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THE RATE OF THE CONVERGENCE OF THE MEAN SCORE IN
RANDOM SEQUENCE COMPARISON

BY JÜRI LEMBER1, HEINRICH MATZINGER2 AND FELIPE TORRES2

Tartu University, Georgia Tech and Bielefeld University

We consider a general class of superadditive scores measuring the simi-
larity of two independent sequences of n i.i.d. letters from a finite alphabet.
Our object of interest is the mean score by letter ln. By subadditivity ln is
nondecreasing and converges to a limit l. We give a simple method of bound-
ing the difference l − ln and obtaining the rate of convergence. Our result
generalizes the previous result of Alexander [Ann. Appl. Probab. 4 (1994)
1074–1082], where only the special case of the longest common subsequence
was considered.

1. Introduction. Throughout this paper X1,X2, . . . and Y1, Y2, . . . are two in-
dependent sequences of i.i.d. random variables drawn from a finite alphabet A and
having the same distribution. Since we mostly study the finite strings of length n,
let X = (X1,X2, . . . ,Xn) and let Y = (Y1, Y2, . . . , Yn) be the corresponding n-
dimensional random vectors. We shall usually refer to X and Y as random se-
quences.

The problem of measuring the similarity of X and Y is central in many areas of
applications including computational molecular biology [8, 13, 22–24] and com-
putational linguistics [17, 19, 20, 26]. In this paper, we consider a general scoring
scheme, where S : A × A → R

+ is a pairwise scoring function that assigns a score
to each couple of letters from A. We assume S to be symmetric and we denote by
F and A the largest possible score and the largest possible change of score by one
variable, respectively. Formally (recall that S is symmetric)

F := max
a,b∈A

S(a, b), A := max
a,b,c∈A

|S(a, b) − S(a, c)|.

An alignment is a pair (π,μ) where π = (π1, π2, . . . , πk) and μ = (μ1,μ2, . . . ,

μk) are two increasing sequences of natural numbers, that is, 1 ≤ π1 < π2 < · · · <
πk ≤ n and 1 ≤ μ1 < μ2 < · · · < μk ≤ n. The integer k is the number of aligned
letters and n− k is the number of gaps in the alignment. Note that our definition of
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gap slightly differs from the one that is commonly used in the sequence alignment
literature, where a gap consists of maximal number of consecutive indels (inser-
tion and deletion) in one side. Our gap actually corresponds to a pair of indels, one
in X-side and another in Y -side. Since we consider the sequences of equal length,
to every indel in X-side corresponds an indel in Y -side, so considering them pair-
wise is justified. In other words, the number of gaps in our sense is the number of
indels in one sequence. We also consider a gap price δ. Given the pairwise scoring
function S and the gap price δ, the score of the alignment (π,μ) when aligning X

and Y is defined by

U(π,μ)(X,Y ) :=
k∑

i=1

S(Xπi
, Yμi

) + δ(n − k).

In our general scoring scheme δ can also be positive, although usually δ ≤ 0 penal-
izing the mismatch (in this case −δ is usually called the gap penalty). We naturally
assume δ ≤ F .

The (optimal) score of X and Y is defined to be best score over all possible
alignments, that is,

Ln := L(X;Y) := max
(π,μ)

U(π,μ)(X,Y ).

The alignments achieving the maximum are called optimal. Such a similarity cri-
terion is most commonly used in sequence comparison [3, 13, 23–25]. When
S(a, b) = 1 for a = b and S(a, b) = 0 for a �= b, then for δ = 0 the optimal score
is equal to the length of the longest common subsequence (LCS) of X and Y .

It is well known that the sequence ELn, n = 1,2, . . . , is superadditive, that
is, ELn+m ≥ ELn + ELm for all n,m ≥ 1. Hence, by Fekete’s lemma the ratios
ln := ELn

n
are nondecreasing and converge to the limit

l := lim
n

ln = sup
n

ln.

In fact, from Kingman’s subadditive ergodic theorem, it follows that l is also the
a.s. limit of Ln

n
. The limit l (which for the LCS-case is called Chvatal–Sankoff con-

stant) is not known exactly even for the simplest scoring scheme and the simplest
model for X and Y , so it is usually estimated by simulations. Using McDiarmid’s
inequality [see (3.6)] one can estimate ln with prescribed accuracy; to obtain con-
fidence intervals for l, the difference l − ln should be estimated. This is the aim of
the present paper.

To our best knowledge, the difference l − ln has been theoretically studied only
by Alexander [1], though there exist many numeric results on the value of ln or its
distribution in various contexts [4, 6, 7, 10, 11, 14–16, 21]. Alexander proved that
in the case of the LCS, for any C > (2 + √

2) there exists an integer no(C) such
that

l − ln ≤ C

√
logn

n
provided n > no(C).(1.1)



1048 J. LEMBER, H. MATZINGER AND F. TORRES

The bound (1.1) is independent of the common law of X and Y , and the inte-
ger no(C) can be exactly determined. Hence, the bound (1.1) can be used for the
calculation of explicit confidence intervals.

Our main result is the following:

THEOREM 1.1. Let n ∈ N be even. Then

l − ln ≤ A

√
2

n − 1

(
n + 1

n − 1
+ ln(n − 1)

)
+ F

n − 1
.(1.2)

Note that by the monotonicity of ln, the assumption on n even actually is not
restrictive. In fact, Alexander’s main result ([1], Proposition 2.4) is also proven for
n even. Theorem 1.1 and its proof generalize Alexander’s result in many ways:

(1) Theorem 1.1 applies for a general scoring scheme, not just for the LCS.
This is due to the fact that our proof is based solely on McDiarmid’s large de-
viation equality, while Alexander’s proof, although using also McDiarmid’s in-
equality, is mainly based on first passage percolation techniques. Despite the fact
that the percolation approach applies in many other situations rather than sequence
comparison (see [2]), it is not clear whether it can be efficiently applied to our gen-
eral scoring scheme. For McDiarmid’s inequality, however, it makes no difference
what kind of scoring is used. This gives us reasons to believe that our proof is
somehow “easier” than the one in [1].

(2) The proof of Theorem 1.1 relates the rate of the convergence of ln to the
cardinality of the set of partitions Bk,n (see Lemma 3.1) so that finding the good
rate boils down to the good estimation of |Bk,n|. The bound (1.2) corresponds to a
particular estimate of |Bk,n|; any better estimate would give a sharper bound and,
probably, also a faster rate. In a sense, the cardinality |Bk,n| could be interpreted
as the complexity of the model and the relation between the rate of convergence
and the complexity of the model is a well-known fact in statistics (see, e.g., [5]).

(3) When applied to the LCS, our bound (1.2) is sharper than (1.1). Indeed,
for the case of LCS the constants A and F in (1.2) can be taken equal to one and
the smaller constants make the difference. In other words, for the case of LCS

both results yield the rate C
√

lnn
n

, but the constant C is different (C > 3.42 in

Alexander’s result and
√

2 in ours).

For simplicity in the writing that follows, let us define

QF : {1,2,3, . . .} × R
+ → R

+,
(1.3)

QF (n,A) := A

√
2

n − 1

(
n + 1

n − 1
+ ln(n − 1)

)
+ F

n − 1
.
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2. Confidence bounds for l. Suppose that k samples of Xi = Xi
1, . . . ,X

i
n and

Y i = Y i
1, . . . , Y i

n, i = 1, . . . , k, are generated. Let Li
n be the score of the ith sample.

Thus ELi
n = nln. By McDiarmid’s inequality [see (3.5) below], for every ρ > 0

P

(
1

kn

k∑
i=1

Li
n − ln < −ρ

)
= P

(
k∑

i=1

Li
n − knln < −knρ

)

(2.1)

≤ exp
[
−ρ2kn

A2

]
.

Let

L̄n := 1

kn

k∑
i=1

Li
n.

If n is even, by (1.2) and (1.3) we have that l ≤ ln + QF (n,A) and then

P
(
L̄n + ρ + QF (n,A) ≥ l

) ≥ P(L̄n + ρ ≥ ln) = P(L̄n − ln ≥ −ρ)
(2.2)

≥ 1 − exp
[
−ρ2kn

A2

]
.

Now, given ε > 0, choose ρ = ρ(n, ε) so that the right-hand side in the last in-
equality is equal to 1 − ε,

ρ(n, ε) = A

√
ln(1/ε)

kn
.

So, with probability 1 − ε, we obtain one-sided confidence interval as

l ≤ L̄n + QF (n,A) + A

√
ln(1/ε)

kn
.(2.3)

The two-sided confidence bounds are, with probability 1 − ε,

L̄n − A

√
ln(2/ε)

kn
≤ l ≤ L̄n + QF (n,A) + A

√
ln(2/ε)

kn
.(2.4)

The bounds in (2.4) suggest using the estimate

l̂n := L̄n + QF (n,A)

2

so that the confidence bounds for this estimate are

P

(
|l̂n − l| ≤ A

√
ln(2/ε)

kn
+ QF (n,A)

2

)
≥ 1 − ε.(2.5)
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Alexander [1] obtained, for n = 100,000, k = 2 and A = F = 1 (for the LCS case),
the following bounds:

P(|l̂n − l| ≤ 0.0264) ≥ 0.95.(2.6)

By using (2.5) and (1.3) we obtain, for n = 100,000, k = 2 and A = F = 1 (for the
LCS case), the following bounds:

P(|l̂n − l| ≤ 0.0122) ≥ 0.95.(2.7)

It is clear that (2.7) is sharper than (2.6). To the best of our knowledge, the best
previous confidence intervals for l, in the LCS context for A = {0,1}, were due
to Dancik [9], Dancik and Paterson [10, 21] given by [0.773911,0.837623] and
Lueker [18] given by [0.788071,0.826280].

REMARK 2.1. Inequality (2.3) confirms the well-known fact that it is better to
generate one sample of length kn rather than k samples of length n. Indeed, with
one sample of length kn, inequality (2.3) becomes

l ≤ L̄n + QF (kn,A) + A

√
ln(1/ε)

kn
(2.8)

and since QF (kn,A) < QF (n,A), the bounds get narrower.

3. Proof of the main result.

3.1. The set of partitions Bk,n. In this section, we shall consider the sequences
X and Y with length kn where k,n are nonnegative integers. Let (π,μ) be an
arbitrary alignment of X and Y . Let ν = (ν1, . . . , νr+1) and τ = (τ1, . . . , τr+1) be
vectors satisfying

1 = ν1 ≤ ν2 ≤ · · · ≤ νr ≤ νr+1 = kn + 1,
(3.1)

1 = τ1 ≤ τ2 ≤ · · · ≤ τr ≤ τr+1 = kn + 1.

We say that the pair (ν, τ ) forms an r-partition of the alignment (π,μ) if for every
j = 1, . . . , r , the following conditions are simultaneously satisfied:

(1) if, for some i = 1, . . . , k, it holds that νj ≤ πi < νj+1, then τj ≤ μi < τj+1;
(2) if, for some i = 1, . . . , k, it holds that τj ≤ μi < τj+1, then νj ≤ πi < νj+1.
Thus (ν, τ ) is an r-partition, if the sequences X and Y can be partitioned into r

pieces

(X1, . . . ,Xν2−1), (Xν2, . . . ,Xν3−1), . . . , (Xνr , . . . ,Xkn),

(Y1, . . . , Yτ2−1), (Yτ2, . . . , Yτ3−1), . . . , (Yτr , . . . , Ykn)

such that the alignment (π,μ) aligns a piece (Xνj
, . . . ,Xνj+1−1) with the piece

(Yτj
, . . . , Yτj+1−1), where j = 1, . . . , r . It is important to note that the pieces
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might be empty, that is, it might be that νj = νj+1 (or τj = τj+1), meaning that
(τj , . . . , τj+1 − 1) cannot contain any elements of μ, otherwise the requirement
(2) would be violated [or (μj , . . . ,μj+1 − 1) cannot contain any elements of τ ,
otherwise the requirement (1) would be violated]. Hence, if for a partition a piece
of X is empty, then the corresponding piece of Y cannot have any aligned letter.

The following observation shows that any alignment of X and Y can be parti-
tioned into r pieces such that k ≤ r ≤ � 2kn

2n−1	 and such that in each partition there
are always at most 2n aligned pairs. We believe that the idea of the proof as well
as the meaning of the partition becomes transparent by an example.

EXAMPLE 3.1. Let n = 3, k = 4. Let π = (1,5,6,9,10,12) and μ = (2,3,
4,6,9,10). The alignment (π,μ) can be represented as

X – 1 2 3 4 5 6 7 8 – 9 – – 10 11 12 – –

Y 1 2 – – – 3 4 – – 5 6 7 8 9 – 10 11 12
.

The table above indicates that X1 is aligned with Y2, X5 is aligned with Y3 and
so on; the rest of the letters are unaligned, so we say that they are aligned with
gaps. In the table, there are two types of columns: the columns with two figures
(aligned pairs) and the columns with one figure (unaligned pairs). Let ui ∈ {1,2}
be the number of figures in the ith column, and let sj = u1 + · · · + uj be the
corresponding cumulative sum. To get an r-partition proceed as follows: start from
the beginning of the table (left most position) and find j such that sj = 2n. Since
the cumulative sum increases by one or two, such a j might not exist. In this case
find j such that sj = 2n− 1. In the present example n = 3, thus we are looking for
j such that sj = 6. Such a j is 5. The first five columns thus form the first part of
the partition and there are exactly 2n = 6 elements in the first part (those elements
are X1,X2,X3,X4, Y1 and Y2). Now disregard the first five columns from the table
and start the same procedure afresh. Then the second part is obtained and so on.
In the following table the vertical lines indicate the different parts obtained by
the aforementioned procedure: the first two parts have six elements, the third and
fourth have five elements and the last part consists of one element:

X – 1 2 3 4 5 6 7 8 – 9 – – 10 11 12 – –

Y 1 2 – – – 3 4 – – 5 6 7 8 9 – 10 11 12
.

From the table, we read the corresponding pieces from the X-side: (1,4), (5,8),
(9,9), (10,12),∅ as well as the ones from the Y -side: (1,2), (3,4), (5,8), (9,11),
(12,12). The corresponding vectors ν and τ are thus ν = (1,5,9,10,13,13),
τ = (1,3,5,9,12,13). The number of parts in such a partition is clearly at least k

(corresponding to the case that all pairs sum up to 2n) and at most � 2kn
2n−1	 (cor-

responding to the case that all pairs except the last one sum up to 2n − 1). In our
example is r = 5 = �24

5 	. Now, it is clear that the following claim holds.
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CLAIM 3.1. Let X, Y be sequences of length kn and let (π,μ) be an arbitrary
alignment of X and Y . Then there exist an integer r such that k ≤ r ≤ � 2kn

2n−1	 and
an r-partition (ν, τ ) of (π,μ) such that for every j = 1, . . . , r − 1, we have

(νj+1 − νj ) + (τj+1 − τj ) ∈ {2n − 1,2n} and
(3.2)

(νr+1 − νr) + (τr+1 − τr) ≤ 2n.

Let, for every r , Br
k,n be the set of vectors ν = (ν1, . . . , νr+1) and τ = (τ1, . . . ,

τr+1) satisfying (3.1) and (3.2). Let

Bk,n =
�2kn/(2n−1)	⋃

r=k

Br
k,n.

We shall call the elements of Bk,n as the partitions. For every partition (ν, τ ) ∈
Br

k,n, we define

Lkn(ν, τ ) :=
r∑

i=1

L(Xνj
, . . . ,Xνj+1−1;Yτj

, . . . , Yτj+1−1),

where L(Xνj
, . . . ,Xνj+1−1;Yτj

, . . . ,Xτj+1−1) is the optimal score between Xνj
,

. . . ,Xνj+1−1 and Yτj
, . . . , Yτj+1−1. The key observation is the following: if (π,μ)

is optimal for X,Y and (ν, τ ) is an r-partition of (π,μ), then Lkn = Lkn(ν, τ ). By
Claim 3.1, every alignment, including the optimal one, has at least one partition
from the set Bk,n, hence, it follows that

Lkn = max
(ν,τ )∈Bk,n

Lkn(ν, τ ).(3.3)

CLAIM 3.2. For every r-partition (ν, τ ) ∈ Bk,n,

E(Lkn(ν, τ )) ≤ r

2
EL2n ≤ 1

2

⌈
2kn

2n − 1

⌉
EL2n.(3.4)

PROOF. Let (ν, τ ) ∈ Br
k,n with r ≤ � 2nk

2n−1	. Let j be such that (νj+1 − νj ) +
(τj+1 − τj ) = 2n. Thus, there exists an integer u ∈ {−n, . . . , n} such that νj+1 −
νj = n−u and τj+1 − τj = n+u. Since X1,X2, . . . , Y1, Y2, . . . are i.i.d., we have

E(L(Xνj
, . . . ,Xνj+1−1;Yτj

, . . . , Yτj+1−1))

= E(L(X1, . . . ,Xn−u;Y1, . . . , Yn+u)),

E(L(Xn−u+1, . . . ,X2n;Yn+u+1, . . . , Y2n))

≤ 1
2E(L(X1, . . . ,X2n;Y1, . . . , Y2n))

= 1
2EL2n.
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The last inequality follows from superadditivity,

L(X1, . . . ,Xn−u;Y1, . . . , Yn+u) + L(Xn−u+1, . . . ,X2n;Yn+u+1, . . . , Y2n)

≤ L(X1, . . . ,X2n;Y1, . . . , Y2n).

If (νj+1 − νj ) + (τj+1 − τj ) < 2n, then by the same argument

E(L(Xνj
, . . . ,Xνj+1−1;Yτj

, . . . , Yτj+1−1)) ≤ E(L(X1, . . . ,Xn−u;Y1, . . . , Yn+u))

≤ 1
2EL2n.

Hence, the first inequality in (3.4) follows. The second inequality follows from the
condition r ≤ � 2nk

2n−1	. �

3.2. The size of Bk,n and the rate of convergence. In the following we prove
the main theoretical result that links the rate of the convergence to the rate at which
the number of elements in |Bk,n| grows as k increases. Our proof is entirely based
on McDiarmid’s inequality, so let us recall it for the sake of completeness: Let
Z1, . . . ,Z2m be independent random variables and f (Z1, . . . ,Z2m) be a function
so that changing one variable changes the value at most A. Then for any � > 0,

P
(
f (Z1, . . . ,Z2m) − Ef (Z1, . . . ,Z2m) > �

) ≤ exp
[
− �2

mA2

]
.(3.5)

For the proof, we refer to [12]. We apply (3.5) with L in the role of f to
the independent (but not necessarily identically distributed) random variables
X1, . . . ,Xm,Y1, . . . , Ym. It is easy but important to see that, independently of the
value of δ, changing one random variable changes the score at most by A so that
in our case (3.5) is

P(Lm − ELm > �) ≤ exp
[
− �2

mA2

]
.(3.6)

LEMMA 3.1. Suppose that for every n and k

|Bk,n| ≤ exp
[(

ψ(n) + an,k

)
kn

]
,(3.7)

where ψ(n) does not depend on k and for every n we have that an,k → 0 as k →
∞. Let u(n) > A

√
ψ(n). Then

l − l2n ≤ u(n) + l2n

2n − 1
≤ u(n) + l

2n − 1
≤ u(n) + F

2n − 1
.(3.8)

PROOF. Let (ν, τ ) ∈ Bk,n. Recall (3.4). Thus, from (3.6), we get that for any
ρ > 0,

P

(
Lkn(ν, τ ) − 1

2

⌈
2kn

2n − 1

⌉
EL2n > ρkn

)

≤ P
(
Lkn(ν, τ ) − E(Lkn(ν, τ ))ρkn

)
(3.9)

≤ exp
[
−ρ2kn

A2

]
.
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From (3.3) and (3.7) it now follows that, for big k

P

(
Lkn

kn
− 1

k

⌈
2kn

2n − 1

⌉
l2n > ρ

)

≤ ∑
(ν,τ )∈Bk,n

P

(
Lkn(ν, τ ) − 1

2

⌈
2kn

2n − 1

⌉
EL2n > ρkn

)

≤ |Bk,n| exp
[
−ρ2kn

A2

]

≤ exp
[(

ψ(n) + an,k −
(

ρ

A

)2)
kn

]
.

We consider n fixed and let k go to infinity. If u(n) > A
√

ψ(n), then there exists
K(n) < ∞ so that for every k > K(n),

ψ(n) + an,k −
(

u(n)

A

)2

<
1

2

(
ψ(n) −

(
u(n)

A

)2)
.

Hence, in the inequalities above, replacing ρ with u(n), we obtain for every k >

K(n),

P

(
Lkn

kn
− 1

k

⌈
2kn

2n − 1

⌉
l2n > u(n)

)
≤ exp

[
1

2

(
ψ(n) −

(
u(n)

A

)2)
nk

]
(3.10)

= exp[−dnk],
where

dn := 1

2

((
u(n)

A

)2

− ψ(n)

)
n > 0.

Now recall the assumption that δ ≤ F . Hence, for any n and k, the random variable
Lkn

kn
is bounded by F . From (3.10), it thus follows that for any k > K(n)

E

(
Lkn

kn

)
= lkn ≤ 1

k

⌈
2kn

2n − 1

⌉
l2n + u(n) + F exp[−dnk].

Since lkn → l as k → ∞ and

1

k

⌈
2kn

2n − 1

⌉
≤ 2n

2n − 1
+ 1

k
,

we obtain that for any n,

l ≤
(

2n

2n − 1

)
l2n + u(n) = l2n

(
1 + 1

2n − 1

)
+ u(n). �

PROOF OF THEOREM 1.1. From Lemma 3.1, it follows that to obtain a bound
to l − ln, a suitable estimator of |Bk,n| satisfying (3.7) should be found.
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Let us estimate |Br
k,n|. The number of parts in the X side is bounded above by

the number of combination with repetition from nk + 1 by r − 1. The repetitions
allow empty parts. When the size of a part in X-side is m, then, except from the last
part, the size of the corresponding part on Y -side has two possibilities: 2n− 1 −m

or 2n−m. Hence, to any r-partition of X-size corresponds at most 2r−12n options
in Y -side. In the following we use the fact that the number of combination with
repetition from nk + 1 by r − 1 is

(nk+r−1
r−1

)
and for any nonnegative integers a > b

we have (
a

b

)
≤ exp

[
he

(
b

a

)
a

]
,

where he(q) := −q lnq − (1 − q) ln(1 − q) is the binary entropy function. Since
r ≤ � 2nk

2n−1	 implies that r − 1 ≤ 2nk
2n−1 , we thus have for n ≥ 2,

|Br
k,n| ≤ (2r−12n)

(
nk + r − 1

r − 1

)

≤ exp
[
(r − 1)(ln 2) + ln(2n) + he

(
r − 1

nk + r − 1

)
(nk + r − 1)

]

≤ exp
[(

ln 4

2n − 1
+ ln(2n)

nk
+ he

(
r − 1

nk + r − 1

)(
1 + 2

2n − 1

))
nk

]

≤ exp
[(

ln 4

2n − 1
+ ln(2n)

nk
+ he

(
2

2n + 1

)(
2n + 1

2n − 1

))
nk

]
.

The last inequality follows from the inequalities

r − 1

nk + r − 1
≤ 2nk/(2n − 1)

nk + 2nk/(2n − 1)
= 2

2n + 1

so that if n ≥ 2, then 2
2n+1 ≤ 0.5 and

he

(
r − 1

nk + r − 1

)
≤ he

(
2

2n + 1

)
.

Hence, with

an,k = ln(k/(2n − 1) + 2) + ln(2n)

nk
,

|Bk,n| ≤
(

2nk

2n − 1
− k + 2

)

× exp
[(

ln 4

2n − 1
+ ln(2n)

nk
+ he

(
2

2n + 1

)(
2n + 1

2n − 1

))
nk

]

=
(

k

2n − 1
+ 2

)
exp

[(
ln 4

2n − 1
+ ln(2n)

nk
+ he

(
2

2n + 1

)(
2n + 1

2n − 1

))
nk

]
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= exp
[
ln

(
k

2n − 1
+ 2

)

+
(

ln 4

2n − 1
+ ln(2n)

nk
+ he

(
2

2n + 1

)(
2n + 1

2n − 1

))
nk

]

= exp
[(

ln(k/(2n − 1) + 2) + ln(2n)

nk

+ ln 4

2n − 1
+ he

(
2

2n + 1

)(
2n + 1

2n − 1

))
nk

]

= exp
[(

an,k + ln 4

2n − 1
+ he

(
2

2n + 1

)(
2n + 1

2n − 1

))
nk

]

≤ exp
[(

an,k + 2

2n − 1

(
2n + 1

2n − 1
+ ln(2n − 1)

))
nk

]
,

where the last inequality follows from the inequality

he

(
2

2n + 1

)
≤ 2

2n + 1

(
2n + 1

2n − 1
+ ln

(
2n − 1

2

))
.(3.11)

Hence, (3.7) holds with

ψ(n) = 2

2n − 1

(
2n + 1

2n − 1
+ ln(2n − 1)

)
.

Inequality (1.2) now follows from Lemma 3.1. �

REMARK 3.1. As it was already discussed in [1], the obtained rate might not
be optimal. For example, it is reasonable to believe that the factor lnn could be
removed. We have already mentioned that in order to get a faster rate with our
method, one has to obtain a better upper bound for |Bk,n|. Let us briefly exam-
ine the proof of Theorem 1.1 from this point of view: inequality (3.11) cannot
be significantly improved. From the well-known fact that for any α ∈ (0,1) and
m → ∞,

ln
(

m

αm

)
has the same order of magnitude that m · he(α),

it follows that the bound

ln
(

nk + r − 1
r − 1

)
≤ he

(
2

2n + 1

)
(nk + r − 1)

is fairly sharp as well. On the other hand, since the partitions in Bk,n should sat-
isfy (3.2), not all possible

(nk+r−1
r−1

)
combinations with repetitions correspond to a

valid partition in X-side. Our method is purely combinatorial, so it does not take
into account the distribution and the entropy of the random vectors (X1, . . . ,Xkn)
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and (Y1, . . . , Ykn). The advantage of the purely combinatorial approach is its sim-
plicity and generality, but when a better rate is aimed, it could be helpful to note
that (1) many partitions in Bk,n have negligible probability and (2) |Bk,n| could get
smaller when only looking at partitions corresponding to the optimal alignments.
Hence, discarding untypical and not optimal partitions might drastically reduce
|Bk,n| and, therefore, our method could give us a better rate. This is the subject of
further research.
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