)(t))t≥0 ∈
D denote the killed path

w[0,r)(t) =
{

wt, 0 ≤ t < r ,
�, t ≥ r .

For any ρ :D → [0,∞] we then have the corresponding element w[0,ρ) ∈ D de-
fined by w[0,ρ) = w[0,ρ(w)). For x ∈ E, let cx ∈ D be the constant path cx

t = x for
all t ≥ 0. If w,w′ ∈ D, w − w′ denotes the path in D given by

(w − w′)t =
{

wt − w′
t , if t < τ�(w) ∧ τ�(w′),

�, otherwise.

Let

τz = τz(w) = inf{t > 0 :wt > z}, τ� = τ�(w) = inf{t > 0 :wt = �}.
For notational convenience, we will interchangeably write wt and w(t), τz and
τ(z), etc. Observe that for any t ≥ 0 and w ∈ D

τ�

(
w[0,t)

) = t if τ�(w) ≥ t.(2.1)

We adopt the following notation from [14] which is very standard in the area;
cf. [3, 9] and [17]. Let (Ls)s≥0 denote the local time of X at its maximum, and
(L−1

s ,Hs)s≥0 the weakly ascending bivariate ladder process. When Xt → −∞
a.s., L∞ has an exponential distribution with some parameter q > 0, and the de-
fective process (L−1,H) may be obtained from a nondefective process (L−1, H)

by independent exponential killing at rate q > 0. Thus

(
(L−1

s ,Hs) : s < L∞
) D= (

(L−1
s , Hs) : s < e(q)

)
,(2.2)



PATH DECOMPOSITION OF A LÉVY INSURANCE RISK PROCESS 1417

where e(q) is independent of (L−1, H) and has exponential distribution with pa-
rameter q .

We denote the bivariate Lévy measure of (L−1, H) by �L−1,H (·, ·). The
Laplace exponent κ(a, b) of (L−1,H), defined by

e−κ(a,b) = E(e−aL−1
1 −bH1;L∞ > 1) = e−qEe−aL−1

1 −bH1(2.3)

for values of a, b ∈ R for which the expectation is finite, may be written

κ(a, b) = q + dL−1a + dHb +
∫
t≥0

∫
x≥0

(1 − e−at−bx)�L−1,H (dt,dx),(2.4)

where dL−1 ≥ 0 and dH ≥ 0 are drift constants. The bivariate renewal function of
(L−1,H) is

V (t, x) =
∫ ∞

0
e−qsP (L−1

s ≤ t, Hs ≤ x)ds.(2.5)

Its Laplace transform is given by∫
t≥0

∫
x≥0

e−at−bxV (dt,dx) =
∫
s≥0

e−qsE(e−aL−1
s −bHs )ds = 1

κ(a, b)
,(2.6)

provided κ(a, b) > 0. We will also frequently consider the renewal function of H ,
defined on R by

V (x) =
∫ ∞

0
e−qsP (Hs ≤ x)ds = lim

t→∞V (t, x).(2.7)

Observe that V (x) = 0 for x < 0, while V (0) > 0 iff H is compound Poisson. Also

V (∞) := lim
x→∞V (x) = q−1.(2.8)

Let X̂t = −Xt , t ≥ 0, denote the dual process and (L̂−1, Ĥ ) the corresponding
strictly ascending bivariate ladder processes of X̂. This is the same as the weakly
ascending process if X̂ is not compound Poisson. All quantities relating to X̂ will
be denoted in the obvious way, for example, �L̂−1,Ĥ , κ̂ and V̂ . The reason for
this choice of (L̂−1, Ĥ ) is that we may then, for any Lévy process, choose the
normalization of the local times L and L̂ so that the Wiener–Hopf factorization
takes the form

κ(a,−ib)κ̂(a, ib) = a − �X(b), a ≥ 0, b ∈ R.(2.9)

Throughout the paper our principal assumption will be (1.12). In that case, by
Proposition 5.1 of [16],

κ(a,−α) > 0 for a ≥ 0.(2.10)

Furthermore, by analytic extension, it follows from (2.9) that

κ(a,−z)κ̂(a, z) = a − �X(−iz) for a ≥ 0,0 ≤ �z ≤ α.(2.11)
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Set

β1 = − lnEeαX1 = −�X(−iα) = κ(0,−α)κ̂(0, α),
(2.12)

β2 = κ(0,−α)

q
, β = β1β2.

Note that β1, β2 ∈ (0,∞) under (1.12). These constants appear in several formulas
throughout the paper. For future reference we also note that

β1

∫ ∞
0

EeαXt dt = β1

∫ ∞
0

(EeαX1)t dt = 1(2.13)

and, letting V (z) = V (∞) − V (z), z ∈ R, we have by (2.6) and (2.8)

β2

∫
z
αe−αzqV (−z)dz = β2

(
1 +

∫
z≥0

αeαzqV (z)dz

)

= β2q

∫
z≥0

eαzV (dz)(2.14)

= β2q

κ(0,−α)
= 1.

The following important asymptotic estimate can be found in [16]. Assum-
ing (1.12),

lim
u→∞

�
+
X(u)

qV (u)
= β.(2.15)

This provides information about the probability of eventual ruin through the
Pollacek–Khintchine formula

P
(
τ(u) < ∞) = qV (u).(2.16)

A further useful estimate from [16], holding under (1.12), is

lim
u→∞

�
+
X(u)

�H(u)
= κ̂(0, α) ∈ (0,∞),(2.17)

where �H is the Lévy measure of H , and �H is its tail. In particular, this implies

�H ∈ S (α),(2.18)

since S (α) is closed under tail equivalence (see [11], Theorem 2.7).

3. Main results. We next introduce the basic components of the limiting pro-
cess, namely, processes W and Z, and a random variable ρ. These three random
elements are independent. The distribution of W is given by

P(W ∈ dw) = β2

∫
z∈R

αe−αzqV (−z)dzPz

(
X ∈ dw|τ(0) < ∞)

(3.1)

for w ∈ D.
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[Recall that V (y) = q−1 for y < 0.] Thus W has the law of X conditioned on
τ(0) < ∞ and started with initial distribution

P(W0 ∈ dz) = β2αe−αzqV (−z)dz, z ∈ R.(3.2)

Observe that (3.2) is indeed a probability distribution by (2.14). Let Z be the Ess-
cher transform of X, defined by

P({Zt : 0 ≤ t ≤ s} ∈ Bs,Zs ∈ dx)

= eαxP ({Xt : 0 ≤ t ≤ s} ∈ Bs,Xs ∈ dx)

EeαXs
(3.3)

= eβ1seαxP ({Xt : 0 ≤ t ≤ s} ∈ Bs,Xs ∈ dx),

where Bs is a Borel set in R
[0,s] and x ∈ R. Finally let

ρ be exponentially distributed with parameter β1.(3.4)

Let H :D ⊗ D → R be measurable with respect to the product σ -algebra and
set

G(w,z) = Ez[H(w,X); τ(0) < ∞], w ∈ D,z ∈ R.(3.5)

We denote by H the class of such functions H which satisfy

H(w,w′)eθwτ(�)−I (wτ(�)−≤0) is bounded for some θ ∈ [0, α);(3.6)

G(w, ·) is continuous a.e. on (−∞,∞) for every w ∈ D.(3.7)

For example, if H is bounded and continuous in the product Skorohod topology on
D ⊗ D, these conditions hold with θ = 0. More general conditions on H , which
ensure that (3.7) holds, will be discussed below. Taking θ > 0 in (3.6) allows for
certain unbounded functions H , which will be used in Section 8.

Here is our main theorem.

THEOREM 3.1 (Path decomposition). Assume (1.12). Then for any H ∈ H

lim
x→∞ lim

u→∞E(u)H
(
X[0,τ (u−x)),X � θτ(u−x) − cu) = EH

(
Z[0,ρ),W

)
.(3.8)

The reason for introducing x and taking the limit is to capture the difference in
behavior of the conditioned process before and after entering a neighborhood of u.
The heuristic meaning of the result is that the conditioned process, for large u, can
be approximated as follows:

• run the process Z for times 0 ≤ t < ρ;
• then, run the process u + W from time ρ on, that is, at time ρ + t the value of

the process is u + Wt .
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Thus the process behaves like Z up until an independent exponential time ρ, at
which time it makes a large jump from a neighborhood of 0 to a neighborhood of u.
Its position immediately prior to the jump is Zρ− and its position after the jump
is u + W0. If W0 > 0, the process X − u behaves like X started at W0. If W0 ≤ 0,
the process X − u behaves like X started at W0 and conditioned on τ(0) < ∞.
This behavior is significantly different from the Cramér and subexponential cases
discussed earlier.

It is apparent that many asymptotic results will flow from Theorem 3.1. We
develop some of these in Sections 5–8. The literature to date has focused on deficit
at ruin (overshoot) and surplus prior to ruin (undershoot). We use Theorem 3.1
to derive these and related results in Section 7. Of perhaps greater importance in
insurance risk theory, though, is the probability of ruin occurring in finite time.
So far this has been neglected in studies of this type (except, see the paper of
Braverman [7] discussed below). The following result, derived from Theorem 3.1,
gives a completely explicit representation of the asymptotic distribution of the ruin
time.

THEOREM 3.2 (Asymptotic distribution of ruin time). Assume (1.12). Then
for t ≥ 0

lim
u→∞P (u)(τ(u) ≤ t

) = P
(
ρ + τW (0) ≤ t

)
(3.9)

= β2E(eαXt−ρ ;ρ ≤ t),

where ρ is independent of X and W and has exponential distribution with param-
eter β1.

We can compare this result with those of Braverman [7]. He assumes, as we do,
that �

+
X(x) ∈ S (α) for an α > 0, and his Theorem 2.1 can be used to deduce that

lim
u→∞

P(τ(u) ≤ t)

�
+
X(u)

exists for each t > 0, and hence, via (2.15), that limu→∞ P (u)(τ (u) ≤ t) also ex-
ists. However, the expressions thus obtained for these limits are highly inexplicit,
and it is not at all clear from them whether or not the limiting distribution is proper
(total mass 1). Theorem 3.2 gives a much simpler expression for the limiting distri-
bution and establishes that it is indeed proper, being the convolution of two proper
probability distributions.

4. Proof of path decomposition. Let B denote the Borel sets on R, B([0,∞))

the Borel sets on [0,∞) and set D = D ⊗[0,∞)⊗ (−∞,∞). For K ∈ (−∞,∞]
and x ∈ [0,∞], define measures μK and νx on F ⊗ B([0,∞)) ⊗ B by

μK(dw,dt,dφ) = β1I (φ < K)eαφP
(
X[0,t) ∈ dw;Xt− ∈ dφ

)
dt(4.1)
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and

νx(dw′,dr,dz) = β2I (z > −x)αe−αz dzPz

(
X ∈ dw′; τ(0) ∈ dr

)
.(4.2)

We will write μ and ν for μ∞ and ν∞, respectively. These are finite measures and
indeed μ and ν are probability measures on D since by (2.13)

μ(D) = β1

∫ ∞
0

EeαXt dt = 1,(4.3)

and by (2.14) and (2.16)

ν(D) = β2

(
1 +

∫
z≤0

αe−αzPz

(
τ(0) < ∞)

dz

)

= β2

(
1 +

∫
z≥0

αeαzP
(
τ(z) < ∞)

dz

)
(4.4)

= β2

(
1 +

∫
z≥0

αeαzqV (z)dz

)
= 1.

In a slight abuse of notation we will denote the marginal measures in the obvious
way. Thus, for example,

μK(dw,dφ) = β1

∫ ∞
0

I (φ < K)eαφP
(
X[0,t) ∈ dw;Xt− ∈ dφ

)
dt,

(4.5)
νx(dw′) = β2

∫
z>−x

αe−αz dzPz

(
X ∈ dw′; τ(0) < ∞)

.

From (4.3) and (4.4), μ(dw) and ν(dw′) define probability measures on D.
From (2.16) and (3.1), it is clear that ν(dw′) = P(W ∈ dw′). The following result
identifies μ as the distribution of Z[0,ρ), where Z and ρ are given by (3.3) and
(3.4), respectively.

PROPOSITION 4.1. Let Z̃ have law given by P(Z̃ ∈ dw) = μ(dw), and set
τ
Z̃

= τ�(Z̃) = inf{t > 0 : Z̃t = �}. Then with ρ and Z as above,

{Z̃t : t < τ
Z̃
} d= {Zt : t < ρ}.(4.6)

PROOF. For any Bs ∈ B([0, s])
P ({Z̃t : 0 ≤ t ≤ s} ∈ Bs, Z̃s ∈ dx, s < τ

Z̃
)

= β1

∫
r>s

∫
φ
eαφP ({Xt : 0 ≤ t ≤ s} ∈ Bs,Xs ∈ dx,Xr− ∈ dφ)dr

= β1P({Xt : 0 ≤ t ≤ s} ∈ Bs,Xs ∈ dx)

∫
r>0

∫
φ
eαφP (Xr− ∈ dφ − x)dr

= eαxP ({Xt : 0 ≤ t ≤ s} ∈ Bs,Xs ∈ dx) [by (2.13)]

= P({Zt : 0 ≤ t ≤ s} ∈ Bs,Zs ∈ dx)e−β1s [by (3.3)]

= P({Zt : 0 ≤ t ≤ s} ∈ Bs,Zs ∈ dx, s < ρ).
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Integrating out x completes the proof. �

LEMMA 4.1. Fix x ∈ [0,∞), u > x, A ⊂ (−∞, u − x] and B ⊂ (u − x,∞).
Then for any H ∈ H which is nonnegative,

E
[
H

(
X[0,τ (u−x)),X � θτ(u−x) − cu)

:Xτ(u−x)− ∈ A,Xτ(u−x) ∈ B,τ(u) < ∞]
=

∫ ∞
0

dt

∫
w∈D

∫
φ∈A

∫
z∈B−u

G(w, z)�+
X(u − φ + dz)(4.7)

× P
(
X[0,t) ∈ dw,Xt− ∈ dφ, τ(u − x) ≥ t

)
,

where G is defined by (3.5).

PROOF. By the strong Markov property

E
[
H

(
X[0,τ (u−x)),X � θτ(u−x) − cu)

:Xτ(u−x)− ∈ A,Xτ(u−x) ∈ B,τ(u) < ∞]
= E

[
G

(
X[0,τ (u−x)),Xτ(u−x) − u

)
:Xτ(u−x)− ∈ A,Xτ(u−x) ∈ B,

τ(u − x) < ∞]
.

Since AB = ∅, �Xτ(u−x) > 0 on {Xτ(u−x)− ∈ A,Xτ(u−x) ∈ B}. Thus by the com-
pensation formula (see [3], page 7)

E
[
G

(
X[0,τ (u−x)),Xτ(u−x) − u

)
:Xτ(u−x)− ∈ A,Xτ(u−x) ∈ B,τ(u − x) < ∞]

= E
∑
t

G
(
X[0,t),Xt− + �Xt − u

)
I
(
Xt− ∈ A,τ(u − x) ≥ t

)
× I (Xt− + �Xt ∈ B)

= E

∫ ∞
0

dt

∫
ξ
G

(
X[0,t),Xt− + ξ − u

)
I
(
Xt− ∈ A,τ(u − x) ≥ t

)
× I (Xt− + ξ ∈ B)�+

X(dξ)

=
∫ ∞

0
dt

∫
w∈D

∫
φ∈A

∫
ξ+φ∈B

G(w,φ + ξ − u)�+
X(dξ)

× P
(
X[0,t) ∈ dw,Xt− ∈ dφ, τ(u − x) ≥ t

)
,

and this is (4.7). �

In conjunction with Lemma 4.1, it is useful to note that, for u > x ≥ 0,

P
(
Xτ(u−x)− < u − x,Xτ(u−x) = u − x, τ (u − x) < ∞) = 0(4.8)

(see, e.g., [14], Lemma 5.1).
We need two further observations before we come to the proof of Theorem 3.1.

From (3.6) and (3.7), it follows immediately that for any K

G(w,z)eθwτ(�)−I (wτ(�)−<K)(4.9)
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is bounded as a function of (w, z) and continuous a.e. in z for every w ∈ D.
Referring to (1.10), an important global bound on convolution equivalent distri-

butions is obtained by applying Theorem 1.5.6(ii) of [6] to the function

l(r) = (r ∨ e)αF
(
ln(r ∨ e)

)
,

which is slowly varying as r → ∞. This yields the following version of Potter’s
bounds for regularly varying functions. Assume (1.10); then for every ε > 0 there
exists an A = Aε such that

F(u + x)

F (u)
≤ A

[
e−(α−ε)x ∨ e−(α+ε)x]

for all u ≥ 1, x ≥ 1 − u.(4.10)

Clearly this estimate also applies to �
+
X since we may take F(x) = �

+
X(x)/�

+
X(1)

for x ≥ 1. Similarly for �H , since recall �H ∈ S (α) from (2.18).
The key step in the proof of Theorem 3.1 is the following result.

THEOREM 4.1. Assume (1.12), and fix x ∈ [0,∞) and K ∈ (−∞,∞). Then
for any H ∈ H

lim
u→∞E(u)[H (

X[0,τ (u−x)),X � θτ(u−x) − cu);Xτ(u−x)− < K
]

(4.11)
=

∫
w∈D

∫
w′∈D

H(w,w′)μK(dw)νx(dw′).

PROOF. We first show that the expression for the limit is finite. By Proposi-
tion 4.1, and independence of Z[0,ρ) and W ,

P
(
Z[0,ρ) ∈ dw,W ∈ dw′) = μ(dw) ⊗ ν(dw′).(4.12)

Hence, using (4.5),∫
w∈D

∫
w′∈D

|H(w,w′)|μK(dw)νx(dw′)

≤
∫
w∈D

∫
w′∈D

|H(w,w′)|μ(dw)ν(dw′)(4.13)

= E
∣∣H (

Z[0,ρ),W
)∣∣.

To verify that the final expectation is finite, it suffices by (3.6) to show that
Ee−θZρ−I (Zρ−≤0) < ∞. But by (3.3)

Ee−θZρ− =
∫ ∞

0
Ee−θZsP (ρ ∈ ds) = β1

∫ ∞
0

Ee(α−θ)Xs ds < ∞,

if 0 ≤ θ < α.
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We now prove convergence. Take u large enough that K < u − x, and set A =
(−∞,K) and B = (u − x,∞) in (4.7). Then, recalling (4.8), we have

E
[
H

(
X[0,τ (u−x)),X � θτ(u−x) − cu)

:Xτ(u−x)− < K,τ(u) < ∞]
=

∫ ∞
0

dt

∫
w∈D

∫
φ<K

∫
z>−x

G(w, z)�+
X(u − φ + dz)

× P
(
X[0,t) ∈ dw,Xt− ∈ dφ, τ(u − x) ≥ t

)
.

Using that K and x are fixed, and that as u → ∞, I (τ (u − x) ≥ t) → 1 and

�+
X(u − φ + dz)

�
+
X(u)

→ eαφαe−αz dz(4.14)

in the sense of weak convergence on (−x,∞), we will show∫ ∞
0

dt

∫
w∈D

∫
φ<K

∫
z>−x

G(w, z)
�+

X(u − φ + dz)

�
+
X(u)

× P
(
X[0,t) ∈ dw,Xt− ∈ dφ, τ(u − x) ≥ t

)
(4.15)

→ β−1
∫
w′∈D

∫
w∈D

H(w,w′)μK(dw)νx(dw′).

By (2.15) and (2.16), this will complete the proof.
Let

�u(w,φ) =
∫
z>−x

G(w, z)
�+

X(u − φ + dz)

�
+
X(u)

.

For fixed w, G(w, ·) is bounded and continuous a.e. by (4.9). Thus by (4.14), for
fixed (w,φ)

�u(w,φ) →
∫
z>−x

G(w, z)αeα(φ−z) dz =: �(w,φ).

Next write

�+
X(u − φ + dz)

�
+
X(u)

= �+
X(u − φ + dz)

�
+
X(u − φ − x)

�
+
X(u − φ − x)

�
+
X(u)

.

The first term is a probability measure on (−x,∞). For the second term, choose
θ to satisfy (3.6) and fix ε > 0 so that θ + 2ε < α. By (4.10), there exists an A so
that

�
+
X(u − φ − x)

�
+
X(u)

≤ A
[
e(α−ε)(φ+x) ∨ e(α+ε)(φ+x)],(4.16)

if u ≥ 1 and φ + x ≤ u − 1. Now for φ < K ,

e(α−ε)φ ∨ e(α+ε)φ ≤ e(α−ε)φI (φ < 0) + e(α+ε)Ke(α−ε)φI (0 ≤ φ < K)

≤ e(α+ε)|K|e(α−ε)φ.
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Thus if u0 =: (K + x + 1) ∨ 1, then by (4.9), for some constant C depending on
H,K and x,

sup
u≥u0

|�u(w,φ)| ≤ Ce(α−ε)φe−θwτ(�)−I (wτ(�)−<K) all w ∈ D, φ < K .(4.17)

In particular, since α − ε − θ > ε, for every t ≥ 0

sup
u≥u0

∣∣�u

(
X[0,t),Xt−

)∣∣I (Xt− < K) ≤ Ce(α−ε−θ)Xt−I (Xt− < K)

(4.18)
≤ C1e

εXt−I (Xt− < K),

where C1 = Ce(α−ε−θ)|K|. Next observe that

�u(t) =:
∫
w∈D

∫
φ<K

�u(w,φ)P
(
X[0,t) ∈ dw,Xt− ∈ dφ; τ(u − x) ≥ t

)
= E

[
�u

(
X[0,t),Xt−

);Xt− < K,τ(u − x) ≥ t
]

→ E
[
�

(
X[0,t),Xt−

);Xt− < K
] =: �(t)

as u → ∞, by bounded convergence using (4.18). Further, again by (4.18), for any
t ≥ 0

sup
u≥u0

|�u(t)| ≤ C1E[eεXt−;Xt− < K] ≤ C1(EeαXt )ε/α = C1(EeαX1)εt/α,

where recall EeαX1 < 1 by (1.12). Thus dominated convergence gives∫ ∞
0

�u(t)dt →
∫ ∞

0
�(t)dt.(4.19)

This is equivalent to (4.15) since the limit, which is expressed in (4.19) as an
iterated integral, may be rewritten as∫ ∞

0
�(t)dt =

∫
t
dt

∫
w∈D

∫
φ<K

∫
z>−x

G(w, z)αeα(φ−z) dz

× P
(
X[0,t) ∈ dw,Xt− ∈ dφ

)
=

∫
t
dt

∫
w∈D

∫
φ<K

∫
z>−x

Ez[H(w,X); τ(0) < ∞]αeα(φ−z) dz

× P
(
X[0,t) ∈ dw,Xt− ∈ dφ

)
(4.20)

= β−1
2

∫
t
dt

∫
w∈D

∫
φ<K

eαφP
(
X[0,t) ∈ dw,Xt− ∈ dφ

)

×
∫
w′∈D

H(w,w′)νx(dw′)

= (β1β2)
−1

∫
w∈D

∫
w′∈D

H(w,w′)μK(dw)νx(dw′).
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This calculation is justified by absolute convergence of the final integral, proved
earlier in (4.13). �

PROOF OF THEOREM 3.1. Assume (1.12). Then using (4.5) and dominated
convergence, which is justified by (4.13), we have

lim
K,x→∞

∫
w∈D

∫
w′∈D

H(w,w′)μK(dw)νx(dw′)

=
∫
w∈D

∫
w′∈D

H(w,w′)μ(dw)ν(dw′).

Thus by (4.11) and (4.12),

lim
K,x→∞ lim

u→∞E(u)[H (
X[0,τ (u−x)),X � θτ(u−x) − cu);Xτ(u−x)− < K

]
(4.21)

= EH
(
Z[0,ρ),W

)
.

Taking H ≡ 1 in (4.21) gives

lim
K,x→∞ lim

u→∞P (u)(Xτ(u−x)− < K
) = 1.(4.22)

Since H is bounded on {wτ(�)− ≥ K} by (3.6), it follows that

lim
K,x→∞ lim

u→∞E(u)[H (
X[0,τ (u−x)),X � θτ(u−x) − cu);

(4.23)
Xτ(u−x)− ≥ K

] = 0.

Combining (4.21) and (4.23) then proves (3.8). �

REMARK 4.1. The limiting operations in this section are simpler than those
in [16], not requiring the splitting of integrals over subdomains and associated
delicate estimations. Further, many of the calculations do not require the full force
of the S (α) condition. In particular, the proof of (4.15) only uses (1.10) prior to
equation (4.19). At this point the additional condition EeαX1 < 1 is needed to
ensure that dominated convergence applies. Thus the proof actually shows that
under (1.10), if H ∈ H is such that (4.19) holds, then for any x ≥ 0 and K ∈
(−∞,∞)

lim
u→∞

E[H(X[0,τ (u−x)),X � θτ(u−x) − cu);Xτ(u−x)− < K,τ(u) < ∞]
�

+
X(u)

=
∫ ∞

0
�(t)dt.

This is the case if, for example, �u are dominated by an integrable function on
[0,∞). If, in addition,∫

w∈D

∫
w′∈D

|H(w,w′)|μ̃K(dw)ν̃x(dw′) < ∞,
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where

μ̃K(dw,dt,dφ) = I (φ < K)eαφP
(
X[0,t) ∈ dw;Xt− ∈ dφ

)
dt(4.24)

and

ν̃x(dw′,dr,dz) = I (z > −x)αe−αz dzPz

(
X ∈ dw′; τ(0) ∈ dr

)
,(4.25)

then the limit may be rewritten as∫ ∞
0

�(t)dt =
∫
w∈D

∫
w′∈D

H(w,w′)μ̃K(dw)ν̃x(dw′)

as demonstrated in (4.20). Comparing (4.24) and (4.25) with (4.1) and (4.2), note
that the constants β1 and β2 must be excluded since they no longer need to be finite
and nonzero.

We briefly address conditions on H , beyond measurability, which ensure that
(3.7) holds. It is natural that such conditions should relate to some type of continu-
ity of H . We will assume that for each w ∈ D, H(w, ·) is continuous from below
on {τ0(w

′) < ∞} a.s. Pz for every z, that is, for all w ∈ D,z ∈ R

lim
ε↓0

H(w,w′ − cε) = H(w,w′) a.s. Pz on {τ0(w
′) < ∞}.(4.26)

This condition clearly holds if, for every ω ∈ D, H(w, ·) is continuous in the uni-
form topology on D, and so, in particular, if H(w, ·) is continuous in any of the
usual Skorohod topologies. Several examples of functionals of interest that satisfy
(4.26) are given in Lemma 5.1. For a detailed discussion of the various topologies
on Skorohod space, see [22].

PROPOSITION 4.2. If H is measurable and satisfies (3.6) and (4.26), then
(3.7) holds.

PROOF. For y < z, we have

G(w,y) = Ey[H(w,X); τ0(X) < ∞] = Ez[H(w,X − cz−y); τz−y(X) < ∞].
Next, by right continuity, τε(w

′) ↓ τ0(w
′) as ε ↓ 0 for any w′ ∈ D with τ0(w

′) <

∞. Thus by (4.26), as y ↑ z

H(w,X − cz−y)I
(
τz−y(X) < ∞)

(4.27)
→ H(w,X)I

(
τ0(X) < ∞)

a.s. Pz.

Hence, by bounded convergence, for each w ∈ D

G(w,y) → G(w,z)
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as y ↑ z. Thus G(w, ·) is left continuous and consequently continuous except at
countably many points. �

REMARK 4.2. Condition (4.26) can be weakened by requiring it to hold ex-
cept for a discrete set of z. This would result in G(w, ·) being left continuous
except on a discrete set which again implies continuity except at countably many
points.

One technical point should be mentioned. In order that the expression in (3.7)
make sense, H(w, ·) must be measurable. If H(w, ·) is continuous in the uniform
topology, this need not be the case since there are open sets in the uniform topology
which are not in the σ -algebra generated by the coordinate maps {w′

t : t ≥ 0}. This
is why we impose the blanket condition that H be measurable with respect to the
product σ -algebra on D ⊗ D.

For later reference we note that H(w,w′) = e−θwτ(�)− trivially satisfies (4.26),
and if θ ∈ [0, α), then H also satisfies (3.6). Thus by Proposition 4.2, H ∈ H.
Hence, by taking x = K = 0 in Theorem 4.1, it follows that

lim sup
u→∞

E(u)e−θXτ(u)− < ∞ for every θ ∈ [0, α).(4.28)

We will later show that the limit exists and evaluate it (see Proposition 8.2).

5. General marginal convergence results. In this section we provide a
recipe for constructing conditional limit theorems for the fluctuation variables,
by specializing Theorem 3.1. This gives, in Theorem 5.1, joint convergence of
the main variables of interest in insurance risk. Again we need some preliminary
results.

By convention we set w′
0− = w′

0 and G0−(w′) = 0. Also we define w′
t =

sup0≤s≤t w
′
s .

LEMMA 5.1. Each of the following functions is continuous from below on
{τ0(w

′) < ∞} a.s. Pz, for all z:

w′
0, τ0(w

′),Gτ(0)−(w′),w′
τ(0)−,w′

τ(0)−,w′
τ(0).

PROOF. Clearly w′
0 is continuous from below without any extra conditions.

Now assume that τ0(w
′) < ∞. Let ε > 0 be sufficiently small that τε(w

′) < ∞.
Then

τ0(w
′ − cε) = τε(w

′).(5.1)

Thus by right continuity

τ0(w
′ − cε) ↓ τ0(w

′) as ε ↓ 0,(5.2)
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which proves τ0(w
′) is continuous from below on {τ0(w

′) < ∞}. Next, from (5.1)
we have

(w′ − cε)τ0(w
′−cε)∧· = w′

τε(w′)∧· − ε.(5.3)

If w′
τ(0) > 0, then τε(w

′) = τ0(w
′) for all ε ∈ (0,w′

τ(0)), so the result for the re-
maining functionals follows immediately from (5.3). Thus we assume w′

τ(0) = 0,
in which case τε(w

′) > τ0(w
′) for all ε > 0. Now Pz(w

′
τ(0) = 0) = 0 if z > 0 so

we only need to consider z ≤ 0. If z < 0, then by Lemma 5.1 of [14], w′
τ0(w

′)− =
w′

τ0(w
′), and consequently also Gτ0(w

′)−(w′) = τ0(w
′), a.s. Pz. This continues to

hold for z = 0, since applying the strong Markov property at time τ0(w
′), shows

τ0(w
′) = 0 a.s. P0 when w′

τ(0) = 0. Thus by right continuity, we have Pz a.s.

(w′ − cε)τ0(w
′−cε)− = w′

τε(w′)− − ε → w′
τ0(w

′) = w′
τ0(w

′)−

and

Gτ0(w
′−cε)−(w′ − cε) = Gτε(w′)−(w′) ↓ Gτ0(w

′)(w
′) = τ0(w

′) = Gτ0(w
′)−(w′).

The proofs for the remaining functionals are similar. �

REMARK 5.1. The above result is false if we replace continuous from below
with continuous from above. For example, if X is a Poisson process, then for any
ε > 0

P0
(
τ0(w

′ + cε) = 0
) = 1, P0

(
τ0(w

′) = 0
) = 0.

It will be convenient to write

Y = X � θτ(u−x) − cu if τ(u − x) < ∞.(5.4)

Thus Yt = Xt+τ(u−x) − u, t ≥ 0, and, in particular, Y0 = Xτ(u−x) − u, when
τ(u − x) < ∞. Of course Y = Y(u, x), but to simplify the notation, we suppress
the dependence on u and x. From Theorem 3.1 we have that Y converges to W

under P (u), as x,u → ∞, in the sense specified there. Likewise, X[0,τ (u−x)) con-
verges to Z[0,ρ) in the sense of Theorem 3.1, and in fact we have joint convergence.
This provides us with a means for constructing limit theorems for the fluctuation
variables. The first step is in the next proposition. Recall the definition of X in
(1.2), and define W and Z analogously. Note that in (5.5) we replace the vari-
ables on the left-hand side with those on the right-hand side in the limit, as just
described. Since Z is a.s. continuous at ρ, one may further replace the subscripts
ρ− by ρ in (5.5), but we leave them in their present form to help emphasize the
remark in the previous sentence.
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PROPOSITION 5.1. Assume (1.12) and suppose f : R10 → R is bounded,
measurable and jointly continuous in the last six arguments. Let 0 ≤ θ < α and
set

H(w,w′) = f
(
Gτ(�)−(w), τ�(w),wτ(�)−,wτ(�)−,w′

0,

Gτ(0)−(w′), τ0(w
′),w′

τ(0)−,w′
τ(0)−,w′

τ(0)

)
× e−θwτ(�)−I (wτ(�)−≤0)I

(
τ�(w) < ∞, τ0(w

′) < ∞)
.

Then H satisfies (4.26) and hence,

lim
x→∞ lim

u→∞E(u)f
(
Gτ(u−x)−, τ (u − x),Xτ(u−x)−,

Xτ(u−x)−, Y0,G
Y
τ(0)−, τY

0 , Y τ(0)−, Yτ(0)−, Yτ(0)

)
× e−θXτ(u−x)−I (Xτ(u−x)−≤0)(5.5)

= Ef
(
GZ

ρ−, ρ,Zρ−,Zρ−,W0,G
W
τ(0)−, τW

0 ,Wτ(0)−,Wτ(0)−,Wτ(0)

)
× e−θZρ−I (Zρ−≤0).

PROOF. H satisfies (4.26) by Lemma 5.1. Thus by Proposition 4.2 we may
apply Theorem 3.1. Upon noting that τ�(X[0,τ (u−x))) = τ(u − x), the result then
follows immediately. �

In what is essentially a special case of the description of the limiting process
given after Theorem 3.1, we can immediately deduce from Proposition 5.1 that the
joint limiting distribution of the time of, the position prior to and the position rela-
tive to u after, the large jump is that of (ρ,Zρ−,W0). To be precise, under (1.12),
we have

lim
x→∞ lim

u→∞P (u)(τ(u − x) ∈ dt,Xτ(u−x)− ∈ dφ,Xτ(u−x) − u ∈ dz
)

= P(ρ ∈ dt,Zρ− ∈ dφ,W0 ∈ dz)(5.6)

= β1e
αφP (Xt− ∈ dφ)dtβ2αe−αzqV (−z)dz,

where the last equality follows from (3.2), (3.3) and (3.4). The exact meaning of
this convergence is given by (3.8), which by (5.5), is stronger than the usual weak
convergence.

Observe that on (0,∞), P(W0 ∈ dz) = β2αe−αz dz is the limiting distribution
of the overshoot Xτ(u) − u when the overshoot is due to the large jump. The limit-
ing probability that the large jump results in an overshoot of u is P(W0 > 0) = β2.
A further discussion of the overshoot is given in Section 7. Note also that (5.6)
describes the joint limiting distribution of the ruin time, the claim surplus immedi-
ately prior to ruin and the shortfall at ruin, when ruin is due to a large claim. This
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makes precise the “intuitively obvious” asymptotic independence observed after
Theorem 11 in [10], and extends it to also include the ruin time.

The next step in our recipe is to transfer from the variables on the left-hand side
of (5.5) to the fluctuation variables. The key point is to observe that if τ(u) < ∞
and x < u, then

Gτ(u)− = Gτ(u−x)−I (Y0 > 0) + (
τ(u − x) + GY

τ(0)−
)
I (Y0 ≤ 0),

τ (u) − Gτ(u)− = (
τ(u − x) − Gτ(u−x)−

)
I (Y0 > 0)

+ (
τY

0 − GY
τ(0)−

)
I (Y0 ≤ 0),

Xτ(u) − u = Y0I (Y0 > 0) + Yτ(0)I (Y0 ≤ 0) = Yτ(0),

Xτ(u)− − Xτ(u)− = (
Xτ(u−x)− − Xτ(u−x)−

)
I (Y0 > 0)(5.7)

+ (
Y τ(0)− − Yτ(0)−

)
I (Y0 ≤ 0),

Xτ(u)− = Xτ(u−x)−I (Y0 > 0) + (
u + Y τ(0)−

)
I (Y0 ≤ 0),

u − Xτ(u)− = (
u − Xτ(u−x)−

)
I (Y0 > 0) − Y τ(0)−I (Y0 ≤ 0) and

Xτ(u)− = Xτ(u−x)−I (Y0 > 0) + (
u + Yτ(0)−

)
I (Y0 ≤ 0).

Since some limiting variables have mass at infinity, we will consider weak con-
vergence on R ∪ {∞}. To be precise, we will consider functions f : R4 ⊗ (R ∪
{∞}) → R which are jointly continuous in the sense that f (xn, yn) → f (x, y) as
(xn, yn) → (x, y) for xn,x ∈ R

4 and yn, y ∈ (R ∪ {∞}).
THEOREM 5.1. Assume (1.12). Let f : R4 ⊗ (R ∪ {∞}) → R be bounded and

jointly continuous. Then for 0 ≤ θ < α

lim
u→∞E(u)f

(
Gτ(u)−, τ (u) − Gτ(u)−,Xτ(u) − u,Xτ(u)− − Xτ(u)−,Xτ(u)−

)
× e−θXτ(u)−I (Xτ(u)−≤0)

= E
[
f (GZ

ρ−, ρ − GZ
ρ−,W0,Zρ− − Zρ−,Zρ−)e−θZρ−I (Zρ−≤0);W0 > 0

]
(5.8)

+ E
[
f

(
ρ + GW

τ(0)−, τW
0 − GW

τ(0)−,

Wτ(0),Wτ(0)− − Wτ(0)−,∞);W0 ≤ 0
]

and

lim
u→∞E(u)f

(
Gτ(u)−, τ (u) − Gτ(u)−,Xτ(u) − u,Xτ(u)− − Xτ(u)−, u − Xτ(u)−

)
× e−θXτ(u)−I (Xτ(u)−≤0)

= E
[
f (GZ

ρ−, ρ − GZ
ρ−,W0,Zρ− − Zρ−,∞)e−θZρ−I (Zρ−≤0);W0 > 0

]
(5.9)

+ E
[
f

(
ρ + GW

τ(0)−, τW
0 − GW

τ(0)−,

Wτ(0),Wτ(0)− − Wτ(0)−,−Wτ(0)−
);W0 ≤ 0

]
.
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Thus, under P (u),(
Gτ(u)−, τ (u) − Gτ(u)−,Xτ(u) − u,Xτ(u)− − Xτ(u)−,Xτ(u)−

)
→ (GZ

ρ−, ρ − GZ
ρ−,W0,Zρ− − Zρ−,Zρ−)I (W0 > 0)

(5.10)
+ (

ρ + GW
τ(0)−, τW

0 − GW
τ(0)−,Wτ(0),Wτ(0)− − Wτ(0)−, δ∞

)
× I (W0 ≤ 0)

in the sense of weak convergence on R
4 ⊗ (R ∪ {∞}), and similarly for (5.9).

PROOF. We only prove (5.8), as the proof of (5.9) is similar. Write the ex-
pectation on the left-hand side of (5.8) as the sum of two expectations, one over
Y0 > 0 and the other over Y0 ≤ 0. Convergence of the expectation over Y0 > 0
to the first term on the right-hand side of (5.8), as u → ∞ then x → ∞, follows
easily from (5.7) and Proposition 5.1, since P(W0 = 0) = 0 and f is bounded and
jointly continuous. For the expectation over Y0 ≤ 0, first observe that if Y0 ≤ 0,
then Xτ(u)− = u + Yτ(0)−, and so on {Y0 ≤ 0}

e−θXτ(u)−I (Xτ(u)−≤0) = I
(
u + Yτ(0)− > 0

) + e−θXτ(u)−I
(
u + Yτ(0)− ≤ 0

)
.

Convergence of the expectation over {u + Yτ(0)− > 0, Y0 ≤ 0} to the second term
on the right-hand side of (5.8), as u → ∞ then x → ∞, again follows from (5.7)
and Proposition 5.1 since

lim
x→∞ lim

u→∞P (u)(u + Yτ(0)− ≤ 0, Y0 ≤ 0
) = 0.(5.11)

Since f is bounded, it thus remains to show

lim
x→∞ lim

u→∞E(u)(e−θXτ(u)−;u + Yτ(0)− ≤ 0, Y0 ≤ 0
) = 0.

For this it suffices by (5.11) and Hölder’s inequality, to show that for some θ ′ > θ ,

lim sup
u→∞

E(u)e−θ ′Xτ(u)− < ∞,

which in turn holds for any θ ′ ∈ (θ,α) by (4.28). �

Theorem 5.1 provides a general convergence result for the variables of primary
interest in insurance risk, in the convolution equivalent case. It contains and ex-
tends many previous results in the literature as will be explained in Sections 6–8.
The two components that make up the limiting distributions in Theorem 5.1 arise
as a consequence of the process either overshooting or undershooting the bound-
ary at the time of the large jump. We now give alternate characterizations of these
distributions in terms of quantities arising in fluctuation theory.
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Recall the definitions of κ and V in (2.4) and (2.5), and of κ̂ and V̂ in the
paragraph following (2.8). To avoid introducing further notation, there is clearly
no harm in assuming that the random elements (W,Z,ρ) are independent of X.
In particular, ρ has an exponential distribution with parameter β1 and is inde-
pendent of X. Then by the Wiener–Hopf factorization theorem, (Gρ,Xρ) and
(ρ − Gρ,Xρ − Xρ) are independent with Laplace transforms given by

Ee−aGρ−bXρ = κ(β1,0)

κ(β1 + a, b)
,

(5.12)

Ee−a(ρ−Gρ)−b(Xρ−Xρ) = κ̂(β1,0)

κ̂(β1 + a, b)

for a, b > 0 (see [17], Section 6.4).
Before stating the next result, we wish to make clear the meaning of the notation

|V (dt − r, z − dy)| below. It is the measure defined on Borel sets in R
2 by∫ ∫

(t,y)
1A(t, y)|V (dt − r, z − dy)|

=
∫ ∫

(t,y)
1A(t + r, z − y)V (dt,dy).

Some authors omit the absolute values signs. We include them to emphasize that
the function V (t − r, z − y) is increasing in t and decreasing in y, hence, the
Stieltjes measure associated with it, which assigns mass

V (t1 − r, z − y1) − V (t1 − r, z − y0) − V (t0 − r, z − y1) + V (t0 − r, z − y0)

to rectangles (t0, t1] × [y0, y1), is negative.

THEOREM 5.2. For γ > 0, t ≥ 0, s ≥ 0, θ ≥ 0, φ ≥ 0

P(GZ
ρ− ∈ dt, ρ − GZ

ρ− ∈ ds,W0 ∈ dγ,Zρ− − Zρ− ∈ dφ,

Zρ− ∈ dθ;W0 > 0)(5.13)

= βαe−α(γ+φ−θ)V (dt,dθ)V̂ (ds,dφ)dγ,

where β is given by (2.12).
For γ ≥ 0, t ≥ 0, s ≥ 0, v ≥ 0, y ≥ 0

P
(
ρ + GW

τ(0)− ∈ dt, τW
0 − GW

τ(0)− ∈ ds,

Wτ(0) ∈ dγ,Wτ(0)− − Wτ(0)− ∈ dv,−Wτ(0)− ∈ dy;W0 ≤ 0
)

= βI (γ > 0)

∫
r≤t

e−β1r dr

∫
z≥y

αeαz dz|V (dt − r, z − dy)|V̂ (ds,dv)(5.14)

× �X(dγ + v + y)

+ β dH

∫
r≤t

e−β1r dr

∫
z≥0

αeαzV (dt − r,dz)δ0(ds,dγ,dv,dy),
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where δ0 denotes a point mass at the origin.

PROOF. The form of the limit in (5.14) follows from an extension of Doney
and Kyprianou’s [10] quintuple law to include creeping, as given in Griffin and
Maller [14]. For γ ≥ 0, t ≥ 0, r ≥ 0, v ≥ 0, y ≥ 0, we have by (3.1), and Theorems
3.1(ii) and 3.2 of [14],

P
(
GW

τ(0)− ∈ dr, τW
0 − GW

τ(0)− ∈ ds,Wτ(0) ∈ dγ,

Wτ(0)− − Wτ(0)− ∈ dv,−Wτ(0)− ∈ dy;W0 ≤ 0
)

= β2

∫
z≥0

αeαz dzP
(
Gτ(z)− ∈ dr, τ (z) − Gτ(z)− ∈ ds,Xτ(z) − z ∈ dγ,

Xτ(z)− − Xτ(z)− ∈ dv, z − Xτ(z)− ∈ dy
)

= β2I (γ > 0)

∫
z≥0

αeαz dzI (y ≤ z)|V (dr, z − dy)|V̂ (ds,dv)(5.15)

× �X(dγ + v + y)

+ β2 dH

∫
z≥0

αeαz dz
∂−
∂−z

V (dt, z)δ0(ds,dγ,dv,dy)

= β2I (γ > 0)

∫
z≥y

αeαz dz|V (dr, z − dy)|V̂ (ds,dv)�X(dγ + v + y)

+ β2 dH

∫
z≥0

αeαzV (dt,dz)δ0(ds,dγ,dv,dy).

Convolving with the exponential distribution of ρ gives (5.14).
For (5.13), using (3.2), (3.3), and independence of W , Z and ρ, we have

P(GZ
ρ− ∈ dt, ρ − GZ

ρ− ∈ ds,W0 ∈ dγ,Zρ− − Zρ− ∈ dφ,Zρ− ∈ dθ;W0 > 0)

= β2αe−αγ dγP (GZ
ρ− ∈ dt, ρ − GZ

ρ− ∈ ds,Zρ− − Zρ− ∈ dφ,Zρ− ∈ dθ)

= β2αe−αγ dγP
(
GZ

(t+s)− ∈ dt,Z(t+s)− ∈ θ − dφ,Z(t+s)− ∈ dθ
)

× β1e
−β1(t+s) ds

= β2αe−α(γ+φ−θ) dγ eβ1(t+s)

× P
(
G(t+s)− ∈ dt,X(t+s)− ∈ θ − dφ,X(t+s)− ∈ dθ

)
β1e

−β1(t+s) ds

= β2αe−α(γ+φ−θ) dγ eβ1(t+s)

× P(Gρ− ∈ dt,Xρ− ∈ dθ, ρ − Gρ− ∈ ds,Xρ− − Xρ− ∈ dφ)

= β2αe−α(γ+φ−θ) dγ eβ1tP (Gρ− ∈ dt,Xρ− ∈ dθ)eβ1s

× P(ρ − Gρ− ∈ ds,Xρ− − Xρ− ∈ dφ)
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by independence of the Wiener–Hopf factors. Further,

eβ1tP (Gρ− ∈ dt,Xρ− ∈ dθ) = κ(β1,0)V (dt,dθ)

and

eβ1sP (ρ − Gρ− ∈ ds,Xρ− − Xρ− ∈ dφ) = κ̂(β1,0)V̂ (ds,dφ)

as can be seen by taking the Laplace transforms and using (2.6) and (5.12). Equa-
tion (5.13) then follows since κ(β1,0)κ̂(β1,0) = β1 by (2.9). �

Theorems 5.1 and 5.2 extend Theorems 10 and 11 in [10]. To see the connection
between (5.14) and Theorem 10 of [10], set

m(dt,dy) =
∫
r≤t

e−β1r dr

∫
z≥y

eαz dz|V (dt − r, z − dy)|,

n(dt,dy) =
∫
r≤t

e−β1r dr

∫
z≥y

eαz dzV (dt − r,dz)δ0(dy).

For any a > 0, b > α,∫
t≥0

∫
y≥0

e−at−bym(dt,dy)

=
∫
t≥0

∫
y≥0

e−at−by
∫
r≤t

e−β1r dr

∫
z≥y

eαz dz|V (dt − r, z − dy)|

=
∫
r≥0

e−β1r dr

∫
z≥0

eαz dz

∫
t≥r

∫
0≤y≤z

e−at−by |V (dt − r, z − dy)|
(5.16)

=
∫
r≥0

e−β1r dr

∫
z≥0

eαz dz

∫
t≥0

∫
0≤y≤z

e−a(t+r)−b(z−y)V (dt,dy)

=
∫
r≥0

e−(β1+a)r dr

∫
y≥0

∫
t≥0

e−at+byV (dt,dy)

∫
z≥y

e−(b−α)z dz

= 1

(β1 + a)κ(a,−α)(b − α)
.

Similarly, ∫
t≥0

∫
y≥0

e−at−byn(dt,dy) = 1

(β1 + a)κ(a,−α)
.(5.17)

Setting a = 0 and inverting shows that∫
t≥0

m(dt,dy) = eαy dy

β1κ(0,−α)
= eαy dy

βq
,

(5.18) ∫
t≥0

n(dt,dy) = δ0(dy)

β1κ(0,−α)
= δ0(dy)

βq
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from (2.12). Thus after integrating out t , (5.14) reduces to

P
(
τW

0 − GW
τ(0)− ∈ ds,Wτ(0) ∈ dγ,Wτ(0)− − Wτ(0)− ∈ dv,

−Wτ(0)− ∈ dy;W0 ≤ 0
)

(5.19)
= I (γ > 0)q−1αeαy dyV̂ (ds,dv)�X(dγ + v + y)

+ q−1α dHδ0(ds,dγ,dv,dy),

for γ ≥ 0, s ≥ 0, v ≥ 0, y ≥ 0. Thus we may conclude that for γ ≥ 0, s ≥ 0, v ≥
y ≥ 0

lim
u→∞P (u)(τ(u) − Gτ(u)− ∈ ds,Xτ(u) − u ∈ dγ,

u − Xτ(u)− ∈ dy,u − Xτ(u)− ∈ dv
)

(5.20)
= I (γ > 0)q−1αeαy dyV̂ (ds,dv − y)�X(dγ + v)

+ q−1α dHδ0(ds,dγ,dv,dy)

in the sense of vague convergence. For γ > 0, this is Doney and Kyprianou’s ex-
pression in Theorem 10 of [10], for the vague limit when X does not creep over
the boundary. The connection between (5.13) and Theorem 11 of [10] is similar
but easier to see. It is worth emphasizing that the convergence in Theorem 5.1 is
stronger than the convergence in (5.20). In particular, convergence of the marginals
does not follow from the vague convergence of (5.20); indeed, it need not be the
case but it does follow from the weak convergence in Theorem 5.1. For example,
marginal convergence of the overshoot in (5.20) would imply

lim
u→∞P (u)(Xτ(u) − u ∈ dγ

)
= I (γ > 0)q−1αeαy dy

∫
y≥0

∫
v≥y

∫
s≥0

V̂ (ds,dv − y)�X(dγ + v)

+ q−1α dHδ0(dγ )

= q−1α

[
dHδ0(dγ ) +

∫
y≥0

eαy�H(dγ + y)dy

]
by Vigon’s equation amicale inversée; see (6.7) below. However, by Theorem 5.1,
in which marginal convergence does hold, we find that

lim
u→∞P (u)(Xτ(u) − u ∈ dγ

)
= P

(
W0I (W0 > 0) + Wτ(0)I (W0 ≤ 0) ∈ dγ

)
= β2αe−αγ dγ + q−1α

[
dHδ0(dγ ) +

∫
y≥0

eαy�H(dγ + y)dy

]
as discussed in Section 7. We will make frequent use of marginal convergence in
Theorem 5.1 in the subsequent sections.
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6. The ruin time. By taking f constant in the spatial variables in Theo-
rem 5.1, we obtain marginal convergence in the time variables. We begin with
the limiting distribution of the ruin time.

PROOF OF THEOREM 3.2. Let f : R → R be bounded and continuous. Then
by (5.8) [or (5.9)] with θ = 0

lim
u→∞E(u)f (τ (u)) = E[f (ρ);W0 > 0] + E

[
f

(
ρ + τW (0)

);W0 ≤ 0
]

= Ef
(
ρ + τW (0)

)
,

which proves the first equality in (3.9). Since ρ + τW (0) has a continuous distri-
bution

P
(
ρ + τW (0) ≤ t

) =
∫
s≤t

β1e
−β1s dsβ2

∫
z
αe−αz dzPz

(
τ(0) < t − s

)

=
∫
s≤t

β1e
−β1s dsβ2

[
1 +

∫
z>0

αeαz dzP (Xt−s > z)

]
(6.1)

= β2

∫
s≤t

β1e
−β1sEeαXt−s ds

= β2E(eαXt−ρ ;ρ ≤ t)

and the proof is complete. �

Our derivation of the limiting distribution of the ruin time is based on splitting
the distribution at the time of the large jump. One of the points of distinction be-
tween the path decomposition approach to studying ruin and that of [10], is that
in [10] the split is at Gτ(u)−, the time of the last maximum prior to passage over
the boundary. This is a very natural approach given the fluctuation theory as devel-
oped in [3], Chapter VI, for example. We now show how the path decomposition
approach can be used to easily derive the joint limiting distribution of the fluc-
tuation variables (Gτ(u)−, τ (u) − Gτ(u)−) under P (u), thus extending the results
in [10].

Introduce the measures on [0,∞) given by

δV
α (dt) =

∫
θ≥0

eαθV (dt,dθ),

δV̂−α(ds) =
∫
φ≥0

e−αφV̂ (ds,dφ),

(6.2)
K(ds) =

∫
z≥0

(eαz − 1)�L−1,H (ds,dz)

=
∫
z≥0

αeαz dz�L−1,H (ds, z)
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and their respective (improper) distribution functions δV
α (t), δV̂−α(s) and K(s),

where

�L−1,H (ds, z) =
∫
y>z

�L−1,H (ds,dy).

THEOREM 6.1. Assume (1.12). Then for all s, t,≥ 0, we have

lim
u→∞P (u)(Gτ(u)− ∈ dt, τ (u) − Gτ(u)− ∈ ds

)
= β

[
δV
α (dt)δV̂−α(ds)(6.3)

+ (
K(ds) + α dHδ0(ds)

) ∫
0≤r≤t

e−β1rδV
α (dt − r)dr

]

in the sense of weak convergence of probability measures on [0,∞)2.

PROOF. From Theorem 5.1 we have

lim
u→∞P (u)(Gτ(u)− ∈ dt, τ (u) − Gτ(u)− ∈ ds

)
= P(GZ

ρ− ∈ dt, ρ − GZ
ρ− ∈ ds;W0 > 0)(6.4)

+ P
(
ρ + GW

τ(0)− ∈ dt, τW
0 − GW

τ(0)− ∈ ds;W0 ≤ 0
)
.

Integrating out γ, θ and φ in (5.13) gives

P(GZ
ρ− ∈ dt, ρ − GZ

ρ− ∈ ds;W0 > 0)

= β

∫
γ>0

∫
θ≥0

∫
φ≥0

αe−α(γ+φ−θ)V (dt,dθ)V̂ (ds,dφ)dγ(6.5)

= βδV
α (dt)δV̂−α(ds).

Integrating out γ, y and v in the first term of (5.14) gives

P
(
ρ + GW

τ(0)− ∈ dt, τW
0 − GW

τ(0)− ∈ ds,Wτ(0) > 0;W0 ≤ 0
)

= β

∫
γ>0

∫
y≥0

∫
v≥0

∫
r≤t

e−β1r dr

∫
z≥y

αeαz dz|V (dt − r, z − dy)|(6.6)

× V̂ (ds,dv)�X(dγ + v + y).

By Doney and Kyprianou’s extension of Vigon’s équation amicale inversée, it fol-
lows that

�L−1,H (ds, y) =
∫
v≥0

V̂ (ds,dv)�
+
X(v + y), s ≥ 0, y ≥ 0.(6.7)
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Thus continuing the equalities in (6.6)

= β

∫
y≥0

∫
r≤t

e−β1r dr

∫
z≥y

αeαz dz|V (dt − r, z − dy)|�L−1,H (ds, y)

= β

∫
z≥0

αeαz dz

∫
r≤t

e−β1r dr

∫
y≤z

|V (dt − r, z − dy)|�L−1,H (ds, y)

= β

∫
z≥0

αeαz dz

∫
r≤t

e−β1r dr

∫
y≤z

V (dt − r,dy)�L−1,H (ds, z − y)(6.8)

= β

∫
y≥0

∫
r≤t

e−β1r drV (dt − r,dy)

∫
z≥y

αeαz dz�L−1,H (ds, z − y)

= β

∫
y≥0

eαy
∫
r≤t

e−β1r drV (dt − r,dy)

∫
z≥0

αeαz dz�L−1,H (ds, z)

= βK(ds)

∫
0≤r≤t

e−β1rδV
α (dt − r)dr.

Integrating out γ, y and v in the second term of (5.14) gives

P
(
ρ + GW

τ(0)− ∈ dt, τW
0 − GW

τ(0)− ∈ ds,Wτ(0) = 0;W0 ≤ 0
)

= β dH

∫
r≤t

e−β1r dr

∫
z≥0

αeαzV (dt − r,dz)δ0(ds)(6.9)

= βα dHδ0(ds)

∫ t

0
e−β1rδV

α (dt − r)dr.

Adding the three terms in (6.5), (6.8) and (6.9) gives (6.3). �

7. Overshoots and undershoots. By taking f constant in the time variables
we obtain joint convergence of overshoots and undershoots.

THEOREM 7.1. Assume (1.12). Let f : R2 ⊗ (R ∪ {∞}) → R be bounded and
jointly continuous. Then for 0 ≤ θ < α

lim
u→∞E(u)f

(
Xτ(u) − u,Xτ(u)− − Xτ(u)−,Xτ(u)−

)
e−θXτ(u)−I (Xτ(u)−≤0)

= E
[
f (W0,Zρ− − Zρ−,Zρ−)e−θZρ−I (Zρ−≤0);W0 > 0

]
(7.1)

+ E
[
f

(
Wτ(0),Wτ(0)− − Wτ(0)−,∞);W0 ≤ 0

]
and

lim
u→∞E(u)f

(
Xτ(u) − u,Xτ(u)− − Xτ(u)−, u − Xτ(u)−

)
e−θXτ(u)−I (Xτ(u)−≤0)

= E
[
f (W0,Zρ− − Zρ−,∞)e−θZρ−I (Zρ−≤0);W0 > 0

]
(7.2)

+ E
[
f

(
Wτ(0),Wτ(0)− − Wτ(0)−,−Wτ(0)−

);W0 ≤ 0
]
.
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For γ > 0, θ ≥ 0, φ ≥ 0

P(W0 ∈ dγ,Zρ− − Zρ− ∈ dφ,Zρ− ∈ dθ;W0 > 0)
(7.3)

= βαe−α(γ+φ−θ)V (dθ)V̂ (dφ)dγ.

For γ ≥ 0, v ≥ 0, y ≥ 0

P
(
Wτ(0) ∈ dγ,Wτ(0)− − Wτ(0)− ∈ dv,−Wτ(0)− ∈ dy;W0 ≤ 0

)
= I (γ > 0)q−1αeαy dyV̂ (dv)�X(dγ + v + y)(7.4)

+ q−1α dHδ0(dγ,dv,dy).

PROOF. The result follows immediately from (5.8), (5.9), (5.13) and (5.19).
�

Theorem 7.1 contains all results we know of in the literature on convergence
of individual overshoots and undershoots, under a convolution equivalent assump-
tion. The only marginal limiting distribution in Theorem 7.1 which is proper is that
of the overshoot, and this is given by W0I (W0 > 0) + Wτ(0)I (W0 ≤ 0). An easy
calculation from (7.3) and (7.4), using (6.7), gives the following.

Overshoot. Assume (1.12). Then for γ ≥ 0

P (u)(Xτ(u) − u ∈ dγ
)

→ β2αe−αγ dγ(7.5)

+ q−1α

[
dHδ0(dγ ) +

∫
y≥0

eαy�H(dγ + y)dy

]
.

Observe that the limiting distribution has mass α dHq−1 at the origin, and for x > 0

P (u)(Xτ(u) − u > x
) → β2e

−αx + q−1e−αx
∫
y>x

(eαy − eαx)�H(dy).(7.6)

This is the form of the limiting distribution given in [16] and [10]. In [10], it
is indicated that the limiting distribution on (0,∞) arises as a consequence of
either an arbitrarily large jump from a finite position after a finite time, or a finite
jump from a finite distance relative to the boundary after an arbitrarily large time.
This is not quite correct. From the path decomposition, the latter component of the
limiting distribution arises as a consequence of a large jump from a finite position
to within a finite distance of the boundary after a finite time, followed by a finite
jump a finite time later. The atom at 0 in the limiting distribution is a consequence
of creeping across the boundary when the large jump undershoots the boundary.

The other marginal limits in Theorem 7.1 are improper, thus in each instance
below, convergence is in the vague sense with remaining mass escaping to +∞.
We leave the calculations to the reader.
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Undershoots. Assume (1.12). Then for x ≥ 0

P (u)(u − Xτ(u)− ∈ dx
)

(7.7)
→ q−1α dHδ0(dx) + q−1αeαx�X(x)dx

∫
0≤v≤x

e−αvV̂ (dv),

while for y ≥ 0

P (u)(u − Xτ(u)− ∈ dy
) → q−1α dHδ0(dy) + q−1αeαy�H(y)dy.(7.8)

REMARK 7.1. An alternative formulation of (7.7) appears in Theorem 3.2
of [20]. Statement (7.8) corrects an oversight in Theorem 3.3 of [20]. The first term
in (7.8), representing possible mass at 0 if creeping over the boundary occurs, was
omitted.

Positions prior to overshoot. Assume (1.12). Then for ζ ∈ (−∞,∞)

P (u)(Xτ(u)− ∈ dζ
) → βeαζVX(dζ ),(7.9)

where VX is the potential measure of X, while for θ ≥ 0

P (u)(Xτ(u)− ∈ dθ
) → qβ2

2eαθV (dθ).

8. Laplace transforms and penalty functions. Expected discounted penalty
functions (EDPFs) were introduced into risk theory by Gerber and Shiu [13]. As
an example, consider

E(u)e−νGτ(u)−−ζ(τu−Gτ(u)−)−η(Xτu−u)−λ(u−Xτu−),(8.1)

where ν ≥ 0, ζ ≥ 0, η > −α, λ ≥ 0. In this case, penalization is more severe when
the shortfall at ruin is greater (if η < 0), but this is moderated by a later occurrence
of ruin or by a larger minimum surplus prior to ruin. Among other things, EDPFs
provide a natural approach to studying solvency requirements, and more generally,
to valuing cash-flows related to first passage over a barrier; see, for example, the
discussion in Biffis and Morales [5]. In this section we use our previous results
to calculate the limit, as u → ∞, of (8.1) and other related EDPFs and Laplace
transforms.

If η ≥ 0, then the limit in (8.1) can be found by using Theorem 5.1. To include
the case −α < η < 0, it will suffice, by uniform integrability, to show that

lim sup
u→∞

E(u)e−η(Xτ(u)−u) < ∞, η > −α.(8.2)

A stronger version of (8.2) is in Park and Maller [20]. Since our weaker version
is easy to prove, we give a direct proof that does not involve delicate estimation
of convolution equivalent integrals as in [20]. Combined with convergence of the
overshoot, this weaker result is in fact equivalent to Park and Maller’s a priori
stronger result on convergence of the mgf of the overshoot.
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LEMMA 8.1. Let F and G be distribution functions with F(0−) = G(0−) =
0, F ∈ S (α) and

lim sup
u→∞

G(u)

F (u)
< ∞.(8.3)

Then

lim sup
u→∞

∫
F(u − y)

F (u)
G(dy) < ∞.(8.4)

PROOF. Statement (8.3) implies supu G(u)/F (u) ≤ C for some C < ∞, so
the lemma follows easily from (1.11) since∫

F(u − y)G(dy) =
∫

G(u − y)F (dy)

≤ C

∫
F(u − y)F (dy)

= CF ∗2(u). �

In the following lemma, C denotes an unimportant constant which may change
in value from one usage to the next.

LEMMA 8.2. For any η > −α,

lim sup
u→∞

E(u)e−η(Xτ(u)−u) < ∞.(8.5)

PROOF. Let T (u) = inf{t :Ht > u}. Then τ(u) = L−1
T (u) and Xτ(u) = HT (u).

Hence, applying the killed version of Proposition III.2 of [3] (see [17], Theo-
rem 5.6), for x ≥ 0

P (u)(Xτ(u) − u > x
) = P(HT (u) − u > x,T (u) < ∞)

P (τ(u) < ∞)
(8.6)

= �H(u)

P (τ(u) < ∞)

∫
0≤y≤u

�H(u − y + x)

�H(u)
V (dy).

Fix ε > 0 so that α − ε + η > 0. Applying (4.10),∫
0≤y≤u−1

�H(u − y + x)

�H(u)
V (dy)

≤ Ae−(α−ε)x
∫

0≤y≤u−1

�H(u − y)

�H(u)
V (dy)(8.7)

≤ ACe−(α−ε)x,
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if u ≥ 2, since by (2.15), (2.17) and (2.18), Lemma 8.1 may be applied to the
distributions F(dy) = I (y > 1)�H(dy)/�H(1) and G(dy) = V (dy)/V (∞). On
the other hand,

∫
u−1≤y≤u

�H(u − y + x)

�H(u)
V (dy) ≤ �H(x)

V (u − 1)

�H(u)
≤ Ce−αx(8.8)

as �H ∈ S (α). Since the ratio in front of the integral in (8.6) is bounded by (2.15)–
(2.17), the result follows from (8.7) and (8.8). �

As preparation for calculating the limit of (8.1) we need the following proposi-
tion.

PROPOSITION 8.1. Let ν ≥ 0, ζ ≥ 0, η > −α, λ ≥ 0. Then

E
[
e−νGZ

ρ−−ζ(ρ−GZ
ρ−)−ηW0−λZρ−;W0 > 0

]
(8.9)

= βακ(ζ,−α)

(α + η)(ζ + β1)κ(ν, λ − α)
.

If, in addition, λ �= α + η, then

E
[
e
−ν(ρ+GW

τ(0)−)−ζ(τW
0 −GW

τ(0)−)−ηWτ(0)+λWτ(0)−;W0 ≤ 0
]

(8.10)

= βα[κ(ζ, λ − α) − κ(ζ, η)]
(β1 + ν)(λ − α − η)κ(ν,−α)

.

PROOF. Fix ν ≥ 0, ζ ≥ 0, η > −α, λ ≥ 0. Then by (5.13)

E
[
e−νGZ

ρ−−ζ(ρ−GZ
ρ−)−ηW0−λZρ−;W0 > 0

]
= βα

∫
t≥0

∫
s≥0

∫
γ>0

∫
θ≥0

∫
φ≥0

e−νt−ζ s−ηγ−λθe−α(γ+φ−θ)

× V (dt,dθ)V̂ (ds,dφ)dγ

= βα

∫
γ>0

e−(α+η)γ dγ

∫
t≥0

∫
θ≥0

e−νt−(λ−α)θV (dt,dθ)

×
∫
s≥0

∫
φ≥0

e−ζ s−αφV̂ (ds,dφ)

= βα

(α + η)κ(ν, λ − α)κ̂(ζ,α)
,

since κ(ν,λ − α) > 0 by (2.10) and κ̂(ζ, α) > 0 trivially. Thus (8.9) follows from
(2.11) and (2.12).
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Now assume λ �= α + η, then by (3.1)

E
[
e
−ν(ρ+GW

τ(0)−)−ζ(τW
0 −GW

τ(0)−)−ηWτ(0)+λWτ(0)−;W0 ≤ 0
]

= β2α

∫
z≤0

e−αz dzEz

[
e−ν(ρ+Gτ(0)−)−ζ(τ (0)−Gτ(0)−)−ηXτ(0)+λXτ(0)−;

τ(0) < ∞]
= βα

β1 + ν

∫
z>0

eαz dzE
[
e−νGτ(z)−−ζ(τ (z)−Gτ(z)−)−η(Xτ(z)−z)−λ(z−Xτ(z)−);

τ(z) < ∞]
= βα[κ(ζ, λ − α) − κ(ζ, η)]

(β1 + ν)(λ − α − η)κ(ν,−α)

by the extension of the second factorization identity in Theorem 3.5 of [14]. �

We are now ready to calculate the limit of (8.1) and a related penalty function.

THEOREM 8.1. Fix ν ≥ 0, ζ ≥ 0, η > −α, λ > 0. Then

lim
u→∞E(u)e−νGτ(u)−−ζ(τu−Gτ(u)−)−η(Xτ(u)−u)−λXτ(u)−

(8.11)

= βακ(ζ,−α)

(α + η)(ζ + β1)κ(ν, λ − α)
.

If, in addition, λ �= α + η, then

lim
u→∞E(u)e−νGτ(u)−−ζ(τ (u)−Gτ(u)−)−η(Xτ(u)−u)−λ(u−Xτ(u)−)

(8.12)

= βα[κ(ζ, λ − α) − κ(ζ, η)]
(β1 + ν)(λ − α − η)κ(ν,−α)

.

PROOF. Since (8.11) and (8.12) follow in a similar manner from (8.9) and
(8.10), respectively, we only prove (8.11). Let

g(t, s, γ, y) = e−νt−ζ s−ηγ−λy.

By (5.10), (8.5) and uniform integrability

lim
u→∞E(u)g

(
Gτ(u)−, τ (u) − Gτ(u)−,Xτ(u) − u,Xτ(u)−

)
= E[g(GZ

ρ−, ρ − GZ
ρ−,W0,Zρ−);W0 > 0]

+ E
[
g
(
ρ + GW

τ(0)−, τW
0 − GW

τ(0)−,Wτ(0),∞);W0 ≤ 0
]

= E
[
e−νGZ

ρ−−ζ(ρ−GZ
ρ−)−ηW0+λZρ−;W0 > 0

]
,

since λ > 0. Thus (8.11) follows from (8.9). �
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Setting η = ν = ζ = 0 in (8.11) gives

lim
u→∞ e−λuE(u)eλ(u−Xτ(u)−) = lim

u→∞E(u)e−λXτ(u)−

(8.13)

= β2κ(0,−α)

κ(0, λ − α)
.

This gives a transparent explanation of the mgf result in Theorem 3.3 of [20], and
extends it to all λ > 0. Note that letting λ ↓ 0 in the final expression of (8.13),
reflects that in the limit, Xτ(u)− has mass 1 − β2 at infinity under P (u). Similarly
setting η = ν = ζ = 0 in (8.12) gives the growth in the mgf of Xτ(u)− as measured
from the origin; for every λ > 0

lim
u→∞ e−λuE(u)eλXτ(u)− = β2α[κ(0, λ − α) − q]

(λ − α)κ(0,−α)
(8.14)

= α[κ(0, λ − α) − q]
(λ − α)q

.

In this case, letting λ ↓ 0 reflects that in the limit, u−Xτ(u)− has mass β2 at infinity
under P (u).

Observe that (8.11) and (8.12) are both false when λ = 0, as can be seen from
(8.13) and (8.14). In this case, the limit is obtained by adding the corresponding
expressions in (8.9) and (8.10).

THEOREM 8.2. Fix ν ≥ 0, ζ ≥ 0, η > −α, then

lim
u→∞E(u)e−νGτ(u)−−ζ(τ (u)−Gτ(u)−)−η(Xτ(u)−u)

(8.15)

= βα

(α + η)κ(ν,−α)

[
κ(ζ,−α)

β1 + ζ
+ κ(ζ, η) − κ(ζ,−α)

β1 + ν

]
.

PROOF. By Theorem 5.1 and (8.5),

lim
u→∞E(u)e−νGτ(u)−−ζ(τ (u)−Gτ(u)−)−η(Xτ(u)−u)

= E
[
e−νGZ

ρ−−ζ(ρ−GZ
ρ−)−ηW0;W0 > 0

]
+ E

[
e
−ν(ρ+GW

τ(0)−)−ζ(τW
0 −GW

τ(0)−)−ηWτ(0);W0 ≤ 0
]
.

The result now follows by setting λ = 0 in (8.9) and (8.10) and adding. �

As a special case of (8.15), with ν = ζ , we obtain the limit of the joint transform
of the overshoot and ruin time,

lim
u→∞E(u)e−ζ τ(u)−η(Xτ(u)−u) = βακ(ζ, η)

(α + η)(β1 + ζ )κ(ζ,−α)
.(8.16)
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Setting ζ = 0 in (8.16) evaluates the limit in (8.2). With η = 0, (8.16) reflects the
description of the limiting distribution in Theorem 3.2.

We now briefly describe an application of the EDPF in (8.16) when η > 0. Fix
ζ ≥ 0 and choose η = η(ζ ) so that e−ζ t−ηXt is a martingale. In actuarial terms,
η is a solution to Lundberg’s fundamental equation (see, e.g., Gerber-Shiu [13],
page 51). To see that such an η exists and is unique in our setup, first observe that
by (2.9), this is equivalent to

κ(ζ, η)κ̂(ζ,−η) = 0.(8.17)

Now for ζ ≥ 0,

e−κ(ζ,η) = e−qEe−ζ L−1
1 −ηH1 ≤ e−qEe−ηH1 =

{
< 1, η ≥ −α,
= ∞, η < −α,

by Proposition 5.1 of [16]. Thus in order that (8.17) holds, it must be that
κ̂(ζ,−η) = 0. Since κ̂(ζ,0) ≥ 0 and κ̂(ζ,−η) ↓ −∞ as η ↑ ∞, this equation has
a unique solution η ≥ 0. Then by (8.16), if ζ > 0 and η = η(ζ ),

E(u) e
−ζ τ(u)(1 − e−η(Xτ(u)−u))

ζ
→ βα

ζ(β1 + ζ )κ(ζ,−α)

(
κ(ζ,0)

α
− κ(ζ, η)

α + η

)
.

In the spectrally positive case, Gerber and Shiu [13] interpret this in terms of the
expected present value of a deferred continuous annuity at a rate of 1 per unit time,
starting at the time of ruin and ending as soon as the shortfall returns to zero.

The standard form of the EDPFs introduced by Gerber and Shiu is

E(u)[e−ζ τ(u)g
(
Xτ(u) − u,u − Xτ(u)−

)]
(8.18)

for suitably chosen functions g. We have chosen to formulate the results in this
section in terms of exponential penalty functions using the undershoot of the max-
imum u − Xτ(u)− instead of u − Xτ(u)−. It is clear that more general penalty
functions could have been used, and the resulting limits could then be found using
Theorems 5.1 and 5.2. For the Gerber and Shiu penalty function in (8.18), under
the appropriate conditions on g so that Theorem 5.1 applies, we have

lim
u→∞E(u)[e−ζ τ(u)g

(
Xτ(u) − u,u − Xτ(u)−

)]
= E[e−ζρg(W0,∞);W0 > 0](8.19)

+ E
[
e−ζ(ρ+τW

0 )g
(
Wτ(0),−Wτ(0)−

);W0 ≤ 0
]
.

A natural example would be

lim
u→∞E(u)e−ζ τ(u)−η(Xτ(u)−u)−λ(u−Xτ(u)−)

(8.20)
= Ee−ζρE

[
e−ζ τW

0 −ηWτ(0)+λWτ(0)−;W0 ≤ 0
]

for ζ ≥ 0, η > −α and λ > 0. The limit can then be calculated using Theorem 5.2,
although the resulting expression obtained is not as simple as those obtained in
Theorem 8.1. Quite different behavior occurs if λ < 0 in (8.20).
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PROPOSITION 8.2. Let ν ≥ 0, ζ ≥ 0, η > −α, 0 < θ < α and assume that
θ − η < α. Then

lim
u→∞E(u)e−νGτ(u)−−ζ(τ (u)−Gτ(u)−)−η(Xτ(u)−u)−θXτ(u)−

(8.21)

= βα

(α + η)κ(ν, θ − α)κ̂(ζ, α − θ)
.

PROOF. With η and θ as above, we first observe that

lim sup
u→∞

E(u)e−η(Xτ(u)−u)−θXτ(u)−I (Xτ(u)−≤0) < ∞.(8.22)

This follows immediately from (4.28) if η ≥ 0; consequently we may assume
−α < η < 0. By separately considering the cases Xτ(u) − u > |Xτ(u)−| and
Xτ(u) − u ≤ |Xτ(u)−|, one finds

e−η(Xτ(u)−u)−θXτ(u)−I (Xτ(u)−≤0) ≤ e(θ−η)(Xτ(u)−u) + e−(θ−η)Xτ(u)−I (Xτ(u)−≤0),

and so (8.22) again follows from (4.28) and (8.5), since θ − η < α. Hence,
e−η(Xτ(u)−u)−θXτ(u)− is uniformly integrable if η > −α, 0 < θ < α and θ − η < α.
Thus by Theorems 5.1 and 5.2

lim
u→∞E(u)e−νGτ(u)−−ζ(τ (u)−Gτ(u)−)−η(Xτ(u)−u)−θXτ(u)−

= E
[
e−νGZ

ρ−−ζ(ρ−GZ
ρ−)−ηW0−θZρ−;W0 > 0

]
= βα

∫
t≥0

∫
s≥0

∫
γ>0

∫
φ≥0

∫
ξ≥−φ

e−νt−ζ s−ηγ−θξ

× e−α(γ−ξ)V (dt, φ + dξ)V̂ (ds,dφ)dγ

= βα

α + η

∫
t≥0

∫
ξ≥0

e−νt+(α−θ)ξV (dt,dξ)

×
∫
s≥0

∫
φ≥0

e−ζ s−(α−θ)φV (dt,dθ)V̂ (ds,dφ),

which gives (8.21). �

Setting ν = ζ , using (2.11) and rewriting (8.21) in terms of the undershoot gives

lim
u→∞ e−θuE(u)e−ζ τ(u)−η(Xτ(u)−u)+θ(u−Xτ(u)−)

(8.23)

= βα

(α + η)(ζ − �(i(θ − α)))
.

The special case of (8.23) with ζ = η = 0 is given in Theorem 3.2 of [20]. Results
related to (8.23) for the case of a Cramér–Lundberg model with bounded claims
density can be found in Corollary 3.2 of Tang and Wei [21]. When θ = 0, (8.21)
fails just as (8.11) fails when λ = 0. Observe though that letting θ ↓ 0 on the RHS
of (8.21) and λ ↓ 0 on the RHS of (8.11) results in the same limit, as one would
expect.
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