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Diffusion limits of MCMC methods in high dimensions provide a use-
ful theoretical tool for studying computational complexity. In particular, they
lead directly to precise estimates of the number of steps required to explore
the target measure, in stationarity, as a function of the dimension of the state
space. However, to date such results have mainly been proved for target mea-
sures with a product structure, severely limiting their applicability. The pur-
pose of this paper is to study diffusion limits for a class of naturally occurring
high-dimensional measures found from the approximation of measures on a
Hilbert space which are absolutely continuous with respect to a Gaussian ref-
erence measure. The diffusion limit of a random walk Metropolis algorithm
to an infinite-dimensional Hilbert space valued SDE (or SPDE) is proved,
facilitating understanding of the computational complexity of the algorithm.

1. Introduction. Metropolis–Hastings methods [18, 21] form a widely used
class of MCMC methods [19, 22] for sampling from complex probability distri-
butions. It is, therefore, of considerable interest to develop mathematical analyses
which explain the structure inherent in these algorithms, especially structure which
is pertinent to understanding the computational complexity of the algorithm. Quan-
tifying computational complexity of an MCMC method is most naturally under-
taken by studying the behavior of the method on a family of probability distribu-
tions indexed by a parameter and studying the cost of the algorithm as a function
of that parameter. In this paper we will study the cost as a function of dimension
for algorithms applied to a family of probability distributions found from finite-
dimensional approximation of a measure on an infinite-dimensional space.

Our interest is focused on Metropolis–Hastings MCMC methods [22]. We study
the simplest of these, the random walk Metropolis algorithm (RWM). Let π be a
target distribution on R

N . To sample from π , the RWM algorithm creates a π -
reversible Markov chain {xn}∞n=0 which moves from a current state x0 to a new
state x1 via proposing a candidate y, using a symmetric Markov transition ker-
nel such as a random walk, and accepting y with probability α(x0, y), where
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α(x, y) = 1 ∧ π(y)
π(x)

. Although the proposal is somewhat naive, within the class
of all Metropolis–Hastings algorithms, the RWM is still used in many applications
because of its simplicity. The only computational cost involved in calculating the
acceptance probabilities is the relative ratio of densities π(y)

π(x)
, as compared to, say,

the Langevin algorithm (MALA) where one needs to evaluate the gradient of logπ .
A pioneering paper in the analysis of complexity for MCMC methods in high

dimensions is [23]. This paper studied the behavior of random walk Metropolis
methods when applied to target distributions with density

πN(x) =
N∏

i=1

f (xi),(1.1)

where f (x) is a one-dimensional probability density function. The authors consid-
ered a proposal of the form

y = x + √
δρ,

ρ
D∼ N(0, IN),

and the objective was to study the complexity of the algorithm as a function of the
dimension N of the state space. It was shown that choosing the proposal variance δ

to scale as δ = 2�2λ2N−1 with3 λ−2 = ∫
(
f ′
f

)2f dx (� > 0 is a parameter which we
will discuss later) leads to an average acceptance probability of order 1 with respect
to dimension N . Furthermore, with this choice of scaling, individual components
of the resulting Markov chain converge to the solution of a stochastic differential
equation (SDE). To state this, we define a continuous interpolant

zN(t) = (Nt − k)xk+1 + (k + 1 − Nt)xk, k ≤ Nt < k + 1.(1.2)

Then [23] shows that, when the Markov chain is started in stationarity, zN ⇒ z as
N → ∞ in C([0, T ];R) where z solves the SDE4

dz

dt
= λ2h(�)[logf (z)]′ +

√
2λ2h(�)

dW

dt
,(1.3)

h(�) = 2�2�

(
− �√

2

)
.(1.4)

Here � denotes the CDF of a standard normal distribution, “⇒” denotes weak
convergence and C([0, T ],R) denotes the Banach space of real-valued continuous
functions defined on the interval [0, T ] endowed with the usual supremum norm.
Note that the invariant measure of the SDE (1.3) has the density f with respect

3If f is the p.d.f. of a Gaussian on R, then λ is its standard deviation.
4Our h(·) and � are different from the hold and �old used in [23]. However, they can be recovered

from the identities �2
old = 2λ2�2, hold(�old) = 2λ2h(�).
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to the Lebesgue measure. This weak convergence result leads to the interpretation
that, started in stationarity and applied to target measures of the form (1.1), the
RWM algorithm will take on the order of N steps to explore the invariant mea-
sure. Furthermore, it may be shown that the value of � which maximizes h(�) and,
therefore, maximizes the speed of convergence of the limiting diffusion, leads to a
universal acceptance probability, for random walk Metropolis algorithms applied
to targets (1.1), of approximately 0.234.

These ideas have been generalized to other proposals, such as the MALA al-
gorithm in [24]. For Langevin proposals, the scaling of δ which achieves order 1,
acceptance probabilities is δ ∝ N−1/3 and the choice of the constant of proportion-
ality which maximizes the speed of the limiting SDE results from an acceptance
probability of approximately 0.574. Note, in particular, that this method will take
on the order of N1/3 steps to explore the invariant distribution. This quantifies the
advantage of using information about the gradient of log π in the proposal; RWM
algorithms, which do not use this information, take on the order of N steps.

The work by Roberts and co-workers was among the first to develop a mathe-
matical theory of Metropolis–Hastings methods in high dimension and does so in
a fashion which leads to clear criteria which practitioners can use to optimize algo-
rithmic performance, for instance, by tuning the acceptance probabilities to 0.234
(RWM) or 0.574 (MALA). Yet it is open to the criticism that, from a practitioner’s
perspective, target measures of the form (1.1) are too limited a class of probability
distributions to be useful and, in any case, can be tackled by sampling a single
one-dimensional target because of the product structure. There have been papers
which generalize this work to target measures which retain the product structure
inherent in (1.1), but are no longer i.i.d. (see [1, 25]),

πN
0 (x) =

N∏
i=1

λ−1
i f (λ−1

i xi).(1.5)

However, the same criticism may be applied to this scenario as well.
Despite the apparent simplicity of target measures of the form (1.1) and (1.5),

the intuition obtained from the study of Metropolis–Hastings methods applied to
these models with product structure is, in fact, extremely valuable. The two key
results which need to be transferred to a more general nonproduct measure set-
ting are (i) the scaling of the proposal variance with N in order to ensure order
one acceptance probabilities; (ii) the derivation of diffusion limits for the RWM
algorithm with a time-scale factor which can be maximized over all acceptance
probabilities. There is some work concerning scaling limits for MCMC methods
applied to target measures which are not of product form; the paper [2] studies
hierarchical target distributions; the paper [8] studies target measures which arise
in nonlinear regression and have a mean field structure and the paper [9] studies
target densities which are Gibbs measures. We add further to this literature on scal-
ing limits for measures with nonproduct form by adopting the framework studied
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in [4–6]. There the authors consider a target distribution π which lies in an infi-
nite dimensional, real separable Hilbert space which is absolutely continuous with
respect to a Gaussian measure π0 with mean zero and covariance operator C (see
Section 2.1 for details). The Radon–Nikodym derivative dπ

dπ0
has the form

dπ

dπ0
= M	 exp(−	(x))(1.6)

for a real valued π0-measurable functional 	 on the Hilbert space and M	 a nor-
malizing constant. In Section 3.1 we will specify and discuss the precise assump-
tions on 	 which we adopt in this paper. This infinite-dimensional framework for
the target measures, besides being able to capture a huge number of useful mod-
els arising in practice [16, 27], also has an inherent mathematical structure which
makes it amenable to the derivation of diffusion limits in infinite dimensions, while
retaining links to the product structure that has been widely studied. We highlight
two aspects of this mathematical structure.

First, the theory of Gaussian measures naturally generalizes from R
N to infinite-

dimensional Hilbert spaces. Let (H, 〈·, ·〉,‖ · ‖) denote a real separable Hilbert
space with full measure under μ0 (	 will be densely defined on H). The covari-
ance operator C: H �→ H is a self-adjoint, positive and trace class operator on H
with a complete orthonormal eigenbasis {λ2

j , φj },
Cφj = λ2

jφj .

Henceforth, we assume that the eigenvalues are arranged in decreasing order and
λj > 0. Any function x ∈ H can be represented in the orthonormal eigenbasis of
C via the expansion

x =
∞∑

j=1

xjφj , xj
def= 〈x,φj 〉.(1.7)

Throughout this paper we will often identify the function x with its coordinates
{xj }∞j=1 ∈ �2 in this eigenbasis, moving freely between the two representations.
Note, in particular, that C is diagonal with respect to the coordinates in this eigen-
basis. By the Karhunen–Loéve [13] expansion, a realization x from the Gaussian
measure π0 can be expressed by allowing the xj to be independent random vari-
ables distributed as xj ∼ N(0, λ2

j ). Thus, in the coordinates {xj }, the prior has
the product structure (1.5). For the random walk algorithm studied in this paper
we assume that the eigenpairs {λj ,φj } are known so that sampling from π0 is
straightforward.

The measure π is absolutely continuous with respect to π0 and hence, any al-
most sure property under π0 is also true under π . For example, it is a consequence
of the law of large numbers that, almost surely with respect to π0,

1

N

N∑
j=1

x2
j

λ2
j

→ 1 as N → ∞.(1.8)
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This also holds almost surely with respect to π , implying that a typical draw from
the target measure π must behave like a typical draw from π0 in the large j co-
ordinates.5 This offers hope that ideas from the product case are applicable to
measures π given by (1.6) as well. However, the presence of 	 prevents use of the
techniques from previous work on this problem; the fact that individual compo-
nents of the Markov chain converge to a scalar SDE, as proved in [23], is a direct
consequence of the product structure inherent in (1.1) or (1.5). For target measures
of the form (1.6), this structure is not present and individual components of the
Markov chain cannot be expected to converge to a scalar SDE. However, it is nat-
ural to expect convergence of the entire Markov chain to an infinite-dimensional
continuous time stochastic process and the purpose of this paper is to carry out
such a program.

Thus, the second fact which makes the target measure (1.6) attractive from the
point of view of establishing diffusion limits is that fact that, as proved in a series of
recent papers [15, 17], it is invariant for Hilbert-space valued SDEs (or stochastic
PDES–SPDEs) with the form

dz

dt
= −h(�)

(
z + C∇	(z)

) + √
2h(�)

dW

dt
, z(0) = z0,(1.9)

where W is a Brownian motion (see [13]) in H with covariance operator C. Thus,
the above result from SPDE theory gives us a natural candidate for the infinite-
dimensional limit of an MCMC method. We will prove such a limit for a RWM
algorithm with proposal covariance 2�2

N
C. Moreover, we will show that the time

constant h(�) is maximized for an average acceptance probability of 0.234, as
obtained in [23] in the product case.

These measures π given by (1.6) have a number of features which will enable
us to develop the ideas of diffusion limits for MCMC methods as originally intro-
duced in the i.i.d. product case. Carrying out this program is worthwhile because
measures of the form given by (1.6) arise naturally in a range of applications.
In particular, they arise in the context of nonparametric regression in Bayesian
statistics where the parameter space is an infinite-dimensional function space. The
measure π0 is the prior and 	 the log likelihood function. Such Bayesian inverse
problems are overviewed in [27]. Another class of problems leading to measures
of the form (1.6) are conditioned diffusions (see [16]).

To sample from π numerically we need a finite-dimensional target measure. To
this end, let 	N(·) = 	(P N ·) where P N denotes projection6 (in H) onto the first

5For example, if μ0 is the Gaussian measure associated with Brownian motion on a finite interval,
then (1.8) is an expression for the variance scale in the quadratic variation, and this is preserved under
changes of measure such as the Girsanov formula.

6Actually 	 is only densely defined on H but the projection PN can also be defined on this dense
subset.
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N eigenfunctions of C. Then consider the target measure πN with the form

dπN

dπ0
(x) ∝ exp(−	N(x)).(1.10)

This measure can be factored as the product of two independent measures: it coin-
cides with π0 on H \P N H and has a density with respect to Lebesgue measure on
P N H, in the coordinates {xj }Nj=1. In computational practice we implement a ran-

dom walk method on R
N in the coordinate system {xj }Nj=1, enabling us to sample

from πN in P N H. However, in order to facilitate a clean analysis, it is beneficial
to write this finite-dimensional random walk method in H, noting that the coordi-
nates {xj }∞j=N+1 in the representation of functions sampled from πN do not then
change. We consider proposal distributions for the RWM which exploit the covari-
ance structure of π0 and can be expressed in H as

y = x +
√

2�2

N
C1/2ξ where ξ =

N∑
j=1

ξjφj with ξj
D∼ N(0,1) i.i.d.(1.11)

Note that our proposal variance scales as N−γ with γ = 1. The choice of γ in
the proposal variance affects the scale of the proposal moves and identifying the
optimal choice for γ is a delicate exercise. The larger γ is, the more “localized”
the proposed move is and, therefore, for the algorithm to explore the state space
rapidly, γ needs to be as small as possible. However, if we take γ arbitrarily small,
then the acceptance probability decreases to zero very rapidly as a function of N .
In fact, it was shown in [4–6] that, for a variety of Metropolis–Hastings proposals,
there is γc > 0 such that choice of γ < γc leads to average acceptance probabili-
ties which are smaller than any inverse power of N . Thus, in higher dimensions,
smaller values of γ lead to very poor mixing because of the negligible acceptance
probability. However, it turns out that at the critical value γc, the acceptance prob-
ability is O(1) as a function of N . In [4, 6], the value of γc was identified to be 1
and 1/3 for the RWM and MALA, respectively. Finally, when using the scalings
leading to O(1) acceptance probabilities, it was also shown that the mean square
distance moved is maximized by choosing the acceptance probabilities to be 0.234
or 0.574 as in the i.i.d. product case (1.1). Guided by this intuition, we have chosen
γ = γc = 1 for our RWM proposal variance which, as we will prove below, leads
to O(1) acceptance probabilities.

Summarizing the discussion so far, our goal is to obtain an invariance principle
for the RWM Markov chain with proposal (1.11) when applied to target measures
of the form (1.6). The diffusion limit will be obtained in stationarity and will be
given by the SPDE (1.9). We show that the continuous time interpolant zN of the
Markov chain {xk} defined by (1.2) converges to z solving (1.9). This will show
that, in stationarity and properly scaled to achieve O(1) acceptance probabilities,
the random walk Metropolis algorithm takes O(N) steps to explore the target dis-
tribution. From a practical point of view, the take home message of this work is
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that standard RWM algorithms applied to approximations of target measures with
the form (1.6) can be tuned to behave optimally by adjusting the acceptance prob-
ability to be approximately 0.234 in the case where the proposal covariance is
proportional to the covariance C in the reference measure. This will lead to O(N)

steps to explore the target measure in stationarity. This extends the work in [23] and
shows that the ideas developed there apply to nontrivial high-dimensional targets
arising in applications. Although we only analyze the RWM proposal (1.11), we
believe that our techniques can be applied to a larger class of Metropolis–Hastings
methods, including the MALA algorithm, and/or RWM methods with isotropic
proposal variance. In this latter case we expect to get a different (nonprecondi-
tioned) π -invariant SPDE as the limit when the dimension goes to infinity (see
[15, 17] for analysis of these SPDEs) and a different (more severe) restriction on
the scaling of the proposal variance with N ; however, we conjecture that the opti-
mal acceptance probability would not be changed. The proposal that we study in
this paper relies on knowledge of the eigenstructure of the covariance operator of
the prior or reference measures π0. In some applications, this may be a reasonable
assumption, for example, for conditioned diffusions or for PDE inverse problems
in simple geometries. For others it may not, and then the isotropic proposal covari-
ance is more natural.

We analyze the RWM algorithm started at stationarity, and thus do not attempt
to answer the question of “burn-in time”: the number of steps required to reach
stationarity and how the proposal scaling affects the rate of convergence. These
are important questions which we hope to answer in a future paper. Furthermore,
practitioners wishing to sample from probability measures on function space with
the form (1.6) should be aware that for some examples, new generalizations of ran-
dom walk Metropolis algorithms, defined on function space, can be more efficient
than the standard random walk methods analyzed in this paper [5, 6]; whether or
not they are more efficient depends on a trade-off between number of steps to ex-
plore the measure (which is lower for the new generalized methods) and cost per
step (which can be higher, but may not be).

There exist several methods in the literature to prove invariance principles. For
instance, because of the reversibility of the RWM Markov chain, utilizing the ab-
stract but powerful theory of Dirichlet forms [20] is appealing. Another alterna-
tive is to show the convergence of generators of the associated Markov processes
[14] as used in [23]. However, we chose a more “hands on” approach using sim-
ple probabilistic tools, thus gaining more intuition about the RWM algorithm in
higher dimensions. We show that with the correct choice of scaling, the one step
transition for the RWM Markov chain behaves nearly like an Euler scheme applied
to (1.9). Since the noise enters (1.9) additively, the induced Itô map which takes
Wiener trajectories into solutions is continuous in the supremum-in-time topology.
This fact, which would not be true if (1.9) had multiplicative noise, allows to em-
ploy an argument simpler than the more general techniques often used (see [14]).
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We first show that the martingale increments converge weakly to a Hilbert space-
valued Wiener process using a martingale central limit theorem [3]. Since weak
convergence is preserved under a continuous map, the fact that the Itô map is con-
tinuous implies the RWM Markov chain converges to the SPDE (1.9). Finally, we
emphasize that diffusion limits for the RWM proposal are necessarily of weak con-
vergence type. However, strong convergence results are available for the MALA
algorithm, in fixed finite dimension (see [7]).

1.1. Organization of the paper. We start by setting up the notation that is used
for the remainder of the paper in Section 2. We then investigate the mathemati-
cal structure of the RWM algorithm when applied to target measures of the form
(1.10). Before presenting details, a heuristic but detailed outline of the proof strat-
egy is given for communicating the main ideas. In Section 3 we state our assump-
tions and give the proof of the main theorem at a high level, postponing proofs of
some technical estimates. In Section 4 we prove the invariance principle for the
noise process. Section 5 contains the proof of the drift and diffusion estimates. All
universal constants, unless otherwise stated, are denoted by the letter M whose
precise value might vary from one line to the next.

2. Diffusion limits of the RWM algorithm. In this section we state the main
theorem, set it in context and explain the proof technique. We first introduce an
approximation of the measure π , namely πN , which is finite dimensional. We then
state the main theorem concerning a diffusion limit of the algorithm and sketch the
ideas of the proof so that technical details in later sections can be readily digested.

2.1. Preliminaries. Recall that H is a separable Hilbert space of real-valued
functions with inner-product and norm 〈·, ·〉 and ‖ · ‖. Let C be a positive, trace
class operator on H. Let {φj ,λ

2
j } be the eigenfunctions and eigenvalues of C,

respectively, so that

Cφj = λ2
jφj , j ∈ N.

We assume a normalization under which {φj } forms a complete orthonormal basis
in H. We also assume that the eigenvalues are arranged in decreasing order. For
every x ∈ H we have the representation (1.7). Using this expansion, we define the
Sobolev spaces Hr , r ∈ R, with the inner-products and norms defined by

〈x, y〉r def=
∞∑

j=1

j2rxj yj , ‖x‖2
r

def=
∞∑

j=1

j2rx2
j .(2.1)

Notice that H0 = H. Furthermore, Hr ⊂ H ⊂ H−r for any r > 0. For r ∈ R, let
Br : H �→ H denote the operator which is diagonal in the basis {φj } with diagonal
entries j2r , that is,

Brφj = j2rφj



DIFFUSION LIMITS OF THE RANDOM WALK METROPOLIS ALGORITHM 889

so that B
1/2
r φj = j rφj . The operator Br lets us alternate between the Hilbert space

H and the Sobolev spaces Hr via the identities

〈x, y〉r = 〈B1/2
r x,B1/2

r y〉, ‖x‖2
r = ‖B1/2

r x‖2.(2.2)

Let ⊗ denote the outer product operator in H defined by

(x ⊗ y)z
def= 〈y, z〉x ∀x, y, z ∈ H.(2.3)

For an operator L : Hr �→ Hl , we denote the operator norm on H by ‖ · ‖L(Hr ,Hl )

defined by

‖L‖L(Hr ,Hl )
def= sup

‖x‖r=1
‖Lx‖l .

For self-adjoint L and r = l = 0 this is, of course, the spectral radius of L. For a
positive, self-adjoint operator D : H �→ H, define its trace as

trace(D)
def=

∞∑
j=1

〈φj ,Dφj 〉.

Since trace(D) does not depend on the orthonormal basis, an operator D is said to
be trace class if trace(D) < ∞ for some, and hence any, orthonormal basis {φj }.

Let π0 denote a mean zero Gaussian measure on H with covariance operator C,

that is, π0
def= N(0,C). If x

D∼ π0, then the xj in (1.7) are independent N(0, λ2
j )

Gaussians and we may write (Karhunen–Loéve)

x =
∞∑

j=1

λjρjφj with ρj
D∼ N(0,1) i.i.d.(2.4)

Since ‖B−1/2φk‖r = ‖φk‖ = 1, we deduce that {B−1/2
r φk} form an orthonormal

basis for Hr and, therefore, we may write (2.4) as

x =
∞∑

j=1

λjj
rρjB

−1/2
r φj with ρj

D∼ N(0,1) i.i.d.(2.5)

If  denotes the probability space for sequences {ρj }j≥1, then the sum converges
in L2(; Hr ) as long as

∑∞
j=1 λ2

j j
2r < ∞. Thus, under this condition, the distri-

bution induced by π0 may be viewed as that of a centered Gaussian measure on
Hr with covariance operator Cr given by

Cr = B1/2
r CB1/2

r .(2.6)

The assumption on summability is the usual trace-class condition for Gaussian
measures on a Hilbert space: trace(Cr) < ∞. In what follows, we freely alternate
between the Gaussian measures N(0,C) on H and N(0,Cr) on Hr , for values of
r for which the trace-class property of Cr holds.



890 J. C. MATTINGLY, N. S. PILLAI AND A. M. STUART

Our goal is to sample from a measure π on H given by (1.6),

dπ

dπ0
= M	 exp(−	(x))

with π0 as constructed above. Frequently in applications, the functional 	 may
not be defined on all of H, but only on a subset Hr ⊂ H for some exponent
r > 0. For instance, if H = L2([0,1]), the functional 	 might only act on con-
tinuous functions, in which case it is natural to define 	 on some Sobolev space

Hr [0,1] for r > 1
2 . Even though the Gaussian measure π0 is defined on H, de-

pending on the decay of the eigenvalues of C, there exists an entire range of values
r such that trace(Cr) < ∞ so that the measure π0 has full support on Hr , that
is, π0(Hr ) = 1. From now onward we fix a distinguished exponent s ≥ 0 and as-
sume that 	 : Hs �→ R and that the prior is chosen so that trace(Cs) < ∞. Then
π0 ∼ N(0,C) on H and π(Hs) = 1; in addition, we may view π0 as a Gaussian
measure N(0,Cs) on Hs . The precise connection between the exponent s and the
eigenvalues of C is given in Section 3.1.

In order to sample from π we first approximate it by a finite-dimensional mea-
sure. Recall that

φ̂k
def= B−1/2

s φk(2.7)

form an orthonormal basis for Hs . For N ∈ N, let P N : Hs �→ XN ⊂ Hs be the

projection operator in Hs onto XN def= span{φ̂1, φ̂2, . . . , φ̂N }, that is,

P Nx
def=

N∑
j=1

xj φ̂j where xj = 〈x, φ̂j 〉s, x ∈ Hs .

This shows that XN is isomorphic to R
N . Next, we approximate 	 by 	N :XN �→

R and attempt to sample from the following approximation to π , namely,

dπN

dπ0
(x)

def= M	N exp(−	N(x)) where 	N(x)
def= 	(P Nx).

Note that ∇	N(x) = P N∇	(P Nx) and ∂2	N(x) = P N∂2	(P Nx)P N . The
constant M	N is chosen so that πN(Hs) = 1. It may be shown that, for large N ,
the measure πN is close to the measure π in the Hellinger metric (see [12]). Set

CN def= P NCP N, CN
r

def= B1/2
r CNB1/2

r .(2.8)

Notice that on XN , πN has Lebesgue density7

πN(x) = M	N exp
(−	N(x) − 1

2〈P Nx,C−1(P Nx)〉), x ∈ XN

(2.9)
= M	N exp

(−	N(x) − 1
2〈x, (CN)−1x〉)

7For ease of notation we do not distinguish between a measure and its density.
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since CN is invertible on XN because the eigenvalues are assumed to be strictly
positive. On Hs \ XN we have that πN = π0. Later we will impose natural as-
sumptions on 	 (and hence, on 	N ) which are motivated by applications.

2.2. The algorithm. Our goal is now to sample from (2.9) with x ∈ XN . As
explained in the Introduction, we use a RWM proposal with covariance operator

2 �2

N
C on H given by (1.11). The noise ξ is finite dimensional and is indepen-

dent of x. Hence, even though the Markov chain evolves in Hs , x and y in (1.11)
differ only in the first N coordinates when written in the eigenbasis of C; as a
consequence, the Markov chain does not move at all in Hs \ P N Hs and can be
implemented in R

N . However the analysis is cleaner when written in Hs . The ac-
ceptance probability also only depends on the first N coordinates of x and y and
has the form

α(x, ξ) = 1 ∧ exp(Q(x, ξ)),(2.10)

where

Q(x, ξ)
def= 1

2‖C−1/2(P Nx)‖2 − 1
2‖C−1/2(P Ny)‖2

(2.11)
+ 	N(x) − 	N(y).

The Markov chain for {xk}, k ≥ 0 is then given by

xk+1 = γ k+1yk+1 + (1 − γ k+1)xk and yk+1 = xk +
√

2�2

N
C1/2ξk+1(2.12)

with

γ k+1 def= γ (xk, ξk+1)
D∼ Bernoulli(α(xk, ξk+1)) and ξk+1 =

N∑
i=1

ξk+1
i φi

where ξk+1
i

D∼ N(0,1) i.i.d.

with some initial condition x0. The random variables ξk and x0 are independent
of one another. Furthermore, conditional on α(xk−1, ξk), the Bernoulli random
variables γ k are chosen independently of all other sources of randomness. This
can be seen in the usual way by introducing an i.i.d. sequence of uniform random
variables Unif[0,1] and using these for each k to construct the Bernoulli random
variable.

In summary, the Markov chain that we have described in Hs is, when projected
into coordinates {xj }Nj=1, equivalent to a standard random walk Metropolis method

for the Lebesgue density (2.9) with proposal variance given by CN on H. Recall
that the target measure π in (1.6) is the invariant measure of the SPDE (1.9). Our
goal is to obtain an invariance principle for the continuous interpolant (1.2) of the
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Markov chain {xk} started in stationarity: to show weak convergence of zN(t) to
the solution z(t) of the SPDE (1.9), as the dimension N → ∞.

In the rest of the section, we will give a heuristic outline of our main argument.
The emphasis will be on the proof strategy and main ideas. So we will not yet prove
the error bounds and use the symbol “≈” to indicate so. Once the main skeleton is
outlined, we retrace our arguments and make them rigorous in Sections 3, 4 and 5.

2.3. Main theorem and implications. As mentioned earlier for fixed N , the
Markov chain evolves in XN ⊂ Hs and we prove the invariance principle for the
Markov chain in the Hilbert space Hs as N goes to infinity. Define the constant β ,

β
def= 2�

(−�/
√

2
)
,(2.13)

where � denotes the CDF of the standard normal distribution. Note that with this
definition of β , the time scale h(�) appearing in (1.9), and defined in (1.4), is given
by h(�) = �2β . The following is the main result of this article (it is stated precisely,
with conditions, as Theorem 3.6):

MAIN THEOREM. Let the initial condition x0 of the RWM algorithm be such

that x0 D∼ πN and let zN(t) be a piecewise linear, continuous interpolant of
the RWM algorithm (2.12) as defined in (1.2). Then zN(t) converges weakly in

C([0, T ], Hs) to the diffusion process z(t) given by (1.9) with z(0)
D∼ π .

We will now explain the following two important implications of this result:

• it demonstrates that, in stationarity, the work required to explore the invariant
measure scales as O(N);

• it demonstrates that the speed at which the invariant measure is explored, again
in stationarity, is maximized by tuning the average acceptance probability to
0.234.

The first implication follows from (1.2) since this shows that O(N) steps of the
Markov chain (2.12) are required for zN(t) to approximate z(t) on a time inter-
val [0, T ] long enough for z(t) to have explored its invariant measure. The sec-
ond implication follows from (1.9) for z(t) itself. The maximum of the time-scale
h(�) over the parameter � (see [23]) occurs at a universal acceptance probability
of β̂ = 0.234, to three decimal places. Thus, remarkably, the optimal acceptance
probability identified in [23] for product measures, is also optimal for the nonprod-
uct measures studied in this paper.

2.4. Proof strategy. Let Fk denote the sigma algebra generated by {xn, ξn, γ k ,
n ≤ k}. We denote the conditional expectations E(·|Fk) by Ek(·). We first compute
the one-step expected drift of the Markov chain {xk}. For notational convenience
let x0 = x and ξ1 = ξ . We set ξ0 = 0 and γ 0 = 0. Then, under the assumptions
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on 	,	N given in Section 3.1, we prove the following proposition estimating the
mean one-step drift and diffusion. The proof is given in Sections 5.2 and 5.3.

PROPOSITION 2.1. Let Assumptions 3.1 and 3.4 (below) hold. Let {xk} be the

RWM Markov chain with x0 = x
D∼ πN . Then

NE0(x
1 − x) = −�2β

(
P Nx + CN∇	N(x)

) + rN,(2.14)

NE0[(x1 − x) ⊗ (x1 − x)] = 2�2βCN + EN,(2.15)

where the error terms rN and EN satisfy E
πN ‖rN‖2

s → 0, E
πN ∑N

i=1 |〈φi,

ENφi〉s | → 0 and E
πN |〈φi,E

Nφj 〉s | → 0 as N → ∞, for any pair of indices
i, j and for s appearing in Assumptions 3.1.

Thus the discrete time Markov chain {xk} obtained by the successive accepted
samples of the RWM algorithm has approximately the expected drift and covari-
ance structure of the SPDE (1.9). It is also crucial to our subsequent argument
involving the martingale central limit theorem that the error terms rN and EN

converge to zero in the Hilbert space Hs norm and inner-product as stated.
With this in hand, we need to establish the appropriate invariance principle to

show that the dynamics of the Markov chain {xk}, when seen as the values of a
continuous time process on a time mesh with steps of O(1/N), converges weakly
to the law of the SPDE given in (1.9) on C([0, T ], Hs). To this end we define, for
k ≥ 0,

mN(·) def= P N(·) + CN∇	N(·)�k+1,N

(2.16)
def=

√
N

2�2β

(
xk+1 − xk − Ek(x

k+1 − xk)
)
,

rk+1,N def= NEk(x
k+1 − xk) + �2β

(
P Nxk + CN∇	N(xk)

)
,(2.17)

Ek+1,N def= NEk[(xk+1 − xk) ⊗ (xk+1 − xk)] − 2�2βCN(2.18)

with E0,N ,�0,N , r0,N = 0. Notice that for fixed N , {rk,N }k≥1, {Ek,N }k≥1 are,
since x0 ∼ πN , stationary sequences.

By definition,

xk+1 = xk + Ek(x
k+1 − xk) +

√
2�2β

N
�k+1,N .(2.19)

From (2.14) in Proposition 2.1, for large enough N ,

xk+1 ≈ xk − �2β

N

(
P Nxk + CN∇	N(xk)

) +
√

2�2β

N
�k+1,N

(2.20)

= xk − �2β

N
mN(xk) +

√
2�2β

N
�k+1,N .
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From the definition of �k,N in (2.16), and from (2.15) in Proposition 2.1,

Ek(�
k+1,N ) = 0 and Ek(�

k+1,N ⊗ �k+1,N ) ≈ CN.

Therefore, for large enough N , equation (2.20) “resembles” the Euler scheme for
simulating the finite-dimensional approximation of the SPDE (1.9) on R

N , with
drift function mN(·) and covariance operator CN :

xk+1 ≈ xk − h(�)mN(xk)�t + √
2h(�)�t�k+1,N where �t

def= 1

N
.

This is the key idea underlying our main result (Theorem 3.6): the Markov chain
(2.12) looks like a weak Euler approximation of (1.9).

Note that there is an important difference in analyzing the weak convergence
from the traditional Euler scheme. In our case, for any fixed N ∈ N, �k,N ∈ XN

is finite dimensional, but clearly the dimension of �k,N grows with N . Also, the

distribution of the initial condition x(0)
D∼ πN changes with N , unlike the case

of the traditional Euler scheme where the distribution of x(0) does not change
with N . Moreover, for any fixed N , the “noise” process {�k,N } are not formed of
independent random variables. However, they are identically distributed (a station-
ary sequence) because the Metropolis algorithm preserves stationarity. To obtain
an invariance principle, we first use a version of the martingale central limit the-
orem (Proposition 4.1) to show that the noise process {�k,N }, when rescaled and
summed, converges weakly to a Brownian motion on C([0, T ], Hs) with covari-
ance operator Cs , for any T = O(1). We then use continuity of an appropriate Itô
map to deduce the desired result.

Before we proceed, we introduce some notation. Fix T > 0, and define

�t
def= 1/N, tk

def= k�t, ηk,N def= √
�t

k∑
l=1

�l,N(2.21)

and

WN(t)
def= η�Nt�,N + Nt − �Nt�√

N
��Nt�+1,N , t ∈ [0, T ].(2.22)

Let W(t), t ∈ [0, T ] be an Hs valued Brownian motion with covariance opera-
tor Cs . Using a martingale central limit theorem, we will prove the following
proposition in Section 4.

PROPOSITION 2.2. Let Assumptions 3.1 (below) hold. Let x0 ∼ πN . The pro-
cess WN(t) defined in (2.22) converges weakly to W in C([0, T ], Hs) as N tends
to ∞, where W is a Brownian motion in time with covariance operator Cs in Hs

and s is defined in Assumptions 3.1. Furthermore, the pair (x0,WN(t)) converges
weakly to (z0,W) where z0 ∼ π and Brownian motion W is independent of the
initial condition z0 almost surely.
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Using this invariance principle for the noise process and the fact that the noise
process is additive (the diffusion coefficient is constant), the invariance principle
for the Markov chain follows from a continuous mapping argument which we now
outline. For any (z0,W) ∈ Hs × C([0, T ]; Hs), we define the Itô map �: Hs ×
C([0, T ]; Hs) → C([0, T ]; Hs) by � : (z0,W) �→ z where z solves

z(t) = z0 − h(�)

∫ t

0

(
z(s) + C∇	(z(s))

)
ds + √

2h(�)W(t)(2.23)

for all t ∈ [0, T ] and h(�) = �2β is as defined in (1.4). Thus z = �(z0,W) solves
the SPDE (1.9) with h(�) = �2β . We will see in Lemma 3.7 that � is a continuous
map from Hs × C([0, T ]; Hs) into C([0, T ]; Hs).

We now define the piecewise constant interpolant of xk ,

z̄N (t) = xk for t ∈ [tk, tk+1).(2.24)

Set

dN(x)
def= NE0(x

1 − x).(2.25)

Note that dN(x) ≈ −h(�)mN(x). We can use z̄N to construct a continuous piece-
wise linear interpolant of xk by defining

zN(t) = z0 +
∫ t

0
dN(z̄N(s)) ds + √

2h(�)WN(t).(2.26)

Notice that dN(x) defined in (2.25) is a function which depends on arbitrary x = x0

and averages out the randomness in x1 conditional on fixing x = x0. We may then
evaluate this function at any x ∈ Hs and, in particular, at z̄N (s) as in (2.26). Use
of the stationarity of the sequence xk , together with equations (2.19), (2.21) and
(2.22), reveals that the definition (2.26) coincides with that given in (1.2). Using the
closeness of dN and −h(�)mN , of zN and z̄N and of mN and the desired limiting
drift, we will see that there exists a ŴN ⇒ W as N → ∞, such that

zN(t) = z0 − h(�)

∫ t

0

(
zN(s) + C∇	(zN(s))

)
ds + √

2h(�)ŴN(t),(2.27)

so that zN = �(z0, ŴN). By the continuity of � we will show, using the continu-
ous mapping theorem, that

zN = �(z0, ŴN) �⇒ z = �(z0,W) as N → ∞.(2.28)

It will be important to show that the weak limit of (z0, ŴN), namely (z0,W),
comprises of two independent random variables z0 (from the stationary distribu-
tion) and W .

The weak convergence in (2.28) is the principal result of this article and is stated
precisely in Theorem 3.6. To summarize, we have argued that the RWM is well
approximated by an Euler approximation of (1.9). The Euler approximation itself
can be seen as an approximate solution of (1.9) with a modified Brownian motion.
As N → ∞, all approximation errors go to zero in the appropriate sense and one
deduces that the RWM algorithm converges to the solution of (1.9).
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2.5. A framework for expected drift and diffusion. We now turn to the ques-
tion of how the RWM algorithm produces the appropriate drift and covariance
encapsulated in Proposition 2.1. This result, which shows that the algorithm (ap-
proximately) performs a noisy steepest ascent process, is at the heart of why the
Metropolis algorithm works. In the rest of this section we set up a framework
which will be used for deriving the expected drift and diffusion terms.

Recall the setup from Section 2. Starting from (2.11), after some algebra we
obtain

Q(x, ξ) = −
√

2�2

N
〈ζ, ξ 〉 − �2

N
‖ξ‖2 − r(x, ξ),(2.29)

where we have defined

ζ
def= C−1/2(P Nx) + C1/2∇	N(x),(2.30)

r(x, ξ)
def= 	N(y) − 	N(x) − 〈∇	N(x),P Ny − P Nx〉.(2.31)

REMARK 2.3. If x
D∼ π0 in Hs , then the random variable C−1/2x is not well

defined in Hs because C−1/2 is not a trace class operator. However, equation (2.30)
is still well defined because the operator C−1/2 acts only in XN for any fixed N .

Notice that C1/2ζ is approximately the drift term in the SPDE (1.9) and this
plays a key role in obtaining the mean drift from the accept/reject mechanism;
this point is elaborated on in the arguments leading up to (2.45). By (3.5) and
Assumptions 3.1, 3.4 on 	 and 	N below, we will obtain a global bound on the
remainder term of the form

|r(x, ξ)| ≤ M
�2

N
‖C1/2ξ‖2

s .(2.32)

Because of our assumptions on C in (3.1), the moments of ‖C1/2ξ‖2
s stay uni-

formly bounded as N → ∞. Hence, we will neglect this term to explain the heuris-

tic ideas. Since ξ = ∑N
i=1 ξiφi with ξi

D∼ N(0,1), we find that for fixed x,

Q(x, ξ) ≈ N
(
−�2,2�2 ‖ζ‖2

N

)
(2.33)

for large N (see Lemma 5.1). Since x
D∼ π , we have that C−1/2(P Nx) =∑N

k=1 ρjφj , where ρj are i.i.d. N(0,1). Much as with the term r(x, ξ) above, the
second term in expression (2.30) for ζ can be seen as a perturbation term which
is small in magnitude compared to the first term in (2.30) as N → ∞. Thus, as
shown in Lemma 5.2, we have ‖ζ‖2/N → 1 for π -a.e. ζ as N → ∞. Returning
to (2.33), this suggests that it is reasonable for N sufficiently large to make the
approximation

Q(x, ξ) ≈ N(−�2,2�2), π -a.s.(2.34)
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Much of this section is concerned with understanding the behavior of one step of
the RWM algorithm if we make the approximation in (2.34). Once this is under-
stood, we will retrace our steps being more careful to control the approximation
error leading to (2.34).

The following lemma concerning normal random variables will be critical to
identifying the source of the observed drift. It gives us the relation between the
constants in the expected drift and diffusion coefficients which ensures π invari-
ance, as will be seen later in this section.

LEMMA 2.4. Let Z�
D∼ N(−�2,2�2). Then P(Z� > 0) = E(eZ�1Z�<0) =

�(−�/
√

2) and

E(1 ∧ eZ�) = 2�
(−�/

√
2
) = β.(2.35)

Furthermore, if z
D∼ N(0,1) then

E[z(1 ∧ eaz+b)] = a exp(a2/2 + b)�

(
− b

|a| − |a|
)

(2.36)

for any real constants a and b.

PROOF. A straightforward calculation. See Lemma 2 in [4]. �

The calculations of the expected one step drift and diffusion needed to prove
Proposition 2.1 are long and technical. In order to enhance the readability, in the
next two sections we outline our proof strategy emphasizing the key calculations.

2.6. Heuristic argument for the expected drift. In this section, we will give
heuristic arguments which underly (2.14) from Proposition 2.1. Recall that
{φ1, φ2, . . .} is an orthonormal basis for H. Let xk

i , i ≤ N , denote the ith coordinate
of xk and CN denote the covariance operator on XN , the span of {φ1, φ2, . . . , φN }.
Also recall that Fk denotes the sigma algebra generated by {xn, ξn, γ n, n ≤ k} and
the conditional expectations E(·|Fk) are denoted by Ek(·). Thus E0(·) denotes the
expectation with respect to ξ1 and γ 1 with x0 fixed. Also, for notational conve-
nience, set x0 = x and ξ1 = ξ . Letting E

ξ
0 denote the expectation with respect to ξ ,

it follows that

NE0(x
1
i − x0

i ) = NE0
(
γ 1(y1

i − xi)
)

= NE
ξ
0

(
α(x, ξ)

√
2�2

N
(C1/2ξ)i

)
(2.37)

= λi

√
2�2NE

ξ
0(α(x, ξ)ξi)

= λi

√
2�2NE

ξ
0

((
1 ∧ eQ(x,ξ))ξi

)
.
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To approximately evaluate (2.37) using Lemma 2.4, it is easier to first factor
Q(x, ξ) into components involving ξi and those orthogonal (under E

ξ
0) to them.

To this end we introduce the following terms:

R(x, ξ)
def= −

√
2�2

N

N∑
j=1

ζj ξj − �2

N

N∑
j=1

ξ2
j ,(2.38)

Ri(x, ξ)
def= −

√
2�2

N

N∑
j=1,j �=i

ζj ξj − �2

N

N∑
j=1,j �=i

ξ2
j .(2.39)

Hence, for large N (see Lemma 5.5),

Q(x, ξ) = R(x, ξ) − r(x, ξ) = Ri(x, ξ) −
√

2�2

N
ζiξi − �2

N
ξ2
i − r(x, ξ)

= Ri(x, ξ) −
√

2�2

N
ζiξi + O

(
1

N

)
(2.40)

≈ Ri(x, ξ) −
√

2�2

N
ζiξi .

The important observation here is that conditional on x, the random variable
Ri(x, ξ) is independent of ξi . Hence, the expectation E

ξ
0((1 ∧ eQ(x,ξ))ξi) can be

computed by first computing it over ξi and then over ξ \ ξi . Let E
ξ−
i ,E

ξi denote
the expectation with respect to ξ \ ξi, ξi , respectively. Using the relation (2.40),

and applying (2.36) with a = −
√

2�2

N
ζi , z = ξi and b = Ri(x, ξ), we obtain (see

Lemma 5.6)

E
ξ
0

((
1 ∧ eQ(x,ξ))ξi

)
≈ −

√
2�2

N
ζiE

ξ−
i

0 eRi(x,ξ)+(�2/N)ζ 2
i �

( −Ri(x, ξ)√
2�2/N |ζi |

−
√

2�2

N
|ζi |

)
(2.41)

≈ −
√

2�2

N
ζiE

ξ−
i

0 eRi(x,ξ)+�2/Nζ 2
i �

( −Ri(x, ξ)√
2�2/N |ζi |

)
.

Now, again from the relation (2.40) and the approximation Q(x, ξ) encapsulated
in (2.33), it follows that for sufficiently large N

Ri(x, ξ) ≈ N(−�2,2�2), π -a.s.(2.42)
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Combining (2.41) with the fact that, for large enough N , �(−Ri(x, ξ)/

√
2�2

N
|ζi |) ≈

1Ri(x,ξ)<0, we see that Lemma 2.4 implies that (see Lemmas 5.7–5.10)

E
ξ−
i

0 eRi(x,ξ)+�2/Nζ 2
i �

( −Ri(x, ξ)√
2�2/N |ζi |

)
≈ E

ξ−
i

0

(
eRi(x,ξ)1Ri(x,ξ)<0

)
(2.43)

≈ EeZ�1Z�<0 = β/2,(2.44)

where Z�
D∼ N(−�2,2�2). Hence, from (2.37), (2.41) and (2.44), we gather that

for large N ,

NE0(x
1
i − x0

i ) ≈ −�2βλiζi.

To identify the drift, observe that since C−1/2 is self-adjoint and i ≤ N , we have
λiC

−1/2φi = φi and

λiζi = λi〈C−1/2(P Nx) + C1/2∇	N(x),φi〉
= λi〈C−1/2(P Nx) + C−1/2C∇	N(x),φi〉(2.45)

= 〈P Nx + CN∇	N(x),φi〉.
Hence, for large enough N , we deduce that (heuristically) the expected drift in the
ith coordinate after one step of the Markov chain {xk} is well approximated by the
expression

NE0(x
1
i − x0

i ) ≈ −�2β
(
P Nx + CN∇	N(x)

)
i .

This is an approximation of the drift term that appears in the SPDE (1.9). There-
fore, the above heuristic arguments show how the Metropolis algorithm achieves
the “change of measure” by mapping π0 to π . The above arguments can be made
rigorous by quantitatively controlling the errors made. In Section 5, we quantify
the size of the neglected terms and quantify the rate at which Q is well approxi-
mated by a Gaussian distribution. Using these estimates, in Section 5.2 we will re-
trace the arguments of this section paying attention to the cumulative error, thereby
proving (2.14) of Proposition 2.1.

2.7. Heuristic argument for the expected diffusion coefficient. We now give
the heuristic arguments for the expected diffusion coefficient, after one step of the
Markov chain {xk}. The arguments used here are much simpler than the drift cal-
culations. The strategy is the same as in the drift case except that now we consider
the covariance between two coordinates x1

i and x1
j . For 1 ≤ i, j ≤ N ,

NE0[(x1
i − x0

i )(x1
j − x0

j )]
= NE

ξ
0[(y1

i − xi)(y
1
j − xj )α(x, ξ)]

(2.46)
= NE

ξ
0

[
(y1

i − xi)(y
1
j − xj )

(
1 ∧ expQ(x, ξ)

)]
= 2�2

E
ξ
0

[
(C1/2ξ)i(C

1/2ξ)j
(
1 ∧ expQ(x, ξ)

)]
.
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Now notice that

E
ξ
0[(C1/2ξ)i(C

1/2ξ)j ] = λiλj δij ,

where δij = 1i=j . Similar to the calculations used when evaluating the expected
drift, we define

Rij (x, ξ)
def= −

√
2�2

N

N∑
k=1,k �=i,j

ζkξk − �2

N

N∑
k=1,k �=i,j

ξ2
k(2.47)

and observe that

R(x, ξ) = Rij (x, ξ) −
√

2�2

N
ζiξi − �2

N
ξ2
i −

√
2�2

N
ζjξj − �2

N
ξ2
j .

Hence, for sufficiently large N , we have Q(x, ξ) ≈ Rij (x, ξ). By replacing
Q(x, ξ) in (2.46) by Rij (x, ξ) we can take advantage of the fact that Rij (x, ξ)

is conditionally independent of ξi, ξj . However, the additional error term intro-

duced is easy to estimate because the function f (x)
def= (1 ∧ ex) is 1-Lipschitz. So,

for large enough N (Lemma 5.12),

E
ξ
0

[
(C1/2ξ)i(C

1/2ξ)j
(
1 ∧ expQ(x, ξ)

)]
≈ E

ξ
0

[
(C1/2ξ)i(C

1/2ξ)j
(
1 ∧ expRij (x, ξ)

)]
(2.48)

= λiλj δijE
ξ−
ij

0

[(
1 ∧ expRij (x, ξ)

)]
.

Again, as in the drift calculation, we have that

Rij (x, ξ) �⇒ N(−�2,2�2), π -a.s.

So by the dominated convergence theorem and Lemma 2.4,

lim
N→∞ E

ξ−
ij

[(
1 ∧ expRij (x, ξ)

)] = β.(2.49)

Therefore, for large N ,

NE0[(x1
i − x0

i )(x1
j − x0

j )] ≈ 2�2βλiλj δij = 2�2β〈φi,Cφj 〉
or in other words,

NE0[(x1 − x0) ⊗ (x1 − x0)] ≈ 2�2βCN.

As with the drift calculations in the last section, these calculations can be made
rigorous by tracking the size of the neglected terms and quantifying the rate at
which Q is approximated by the appropriate Gaussian. We will substantiate these
arguments Section 5.3.

3. Main theorem. In this section we state the assumptions we make on π0
and 	 and then prove our main theorem.
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3.1. Assumptions on 	 and C. The assumptions we make now concern (i) the
rate of decay of the standard deviations in the prior or reference measure π0 and
(ii) the properties of the Radon–Nikodym derivative (likelihood function). These
assumptions are naturally linked; in order for π to be well defined we require that
	 is π0-measurable and this can be achieved by ensuring that 	 is continuous on
a space which has full measure under π0. In fact, in a wide range of applications,
	 is Lipschitz on such a space [27]. In this paper we require, in addition, that
	 be twice differentiable in order to define the diffusion limit. This, too, may be
established in many applications. To avoid technicalities, we assume that 	(x) is
quadratically bounded, with first derivative linearly bounded and second derivative
globally bounded. A simple example of a function 	 satisfying the above assump-
tions is 	(x) = ‖x‖2

s .

ASSUMPTIONS 3.1. The operator C and functional 	 satisfy the following:

(1) Decay of eigenvalues λ2
i of C: There exist M−,M+ ∈ (0,∞) and κ > 1

2
such that

M− ≤ iκλi ≤ M+ ∀i ∈ Z+.(3.1)

(2) Assumptions on 	: There exist constants Mi ∈ R, i ≤ 4 and s ∈ [0, κ −1/2)

such that

M1 ≤ 	(x) ≤ M2(1 + ‖x‖2
s ) ∀x ∈ Hs,(3.2)

‖∇	(x)‖−s ≤ M3(1 + ‖x‖s) ∀x ∈ Hs,(3.3)

‖∂2	(x)‖L(Hs ,H−s ) ≤ M4 ∀x ∈ Hs .(3.4)

Notice also that the above assumptions on 	 imply that for all x, y ∈ Hs ,

|	(x) − 	(y)| ≤ M5(1 + ‖x‖s + ‖y‖s)‖x − y‖s,(3.5a)

	(y) = 	(x) + 〈∇	(x), y − x〉 + rem(x, y),(3.5b)

rem(x, y) ≤ M6‖x − y‖2
s(3.5c)

for some constants M5,M6 ∈ R+.

REMARK 3.2. The condition κ > 1
2 ensures that the covariance operator for

π0 is trace class. In fact, the Hr norm of a realization of a Gaussian measure
N(0,C) defined on H is almost surely finite if and only if r < κ − 1

2 [13]. Thus the
choice of Sobolev space Hs , with s ∈ [0, κ − 1

2) in which we state the assumptions
on 	 , is made to ensure that the Radon–Nikodym derivative of π with respect to
π0 is well defined. Indeed, under our assumptions, 	 is Lipschitz continuous on
a set of full π0 measure; it is hence π0-measurable. Weaker growth assumptions
on 	 , its Lipschitz constant and second derivative could be dealt with by use of
stopping time arguments.
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The following lemma will be used repeatedly.

LEMMA 3.3. Under Assumptions 3.1 it follows that, for all a ∈ R,

‖Cax‖ � ‖x‖−2κa.(3.6)

Furthermore, the function C∇	 : Hs → Hs is globally Lipschitz.

PROOF. The first result follows from the inequality

‖Cax‖2 =
∞∑

j=1

λ4a
j x2

j ≤ M+
∞∑

j=1

j−4aκx2
j = M+‖x‖2−2κa,

and a similar lower bound, using (3.1). To prove the global Lipschitz property we
first note that

∇	(u1) − ∇	(u2) = K(u1 − u2)
(3.7)

:=
∫ 1

0
∂2	

(
tu1 + (1 − t)u2

)
dt (u1 − u2).

Note that ‖K‖L(Hs ,H−s ) ≤ M4 by (3.4). Thus,∥∥C(∇	(u1) − ∇	(u2)
)∥∥

s

≤ M‖C1−s/2κK(u1 − u2)‖
≤ M‖C1−s/2κKCs/2kC−s/2k(u1 − u2)‖
≤ M‖C1−s/2κKCs/2k‖L(H,H)‖u1 − u2‖s

≤ M‖C1−s/2κ‖L(H−s ,H)‖K‖L(Hs ,H−s )‖Cs/2k‖L(H,Hs )‖u1 − u2‖s .

The three linear operators are bounded between the appropriate spaces, in the case
of C1−s/2κ by using the fact that s < κ − 1

2 implies s < κ . �

3.2. Finite-dimensional approximation of the invariant distribution. For sim-
plicity we assume throughout this paper that 	N(·) = 	(P N ·). We note again that
∇	N(x) = P N∇	(P Nx) and ∂2	N(x) = P N∂2	(P Nx)P N . Other approxima-
tions could be handled similarly. The function 	N may be shown to satisfy the
following.

ASSUMPTIONS 3.4 (Assumptions on 	N ). The functions 	N :XN �→ R sat-
isfy the same conditions imposed on 	 given by equations (3.2), (3.3) and (3.4)
with the same constants uniformly in N .

It is straightforward to show that the above assumptions on 	N imply that the
sequence of measures {πN } converges to π in the Hellinger metric (see [12]).
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Therefore, the measures {πN } are good candidates for finite-dimensional approxi-
mations of π . Furthermore, the normalizing constants M	N are uniformly bounded
and we use this fact to obtain uniform bounds on moments of functionals in H un-
der πN .

LEMMA 3.5. Under the Assumptions 3.4 on 	N ,

sup
N∈N

M	N < ∞

and for any measurable functional f : H �→ R, and any p ≥ 1,

sup
N∈N

E
πN |f (x)|p ≤ ME

π0 |f (x)|p.(3.8)

PROOF. By definition,

M−1
	N =

∫
H

exp{−	N(x)}π0(dx) ≥
∫

H
exp{−M(1 + ‖x‖2

s )}π0(dx)

≥ e−2M
P

π0(‖x‖s ≤ 1)

and therefore, if inf{M−1
	N :N ∈ N} > 0, then sup{M	N :N ∈ N} < ∞. Hence, for

any f : H �→ R,

sup
N∈N

E
πN |f (x)|p ≤ sup

N∈N

M	N E
π0

(
e−	N(x)|f (x)|p) ≤ ME

π0 |f (x)|p

proving the lemma. �

The uniform estimate given in (3.8) will be used repeatedly in the sequel.

3.3. Statement and proof of the main theorem. The assumptions made above
allow us to fully state the main result of this article, as outlined in Section 2.4.

THEOREM 3.6. Let the Assumptions 3.1, 3.4 hold. Let the initial condition

x0 of the RWM algorithm be such that x0 D∼ πN and let zN(t) be a piecewise
linear, continuous interpolant of the RWM algorithm (2.12) as defined in (1.2).
Then zN(t) converges weakly in C([0, T ], Hs) to the diffusion process z(t) given

by (1.9) with z(0)
D∼ π .

Throughout the remainder of the paper we assume that Assumptions 3.1, 3.4
hold, without explicitly stating this fact. The proof of Theorem 3.6 is given below
and relies on Proposition 2.1 stated above and proved in Section 5, Proposition 2.2
stated above and proved in Section 4 and Lemma 3.7 which we now state and then
prove at the end of this section.
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LEMMA 3.7. Fix any T > 0, any z0 ∈ Hs and any W ∈ C([0, T ], Hs). Then
the integral equation (2.23) has a unique solution z ∈ C([0, T ], Hs). Furthermore,
z = �(z0,W) where �: Hs × C([0, T ]; Hs) → C([0, T ]; Hs) as defined in (2.23)
is continuous.

PROOF OF THEOREM 3.6. We begin by tracking the error in the Euler ap-

proximation argument. As before, let x0 D∼ πN and assume x(0) = x0. Returning
to (2.19), using the definitions from (2.16) and Proposition 2.1, produces

xk+1 = xk + Ek(x
k+1 − xk) +

√
2�2β

N
�k+1,N ,(3.9)

xk+1 = xk + 1

N
dN(xk) +

√
2�2β

N
�k+1,N(3.10)

= xk − �2β

N
mN(xk) +

√
2�2β

N
�k+1,N + rk+1,N

N
,(3.11)

where dN(·) is defined as in (2.25) and rk+1,N as in (2.17). By construction,
Ek(�

k+1,N ) = 0 and

Ek(�
k+1,N ⊗ �k+1,N )

= N

2�2β

[
Ek

(
(xk+1 − xk) ⊗ (xk+1 − xk)

)
(3.12)

− Ek(x
k+1 − xk) ⊗ Ek(x

k+1 − xk)
]

= CN + 1

2�2β
Ek+1,N − N

2�2β
[Ek(x

k+1 − xk) ⊗ Ek(x
k+1 − xk)],

where Ek+1,N is as given in (2.18).
Recall tk given by (2.21) and WN , the linear interpolant of a correctly scaled

sum of the �k,N , given by (2.22). We now define ŴN so that (2.27) holds as stated
and hence, �(ŴN) = zN . Define

rN
1 (t)

def= rk+1,N for t ∈ [tk, tk+1),

rN
2 (s)

def= �2β
(
zN(s) + C∇	(zN(s)) − mN(z̄N(s))

)
,

where rk+1,N (·) is given by (2.17), mN is from (2.16), z̄N from (2.24) and zN from
(2.26). If

ŴN(t)
def= WN(t) + (

1/

√
2�2β

)
eN(t)
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with eN(t) = ∫ t
0 (rN

1 (u) + rN
2 (u)) du, then (2.27) holds. To see this, observe from

(2.26) that

zN(t) = z0 +
∫ t

0
dN(z̄N(u)) du +

√
2�2βWN(t)

= z0 − �2β

∫ t

0
mN(z̄N(u)) du +

∫ t

0
rN

1 (s) ds +
√

2�2βWN(t)

= z0 − �2β

∫ t

0

(
zN(u) + C∇	(zN(u))

)
du +

∫ t

0

(
rN

1 (s) + rN
2 (s)

)
ds

+
√

2�2βWN(t)

= z0 − �2β

∫ t

0

(
zN(u) + C∇	(zN(u))

)
du +

√
2�2βŴN(t)

and hence, with this definition of ŴN , (2.27) holds.
Furthermore, we claim that

lim
N→∞ E

πN
(

sup
t∈[0,T ]

‖eN(t)‖2
s

)
= 0.(3.13)

To prove this, notice that

sup
t∈[0,T ]

‖eN(t)‖2
s ≤ M

(
sup

t∈[0,T ]

∫ t

0
‖rN

1 (u)‖2
s du + sup

t∈[0,T ]

∫ t

0
‖rN

2 (u)‖2
s du

)
.

Also

E
πN

sup
t∈[0,T ]

∫ t

0
‖rN

1 (u)‖2
s du

≤ E
πN

∫ T

0
‖rN

1 (u)‖2
s du ≤ M

1

N
E

πN
N∑

k=1

‖rk,N‖2
s

= ME
πN ‖r1,N‖2

s

N→∞−→ 0,

where we used stationarity of rk,N and (2.14) from Proposition 2.1 in the last
step. We now estimate the second term similarly to complete the proof. Recall that
the function z �→ z + C∇	(z) is Lipschitz on Hs by Lemma 3.3. Note also that
CN∇	N(·) = CP N∇	(P N ·). Thus,

‖rN
2 (u)‖s ≤ M‖zN(u) − P Nz̄N(u)‖s + ‖C(I − P N)∇	(P Nz̄N(u))‖s

≤ M
(‖zN(u) − z̄N (u)‖s + ‖(I − P N)z̄N(u)‖s

)
+ ‖(I − P N)C∇	(P Nz̄N(u))‖s .

But for any u ∈ [tk, tk+1), we have

‖zN(u) − z̄N (u)‖s ≤ ‖xk+1 − xk‖s ≤ ‖yk+1 − xk‖s .



906 J. C. MATTINGLY, N. S. PILLAI AND A. M. STUART

This follows from the fact that z̄N (u) = xk and zN(u) = 1
�t

((u− tk)xk+1 +(tk+1 −
u)xk), because xk+1 − xk = γ k+1(yk+1 − xk) and |γ k+1| ≤ 1. For u ∈ [tk, tk+1),
we also have

‖(P N − I )z̄N(u)‖s = ‖(P N − I )xk‖s = ‖(P N − I )x0‖s,

because xk is not updated in Hs \ XN , and

‖(P N − I )C∇	(P Nz̄N(u))‖s = ‖(P N − I )C∇	(P Nxk)‖s .

Hence, we have by stationarity that, for all u ∈ [0, T ],
E

π‖rN
2 (u)‖2

s ≤ ME
π‖y1 − x0‖2

s

+ ME
π (‖(P N − I )x0‖2

s + ‖(P N − I )C∇	(P Nx0)‖2
s

)
.

Equation (2.12) shows that E
π‖y1 − x0‖2

s ≤ MN−1. The definition of P N gives
E

π‖(P N − I )x‖2
s ≤ N−(r−s)

E
π‖x‖2

r for any r ∈ (s, κ − 1/2). Note that E
π‖x0‖2

r

is finite for r ∈ (s, κ − 1/2) by Lemma 3.5 and the properties of π0. Similarly, we
have that for r ≤ 2κ − s < κ + 1

2 ,

E‖C∇	(P Nx0)‖2
r ≤ ME

∥∥C1−(r+s)/2κ
∥∥

L(H,H)‖∇	(P Nx0)‖2−s

≤ ME(1 + ‖x0‖2
s ).

Hence, we deduce that E
πN ‖rN

2 (u)‖2
s → 0 uniformly for u ∈ [0, T ]. It follows that

E
πN

sup
t∈[0,T ]

∫ t

0
‖rN

2 (u)‖2
s du ≤ E

πN
∫ T

0
‖rN

2 (u)‖2
s du ≤

∫ T

0
E

πN ‖rN
2 (u)‖2

s du → 0

and we have proved the claim concerning eN made in (3.13).
The proof concludes with a straightforward application of the continuous map-

ping theorem. Let ŴN = WN + 1√
2�2β

eN . Let  denote the probability space

generating the Markov chain in stationarity. We have shown that eN → 0 in
L2(;C([0, T ], Hs)) and by Proposition 2.2, WN converges weakly to W a Brow-
nian motion with covariance operator Cs in C([0, T ], Hs). Furthermore, we also
have that W is independent of z0. Thus (z0, ŴN) converges weakly to (z0,W) in
Hs × C([0, T ], Hs), with z0 and W independent. Notice that zN = �(z0, ŴN),
where � is defined as in Lemma 3.7. Since � is a continuous map by Lemma 3.7,
we deduce from the continuous mapping theorem that the process zN converges
weakly in C([0, T ], Hs) to z with law given by �(z0,W). Since W is independent
of z0, this is precisely the law of the SPDE given by (1.9). �

PROOF OF LEMMA 3.7. Consider the mapping z(n) �→ z(n+1) defined by

z(n+1)(t) = z0 − h(�)

∫ t

0

(
z(n)(s) + C∇	

(
z(n)(s)

))
ds + √

2h(�)W(t)

for arbitrary z0 ∈ H and W ∈ C([0, T ]; Hs). Recall from Lemma 3.3 that z �→
z + C∇	(z) is globally Lipschitz on Hs . It is then a straightforward application
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of the contraction mapping theorem to show that this mapping has a unique fixed
point in C([0, T ]; Hs), for T sufficiently small. Repeated application of the same
idea extends this existence and uniqueness result to arbitrary time-intervals. Let zi

solve (2.23) with (z0,W) = (wi,Wi), i = 1,2. Subtracting the two equations and
using the fact that z �→ z + C∇	(z) is globally Lipschitz on Hs gives

‖z1(t) − z2(t)‖s ≤ ‖w1 − w2‖s + M

∫ t

0
‖z1(s) − z2(s)‖s ds

+
√

2�2β‖W1(t) − W2(t)‖s .

Thus,

sup
0≤t≤T

‖z1(t) − z2(t)‖s ≤ ‖w1 − w2‖s + M

∫ T

0
sup

0≤τ≤s

‖z1(τ ) − z2(τ )‖s ds

+
√

2�2β sup
0≤t≤T

‖W1(t) − W2(t)‖s .

The Gronwall lemma gives continuity in the desired spaces. �

4. Weak convergence of the noise process: Proof of Proposition 2.2.
Throughout, we make the standing Assumptions 3.1, 3.4 without explicit men-
tion. The proof of Proposition 2.2 uses the following result concerning triangular
martingale increment arrays. The result is similar to the classical results on trian-
gular arrays of independent increments.

Let kN : [0, T ] → Z+ be a sequence of nondecreasing, right-continuous func-
tions indexed by N with kN(0) = 0 and kN(T ) ≥ 1. Let {Mk,N, F k,N }0≤k≤kN (T )

be an Hs valued martingale difference array. That is, for k = 1, . . . , kN(T ),
we have E(Mk,N |F k−1,N ) = 0, E(‖Mk,N‖2

s |F k−1,N ) < ∞ almost surely, and
F k−1,N ⊂ F k,N . We will make use of the following result.

PROPOSITION 4.1 ([3], Proposition 5.1). Let S : Hs → Hs be a self-adjoint,
positive definite, operator with finite trace. Assume that, for all x ∈ Hs, ε > 0 and
t ∈ [0, T ], the following limits hold in probability:

lim
N→∞

kN (T )∑
k=1

E(‖Mk,N‖2
s |F k−1,N ) = T trace(S),(4.1)

lim
N→∞

kN (t)∑
k=1

E(〈Mk,N, x〉2
s |F k−1,N ) = t〈Sx, x〉s,(4.2)

lim
N→∞

kN (T )∑
k=1

E
(〈Mk,N, x〉2

s 1|〈Mk,N ,x〉s |≥ε |F k−1,N ) = 0.(4.3)

Define a continuous time process WN by WN(t) = ∑kN (t)
k=1 Mk,N if kN(t) ≥ 1 and

kN(t) > limr→0+ kN(t − r), and by linear interpolation otherwise. Then the se-
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quence of random variables WN converges weakly in C([0, T ], Hs) to an Hs

valued Brownian motion W , with W(0) = 0, E(W(T )) = 0, and with covariance
operator S.

REMARK 4.2. The first two hypotheses of the above theorem ensure the weak
convergence of finite-dimensional distributions of WN(t) using the martingale
central limit theorem in R

N ; the last hypothesis is needed to verify the tightness
of the family {WN(·)}. As noted in [11], the second hypothesis [equation (4.2)] of
Proposition 4.1 is implied by

lim
N→∞

kN (t)∑
k=1

E(〈Mk,N, en〉s〈Mk,N, em〉s |F k−1,N ) = t〈Sen, em〉s(4.4)

in probability, where {en} is any orthonormal basis for Hs . The third hypothesis in
(4.3) is implied by the Lindeberg type condition,

lim
N→∞

kN (T )∑
k=1

E
(‖Mk,N‖2

s 1‖Mk,N‖s≥ε |F k−1,N ) = 0(4.5)

in probability, for any fixed ε > 0.

Using Proposition 4.1 we now give the proof of Proposition 2.2.

PROOF OF PROPOSITION 2.2. We apply Proposition 4.1 with kN(t)
def= �Nt�,

Mk,N def= 1√
N

�k,N and S
def= Cs ; the resulting definition of WN(t) from Proposi-

tion 4.1 coincides with that given in (2.22). We set F k,N to be the sigma algebra
generated by {xj , ξ j }j≤k with x0 ∼ πN . Since the chain is stationary, the noise
process {�k,N ,1 ≤ k ≤ N} is identically distributed, and so are the errors rk,N and
Ek,N from (2.17) and (2.18), respectively. We now verify the three hypotheses re-
quired to apply Proposition 4.1. We generalize the notation E

ξ
0(·) from Section 2.6

and set E
ξ (·|F k,N) = E

ξ
k(·).

• Condition (4.1). It is enough to show that

lim
N→∞ E

πN

∣∣∣∣∣ 1

N

�NT �∑
k=1

E
ξ
k−1(‖�k,N‖2

s ) − trace(Cs)

∣∣∣∣∣ = 0

and condition (4.1) will follow from Markov’s inequality. By (3.12) and (2.2),

E
ξ
0(‖�1,N‖2

s ) =
N∑

j=1

E
ξ
0(‖B1/2

s �1,N‖2) =
N∑

j=1

E
ξ
0〈�1,N ,B1/2

s φj 〉2

=
N∑

j=1

E
ξ
0〈B1/2

s φj ,�
1,N ⊗ �1,NB1/2

s φj 〉(4.6)
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= trace(CN
s ) + 1

2�2β

N∑
j=1

〈φj ,E
1,Nφj 〉s

(4.7)

− N

2�2β
‖E0(x

1 − x0)‖2
s .

By Proposition 2.1 it follows that E
πN |∑N

j=1〈φj ,E
1,Nφj 〉s | → 0. For the third

term, notice that by Proposition 2.1 (2.14) we have

E
πN N

2�2β
‖E0(x

1 − x0)‖2
s ≤ M

1

N
E

πN (‖mN(x0)‖2
s + ‖r1,N‖2

s

)
≤ M

1

N

(
E

πN

(1 + ‖x0‖s)
2 + E

πN ‖r1,N‖2
s

)
(4.8)

→ 0,

where the second inequality follows from the fact that C∇	 is globally Lips-
chitz in Hs . Also {Ek,N } is a stationary sequence. Therefore,

E
πN

∣∣∣∣∣ 1

N

�NT �∑
k=1

E
ξ
k−1(‖�k,N‖2

s ) − T trace(CN
s )

∣∣∣∣∣
≤ ME

πN

(∣∣∣∣∣
N∑

j=1

〈φj ,E
1,Nφj 〉s

∣∣∣∣∣ + N

2�2β
‖E0(x

1 − x0)‖2
s

)

+ trace(CN
s )

∣∣∣∣�NT �
N

− T

∣∣∣∣ → 0.

Condition (4.1) now follows from the fact that

lim
N→∞|trace(Cs) − trace(CN

s )| = 0.

• Condition (4.2). By Remark 4.2, it is enough to verify (4.4). To show (4.4), using
stationarity and similar arguments used in verifying condition (4.1), it suffices
to show that

lim
N→∞ E

πN |Eξ
0(〈�1,N , φ̂n〉s〈�1,N , φ̂m〉s) − 〈φ̂n,C

N
s φ̂m〉s | = 0,(4.9)

where {φ̂k} is as defined in (2.7). We have

E
πN |Eξ

0(〈�1,N , φ̂n〉s〈�1,N , φ̂m〉s) − 〈φ̂n,C
N
s φ̂m〉s |

= n−sm−s
E

πN |Eξ
0(〈�1,N ,φn〉s〈�1,N ,φm〉s) − 〈φn,C

N
s φm〉s |

and therefore, it is enough to show that

lim
N→∞ E

πN |Eξ
0(〈�1,N ,φn〉s〈�1,N ,φm〉s) − 〈φn,C

N
s φm〉s | = 0.(4.10)
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Indeed we have

〈�1,N ,φn〉s〈�1,N ,φm〉s = 〈�1,N ,Bsφn〉〈�1,N ,Bsφm〉
= 〈Bsφn,�

1,N ⊗ �1,NBsφm〉
= 〈φn,B

1/2
s �1,N ⊗ �1,NB1/2

s φm〉s
and from (3.12) and Proposition 2.1 we obtain

〈φn,B
1/2
s �1,N ⊗ �1,NB1/2

s φm〉s − 〈φn,C
N
s φm〉s

= 〈φn,B
1/2
s �1,N ⊗ �1,NB1/2

s φm〉s − 〈φn,B
1/2
s CNB1/2

s φm〉s
= nsms〈φn,E

1,Nφm〉s − N

2�2β
E0(〈x1 − x0, φn〉s)E0(〈x1 − x0, φm〉s).

From Proposition 2.1, it follows that limN→∞ E
πN |〈φn,E

1,Nφm〉s | = 0. Also
notice that

N2[EπN |E0(〈x1 − x0, φn〉s)E0(〈x1 − x0, φm〉s)|]2

≤ ME
πN (

N‖E0(x
1 − x0)‖2

s‖φn‖2
s

)
E

πN (
N‖E0(x

1 − x0)‖2
s‖φm‖2

s

)
→ 0

by the calculation done in (4.8). Thus (4.10) holds and since |〈φn,Csφm〉s −
〈φn,C

N
s φm〉s | → 0, equation (4.2) follows from Markov’s inequality.

• Condition (4.3). From Remark 4.2 it follows that verifying (4.5) suffices to es-
tablish (4.3).

To verify (4.5), notice that for any ε > 0,

E
πN

∣∣∣∣∣ 1

N

�NT �∑
k=1

E
ξ
k−1

(‖�k,N‖2
s 1{‖�k,N‖2

s≥εN}
)∣∣∣∣∣

≤ �NT �
N

E
πN (‖�1,N‖2

s 1{‖�1,N‖2
s≥εN}

) → 0

by the dominated convergence theorem since

lim
N→∞ E

πN ‖�1,N‖2
s = trace(Cs) < ∞.

Thus (4.5) is verified.

Thus we have verified all three hypotheses of Proposition 4.1, proving that WN(t)

converges weakly to W(t) in C([0, T ]; Hs).
Recall that XR ⊂ Hs denotes the R-dimensional subspace P R Hs . To prove

the second claim of Proposition 2.2, we need to show that (x0,WN(t)) converges
weakly to (z0,W(t)) in (Hs,C([0, T ]; Hs)) as N → ∞ where z0 ∼ π and z0 is
independent of the limiting noise W . For showing this, it is enough to show that
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for any R ∈ N, the pair (x0,P RWN(t)) converges weakly to (z0,ZR) for every
t > 0, where ZR is a Gaussian random variable on XR with mean zero, covariance
tP RCsP

R and independent of z0. We will prove this statement as the corollary of
the following lemma.

LEMMA 4.3. Let x0 ∼ πN and let {θk,N } be any stationary martingale se-
quence adapted to the filtration {F k,N } and furthermore, assume that there exists
a stationary sequence {Uk,N } such that for all k ≥ 1 and any u ∈ XR :

(1) E
ξ
k−1|〈u,P Rθk,N 〉s |2 = 〈u,P RCsu〉s + Uk,N , limN→∞ E

πN |U1,N | = 0.

(2) E
ξ
k−1‖θk,N‖3

s ≤ M .

Then for any t ∈ Hs , u ∈ XR , R ∈ N and t > 0,

lim
N→∞ E

πN (
ei〈t,x0〉s+(i/

√
N)

∑�Nt�
k=1 〈u,P Rθk,N 〉s )

(4.11)
= E

π (
ei〈t,z0〉s−(t/2)〈u,P RCsu〉s ).

Note: Here and in Corollary 4.4, i = √−1.

PROOF OF LEMMA 4.3. We show (4.11) for t = 1, since the calculations are
nearly identical for an arbitrary t with minor notational changes. Indeed, we have

E
πN (

ei〈t,x0〉s+(i/
√

N)
∑N

k=1〈u,P Rθk,N 〉s )
= E

πN (
E

ξ
N−1

(
ei〈t,x0〉s+(i/

√
N)

∑N
k=1〈u,P Rθk,N 〉s )).

By Taylor’s expansion,

E
πN (

E
ξ
N−1

(
ei〈t,x0〉s+(i

√
N)

∑N
k=1〈u,P Rθk,N 〉s ))

= E

[
ei〈t,x0〉s+(i/

√
N)

∑N−1
k=1 〈u,P Rθk,N 〉s

(4.12)

×
(

1 − 1

2N
E

ξ
N−1|〈u,P RθN,N 〉s |2

+ M

(
1

N3/2 V N ∧ 2
))]

,

where |V N | ≤ E
ξ
N−1|〈u,P RθN,N 〉s |3 ≤ M , since by assumption E

ξ
N−1‖θN,N‖3

s ≤
M . We also have that

E
ξ
N−1|〈u,P RθN,N 〉s |2 = 〈u,P RCsu〉s + UN,N,

lim
N→∞ E

πN |UN,N | = 0.
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Thus from (4.12) we deduce that

E
πN (

ei〈t,x0〉s+(i/
√

N)
∑N

k=1〈u,P Rθk,N 〉s )
= E

πN
[
ei〈t,x0〉s+(i/

√
N)

∑N−1
k=1 〈u,P Rθk,N 〉s

(
1 − 1

2N
〈u,P RCsu〉s

)]
+ SN,(4.13)

|SN | ≤ ME
πN

(
1

2N
|UN,N | + 1

N3/2 |V N |
)

= M
1

N
E

πN
(
|UN,N | + 1√

N

)
.

Proceeding recursively we obtain

E
πN (

ei〈t,x0〉s+(i/
√

N)
∑N

k=1〈u,P Rθk,N 〉s )
= E

πN
[
ei〈t,x0〉s

(
1 − 1

2N
〈u,P RCsu〉s

)N]
+

N∑
k=1

Sk.

By the stationarity of {Uk,N } and the fact that E
π |Uk,N | → 0 as N → ∞, from

(4.13) it follows that

N∑
k=1

|Sk| ≤ M

N∑
k=1

1

N

(
E

πN |Uk| + 1√
N

)
≤ M

(
E

πN |U1| + 1√
N

)
→ 0.

Thus we have shown that

E
πN

[
ei〈t,x0〉s

(
1 − 1

2N
〈u,P RCsu〉s

)N]
= E

πN [
ei〈t,x0〉s−(1/2)〈u,P RCsu〉s ] + o(1),

and the result follows from the fact that E
πN [ei〈t,x0〉s ] → E

π [ei〈t,z0〉s ], finishing
the proof of Lemma 4.3. �

As a corollary of Lemma 4.3, we obtain the following.

COROLLARY 4.4. The pair (x0,WN) converges weakly to (z0,W) in C([0,

T ]; Hs) where W is a Brownian motion with covariance operator Cs and is inde-
pendent of z0 almost surely.

PROOF. As mentioned before, it is enough to show that for any t ∈ Hs , u ∈
XR , R ∈ N and t > 0,

lim
N→∞ E

πN (
ei〈t,x0〉s+(i/

√
N)

∑�Nt�
k=1 〈u,P R�k,N 〉s )

(4.14)
= E

π (
ei〈t,z0〉s−(t/2)〈u,P RCsu〉s ).
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Now we verify the conditions of Lemma 4.3 to show (4.14). To verify the first
hypothesis of Lemma 4.3, notice that from Proposition 2.1 we obtain that for k ≥ 1,

E
ξ
k−1|〈u,P R�k,N 〉s |2 = E

ξ
k−1〈Bsu,P R�k,N ⊗ �k,NBsu〉

= 〈u,P RCsu〉s + Uk,N,

|Uk,N | ≤ 1

2�2β
M

R∧N∑
l,j=1

uluj |〈φl,P
MEk,Nφj 〉s |

+ N

2�2β
‖E

ξ
k−1(x

k − xk−1)‖2
s‖u‖2

s

+ |〈u,P RCN
s u〉s − 〈u,P RCsu〉s |,

where {Ek,N } is as defined in (2.18). Because {�k,N } is stationary, we deduce that
{Uk,N } is stationary. From Proposition 2.1 we obtain

lim
N→∞

R∧N∑
l,j=1

E
πN |〈φl,P

MEk,Nφj 〉s | = 0

and E
πN N

2�2β
‖E

ξ
k−1(x

k − xk−1)‖2
s → 0 by the calculation in (4.8). Thus we have

shown that E
π |U1,N | → 0 as N → ∞. The second hypothesis of Lemma 4.3 is

easily verified since E
ξ
k−1‖�k,N‖3

s ≤ ME
ξ
k−1‖C1/2ξk‖3

s ≤ M . Thus the corollary
follows from Lemma 4.3. �

Thus we have shown that (x0,WN) converges weakly to (z0,W) where W is a
Brownian motion in Hs with covariance operator Cs , and by the above corollary
we see that W is independent of x0 almost surely, proving the two claims made in
Proposition 2.2 and the proof is complete. �

5. Mean drift and diffusion: Proof of Proposition 2.1. To prove this key
proposition we make the standing Assumptions 3.1, 3.4 from Section 3.1 without
explicit statement of this fact within the individual lemmas. We start with several
preliminary bounds and then consider the drift and diffusion terms, respectively.

5.1. Preliminary estimates. Recall the definitions of R(x, ξ), Ri(x, ξ) and
Rij (x, ξ) from equations (2.38), (2.39) and (2.47), respectively. These quantities
were introduced so that the term in the exponential of the acceptance probability
Q(x, ξ) could be replaced with Ri(x, ξ) and Rij (x, ξ) to take advantage of the fact
that, conditional on x, Ri(x, ξ) is independent of ξi and Rij (x, ξ) is independent
of ξi, ξj . In the next lemma, we estimate the additional error due to this replace-

ment of Q(x, ξ). Recall that E
ξ
0 denotes expectation with respect to ξ = ξ0 as in

Section 2.2.
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LEMMA 5.1.

E
ξ
0|Q(x, ξ) − Ri(x, ξ)|2 ≤ M

N
(1 + |ζi |2),(5.1)

E
ξ
0

(
Q(x, ξ) − Rij (x, ξ)

)2 ≤ M

N
(1 + |ζi |2 + |ζj |2).(5.2)

PROOF. Since ξj are i.i.d. N(0,1), using (2.1) and (3.1), we obtain that

E‖C1/2ξ‖4
s ≤ 3(E‖C1/2ξ‖2

s )
2 ≤ M

( ∞∑
j=1

j2s−2k

)2

< ∞(5.3)

since s < k − 1
2 .

Starting from (2.40), the estimates in (2.32) and (5.3) imply that

E
ξ
0|Q(x, ξ) − Ri(x, ξ)|2 ≤ M

(
E

ξ
0|r(x, ξ)|2 + 1

N
E

ξ
0ζ

2
i ξ2

i + 1

N2 Eξ4
i

)
≤ M

(
1

N2 E‖C1/2ξ‖4
s + 1

N
ζ 2
i + 3

N2

)
≤ M

1

N
(1 + ζ 2

i )

verifying the first part of the lemma. A very similar argument for the second part
finishes the proof. �

The random variables R(x, ξ), Ri(x, ξ) and Rij (x, ξ) are approximately Gaus-
sian random variables. Indeed it can be readily seen that

R(x, ξ) ≈ N
(
−�2,2

�2

N
‖ζ‖2

)
.

The next lemma contains a crucial observation. We show that the sequence of ran-

dom variables {‖ζ‖2

N
} converges to 1 almost surely under both π0 and π . Thus

R(x, ξ) converges almost surely to Z�
def= N(−�2,2�2) and thus the expected ac-

ceptance probability Eα(x, ξ) = 1 ∧ eQ(x,ξ) converges to β = E(1 ∧ eZ�).

LEMMA 5.2. As N → ∞ we have

1

N
‖ζ‖2 → 1, π0-a.s. and

1

N
‖ζ‖2 → 1, π-a.s.(5.4)

Furthermore, for any m ∈ N, α ≥ 2, s < κ − 1
2 and for any c ≥ 0,

lim sup
N∈N

E
πN

N∑
j=1

λα
j j2s |ζj |me(c/N)‖ζ‖2

< ∞.(5.5)
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Finally, we have

lim
N→∞ E

πN
(∣∣∣∣1 − 1

N
‖ζ‖2

∣∣∣∣2)
= 0.(5.6)

PROOF. The proof proceeds by showing the conclusions first in the case when

x
D∼ π0; this is easier because the finite-dimensional distributions are Gaussian and

by Fernique’s theorem x has exponential moments. Next we notice that the almost
sure properties are preserved under the change of measure π . To show the con-
vergence of moments, we use our hypothesis that the Radon–Nikodym derivative
dπN

dπ0
is bounded from above independently of N , as shown in Lemma 3.5, equa-

tion (3.8).

Indeed, first let x
D∼ π0. Recall that ζ = C−1/2(P Nx) + C1/2∇	N(x) and

‖∇	N(x)‖−s ≤ M3(1 + ‖x‖s).(5.7)

Using (3.6) and the fact that s < κ − 1
2 so that −κ < −s, we deduce that

‖C1/2∇	N(x)‖ � ‖∇	N(x)‖−κ

≤ ‖∇	N(x)‖−s

≤ M(1 + ‖x‖s)

uniformly in N . Also, since x is Gaussian under π0, from (2.4), we may write
C−1/2(P Nx) = ∑N

k=1 ρkφk , where ρk are i.i.d. N(0,1). Note that

1

N
‖ζ‖2 = 1

N
‖C−1/2(P Nx) + C1/2∇	N(x)‖2

= 1

N

(‖C−1/2(P Nx)‖2 + 2〈C−1/2(P Nx),C1/2∇	N(x)〉
+ ‖C1/2∇	N(x)‖2)

(5.8)

= 1

N

(‖C−1/2(P Nx)‖2 + 2〈P Nx,∇	N(x)〉 + ‖C1/2∇	N(x)‖2)
= 1

N

N∑
k=1

ρ2
k + γ,

where

|γ | ≤ 1

N

(
2‖x‖s‖∇	N(x)‖−s + ‖C1/2∇	N(x)‖2)

(5.9)

≤ M

N

(
2‖x‖s(1 + ‖x‖s) + (1 + ‖x‖s)

2)
.
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Under π0, we have ‖x‖s < ∞ a.s., for s < κ − 1
2 and hence, by (5.9), we conclude

that |γ | → 0 almost surely as N → ∞. Now, by the strong law of large num-
bers, 1

N

∑N
k=1 ρ2

k → 1 almost surely. Hence, from (5.8) we obtain that under π0,
limN→∞ 1

N
‖ζ‖2 = 1 almost surely, proving the first equation in (5.4). Now the

second equation in (5.4) follows by noting that almost sure limits are preserved
under a (absolutely continuous) change of measure.

Next, notice that by (5.8) and the Cauchy–Schwarz inequality, for any c > 0,(
E

π0e(c/N)‖ζ‖2)2 ≤ (
E

π0e(2c/N)
∑

ρ2
k
)
(Eπ0e2cγ )

≤ (
E

π0e(2c/N)
∑

ρ2
k
)(

E
π0e(M/N)‖x‖2

s
)
.

Using the fact that
∑N

k=1 ρ2
k has chi-squared distribution with N degrees of free-

dom gives(
E

π0e(c/N)‖ζ‖2)2 ≤ Me−(N/2) log(1−4c/N)(
E

π0e(M/N)‖x‖2
s
) ≤ M,(5.10)

where the last inequality follows from Fernique’s theorem since E
π0e(M/N)‖x‖2

s <

∞ for sufficiently large N . Hence, by applying Lemma 3.5, equation (3.8), it fol-
lows that lim supN→∞ E

πN
e(c/N)‖ζ‖2

< ∞. Notice that we also have the bound

|ζk|m ≤ M
(|ρk|m + |λk|m(1 + ‖x‖m

s )
)
.

Since s < k − 1/2, we have that
∑∞

j=1 λ2
j j

2s < ∞ and therefore, it follows that for
α ≥ 2,

lim sup
N→∞

N∑
k=1

(EπN

λ2α
k j2s |ζk|2m)1/2 < ∞.(5.11)

Hence the claim in (5.5) follows from applying Cauchy–Schwarz combined with
(5.10) and (5.11). Similarly, a straightforward calculation yields that E

π0
(|1 −

1
N

‖ζ‖2|2) ≤ M
N

. Hence, again by Lemma 3.5,

lim
N→∞ E

πN
(∣∣∣∣1 − 1

N
‖ζ‖2

∣∣∣∣2)
= 0

proving the last claim and the proof is complete. �

Recall that Q(x, ξ) = R(x, ξ) − r(x, ξ). Thus, from (2.32) and Lemma 5.1 it
follows that Ri(x, ξ) and Rij (x, ξ) also are approximately Gaussian. Therefore,
the conclusion of Lemma 5.2 leads to the reasoning that, for any fixed realization

of x
D∼ π , the random variables R(x, ξ),Ri(x, ξ) and Rij (x, ξ) all converge to the

same weak limit Z� ∼ N(−�2,2�2) as the dimension of the noise ξ goes to ∞. In
the rest of this subsection, we rigorize this argument by deriving a Berry–Essen
bound for the weak convergence of R(x, ξ) to Z�.
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For this purpose, it is natural and convenient to obtain these bounds in the
Wasserstein metric. Recall that the Wasserstein distance between two random vari-
ables Wass(X,Y ) is defined by

Wass(X,Y )
def= sup

f ∈Lip1

E
(
f (X) − f (Y )

)
,

where Lip1 is the class of 1-Lipschitz functions. The following lemma gives a
bound for the Wasserstein distance between R(x, ξ) and Z�.

LEMMA 5.3. Almost surely with respect to x ∼ π ,

Wass(R(x, ξ),Z�) ≤ M

(
1

N3/2

N∑
j=1

|ζj |3 +
∣∣∣∣1 − ‖ζ‖2

N

∣∣∣∣ + 1√
N

)
,(5.12)

Wass(R(x, ξ),Ri(x, ξ)) ≤ M√
N

(|ζi | + 1).(5.13)

PROOF. Define the Gaussian random variable G
def= −

√
2�2

N

∑N
k=1 ζkξk − �2.

For any 1-Lipschitz function f ,

∣∣Eξ (
f (G) − f (R(x, ξ))

)∣∣ ≤ �2
E

ξ

∣∣∣∣∣1 − 1

N

N∑
k=1

ξ2
k

∣∣∣∣∣ < M
1√
N

implying that Wass(G,R(x, ξ)) ≤ M 1√
N

. Now, from classical Berry–Esseen esti-
mates (see [26]), we have that

Wass(G,Z�) ≤ M
1

N3/2

N∑
j=1

|ζj |3 + M

∣∣∣∣1 − ‖ζ‖2

N

∣∣∣∣.
Hence the proof of the first claim follows from the triangle inequality. To see the
second claim, notice that for any 1-Lipschitz function f we have

E
ξ
0|f (R(x, ξ)) − f (Ri(x, ξ))| ≤ E

ξ
0|R(x, ξ) − Ri(x, ξ)| ≤ M

1√
N

(1 + |ζi |)

and the proof is complete. �

Hence, from equations (5.13) and (5.12), we obtain

Wass(Ri(x, ξ),Z�)
(5.14)

≤ M

(
1√
N

(|ζi | + 1) + 1

N3/2

N∑
j=1

|ζj |3 +
∣∣∣∣1 − ‖ζ‖2

N

∣∣∣∣
)
.
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We conclude this section with the following observation which will be used later.
Recall the Kolmogorov–Smirnov (KS) distance between two random variables
(W,Z):

KS(W,Z)
def= sup

t∈R

|P(W ≤ t) − P(Z ≤ t)|.(5.15)

LEMMA 5.4. If a random variable Z has a density with respect to the
Lebesgue measure, bounded by a constant M , then

KS(W,Z) ≤ √
4M Wass(W,Z).(5.16)

We could not find the reference for the above in any published literature, so we
include a short proof here which was taken from the unpublished lecture notes [10].

PROOF OF LEMMA 5.4. Fix t ∈ R and ε > 0. Define two functions g1 and g2
as g1(y) = 1 for y ∈ (−∞, t), g1(y) = 0 for y ∈ [t +ε,∞) and linear interpolation
in between. Similarly, define g2(y) = 1, for y ∈ (−∞, t − ε], g2(y) = 0, for y ∈
[t,∞) and linear interpolation in between. Then g1 and g2 form upper and lower
envelopes for the function 1(−∞,t](y). So

P(W ≤ t) − P(Z ≤ t) ≤ Eg1(W) − Eg1(Z) + Eg1(Z) − P(Z ≤ T ).

Since g1 is 1
ε
-Lipschitz, we have Eg1(W) − Eg1(Z) ≤ 1

ε
Wass(W,Z) and

Eg1(Z) − P(Z ≤ t) ≤ Mε since Z has density bounded by M . Similarly, us-
ing the function g2, it follows that the same bound holds for the difference
P(Z ≤ t) − P(W ≤ t). Optimizing over ε yields the required bound. �

5.2. Rigorous estimates for the drift: Proof of Proposition 2.1, equation (2.14).
In the following series of lemmas we retrace the arguments from Section 2.6 while
deriving explicit bounds for the error terms. Lemma 5.11 at the end of the section
gives control of the error terms.

The following lemma shows that Q(x, ξ) is well approximated by Ri(x, ξ) −√
2�2

N
ζiξi , as indicated in (2.40).

LEMMA 5.5.

NE0(x
1
i − xi) = λi

√
2�2NE

ξ
0

((
1 ∧ eRi(x,ξ)−

√
2�2/Nζiξi

)
ξi

) + ω0(i),

|ω0(i)| ≤ M√
N

λi.

PROOF. We have

NE0(x
1
i − x0

i ) = NE0
(
γ 0(y0

i − xi)
) = NE

ξ
0

(
α(x, ξ)

√
2�2

N
(C1/2ξ)i

)

= λi

√
2�2NE

ξ
0(α(x, ξ)ξi) = λi

√
2�2NE

ξ
0

((
1 ∧ eQ(x,ξ))ξi

)
.
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Now we observe that

E
ξ
0

((
1 ∧ eQ(x,ξ))ξi

) = E
ξ
0

((
1 ∧ eRi(x,ξ)−

√
2�2/Nξiζi

)
ξi

) + ω0(i)

λi

√
2�2N

.

By (2.32) and (2.40),∣∣∣∣∣Q(x, ξ) − Ri(x, ξ) +
√

2�2

N
ζiξi

∣∣∣∣∣
2

≤ M

N2 (|ξi |4 + ‖C1/2ξ‖4
s ).(5.17)

Noticing that the map y �→ 1 ∧ ey is Lipschitz, we obtain

|ω0(i)| ≤ Mλi

√
NE

ξ
0

∣∣((1 ∧ eQ(x,ξ)) − (
1 ∧ eRi(x,ξ)−

√
2�2/Nξiζi

))
ξi

∣∣
≤ Mλi

√
N

[
E

ξ
0

∣∣∣∣∣Q(x, ξ) − Ri(x, ξ) +
√

2�2

N
ξiζi

∣∣∣∣∣
2]1/2

[Eξ
0(ξi)

2]1/2

≤ M√
N

λi,

where the last inequality follows from (5.17) and the proof is complete. �

The next lemma takes advantage of the fact that Ri(x, ξ) is independent of
ξi conditional on x. Thus, using the identity (2.36), we obtain the bound for the
approximation made in (2.41).

LEMMA 5.6.

E
ξ
0

((
1 ∧ eRi(x,ξ)−

√
2�2/Nζiξi

)
ξi

)
= −

√
2�2

N
ζiE

ξ−
i

0 eRi(x,ξ)+�2ζi
2/N�

( −Ri(x, ξ)√
2�2/N |ζi |

)
+ ω1(i),(5.18)

|ω1(i)| ≤ M|ζi |2 1

N
e(�2/N)‖ζ‖2

.

PROOF. Applying (2.36) with a = −
√

2�2

N
ζi , z = ξi and b = Ri(x, ξ), we ob-

tain the identity

E
ξ
0

((
1 ∧ eRi(x,ξ)−

√
2�2/Nξiζi

)
ξi

)
(5.19)

= −
√

2�2

N
ζiE

ξ−
i

0 eRi(x,ξ)+(�2/N)ζ 2
i �

( −Ri(x, ξ)√
2�2/N |ζi |

−
√

2�2

N
|ζi |

)
.
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Now we observe that

E
ξ−
i

0 eRi(x,ξ)+�2ζi
2/N

= E
ξ−
i

0

(
e
−
√

2�2/N
∑N

j=1,j �=i ζj ξj−(�2/N)
∑N

j=1,j �=i ξj
2+(�2/N)ζi

2)
(5.20)

≤ E
ξ−
i

0

(
e
−
√

2�2/N
∑N

j=1,j �=i ζj ξj+(�2/N)ζi
2) = e(�2/N)‖ζ‖2

.

Since � is globally Lipschitz, it follows that

E
ξ−
i

0 eRi(x,ξ)+�2ζi
2/N�

(
− Ri(x, ξ)√

2�2/N |ζi |
−

√
2�2

N
|ζi |

)

= E
ξ−
i

0 eRi(x,ξ)+�2ζi
2/N�

( −Ri(x, ξ)√
2�2/N |ζi |

)
+ ω1(i),(5.21)

|ω1(i)| ≤ M|ζi | 1√
N

E
ξ−
i

0 eRi(x,ξ)+�2ζi
2/N ≤ M|ζi | 1√

N
e(�2/N)‖ζ‖2,

where the last estimate follows from (5.20). The lemma follows from (5.19) and
(5.20). �

The next few lemmas are technical and give quantitative bounds for the approx-
imations in (2.43) and (2.44).

LEMMA 5.7.

E
ξ−
i

0 eRi(x,ξ)+�2ζi
2/N�

( −Ri(x, ξ)√
2�2/N |ζi |

)

= E
ξ−
i

0 eRi(x,ξ)+�2ζi
2/N1Ri(x,ξ)<0 + ω2(i),

|ω2(i)| ≤ Me(2�2/N)‖ζ‖2
(|ζi | + 1)

[
E

ξ
0

1

(1 + |R(x, ξ)|√N)2

]1/4
.

PROOF. We first prove the following lemma needed for the proof.

LEMMA 5.8. Let φ(·) and �(·) denote the pdf and CDF of the standard nor-
mal distribution, respectively. Then we have:

(1) for any x ∈ R, |�(−x) − 1x<0| = |1 − �(|x|)|.
(2) for any x > 0 and ε ≥ 0, 1 − �(x) ≤ 1+ε

x+ε
.

PROOF. For the first claim, notice that if x > 0, |�(−x)−1x<0| = |�(−x)| =
|1 − �(|x|)|. If x < 0, |�(−x) − 1x<0| = |1 − �(|x|)| and the claim follows.
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For the second claim,

1 − �(x) =
∫ ∞
x

φ(u) du ≤
∫ ∞
x

u + ε

x + ε
φ(u)du ≤ φ(x) + ε

x + ε
≤ 1 + ε

x + ε

since
∫ ∞
−∞ φ(u)du = 1. �

We now proceed to the proof of Lemma 5.7. By Cauchy–Schwarz and an esti-
mate similar to (5.20),

|ω2(i)| ≤ E
ξ−
i

0

[
eRi(x,ξ)+(�2/N)ζi

2
∣∣∣∣1Ri(x,ξ)<0 − �

( −Ri(x, ξ)√
2�2/N |ζi |

)∣∣∣∣]

≤ [
E

ξ−
i

0 e2Ri(x,ξ)+(2�2/N)ζi
2]1/2

[
E

ξ−
i

0

∣∣∣∣1Ri(x,ξ)<0 − �

( −Ri(x, ξ)√
2�2/N |ζi |

)∣∣∣∣2]1/2

(5.22)

≤ Me(2�2/N)‖ζ‖2
E

ξ−
i

0

[∣∣∣∣1Ri(x,ξ)<0 − �

( −Ri(x, ξ)√
2�2/N |ζi |

)∣∣∣∣2]1/2

≤ Me(2�2/N)‖ζ‖2
[
E

ξ−
i

0

∣∣∣∣1Ri(x,ξ)<0 − �

( −Ri(x, ξ)√
2�2/N |ζi |

)∣∣∣∣]1/2

,

where the last two observations follow from the computation done in (5.20) and
the fact that |1Ri(x,ξ)<0 − �(

−Ri(x,ξ)√
2�2/N |ζi |

)| < 1.

By applying Lemma 5.8, with ε = 1√
2�|ζi | ,∣∣∣∣1Ri(x,ξ)<0 − �

( −Ri(x, ξ)√
2�2/N |ζi |

)∣∣∣∣ = 1 − �

( |Ri(x, ξ)|√
2�2/N |ζi |

)

= 1 − �

( |Ri(x, ξ)|√N√
2�|ζi |

)
(5.23)

≤ (
1 + √

2�|ζi |) 1

1 + |Ri(x, ξ)|√N
.

The right-hand side of the estimate (5.23) depends on i but we need estimates
which are independent of i. In the next lemma, we replace Ri(x, ξ) by R(x, ξ)

and control the extra error term.

LEMMA 5.9.

E
ξ−
i

0
1

1 + |Ri(x, ξ)|√N
≤ M(1 + |ζi |)

[
E

ξ
0

1

(1 + |R(x, ξ)|√N)2

]1/2

.(5.24)
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PROOF. We write

E
ξ−
i

0
1

1 + |Ri(x, ξ)|√N
= E

ξ
0

1

1 + |Ri(x, ξ)|√N

= E
ξ
0

1

1 + |R(x, ξ)|√N
+ γ(5.25)

≤
[
E

ξ
0

1

(1 + |R(x, ξ)|√N)2

]1/2

+ γ,

|γ | ≤ E
ξ
0

∣∣∣∣ 1

1 + |Ri(x, ξ)|√N
− 1

1 + |R(x, ξ)|√N

∣∣∣∣
≤ E

ξ
0

√
2�|ζi ||ξi | + �2/

√
Nξi

2

(1 + |Ri(x, ξ)|√N)(1 + |R(x, ξ)|√N)
(5.26)

≤ E
ξ
0

√
2�|ζi ||ξi | + �2/

√
Nξi

2

(1 + |R(x, ξ)|√N)

≤ M(|ζi | + 1)

[
E

ξ
0

1

(1 + |R(x, ξ)|√N)2

]1/2

,

and the claim follows from (5.25) and (5.26). �

Now, by applying the estimates obtained in (5.22), (5.23) and (5.24), we obtain

|ω2(i)| ≤ Me(2�2/N)‖ζ‖2
(|ζi | + 1)

[
E

ξ
0

1

(1 + |R(x, ξ)|√N)2

]1/4

and the proof is complete. �

The error estimate in ω2 has R(x, ξ) instead of Ri(x, ξ). This bound can be
achieved because the terms Ri(x, ξ) for all i ∈ N have the same weak limit as
R(x, ξ) and thus the additional error term due to the replacement of Ri(x, ξ) by
R(x, ξ) in the expression can be controlled uniformly over i for large N .

LEMMA 5.10.

E
ξ−
i

0 eRi(x,ξ)+�2ζi
2/N1Ri(x,ξ)<0 = β

2
+ ω3(i),

|ω3(i)| ≤ M
ζ 2
i

N
e�2‖ζ‖2/N

+ M

(
1 + |ζi |√

N
+ 1

N3/2

N∑
j=1

|ζj |3 +
∣∣∣∣1 − ‖ζ‖2

N

∣∣∣∣
)1/2

.
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PROOF. Set g(y)
def= ey1y<0. We first need to estimate the following:∣∣Eξ

0

(
g(Ri(x, ξ)) − g(Z�)

)∣∣.
Notice that the function g(·) is not Lipschitz and therefore, the Wasserstein bounds
obtained earlier cannot be used directly. However, we use the fact that the normal
distribution has a density which is bounded above. So by Lemma 5.3, (5.14) and
(5.16),

KS(Ri(x, ξ),Z�) ≤ 2M
√

Wass(Ri(x, ξ),Z�)

≤ M

(
1 + |ζi |√

N
+ 1

N3/2

N∑
j=1

|ζj |3 +
∣∣∣∣1 − ‖ζ‖2

N

∣∣∣∣
)1/2

.

Since g is positive on (−∞,0], for a real valued continuous random variable X,

E(g(X)) =
∫ 0

−∞
g′(t)

(
P(X > t)

)
dt − g(0)P(X ≥ 0).

Hence,

|Eξ
0g(Ri(x, ξ)) − Eg(Z�)| ≤

∣∣∣∣∫ 0

−∞
g′(t)

(
P

(
Ri(x, ξ) > t

) − P(Z� > t)
)
dt

∣∣∣∣
+ g(0)

∣∣P(
Ri(x, ξ) ≥ 0

) − P(Z� ≥ 0)
∣∣

≤ KS(Ri(x, ξ),Z�)

(∫ 0

−∞
g′(t) dt + g(0)

)
≤ M KS(Ri(x, ξ),Z�).

Hence, putting the above calculations together and noticing that E(eZ�1Z�<0) =
β/2, we have just shown that

∣∣∣∣Eξ
0

(
eRi(x,ξ)1Ri(x,ξ)<0

) − β

2

∣∣∣∣ ≤ M

√√√√√1 + |ζi |√
N

+ 1

N3/2

N∑
j=1

|ζj |3 +
∣∣∣∣1 − ‖ζ‖2

N

∣∣∣∣.
Notice that

|ω3(i)| ≤ ∣∣e�2ζ 2
i /N

E
ξ
0

(
eRi(x,ξ)1Ri(x,ξ)<0

) − β/2
∣∣

≤ |e�2ζ 2
i /N − 1|∣∣Eξ

0

(
eRi(x,ξ)1Ri(x,ξ)<0

)∣∣
+ ∣∣Eξ

0

(
eRi(x,ξ)1Ri(x,ξ)<0

) − β/2
∣∣

≤ M
ζ 2
i

N
e�2‖ζ‖2/N + ∣∣Eξ

0

(
eRi(x,ξ)1Ri(x,ξ)<0

) − β/2
∣∣,

where the last bound follows from (5.20), proving the claimed error bound for
ω3(i). �
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For deriving the error bounds on ω3, we cannot directly apply the Wasserstein
bounds obtained in (5.14), because the function y �→ ey1y<0 is not Lipschitz on R.
However, using (5.16), the KS distance between Ri(x, ξ) and Z� is bounded by the
square root of the Wasserstein distance. Thus, using the fact that ey1y<0 is bounded
and positive, we bound the expectation in Lemma 5.10 by the KS distance.

Combining all the above estimates, we see that

NE
ξ
0[x1

i − xi] = −�2β
(
P Nx + C∇	(P Nx)

)
i + rN

i(5.27)

with

|rN
i | ≤ |ω0(i)| + Mλi

(√
N |ω1(i)| + |ζi ||ω2(i)| + |ζi ||ω3(i)|).(5.28)

The following lemma gives the control over rN and completes the proof of (2.14),
Proposition 2.1.

LEMMA 5.11. For s < κ − 1/2,

lim
N→∞ E

πN ‖rN‖2
s = lim

N→∞ E
πN

N∑
i=1

i2s |rN
i |2 = 0.

PROOF. By (5.28), we have |rN
i | ≤ |ω0(i)| + Mλi(

√
N |ω1(i)| + |ζi ||ω2(i)| +

|ζi ||ω3(i)|). Therefore,

E
πN

N∑
i=1

i2s |rN
i |2

(5.29)

≤ ME
πN

N∑
i=1

(
i2s |ω0(i)|2 + i2sλ2

i

(
Nω1(i)

2 + ζi
2ω2(i)

2 + ζi
2ω3(i)

2))
.

Now we will evaluate each sum of the right-hand side of the above equation and
show that they converge to zero.

• Since
∑∞

i=1 λ2
i i

2s < ∞,

N∑
i=1

E
πN

i2s |ω0(i)|2 ≤ M
1

N

N∑
i=1

i2sλ2
i ≤ M

1

N

∞∑
i=1

λ2
i i

2s → 0.(5.30)

• By Lemmas 5.6 and 5.2,

NE
πN

N∑
i=1

λ2
i i

2s |ω1(i)|2 ≤ M
1

N

N∑
i=1

E
πN

λ2
i i

2s |ζi |4e(2�2/N)‖ζ‖2 → 0.(5.31)
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• From Lemma 5.7 and Cauchy–Schwarz, we obtain

N∑
i=1

E
πN

λ2
i i

2s |ζi |2|ω2(i)|2

≤ M

(
E

πN
[
E

ξ
0

1

(1 + |R(x, ξ)|√N)2

])1/2

×
N∑

i=1

(
E

πN

e(8�2/N)‖ζ‖2
λ4

i i
4s(|ζi |8 + 1)

)1/2
.

Proceeding similarly as in Lemma 5.2, it follows that

N∑
i=1

(
E

πN

e(8�2/N)‖ζ‖2
λ4

i i
4s(|ζi |8 + 1)

)1/2

is bounded in N . Since, with x
D∼ π0, R(x, ξ) converges weakly to Z� as N →

∞, by the bounded convergence theorem we obtain

lim
N→∞ E

π0

[
E

ξ
0

1

(1 + |R(x, ξ)|√N)2

]
= 0

and thus, by Lemma 3.5,

lim
N→∞ E

πN
[
E

ξ
0

1

(1 + |R(x, ξ)|√N)2

]
= 0.

Therefore, we deduce that

lim
N→∞

N∑
i=1

E
πN |ζi |2i2sλ2

i |ω2(i)|2 = 0.(5.32)

• After some algebra we obtain from Lemma 5.10 that

E
πN

N∑
i=1

λ2
i i

2s |ζi |2|ω3(i)|2

≤ M
1

N2

N∑
i=1

E
πN

λ2
i i

2s |ζi |6e2�2(‖ζ‖2/N) + M
1√
N

E
πN

N∑
i=1

λ2
i i

2sζ 2
i (1 + |ζi |)

+ M

[(
E

πN

(
1

N3/2

N∑
j=1

|ζj |3
)2

+ E
πN

∣∣∣∣1 − ‖ζ‖2

N

∣∣∣∣2
)1/2]

×
N∑

i=1

(EπN

λ4
i i

4sζ 4
i )1/2.
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Similar to the previous calculations, using Lemma 5.2, it is quite straightforward
to verify that each of the four terms above converges to 0. Thus we obtain

lim
N→∞

N∑
i=1

E
πN

λ2
i i

2s |ζi |2|ω3(i)|2 = 0.(5.33)

Now the proof of Lemma 5.11 follows from (5.29)–(5.33). �

This completes the proof of Proposition 2.1, equation (2.14).

5.3. Rigorous estimates for the diffusion coefficient: Proof of Proposition 2.1,
equation (2.15). Recall that for 1 ≤ i, j ≤ N ,

NE0[(x1
i − x0

i )(x1
j − x0

j )] = 2�2
E

ξ
0

[
(C1/2ξ)i(C

1/2ξ)j
(
1 ∧ expQ(x, ξ)

)]
.

The following lemma quantifies the approximations made in (2.48) and (2.49).

LEMMA 5.12.

E
ξ
0

[
(C1/2ξ)i(C

1/2ξ)j
(
1 ∧ expQ(x, ξ)

)] = λiλj δijE
ξ−
ij

[(
1 ∧ expRij (x, ξ)

)] + θij ,

E
ξ−
ij

[(
1 ∧ expRij (x, ξ)

)] = β + ρij ,

where the error terms satisfy

|θij | ≤ Mλiλj (1 + |ζi |2 + |ζj |2)1/2 1√
N

,(5.34)

|ρij | ≤ M

(
1√
N

(1 + |ζi | + |ζj |) + 1

N3/2

N∑
s=1

|ζs |3 +
∣∣∣∣1 − ‖ζ‖2

N

∣∣∣∣
)
.(5.35)

PROOF. We first derive the bound for θ . Indeed,

|θij | ≤ E
ξ
0

[∣∣(C1/2ξ)i(C
1/2ξ)j

((
1 ∧ eQ(x,ξ)) − (

1 ∧ eRij (x,ξ)))∣∣]
≤ MλiλjE

ξ
0

[∣∣ξiξj

((
1 ∧ eQ(x,ξ)) − (

1 ∧ eRij (x,ξ)))∣∣].
By the Cauchy–Schwarz inequality,

|θij | ≤ Mλiλj

(
E

ξ
0

∣∣(1 ∧ eQ(x,ξ)) − (
1 ∧ eRij (x,ξ))∣∣)1/2

≤ Mλiλj

(
E

ξ
0|Q(x, ξ) − Rij (x, ξ)|2)1/2

.

Using the estimate obtained in (5.2),

|θij | ≤ Mλiλj (1 + |ζi |2 + |ζj |2)1/2 1√
N

verifying (5.34).
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Now we turn to verifying the error bound in (5.35). We need to bound

E
ξ
0

(
g(Rij (x, ξ)) − g(Z�)

)
,

where g(y)
def= 1 ∧ ey . Notice that E(g(Z�)) = β . Since g(·) is Lipschitz,∣∣Eξ

0

(
g(Rij (x, ξ)) − g(Z�)

)∣∣ ≤ M Wass(Rij (x, ξ),Z�).(5.36)

A simple calculation will yield that

Wass(Rij (x, ξ),R(x, ξ)) ≤ M(|ζi | + |ζj | + 1)
1√
N

.

Therefore, by the triangle inequality and Lemma 5.3,

Wass(Rij (x, ξ),Z�) ≤ M

(
1√
N

(1 + |ζi | + |ζj |) + 1

N3/2

N∑
r=1

|ζr |3 +
∣∣∣∣1 − ‖ζ‖2

N

∣∣∣∣
)
.

Hence the estimate in (5.34) follows from the observation made in (5.36). �

Putting together all the estimates produces

NE0[(x1
i − x0

i )(x1
j − x0

j )] = 2�2βλiλj δij + EN
ij and

(5.37)
|EN

ij | ≤ M(|θij | + λiλj δij |ρij |).
Finally we estimate the error of EN

ij .

LEMMA 5.13. We have

lim
N→∞

N∑
i=1

E
πN |〈φi,E

Nφj 〉s | = 0, lim
N→∞ E

πN |〈φi,E
Nφj 〉s | = 0

for any pair of indices i, j .

PROOF. From (5.37) we obtain that

N∑
i=1

E
πN |〈φi,E

Nφi〉s | ≤ M

(
N∑

i=1

E
πN

i2s |θii | +
N∑

i=1

λ2
i i

2s
E

πN |ρii |
)
,(5.38)

N∑
i=1

E
πN

i2s |θii | ≤ M

N∑
i=1

E
π0 |θii |i2s

≤ M

N∑
i=1

E
π0λ2

i i
2s(1 + |ζi |2)1/2 1√

N
(5.39)

≤ M

N∑
i=1

E
π0λ2

i i
2s(1 + |ζi |) 1√

N
→ 0
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due to the fact that
∑∞

i=1 λ2
i i

2s < ∞ and Lemma 5.2. Now the second term of
(5.38),

N∑
i=1

λ2
i i

2s
E

πN |ρii |

≤ ME
π0

N∑
i=1

λ2
i i

2s

(
1√
N

(1 + |ζi |) + 1

N3/2

N∑
s=1

|ζs |3 +
∣∣∣∣1 − ‖ζ‖2

N

∣∣∣∣
)
.

The first term above goes to zero by (5.39) and the last term converges to zero
by the same arguments used in Lemma 5.2. As mentioned in the proof of the
estimate for the term ω3 in Lemma 5.11, the sum E

πN 1
N3/2

∑N
s=1 |ζs |3 goes to

zero. Therefore, we have shown that

lim
N→∞

N∑
i=1

E
πN |〈φi,E

Nφi〉s | = 0,

proving the first claim. Finally, from (5.34) it immediately follows that

E
π |〈φi,E

Nφj 〉s | ≤ E
π isj s |θij | → 0,

proving the second claim as well. �

Therefore, we have shown

NE0[(x1
i − x0

i )(x1
j − x0

j )] = 2�2β〈φi,Cφj 〉 + EN,

lim
N→∞

N∑
i=1

E
πN |〈φi,E

Nφi〉| = 0.

This finishes the proof of Proposition 2.1, equation (2.15).
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