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LARGE GRAPH LIMIT FOR AN SIR PROCESS IN RANDOM
NETWORK WITH HETEROGENEOUS CONNECTIVITY

BY LAURENT DECREUSEFOND, JEAN-STÉPHANE DHERSIN1,
PASCAL MOYAL AND VIET CHI TRAN1

Telecom Paristech, Université Paris 13, Université de Technologie de Compiègne,
and Université des Sciences et Technologies Lille 1 and Ecole Polytechnique

We consider an SIR epidemic model propagating on a configuration
model network, where the degree distribution of the vertices is given and
where the edges are randomly matched. The evolution of the epidemic is
summed up into three measure-valued equations that describe the degrees of
the susceptible individuals and the number of edges from an infectious or re-
moved individual to the set of susceptibles. These three degree distributions
are sufficient to describe the course of the disease. The limit in large pop-
ulation is investigated. As a corollary, this provides a rigorous proof of the
equations obtained by Volz [Mathematical Biology 56 (2008) 293–310].

1. Introduction and notation. In this work, we investigate an epidemic
spreading on a random graph with fixed degree distribution and evolving accord-
ing to an SIR model as follows. Every individual not yet infected is assumed to
be susceptible. Infected individuals stay infected during random exponential times
with mean 1/β during which they infect each of their susceptible neighbors with
rate r . At the end of the infectious period, the individual becomes removed and is
no longer susceptible to the disease. Contrary to the classical mixing compartmen-
tal SIR epidemic models (e.g., [5, 17] and see [2], Chapter 2, for a presentation),
heterogeneity in the number of contacts makes it difficult to describe the dynami-
cal behavior of the epidemic. Mean field approximations (e.g., [4, 10, 23]) or large
population approximations (e.g., [3], see also equation (3) of [1] in discrete time)
provide a set of denumerable equations to describe our system. We are here in-
spired by the paper of Volz [27], who proposes a low-dimensional system of five
differential equations for the dynamics of an SIR model on a configuration model
(CM) graph [7, 19]. We refer to Volz’s article for a bibliography about SIR models
on graphs (see also Newman [20, 21], Durrett [10] or Barthélemy et al. [4]). Start-
ing from a random model in finite population, Volz derives deterministic equations
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by increasing the size of the network, following in this respect works of Newman,
for instance, [21]. The convergence of the continuous-time stochastic SIR model
to its deterministic limit for large graphs was, however, not proved. In this paper,
we prove the convergence that was left open by Volz. To achieve this, we provide
a rigorous individual-based description of the epidemic on a random graph. Three
degree distributions are sufficient to describe the epidemic dynamics. We describe
these distributions by equations in the space of measures on the set of nonnegative
integers, of which Volz’s equations are a by-product. Starting with a node-centered
description, we show that the individual dimension is lost in the large graph limit.
Our construction heavily relies on the choice of a CM for the graph underlying the
epidemic, which was also made in [27].

The size N of the population is fixed. The individuals are related through a ran-
dom network and are represented by the vertices of an undirected graph. Between
two neighbors, we place an edge. The graph is nonoriented and an edge between x

and y can be seen as two directed edges, one from x to y and the other from y to x.
If we consider an edge as emanating from the vertex x and directed to the vertex y,
we call x the ego of the edge and y the alter. The number of neighbors of a given
individual is the degree of the associated vertex. The degree of x is denoted dx .
It varies from an individual to another one. The CM developed in Section 2.1 is a
random graph where individuals’ degrees are independent random variables with
same distribution (pk)k∈N. Edges are paired at random. As a consequence, for a
given edge, alter has the size-biased degree distribution: the probability that her
degree is k is kpk/

∑
�∈N �p�.

The population is partitioned into the classes of susceptible, infectious or re-
moved individuals. At time t , we denote by St , It and Rt the set of susceptible, in-
fectious and removed nodes. We denote by St , It and Rt the sizes of these classes
at time t . With a slight abuse, we will say that a susceptible individual is of type
S (resp., of type I or R) and that an edge linking an infectious ego and susceptible
alter is of type IS (resp., RS, II or IR). For x ∈ I (resp., R), dx(S) represents the
number of edges with x as ego and susceptible alter. The numbers of edges with
susceptible ego (resp., of edges of types IS and RS) are denoted by N S

t (resp., N IS
t

and NRS
t ).

A possible way to rigorously describe the epidemics’ evolution is given in Sec-
tion 2.2. We consider the subgraph of infectious and removed individuals with
their degrees. Upon infection, the infectious ego chooses the edge of a susceptible
alter at random. Hence, the latter individual is chosen proportionally to her degree.
When she is connected, she uncovers the edges to neighbors that were already in
the subgraph.

We denote by N the set of nonnegative integers and by N
∗ = N \ {0}. The space

of real bounded functions on N is denoted by Bb(N). For any f ∈ Bb(N), set ‖f ‖∞
the supremum of f on N. For all such f and y ∈ N, we denote by τyf the function
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x �→ f (x − y). For all n ∈ N, χn is the function x �→ xn, and in particular, χ ≡ χ1

is the identity function and 1 ≡ χ0 is the function constantly equal to 1.
We denote by MF (N) the set of finite measures on N, embedded with the topol-

ogy of weak convergence. For all μ ∈ MF (N) and f ∈ Bb(N), we write

〈μ,f 〉 = ∑
k∈N

f (k)μ({k}).

With some abuse of notation, for all μ ∈ MF (N) and k ∈ N, we denote μ(k) =
μ({k}). For x ∈ N, we write δx for the Dirac measure at point x. Note, that some
additional notation is provided in the Appendix, together with several topological
results, that will be used in the sequel.

The plan of the paper and the main results are described below. In Section 2, we
describe the mechanisms underlying the propagation of the epidemic on the CM
graph. To describe the course of the epidemic, rather than the sizes St , It and Rt ,
we consider three degree distributions given as point measures of MF (N), for
t ≥ 0:

μS
t = ∑

x∈St

δdx , μIS
t = ∑

x∈It

δdx(St ),

(1.1)
μRS

t = ∑
x∈Rt

δdx(St ).

Notice that the measures μS
t /St , μIS

t /It and μRS
t /Rt are probability measures that

correspond to the usual (probability) degree distribution. The degree distribution
μS

t of susceptible individuals is needed to describe the degrees of the new infected
individuals. The measure μIS

t provides information on the number of edges from
It to St , through which the disease can propagate. Similarly, the measure μRS

t is
used to describe the evolution of the set of edges linking St to Rt . We can see that
NS

t = 〈μS
t , χ〉 and St = 〈μS

t ,1〉 (and, accordingly, for N IS
t , NRS, It and Rt ).

In Section 3, we study the large graph limit obtained when the number of ver-
tices tends to infinity, the degree distribution being unchanged. The degree dis-
tributions mentioned above can then be approximated, after proper scaling, by the
solution (μ̄S

t , μ̄
IS
t , μ̄RS

t )t≥0 of the system of deterministic measure-valued equations
(1.3)–(1.5) with initial conditions μ̄S

0, μ̄IS
0 and μ̄RS

0 .
For all t ≥ 0, we denote by N̄ S

t = 〈μ̄S
t , χ〉 (resp., N̄ IS

t = 〈μ̄IS
t , χ〉 and N̄RS

t =
〈μ̄RS

t , χ〉) the continuous number of edges with ego in S (resp., IS edges, RS edges).
Following Volz [27], pertinent quantities are the proportions p̄I

t = N̄ IS
t /N̄S

t [resp.,
p̄R

t = N̄RS
t /N̄ S

t and p̄S
t = (N̄S

t − N̄ IS
t − N̄RS

t )/N̄S
t ] of edges with infectious (resp.,

removed, susceptible) alter among those having susceptible ego. We also introduce

θt = exp
(
−r

∫ t

0
p̄I

s ds

)
,(1.2)
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the probability that a degree one node remains susceptible until time t . For any
f ∈ Bb(N),

〈μ̄S
t , f 〉 = ∑

k∈N

μ̄S
0(k)θk

t f (k),(1.3)

〈μ̄IS
t , f 〉 = 〈μ̄IS

0 , f 〉 −
∫ t

0
β〈μ̄IS

s , f 〉ds

+
∫ t

0

∑
k∈N

rkp̄I
s

∑
j,�,m∈N

j+�+m=k−1

(
k − 1
j, �,m

)
(p̄I

s)
j (p̄R

s )
�(p̄S

s )
m

× f (m)μ̄S
s(k)ds(1.4)

+
∫ t

0

∑
k∈N

rkp̄I
s

(
1 + (k − 1)p̄I

s

)
× ∑

k′∈N∗

(
f (k′ − 1) − f (k′)

)k′μ̄IS
s (k′)

N̄ IS
s

μ̄S
s(k)ds,

〈μ̄RS
t , f 〉 = 〈μ̄RS

0 , f 〉 +
∫ t

0
β〈μ̄IS

s , f 〉ds

+
∫ t

0

∑
k∈N

rkp̄I
s(k − 1)p̄R

s

∑
k′∈N∗

(
f (k′ − 1) − f (k′)

)
(1.5)

× k′μ̄RS
s (k′)

N̄RS
s

μ̄S
s(k)ds.

We denote by S̄t (resp., Īt and R̄t ) the mass of the measure μ̄S
t (resp., μ̄IS

t and
μ̄RS

t ). As for the finite graph, μ̄S
t /S̄t (resp., μ̄IS

t /Īt and μ̄RS
t /R̄t ) is the probability

degree distribution of the susceptible individuals (resp., the probability distribution
of the degrees of the infectious and removed individuals toward the susceptible
ones).

Let us give a heuristic explanation of equations (1.3)–(1.5). Remark that the
graph in the limit is infinite. The probability that an individual of degree k has
been infected by none of her k edges is θk

t and equation (1.3) follows. In (1.4), the
first integral corresponds to infectious individuals being removed. In the second
integral, rkp̄I

s is the rate of infection of a given susceptible individual of degree k.
Once she gets infected, the multinomial term determines the number of edges con-
nected to susceptible, infectious and removed neighbors. Multi-edges do not oc-
cur. Each infectious neighbor has a degree chosen in the size-biased distribution
k′μ̄IS(k′)/N̄ IS and the number of edges to St is reduced by 1. This explains the
third integral. Similar arguments hold for (1.5).
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Choosing f (k) = 1i (k), we obtain the following countable system of ordinary
differential equations (ODEs):

μ̄S
t (i) = μ̄S

0(i)θ
i
t ,

μ̄IS
t (i) = μ̄IS

0 (i) +
∫ t

0

{
rp̄I

s

∑
j,�≥0

(i + j + � + 1)μ̄S
s(i + j + � + 1)

×
(

i + j + �

i, j, �

)
(p̄S

s )
i(p̄I

s)
j (p̄R

s )
�

+ (
r(p̄I

s)
2〈μ̄S

s, χ
2 − χ〉 + rp̄I

s〈μ̄S
s, χ〉)(1.6)

× (i + 1)μ̄IS
s (i + 1) − iμ̄IS

s (i)

〈μ̄IS
s , χ〉 − βμ̄IS

s (i)

}
ds,

μ̄RS
t (i) = μ̄RS

0 (i) +
∫ t

0

{
βμ̄IS

s (i)

+ rp̄I
s〈μ̄S

s, χ
2 − χ〉p̄R

s

(i + 1)μ̄RS
s (i + 1) − iμ̄RS

s (i)

〈μ̄RS
s , χ〉

}
ds.

It is noteworthy to say that this system is similar but not identical to that in Ball
and Neal [3]. Our equations differ since our mechanism is not the same (compare
Section 2.2 with Section 5 in [3]). We emphasize that the number of links of an in-
dividual to S decreases as the epidemic progresses, which modifies her infectivity.

The system (1.3)–(1.5) allows us to recover the equations proposed by Volz [27],
Table 3, page 297. More precisely, the dynamics of the epidemic is obtained by
solving the following closed system of four ODEs, referred to as Volz’s equations
in the sequel. The latter are obtained directly from (1.3)–(1.5) and the definitions
of S̄t , Īt , p̄I

t and p̄S
t which relate these quantities to the measures μ̄S

t and μ̄IS
t . Let

g(z) = ∑
k∈N

μ̄S
0(k)zk(1.7)

be the generating function for the initial degree distribution of the susceptible indi-
viduals μ̄S

0, and let θt = exp(−r
∫ t

0 p̄I
s ds). Then, the epidemic can be approximated

by the solution of the four following ODEs:

S̄t = 〈μ̄S
t ,1〉 = g(θt ),(1.8)

Īt = 〈μ̄IS
t ,1〉 = Ī0 +

∫ t

0

(
rp̄I

sθsg
′(θs) − βĪs

)
ds,(1.9)

p̄I
t = p̄I

0 +
∫ t

0

(
rp̄I

sp̄
S
s θs

g′′(θs)

g′(θs)
− rp̄I

s(1 − p̄I
s) − βp̄I

s

)
ds,(1.10)

p̄S
t = p̄S

0 +
∫ t

0
rp̄I

s p̄
S
s

(
1 − θs

g′′(θs)

g′(θs)

)
ds.(1.11)
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Here, the graph structure appears through the generating function g. In (1.9), we
see that the classical contamination terms rS̄t Īt (mass action) or rS̄t Īt /(S̄t + Īt )

(frequency dependence) of mixing SIR models (e.g., [2, 9]) are replaced by
rp̄I

t θtg
′(θt ) = rN̄ IS

t . The fact that new infectious individuals are chosen in the size-
biased distribution is hidden in the term g′′(θt )/g

′(θt ).
The beginning of the epidemic and computation of the reproduction number,

when the numbers of infected individuals and of contaminating edges are small
and when Volz’s deterministic approximation does not hold, makes the object of
another study.

2. SIR model on a configuration model graph. In this section, we introduce
configuration model graphs and describe the propagation of SIR on such graphs.

2.1. Configuration model graph. Graphs at large can be mathematically rep-
resented as matrices with integer entries: to each graph corresponds an adjacency
matrix, the (x, y)th coefficient of which is the number of edges between the ver-
tices x and y. Defining the distribution of a random graph thus amounts to choosing
a sigma-field and a probability measure on the space N

N
∗×N

∗
, where N

∗ = N \ {0}.
Another approach is to construct a random graph by modifying progressively a
given graph, as in Erdös–Renyi model. Several other constructions are possible
such as the preferential attachment model, the threshold graphs, etc.

Here, we are interested in the configuration model (CM) proposed by Bol-
lobás [7], Molloy and Reed [19] (see also [10, 21, 22, 26]) and which models
graphs with specified degree distribution and independence between the degrees
of neighbors. As shown by statistical tests, these models might be realistic in de-
scribing community networks. See, for instance, Clémençon et al. [8] for dealing
with the spread of the HIV–AIDS disease among the homosexual community in
Cuba.

We recall its construction (see, e.g., [10, 26]). Suppose we are given the num-
ber of vertices, N and i.i.d. random variables (r.v.) d1, . . . , dN with distribution
(pk)k∈N that represent the degrees of each vertex. To the vertex i are associated
di half-edges. To construct an edge, one chooses two open half-edges uniformly at
random and pair them together.

Remark that this linkage procedure does not exclude self-loops or multiple
edges. In the following, we are interested in a large number of nodes with a fixed
degree distribution, hence self-loops and multiple edges become less and less ap-
parent in the global picture (see, e.g., [10], Theorem 3.1.2).

Notice that the condition for the existence with positive probability of a giant
component is that the expectation of the size biased distribution is larger than 1:∑

k∈N

(k − 1)
kpk∑

�∈N �p�

> 1.
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This is connected with the fact that the Galton–Watson tree with this offspring
distribution is supercritical (see [10], Section 3.2, page 75, for details).

2.2. SIR epidemic on a CM graph. We now propagate an epidemic on a CM
graph of size N (see Figure 1). The disease can be transmitted from infectious
nodes to neighboring susceptible nodes and removed nodes cannot be reinfected.

Suppose that at initial time, we are given a set of susceptible and infectious
nodes together with their degrees. The graph of relationships between the individ-
uals is, in fact, irrelevant for studying the propagation of the disease. The minimal
information consists in the sizes of the classes S, I, R and the number of edges to
the class S for every infectious or removed node. Thus, each node of class S comes
with a given number of half-edges of undetermined types; each node of class I

(resp., R) comes with a number of IS (resp., RS) edges. The numbers of IR, II and
RR edges need not to be retained.

The evolution of the SIR epidemic on a CM graph can be described as follows.
To each IS-type half-edge is associated an independent exponential clock with
parameter r and to each I vertex is associated an independent exponential clock
with parameter β . The first of all these clocks that rings determines the next event.

FIG. 1. Infection process. Arrows provide the infection tree. Susceptible, infectious and removed
individuals are colored in white, grey and black, respectively. (a) The degree of each individual is
known, and for each infectious (resp., removed) individual, we know her number of edges of type IS

(resp., RS). (b), (c) A contaminating half-edge is chosen, and say that a susceptible of degree k is
infected at time t . The contaminating edge is drawn in bold line. (d) Once the susceptible individual
has been infected, we determine how many of her remaining arrows are linked to the classes I and R.
If we denote by j and � these numbers, then N IS

t = N IS
t− − 1 + (k − 1) − j − � and NRS

t = NRS
t− − �.
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Case 1. If the clock that rings is associated to an I individual, the latter recovers.
Change her status from I to R and the type of her emanating half-edges
accordingly: IS half-edges become RS half-edges.

Case 2. If the clock is associated with a half IS-edge, an infection occurs.
Step 1. Match randomly the IS-half-edge that has rung to a half-edge be-

longing to a susceptible.
Step 2. This susceptible is the newly infected. Let k be her degree.

Choose uniformly k − 1 half-edges among all the available half-
edges (they either are of type IS, RS or emanate from S). Let m

(resp., j and �) be the number of SS-type (resp., of IS and of RS-
type) half-edges drawn among these k − 1 half-edges.

Step 3. The chosen half-edges of type IS and RS determine the infectious
or removed neighbors of the newly infected individual. The re-
maining m edges of type SS remain open in the sense that the sus-
ceptible neighbor is not fixed. Change the status of the m (resp.,
j , �) SS-type (resp., IS-type, RS-type) edges created to SI-type
(resp., II-type, RI-type).

Step 4. Change the status of the newly infected from S to I.

We then wait for another clock to ring and repeat the procedure.
We only need three descriptors of the system to obtain a Markovian evolution,

namely, the three degree distributions introduced in (1.1).
For a measure μ ∈ MF (N), we denote by Fμ(m) = μ({0, . . . ,m}), m ∈ N, its

cumulative distribution function. We introduce F−1
μ its right inverse (see the Ap-

pendix). Then, for all 0 ≤ i ≤ St (resp., 0 ≤ i ≤ It and 0 ≤ i ≤ Rt ),

γi(μ
S
t ) = F−1

μS
t

(i) [resp., γi(μ
IS
t ) = F−1

μIS
t

(i), γi(μ
RS
t ) = F−1

μRS
t

(i)]
represents the degree at t of the ith susceptible individual (resp., the number of
edges to S of the ith infectious individual and of the ith removed individual) when
individuals are ranked by increasing degrees (resp., by number of edges to S).

EXAMPLE 1. Consider, for instance, the measure μ = 2δ1 + 3δ5 + δ7. Then,
the atoms 1 and 2 are at level 1, the atoms 3, 4 and 5 are at level 5 and the atom 6
is at level 7. We then have that γ1(μ) = F−1

μ (1) = 1, γ2(μ) = 1, γ3(μ) = γ4(μ) =
γ5(μ) = 5 and γ6(μ) = 7.

From t , and because of the properties of exponential distributions, the next event
will take place in a time exponentially distributed with parameter rN IS

t + βIt . Let
T denote the time of this event.

Case 1. The event corresponds to a removal, that is, a node goes from status I

to status R. Choose uniformly an integer i in IT − , then update the measures μIS
T−
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and μRS
T− :

μIS
T = μIS

T − − δγi(μ
IS
T− ) and μRS

T = μRS
T − + δγi(μ

IS
T− ).

The probability that a given integer i is drawn is 1/IT − .
Case 2. The event corresponds to a new infection. We choose uniformly a half-

edge with susceptible ego, and this ego becomes infectious. The global rate of
infection is rN IS

T− and the probability of choosing a susceptible individual of degree
k for the new infectious is kμS

T−(k)/NS
T− . We define by

λT−(k) = rk
N IS

s

NS
s

(2.1)

the rate of infection of a given susceptible of degree k at time T−. This notation
was also used in Volz [27].

The newly infective may have several links with infectious or removed individu-
als. The probability, given that the degree of the individual is k and that j (resp., �)
out of her k − 1 other half-edges (all but the contaminating IS edge) are chosen to
be of type II (resp., IR), according to Step 2, is given by the following multivariate
hypergeometric distribution:

pT−(j, �|k − 1) =
(N IS

T−−1
j

)(NRS
T−
�

)(NS
T−−N IS

T−−NRS
T−

k−1−j−�

)
(NS

T−−1

k−1

) ·(2.2)

Finally, to update the values of μIS
T and μRS

T given k, j and �, we have to choose the
infectious and removed individuals to which the newly infectious is linked; some
of their edges, which were IS or RS, now become II or RI. We draw two sequences
u = (u1, . . . , uIT− ) and v = (v1, . . . , vRT− ) that will indicate how many links each
infectious or removed individual has to the newly contaminated individual. There
exist constraints on u and v: the number of edges recorded by u and v cannot
exceed the number of existing edges. Let us define the set

U =
+∞⋃
m=1

N
m,(2.3)

and for all finite integer-valued measure μ on N, and all integer n ∈ N, we define
the subset

U (n,μ) =
{
u = (

u1, . . . , u〈μ,1〉
) ∈ U such that

(2.4)

∀i ∈ {1, . . . , 〈μ,1〉}, ui ≤ F−1
μ (i) and

〈μ,1〉∑
i=1

ui = n

}
.
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Each sequence u ∈ U (n,μ) provides a possible configuration of how the n con-
nections of a given individual can be shared between neighbors whose degrees are
summed up by μ. The component ui , for 1 ≤ i ≤ 〈μ,1〉, provides the number of
edges that this individual shares with the ith individual. This number is necessar-
ily smaller than the degree γi(μ) = F−1

μ (i) of individual i. Moreover, the ui’s sum
to n. The probabilities of the draws of u and v that provide, respectively, the num-
ber of edges IS which become II per infectious individual and the number of edges
RS which become RI per removed individual are given by

ρ(u|j + 1,μIS
T−) =

∏IT−
i=1

(γi(μ
IS
T− )

ui

)
(N IS

T−
j+1

) 1u∈U (j+1,μIS
T− ),

(2.5)

ρ(v|�,μRS
T−) =

∏RT−
i=1

(γi(μ
RS
T− )

vi

)
(NRS

T−
�

) 1v∈U (�,μRS
T− ).

Then, we update the measures as follows:

μS
T = μS

T − − δk,

μIS
T = μIS

T − + δk−1−j−� +
IT−∑
i=1

δγi(μ
IS
T− )−ui

− δγi(μ
IS
T− ),(2.6)

μRS
T = μRS

T − +
RT−∑
i′=1

δγi′ (μRS
T− )−vi′ − δγi′ (μRS

T− ).

2.3. Stochastic differential equations. Here, we propose stochastic differen-
tial equations (SDEs) driven by Poisson point measures (PPMs) to describe the
evolution of the degree distributions (1.1), following the inspiration of [9, 13]. We
consider two PPMs: dQ1(s, k, θ1, j, �, θ2, u, θ3, v, θ4) and dQ2(s, i) on R+ × E1
with E1 := N × R+ × N × N × R+ × U × R+ × U × R+ and R+ × N with in-
tensity measures dq1(s, k, θ1, j, �, θ2, u, θ3, v, θ4) = ds ⊗ dn(k) ⊗ dθ1 ⊗ dn(j) ⊗
dn(�) ⊗ dθ2 ⊗ dn(u) ⊗ dθ3 ⊗ dn(v) ⊗ dθ4 and dq2(s, i) = β ds ⊗ dn(i), where ds,
dθ1, dθ2, dθ3 and dθ4 are Lebesgue measures on R+, where dn(k), dn(j), dn(�)

are counting measures on N and where dn(u), dn(v) are counting measures on U .
The point measure Q1 provides possible times at which an infection may occur.

Each of its atoms is associated with a possible infection time s, an integer k which
gives the degree of the susceptible being possibly infected, the number j + 1 and
� of edges that this individual has to the sets Is− and Rs− . The marks u and v ∈ U
are as in the previous section. The marks θ1, θ2 and θ3 are auxiliary variables used
for the construction [see (2.8) and (2.9)].

The point measure Q2 gives possible removal times. To each of its atoms is
associated a possible removal time s and the number i of the individual that may
be removed.
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The following SDEs describe the evolution of the epidemic: for all t ≥ 0,

μS
t = μS

0 −
∫ t

0

∫
E1

δk1θ1≤λs− (k)μS
s− (k)

(2.7) × 1θ2≤ps− (j,�|k−1)1θ3≤ρ(u|j+1,μIS
s− )1θ4≤ρ(v|�,μRS

s− ) dQ1,

μIS
t = μIS

0 +
∫ t

0

∫
E1

(
δk−(j+1+�) +

Is−∑
i=1

(
δγi(μ

IS
s− )−ui

− δγi(μ
IS
s− )

))
× 1θ1≤λs− (k)μS

s− (k)1θ2≤ps− (j,�|k−1)1θ3≤ρ(u|j+1,μIS
s− )

(2.8)
× 1θ4≤ρ(v|�,μRS

s− ) dQ1

−
∫ t

0

∫
N

δγi(μ
IS
s− )1i≤Is− dQ2,

μRS
t = μRS

0 +
∫ t

0

∫
E1

(Rs−∑
i=1

(
δγi(μ

RS
s− )−vi

− δγi(μ
RS
s− )

))
× 1θ1≤λs− (k)μS

s− (k)1θ2≤ps− (j,�|k−1)1θ3≤ρ(u|j+1,μIS
s− )

(2.9)
× 1θ4≤ρ(v|�,μRS

s− ) dQ1

+
∫ t

0

∫
N

δγi(μ
IS
s− )1i≤Is− dQ2,

where we write dQ1 and dQ2 instead of dQ1(s, k, θ1, j, �, θ2, u, θ3, v, θ4) and
dQ2(s, i) to simplify the notation.

PROPOSITION 2.1. For any given initial conditions μS
0, μSI

0 and μRS
0 that are

integer-valued measures on N and for PPMs Q1 and Q2, there exists a unique
strong solution to the SDEs (2.7)–(2.9) in the space D(R+, (MF (N))3), the Sko-
horod space of càdlàg functions with values in (MF (N))3.

PROOF. For the proof we notice that for every t ∈ R+, the measure μS
t is

dominated by μS
0 and the measures μIS

t and μRS
t have a mass bounded by 〈μS

0 +
μIS

0 +μRS
0 ,1〉 and a support included in [[0,max{max(supp(μS

0)),max(supp(μIS
0 )),

max(supp(μRS
0 ))}]]. The result then follows the steps of [13] and [25] (Proposi-

tion 2.2.6). �

The course of the epidemic can be deduced from (2.7), (2.8) and (2.9). For
the sizes (St , It ,Rt )t∈R+ of the different classes, for instance, we have with the
choice of f ≡ 1, that for all t ≥ 0, St = 〈μS

t ,1〉, It = 〈μIS
t ,1〉 and Rt = 〈μRS

t ,1〉.
Writing the semimartingale decomposition that results from standard stochastic
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calculus for jump processes and SDE driven by PPMs (e.g., [13–15]), we obtain,
for example,

It = 〈μIS
t ,1〉 = I0 +

∫ t

0

(∑
k∈N

μS
s(k)λs(k) − βIs

)
ds + M I

t ,(2.10)

where M I is a square-integrable martingale that can be written explicitly with the
compensated PPMs of Q1 and Q2, and with predictable quadratic variation given
for all t ≥ 0 by

〈M I〉t =
∫ t

0

∑
k∈N

(
μS

s(k)λs(k) + βIs

)
ds.

Another quantities of interest are the numbers of edges of the different types NS
t ,

N IS
t , NRS

t . The latter appear as the first moments of the measures μS
t , μIS

t and
μRS

t :NS
t = 〈μS

t , χ〉, N IS
t = 〈μIS

t , χ〉 and NRS
t = 〈μRS

t , χ〉.

3. Large graph limit. Volz [27] proposed a parsimonious deterministic ap-
proximation to describe the epidemic dynamics when the population is large. How-
ever, the stochastic processes are not clearly defined and the convergence of the
SDEs to the four ODEs that Volz proposes is stated but not proved. Using the
construction that we developed in Section 2.2, we provide mathematical proofs of
Volz’s equation, starting from a finite graph and taking the limit when the size of
the graph tends to infinity. Moreover, we see that the three distributions μS, μIS and
μRS are at the core of the problem and encapsulate the evolution of the process.

3.1. Law of large numbers scaling. We consider sequences of measures
(μn,S)n∈N, (μn,IS)n∈N and (μn,RS)n∈N such that for any n ∈ N

∗, μn,S, μn,IS and
μn,RS satisfy (2.7)–(2.9) with initial conditions μ

n,S
0 , μ

n,IS
0 and μ

n,RS
0 . We denote

by Sn
t , Int and Rn

t the subclasses of susceptible, infectious or removed individuals
at time t , and by N

n,S
t , N

n,IS
t and N

n,RS
t , the number of edges with susceptible

ego, infectious ego and susceptible alter, removed ego and susceptible alter. The
number of vertices of each class are denoted In

t , Sn
t and Rn

t . The total size of the
population is finite and equal to Sn

0 + In
0 + Rn

0 . The size of the population and the
number of edges tend to infinity proportionally to n.

We scale the measures the following way. For any n ≥ 0, we set

μ
(n),IS
t = 1

n
μ

n,IS
t

for all t ≥ 0 (and accordingly, μ
(n),S
t and μ

(n),RS
t ). Then, we denote

N
(n),IS
t = 〈

μ(n),IS, χ
〉 = 1

n
N

n,IS
t and I

(n)
t = 〈

μ
(n),IS
t ,1

〉 = 1

n
In
t

and accordingly, N
(n),S
t , N

(n),RS
t , S

(n)
t and R

(n)
t .



LARGE GRAPH LIMIT FOR AN SIR PROCESS 553

We assume that the initial conditions satisfy:

ASSUMPTION 3.1. The sequences (μ
(n),S
0 )n∈N, (μ

(n),IS
0 )n∈N and (μ

(n),RS
0 )n∈N

converge to measures μ̄S
0, μ̄IS

0 and μ̄RS
0 in MF (N) embedded with the weak con-

vergence topology.

REMARK 1. (1) Assumption 3.1 entails that the initial (susceptible and infec-
tious) population size is of order n if μ̄S

0 and μ̄IS
0 are nontrivial.

(2) In case the distributions underlying the measures μ
n,S
0 , μ

n,IS
0 and μ

n,RS
0 do

not depend on the total number of vertices (e.g., Poisson, power-laws or geometric
distributions), Assumption 3.1 can be viewed as a law of large numbers. When
the distributions depend on the total number of vertices N (as in Erdös–Renyi
graphs), there may be scalings under which Assumption 3.1 holds. For Erdös–
Renyi graphs, for instance, if the probability ρN of connecting two vertices satis-
fies limN→+∞ NρN = λ, then we obtain in the limit a Poisson distribution with
parameter λ.

(3) In (1.4), notice the appearance of the size biased degree distribution
kμ̄S

s(k)/NS
s . The latter reflects the fact that, in the CM, individuals having large

degrees have higher probability to connect than individuals having small degrees.
Thus, there is no reason why the degree distributions of the susceptible individ-
uals μ̄S

0/S̄0 and the distribution
∑

k∈N pkδk underlying the CM should coincide.
Assumption 3.1 tells us indeed that the initial infectious population size is of or-
der n. Even if Ī0/S̄0 is very small, the biased distributions that appear imply that
the degree distribution μ̄IS

0 /Ī0 should have a larger expectation than the degree
distribution μ̄S

0/S̄0.

We obtain rescaled SDEs which are the same as the SDEs (2.7)–(2.9) parame-
terized by n. For all t ≥ 0,

μ
(n),S
t = μ

(n),S
0 − 1

n

∫ t

0

∫
E1

δk1θ1≤λn
s− (k)nμ

(n),S
s− (k)

1θ2≤pn
s− (j,�|k−1)

(3.1)
× 1

θ3≤ρ(u|j+1,nμ
(n),IS
s− )

1
θ4≤ρ(v|�,nμ

(n),RS
s− )

dQ1,

μ
(n),IS
t = μ

(n),IS
0 + 1

n

∫ t

0

∫
E1

(
δk−(j+1+�) +

In
s−∑

i=1

(
δ
γi(nμ

(n),IS
s− )−ui

− δ
γi(nμ

(n),IS
s− )

))
× 1

θ1≤λn
s− (k)nμ

(n),S
s− (k)

1θ2≤pn
s− (j,�|k−1)

(3.2)
× 1

θ3≤ρ(u|j+1,nμ
(n),IS
s− )

1
θ4≤ρ(v|�,nμ

(n),RS
s− )

dQ1

− 1

n

∫ t

0

∫
N

δ
γi(nμ

(n),IS
s− )

1i∈Ins− dQ2,
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μ
(n),RS
t = μ

(n),RS
0 + 1

n

∫ t

0

∫
E1

(Rn
s−∑

i=1

(
δ
γi(nμ

(n),RS
s− )−vi

− δ
γi(nμ

(n),RS
s− )

))
× 1

θ1≤λn
s− (k)nμ

(n),S
s− (k)

1θ2≤pn
s− (j,�|k−1)

(3.3)
× 1

θ3≤ρ(u|j+1,nμ
(n),IS
s− )

1
θ4≤ρ(v|�,nμ

(n),RS
s− )

dQ1

+ 1

n

∫ t

0

∫
N

δ
γi(nμ

(n),IS
s− )

1i∈Ins− dQ2,

where we denote for all s ≥ 0,

λn
s (k) = rk

Nn,IS
s

N
n,S
s

and

(3.4)

pn
s (j, � | k − 1) =

(Nn,IS
s −1

j

)(Nn,RS
s

�

)(Nn,S
s −N

n,IS
s −N

n,RS
s

k−1−j−�

)
(Nn,S

s −1
k−1

) .

Several semimartingale decompositions will be useful in the sequel. We focus
on μ(n),IS but similar decompositions hold for μ(n),S and μ(n),RS, which we do not
detail since they can be deduced by direct adaptation of the following computation.

PROPOSITION 3.2. For all f ∈ Bb(N), for all t ≥ 0,〈
μ

(n),IS
t , f

〉 = ∑
k∈N

f (k)μ
(n),IS
0 (k) + A

(n),IS,f
t + M

(n),IS,f
t ,(3.5)

where the finite variation part A
(n),IS,f
t of 〈μ(n),IS

t , f 〉 reads

A
(n),IS,f
t =

∫ t

0

∑
k∈N

λn
s (k)μ(n),S

s (k)
∑

j+�+1≤k

pn
s (j, �|k − 1)

× ∑
u∈U

ρ(u|j + 1,μn,IS
s )

×
(
f

(
k − (j + 1 + �)

)
(3.6)

+
In
s∑

i=1

(
f

(
γi(μ

n,IS
s ) − ui

) − f (γi(μ
n,IS
s ))

))
ds

−
∫ t

0
β

〈
μ(n),IS

s , f
〉
ds,
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and where the martingale part M
(n),IS,f
t of 〈μ(n),IS

t , f 〉 is a square integrable mar-
tingale starting from 0 with quadratic variation〈

M(n),IS,f 〉
t = 1

n

∫ t

0
β

〈
μ(n),IS

s , f 2〉
ds

+ 1

n

∫ t

0

∑
k∈N

λn
s (k)μ(n),S

s (k)
∑

j+�+1≤k

pn
s (j, �|k − 1)

× ∑
u∈U

ρ(u|j + 1,μn,IS
s )

×
(
f

(
k − (j + 1 + �)

)

+
In
s∑

i=1

(
f

(
γi(μ

n,IS
s ) − ui

) − f (γi(μ
n,IS
s ))

))2

ds.

PROOF. The proof proceeds from (3.2) and standard stochastic calculus for
jump processes (see, e.g., [13]). �

3.2. Convergence of the normalized process. We aim to study the limit of the
system when n → +∞. We introduce the associated measure spaces. For any ε ≥
0 and A > 0, we define the following closed set of MF (N) as

Mε,A = {ν ∈ MF (N); 〈ν,1 + χ5〉 ≤ A and 〈ν,χ〉 ≥ ε}(3.7)

and M0+,A = ⋃
ε>0 Mε,A. Topological properties of these spaces are given in the

Appendix.
In the proof, we will see that the epidemic remains large provided the number

of edges from I to S remains of the order of n. Let us thus define, for all ε > 0,
ε′ > 0 and n ∈ N

∗,

tε′ := inf{t ≥ 0, 〈μ̄IS
t , χ〉 < ε′}(3.8)

and

τn
ε = inf

{
t ≥ 0,

〈
μ

(n),IS
t , χ

〉
< ε

}
.(3.9)

Our main result is the following theorem.

THEOREM 1. Suppose that Assumption 3.1 holds with(
μ

(n),S
0 ,μ

(n),IS
0 ,μ

(n),RS
0

)
in (M0,A)3 for any n, with 〈μ̄IS

0 , χ〉 > 0.(3.10)

Then, we have:

(1) there exists a unique solution (μ̄S, μ̄IS, μ̄RS) to the deterministic system of
measure-valued equations (1.3)–(1.5) in C(R+, M0,A × M0+,A × M0,A),
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(2) when n converges to infinity, the sequence (μ(n),S,μ(n),IS,μ(n),RS)n∈N con-
verges in distribution in D(R+, M3

0,A) to (μ̄S, μ̄IS, μ̄RS).

PROOF. Uniqueness of the solution to (1.3)–(1.5) is proved in Step 2. For
the proof of (2), since limε′→0 tε′ = +∞, it is sufficient to prove the results on
D([0, tε′ ], M3

0,A) for ε′ small enough. In the sequel, we choose 0 < ε < ε′ <

〈μ̄IS
0 , χ〉.
Step 1. Let us prove that (μ(n),S,μ(n),IS,μ(n),RS)n∈N∗ is tight. Let t ∈ R+ and

n ∈ N
∗. By hypothesis, we have that〈

μ
(n),S
t ,1 + χ5〉 + 〈

μ
(n),IS
t ,1 + χ5〉 + 〈

μ
(n),RS
t ,1 + χ5〉

(3.11)
≤ 〈

μ
(n),S
0 ,1 + χ5〉 + 〈

μ
(n),IS
0 ,1 + χ5〉 ≤ 2A.

Thus, the sequences (μ
(n),S
t )n∈N∗ , (μ

(n),IS
t )n∈N∗ and (μ

(n),RS
t )n∈N∗ are tight for

each t ∈ R+. Now by the criterion of Roelly [24], it remains to prove that for
each f ∈ Bb(N), the sequence (〈μ(n),S· , f 〉, 〈μ(n),IS· , f 〉, 〈μ(n),RS· , f 〉)n∈N∗ is tight
in D(R+,R

3). Since we have semimartingale decompositions of these processes,
it is sufficient, by using the Rebolledo criterion, to prove that the finite variation
part and the bracket of the martingale satisfy the Aldous criterion (see, e.g., [16]).
We only prove that 〈μ(n),IS· , f 〉 is tight. For the other components, the computations
are similar.

The Rebolledo–Aldous criterion is satisfied if for all α > 0 and η > 0 there
exists n0 ∈ N and δ > 0 such that for all n > n0 and for all stopping times Sn and
Tn such that Sn < Tn < Sn + δ,

P
(∣∣A(n),IS,f

Tn
− A

(n),IS,f
Sn

∣∣ > η
) ≤ α and

(3.12)
P

(∣∣〈M(n),IS,f 〉
Tn

− 〈
M(n),IS,f 〉

Sn

∣∣ > η
) ≤ α.

For the finite variation part,

E
[∣∣A(n),IS,f

Tn
− A

(n),IS,f
Sn

∣∣]
≤ E

[∫ Tn

Sn

β‖f ‖∞
〈
μ(n),IS

s ,1
〉
ds

]

+ E

[∫ Tn

Sn

∑
k∈N

λn
s (k)μ(n),S

s (k)
∑

j+�≤k−1

pn
s (j, �|k − 1)(2j + 1)‖f ‖∞ ds

]
.

The term
∑

j+�≤k−1 jpn
s (j, �|k − 1) is the mean number of links to Ins− that the

newly infected individual has, given that this individual is of degree k. It is bounded
by k. Then, with (3.4),

E
[∣∣A(n),IS,f

Tn
− A

(n),IS,f
Sn

∣∣]
≤ δE

[
β‖f ‖∞

(
S

(n)
0 + I

(n)
0

) + r‖f ‖∞
〈
μ

(n),S
0 ,2χ2 + 3χ

〉]
,
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by using that the number of infectives is bounded by the size of the population and
that μ

(n),S
s (k) ≤ μ

(n),S
0 (k) for all k and s ≥ 0. From (3.10), the right-hand side is

finite. Using Markov’s inequality,

P
(∣∣A(n),IS,f

Tn
− A

(n),IS,f
Sn

∣∣ > η
) ≤ (5r + 2β)Aδ‖f ‖∞

η
,

which is smaller than α for δ small enough.
We use the same arguments for the bracket of the martingale

E
[∣∣〈M(n),IS,f 〉

Tn
− 〈

M(n),IS,f 〉
Sn

∣∣]
≤ E

[
δβ‖f ‖2∞(S

(n)
0 + I

(n)
0 )

n
+ δr‖f ‖2∞〈μ(n),S

0 , χ(2χ + 3)2〉
n

]
(3.13)

≤ (25r + 2β)Aδ‖f ‖2∞
n

,

using assumption (3.10). The right-hand side can be made smaller than ηα for a
small enough δ, so the second inequality of (3.12) follows again from Markov’s
inequality. By [24], this provides the tightness in D(R+, M3

0,A).
By Prohorov theorem (e.g., [11], page 104) and Step 1, the distributions

of (μ(n),S,μ(n),IS,μ(n),RS), for n ∈ N
∗, form a relatively compact family of

bounded measures on D(R+, M3
0,A), and so do the laws of the stopped processes

(μ
(n),S
·∧τn

ε
,μ

(n),IS
·∧τn

ε
,μ

(n),RS
·∧τn

ε
)n∈N∗ [recall (3.9)]. Let μ̄ := (μ̄S, μ̄IS, μ̄RS) be a limiting

point in C(R+, M3
0,A) of the sequence of stopped processes and let us consider a

subsequence again denoted by μ(n) := (μ(n),S,μ(n),IS,μ(n),RS)n∈N∗ , with an abuse
of notation, and that converges to μ̄. Because the limiting values are continuous,
the convergence of (μ(n))n∈N∗ to μ̄ holds for the uniform convergence on every
compact subset of R+ (e.g., [6], page 112).

Now, let us define for all t ∈ R+ and for all bounded function f on N, the
mappings �

S,f
t , �

IS,f
t and �

RS,f
t from D(R+, M3

0,A) into D(R+,R) such that
(1.3)–(1.5) read

(〈μ̄S
t , f 〉, 〈μ̄IS

t , f 〉, 〈μ̄RS
t , f 〉)

(3.14)
= (�

S,f
t (μ̄S, μ̄IS, μ̄RS),�

IS,f
t (μ̄S, μ̄IS, μ̄RS),�

RS,f
t (μ̄S, μ̄IS, μ̄RS)).

Our purpose is to prove that the limiting values are the unique solution of equations
(1.3)–(1.5).

Before proceeding to the proof, a remark is in order. A natural way of reasoning
would be to prove that �S,f ,� IS,f and �RS,f are Lipschitz continuous in some
spaces of measures. It turns out that this can only be done by considering the set of
measures with moments of any order, which is a set too small for applications. We
circumvent this difficulty by first proving that the mass and the first two moments
of any solutions of the system are the same. Then, we prove that the generating
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functions of these measures satisfy a partial differential equation known to have a
unique solution.

Step 2. We now prove that the differential system (1.3)–(1.5) has at most
one solution in C(R+, M0,A × M0+,A × M0,A). It is enough to prove the re-
sult in C([0, T ], M0,A × Mε,A × M0,A) for all ε > 0 and T > 0. Let μ̄i =
(μ̄S,i , μ̄IS,i , μ̄RS,i), i ∈ {1,2} be two solutions of (1.3)–(1.5) in this space, started
with the same initial conditions. Set

ϒt =
3∑

j=0

|〈μ̄S,1
t , χj 〉 − 〈μ̄S,2

t , χj 〉|

+
2∑

j=0

(|〈μ̄IS,1
t , χj 〉 − 〈μ̄IS,2

t , χj 〉| + |〈μ̄RS,1
t , χj 〉 − 〈μ̄RS,2

t , χj 〉|).

Let us first remark that for all 0 ≤ t < T , N̄S
t ≥ N̄ IS

t > ε and then

|p̄I,1
t − p̄

I,2
t | =

∣∣∣∣N̄ IS,1
t

N̄
S,1
t

− N̄
IS,2
t

N̄
S,2
t

∣∣∣∣
≤ A

ε2 |N̄S,1
t − N̄

S,2
t | + 1

ε
|N̄ IS,1

t − N̄
IS,2
t |

(3.15)

= A

ε2 |〈μ̄S,1
t , χ〉 − 〈μ̄S,2

t , χ〉| + 1

ε
|〈μ̄IS,1

t , χ〉 − 〈μ̄IS,2
t , χ〉|

≤ A

ε2 ϒt .

The same computations show a similar result for |p̄S,1
t − p̄

S,2
t |.

Using that μ̄i are solutions to (1.3)–(1.4) let us show that ϒ satisfies a Gronwall
inequality which implies that it is equal to 0 for all t ≤ T . For the degree distri-
butions of the susceptible individuals, we have for p ∈ {0,1,2,3} and f = χp in
(1.3)

|〈μ̄S,1
t , χp〉 − 〈μ̄S,2

t , χp〉| =
∣∣∣∣∑
k∈N

μ̄S
0(k)kp(e−r

∫ t
0 p̄

I,1
s ds − e−r

∫ t
0 p̄

I,2
s ds)

∣∣∣∣
≤ r

∑
k∈N

kpμ̄S
0(k)

∫ t

0
|p̄I,1

s − p̄I,2
s |ds

≤ r
A2

ε2

∫ t

0
ϒs ds

by using (3.15) and the fact that μ̄S
0 ∈ M0,A.

For μ̄IS and μ̄RS, we use (1.4) and (1.5) with the functions f = χ0, f = χ and
f = χ2. We proceed here with only one of the computations, others can be done
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similarly. From (1.4),

〈μ̄IS,1
t ,1〉 − 〈μ̄IS,2

t ,1〉
= β

∫ t

0
〈μ̄IS,1

s − μ̄IS,2
s ,1〉ds + r

∫ t

0
(p̄I,1

s 〈μ̄S,1
s , χ〉 − p̄I,2

s 〈μ̄S,2
s , χ〉)ds.

Hence, with (3.15),

|〈μ̄IS,1
t − μ̄

IS,2
t ,1〉| ≤ C(β, r,A, ε)

∫ t

0
ϒs ds.

By analogous computations for the other quantities, we then show that

ϒt ≤ C′(β, r,A, ε)

∫ t

0
ϒs ds,

hence, ϒ ≡ 0. It follows that for all t < T , and for all j ∈ {0,1,2},
〈μ̄S,1

t , χj 〉 = 〈μ̄S,2
t , χj 〉 and 〈μ̄IS,1

t , χj 〉 = 〈μ̄IS,2
t , χj 〉,(3.16)

and in particular, N̄
S,1
t = N̄

S,2
t and N̄

IS,1
t = N̄

IS,2
t . This implies that p̄

S,1
t = p̄

S,2
t ,

p̄
I,1
t = p̄

I,2
t and p̄

R,1
t = p̄

R,2
t . From (1.3) and the continuity of the solutions to (1.3)–

(1.5), pathwise uniqueness holds for μ̄S a.s.
Our purpose is now to prove that μ̄IS,1 = μ̄IS,2. Let us introduce the following

generating functions: for any t ∈ R+, i ∈ {1,2} and η ∈ [0,1),

Gi
t (η) = ∑

k≥0

ηkμ̄
IS,i
t (k).

Since we already know these measures do have the same total mass, it boils down
to prove that G 1 ≡ G 2. Let us define

H(t, η) =
∫ t

0

∑
k∈N

rkp̄I
s

∑
j,�,m∈N

j+�+m=k−1

(
k − 1
j, �,m

)
(p̄I

s)
j (p̄R

s )
�(p̄S

s )
mηmμ̄S

s(k)ds,

(3.17)

Kt = ∑
k∈N

rkp̄I
t (k − 1)p̄R

t

μ̄S
t (k)

N̄ IS
t

.

The latter quantities are, respectively, of class C 1 and C 0 with respect to time t and
are well defined and bounded on [0, T ]. Moreover, H and K do not depend on the
chosen solution because of (3.16). Applying (1.4) to f (k) = ηk yields

Gi
t (η) = Gi

0(η) + H(t, η) +
∫ t

0

(
Ks

∑
k′∈N∗

(ηk′−1 − ηk′
)k′μ̄IS,i

s (k′) − βGi
s(η)

)
ds

= Gi
0(η) + H(t, η) +

∫ t

0

(
Ks(1 − η)∂ηGi

s(η) − βGi
s(η)

)
ds.
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Then, the functions t �→ G̃i
t (η) defined by G̃i

t (η) = eβt Gi
t (η), i ∈ {1,2}, are solu-

tions of the following transport equation:

∂tg(t, η) − (1 − η)Kt∂ηg(t, η) = ∂tH(t, η)eβt .(3.18)

In view of the regularity of H and K , it is known that this equation admits a unique
solution (see, e.g., [12]). Hence, G 1

t (η) = G 2
t (η) for all t ∈ R+ and η ∈ [0,1). The

same method applies to μ̄RS. Thus, there is at most one solution to the differential
system (1.3)–(1.5).

Step 3. We now show that μ(n) nearly satisfies (1.3)–(1.5) as n gets large. Recall
(3.5) for a bounded function f on N. To identify the limiting values, we establish
that for all n ∈ N

∗ and all t ≥ 0,〈
μ

(n),IS
t∧τn

ε
, f

〉 = �
IS,f
t∧τn

ε

(
μ(n)) + �

n,f
t∧τn

ε
+ M

(n),IS,f
t∧τn

ε
,(3.19)

where M(n),IS,f is defined in (3.5) and where �
n,f
·∧τn

ε
converges to 0 when n → +∞,

in probability and uniformly in t on compact time intervals.
Let us fix t ∈ R+. Computations similar to (3.13) give

E
((

M
(n),IS,f
t

)2) = E
(〈
M(n),IS,f 〉

t

) ≤ (25r + 2β)At‖f ‖2∞
n

.(3.20)

Hence, the sequence (M
(n),IS,f
t )n∈N converges in L2 and in probability to zero (and

in L1 by Cauchy–Schwarz inequality).
We now consider the finite variation part of (3.5), given in (3.6). The sum in

(3.6) corresponds to the links to I that the new infected individual has. We separate
this sum into cases where the new infected individual only has simple edges to
other individuals of I, and cases where multiple edges exist. The latter term is
expected to vanish for large populations:

A
(n),IS,f
t = B

(n),IS,f
t + C

(n),IS,f
t ,(3.21)

where

B
(n),IS,f
t = −

∫ t

0
β

〈
μ(n),IS

s , f
〉
ds

+
∫ t

0

∑
k∈N

λn
s (k)μ(n),S

s (k)
∑

j+�+1≤k

pn
s (j, �|k − 1)

(3.22)

×
{
f

(
k − (j + 1 + �)

) + ∑
u∈U (j+1,μ

n,IS
s );

∀i≤In
s− ,ui≤1

ρ(u|j + 1,μn,IS
s )

×
In
s−∑

i=0

(
f

(
γi(μ

n,IS
s− ) − ui

) − f (γi(μ
n,IS
s− ))

)}
ds
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and

C
(n),IS,f
t =

∫ t

0

∑
k∈N

λn
s (k)μ(n),S

s (k)
∑

j+�+1≤k

pn
s (j, �|k − 1)

× ∑
u∈U (j+1,μ

n,IS
s );

∃i≤In
s− ,ui>1

ρ(u|j + 1,μn,IS
s )(3.23)

×
In
s−∑

i=1

(
f

(
γi(μ

n,IS
s− ) − ui

) − f (γi(μ
n,IS
s− ))

)
ds.

We first show that C
(n),SI,f
t is a negligible term. Let qn

j,�,s denote the probability
that the newly infected individual at time s has a double (or of higher order) edge
to some alter in Ins− , given j and �. The probability to have a multiple edge to a
given infectious i is less than the number of couples of edges linking the newly
infected to i, times the probability that these two particular edges linking i to a
susceptible alter at s− actually lead to the newly infected. Hence,

qn
j,�,s = ∑

u∈U (j+1,μ
n,IS
s );

∃i≤In
s− ,ui>1

ρ(u|j + 1,μn,IS
s )

≤
(

j

2

) ∑
x∈Ins−

dx(S
n
s−)(dx(S

n
s−) − 1)

N
n,IS
s− (N

n,IS
s− − 1)

(3.24)

=
(

j

2

)
1

n

〈μ(n),IS
s− , χ(χ − 1)〉

N
(n),IS
s− (N

(n),IS
s− − 1/n)

≤
(

j

2

)
1

n

A

ε(ε − 1/n)
if s < τn

ε and n > 1/ε.

Then, since for all u ∈ U (j + 1,μn,IS
s ),∣∣∣∣∣

In
s−∑

i=1

(
f

(
γi(μ

n,IS
s− ) − ui

) − f (γi(μ
n,IS
s− ))

)∣∣∣∣∣ ≤ 2(j + 1)‖f ‖∞,(3.25)

we have by (3.24) and (3.25), for n > 1/ε,∣∣C(n),IS,f
t∧τn

ε

∣∣ ≤
∫ t∧τn

ε

0

∑
k∈N

rkμ(n),S
s (k)

∑
j+�+1≤k

pn
s (j, �|k − 1)2(j + 1)‖f ‖∞

× j (j − 1)A

2nε(ε − 1/n)
ds(3.26)

≤ Art‖f ‖∞
nε(ε − 1/n)

〈
μ

(n),S
0 , χ4〉

,
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which tends to zero in view of (3.10) and to the fact that μ
(n),S
s is dominated by

μ
(n),S
0 for all s ≥ 0 and n ∈ N

∗.

We now aim at proving that B
(n),IS,f
·∧τn

ε
is somewhat close to �

IS,f
·∧τn

ε
(μ(n)). First,

notice that

∑
u∈U (j+1,μ

n,IS
s );

∀i≤In
s− ,ui≤1

ρ(u|j + 1,μn,IS
s )

×
In
s−∑

i=1

(
f

(
γi(μ

n,IS
s− ) − ui

) − f (γi(μ
n,IS
s− ))

)

= ∑
u∈(Ins− )j+1

u0 �=···�=uj

( ∏j
k=0 duk

(S
n
s )

N
n,IS
s− · · · (Nn,SI

s− − (j + 1))

)

×
j∑

m=0

(
f

(
dum(S

n
s−) − 1

) − f (dum(Sn
s−))

)

=
j∑

m=0

∑
u∈(Ins− )j+1

u0 �=···�=uj

( ∏j
k=0 duk

(S
n
s )

N
n,IS
s− · · · (Nn,SI

s− − (j + 1))

)
(3.27)

× (
f

(
dum(Sn

s−) − 1
) − f (dum(Sn

s−))
)

=
j∑

m=0

( ∑
x∈Ins−

dx(S
n
s−)

N
n,IS
s−

(
f

(
dx(Sn

s−) − 1
) − f (dx(Sn

s−))
))

×
( ∑

u∈(Ins−\{x})j
u0 �=···�=uj−1

∏j−1
k=0 duk

(S
n
s )

(N
n,IS
s− − 1) · · · (Nn,IS

s− − (j + 1))

)

= (j + 1)
〈μ(n),IS

s− , χ(τ1f − f )〉
N

(n),IS
s−

(1 − qn
j−1,�,s),

where we recall that τ1f (k) = f (k − 1) for every function f on N and k ∈ N. In
the third equality, we split the term um from the other terms (um′)m′ �=m. The last
sum in the right-hand side of this equality is the probability of drawing j different
infectious individuals that are not um and that are all different, hence, 1 − qn

j−1,�,s .
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Denote for t > 0 and n ∈ N,

p
n,I
t = 〈μn,IS

t , χ〉 − 1

〈μn,S
t , χ〉 − 1

,

p
n,R
t = 〈μn,RS

t , χ〉
〈μn,S

t , χ〉 − 1
,

p
n,S
t = 〈μn,S

t , χ〉 − 〈μn,IS
t , χ〉 − 〈μn,RS

t , χ〉
〈μn,S

t , χ〉 − 1
,

the proportion of edges with infectious (resp., removed and susceptible) alters and
susceptible egos among all the edges with susceptible egos but the contaminating
edge. For all integers j and � such that j + � ≤ k − 1 and n ∈ N

∗, denote by

p̃n
t (j, � | k − 1) = (k − 1)!

j !(k − 1 − j − �)!�!(p
n,I
t )j (p

n,R
t )�(p

n,S
t )k−1−j−�,

the probability that the multinomial variable counting the number of edges with
infectious, removed and susceptible alters, among k − 1 given edges, equals
(j, �, k − 1 − j − �). We have that∣∣� IS,f

t∧τn
ε

(
μ(n)) − B

(n),IS,f
t∧τn

ε

∣∣ ≤ ∣∣D(n),IS,f
t∧τn

ε

∣∣ + ∣∣E(n),IS,f
t∧τn

ε

∣∣,(3.28)

where

D
(n),IS,f
t =

∫ t

0

∑
k∈N

λn
s (k)μ(n),S

s (k)

× ∑
j+�+1≤k

(
pn

s (j, �|k − 1) − p̃n
s (j, �|k − 1)

)
×

(
f

(
k − (j + � + 1)

)
+ (j + 1)

〈μ(n),IS
s− , χ(τ1f − f )〉

N
(n),IS
s−

)
ds,

E
(n),IS,f
t =

∫ t

0

∑
k∈N

λn
s (k)μ(n),S

s (k)

× ∑
j+�+1≤k

pn
s (j, �|k − 1)(j + 1)

×〈μ(n),IS
s− , χ(τ1f − f )〉

N
(n),IS
s−

qn
j−1,�,s ds.
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First, ∣∣D(n),IS,f
t∧τn

ε

∣∣ ≤
∫ t∧τn

ε

0

∑
k∈N

rkαn
s (k)‖f ‖∞

(
1 + 2kA

ε

)
μ(n),S

s (k)ds,(3.29)

where for all k ∈ N

αn
t (k) = ∑

j+�+1≤k

∣∣pn
t (j, �|k − 1) − p̃n

t (j, �|k − 1)
∣∣.

The multinomial probability p̃n
s (j, �|k − 1) approximates the hypergeometric one,

pn
s (j, �|k − 1, s), as n increases to infinity, in view of the fact that the total popu-

lation size, 〈μn,S
0 ,1〉+ 〈μn,IS

0 ,1〉, is of order n. Hence, the right-hand side of (3.29)
vanishes by dominated convergence.

On the other hand, using (3.24),

∣∣E(n),IS,f
t∧τn

ε

∣∣ ≤
∫ t∧τn

ε

0

∑
k∈N

rk2μ(n),S
s (k)

2‖f ‖∞A

ε

k2A

2nε(ε − 1/n)
ds

(3.30)

≤ A3rt‖f ‖∞
nε2(ε − 1/n)

,

in view of (3.10). Gathering (3.20), (3.21), (3.26), (3.28), (3.29) and (3.30) con-
cludes the proof that the rest of (3.19) vanishes in probability uniformly over com-
pact intervals.

Step 4. Recall that in this proof, μ̄ = (μ̄S, μ̄IS, μ̄RS) is the limit of μ
(n)
·∧τn

ε
=

(μ
(n),S
·∧τn

ε
,μ

(n),IS
·∧τn

ε
,μ

(n),RS
·∧τn

ε
)n∈N∗ , and recall that these processes take values in the

closed set M3
0,A. Our purpose is now to prove that μ̄ satisfy (1.3)–(1.5). Using

the Skorokhod representation theorem, there exists, on the same probability space
as μ̄, a sequence, again denoted by (μ

(n)
·∧τn

ε
)n∈N∗ with an abuse of notation, with the

same marginal distributions as the original sequence, and that converges a.s. to μ̄.
The maps ν· := (ν1· , ν2· , ν3· ) �→ 〈ν1· ,1〉/(〈ν1

0 ,1〉 + 〈ν2
0 ,1〉 + 〈ν3

0 ,1〉) [resp.,
〈ν2· ,1〉/(〈ν1

0 ,1〉 + 〈ν2
0 ,1〉 + 〈ν3

0 ,1〉) and 〈ν3· ,1〉/(〈ν1
0 ,1〉 + 〈ν2

0 ,1〉) + 〈ν3
0 ,1〉] are

continuous from C(R+, M0,A × Mε,A × M0,A) into C(R+,R).
Then, Lemma A.5 together with the continuity of (X1· ,X2· ) �→ X1· /X2· from

C(R+,R) × C(R+,R
∗) into C(R+,R) (see, e.g., [28]), implies that the map-

ping ν· �→ 〈ν1· , χ〉/〈ν2· , χ〉 is continuous from C(R+, M0,A × Mε,A × M0,A) into
C(R+,R). The same argument yields the continuity of ν· �→ 1〈ν1· ,χ〉>ε/〈ν2· , χ〉 for
the same spaces.

Lemma A.5 also provides the continuity of ν· �→ 〈ν2· , χ(τ1f − f )〉 from
C(R+, M0,A × Mε,A × M0,A) into C(R+,R) for bounded function f on N.

Since, as well known, the mapping y ∈ D([0, t],R) �→ ∫ t
0 ys ds is continu-

ous, we have proven the continuity of the mapping �
f
t defined in (3.14) on

D(R+, M0,A × Mε,A × M0,A).
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By Lemma A.5 applied to ϕ = χ , the process (N
(n),IS
·∧τn

ε
)n∈N∗ converges in dis-

tribution to N̄ IS· = 〈μ̄IS· , χ〉. Since the latter process is continuous, the conver-
gence holds in (D([0, T ],R+),‖ · ‖∞) for any T > 0 (see [6], page 112). As
y ∈ D(R+,R) �→ inft∈[0,T ] y(t) ∈ R is continuous, we have a.s. that

inf
t∈[0,T ] N̄

IS
t = lim

n→+∞ inf
t∈[0,T ]N

(n),IS
t∧τn

ε
(≥ε).

We consider t̄ε′ = inf{t ∈ R+, N̄ IS
t ≤ ε′}. A difficulty lies in the fact that we do not

yet know whether this time is deterministic. We have a.s.

ε′ ≤ inf
t∈[0,T ] N̄

IS
t∧t̄ε′ = lim

n→+∞ inf
t∈[0,T ]N

(n),IS

t∧τn
ε ∧t̄ε′

.(3.31)

Hence, using Fatou’s lemma,

1 = P

(
inf

t∈[0,t̄ε′ ]
N̄ IS

t > ε
)

≤ lim
n→+∞ P

(
inf

t∈[0,T ∧t̄ε′ ]
N

(n),IS
t∧τn

ε
> ε

)
(3.32)

= lim
n→+∞ P(τn

ε > T ∧ t̄ε′).

Hence, we have

�
IS,f

·∧τn
ε ∧t̄ε′∧T

(
μ(n)) = �

IS,f
·∧τn

ε ∧T

(
μ(n))1τn

ε ≤t̄ε′∧T + �
IS,f

·∧t̄ε′∧T

(
μ

(n)
·∧τn

ε

)
1τn

ε >t̄ε′∧T .

From the estimates of the different terms in (3.19), �
IS,f
·∧τn

ε ∧T (μ(n)) is upper

bounded by a moment of μ(n) of order 4. In view of (3.10) and (3.32), the first term
in the right-hand side converges in L1 and hence, in probability, to zero. Using the
continuity of � IS,f on D(R+, M0,A × Mε,A × M0,A), � IS,f (μ

(n)
·∧τn

ε
) converges

to � IS,f (μ̄) and, therefore, �
IS,f

·∧t̄ε′∧T
(μ

(n)
·∧τn

ε
) converges to �

IS,f

·∧t̄ε′∧T
(μ̄). Thanks to

this and (3.32), the second term in the right-hand side converges to �
IS,f

·∧t̄ε′∧T
(μ̄) in

D(R+,R).
Then, (〈μ(n),IS

·∧τn
ε ∧t̄ε′∧T

, f 〉 − �
IS,f

·∧τn
ε ∧t̄ε′∧T

(μ(n)))n∈N∗ converges in probability to

〈μ̄·∧t̄ε′∧T , f 〉 − �
IS,f

·∧t̄ε′∧T
(μ̄). From (3.19), this sequence also converges in proba-

bility to zero. By identification of these limits, μ̄IS solves (1.4) on [0, t̄ε′ ∧ T ]. If
〈μ̄RS

0 , χ〉 > 0 then similar techniques can be used. Else, the result is obvious since

for all t ∈ [0, t̄ε′ ∧ T ], 〈μ(n),IS
t , χ〉 > ε and the term pn

t (j, �|k − 1) is negligible
when � > 0. Thus μ̄ coincides a.s. with the only continuous deterministic solution
of (1.3)–(1.5) on [0, t̄ε′ ∧ T ]. This implies that t̄ε′ = tε′ and yields the convergence
in probability of (μ

(n)
·∧τn

ε
)n∈N∗ to μ̄, uniformly on [0, tε′ ] since μ̄ is continuous.



566 DECREUSEFOND, DHERSIN, MOYAL AND TRAN

We finally prove that the nonlocalized sequence (μ(n))n∈N∗ also converges uni-
formly and in probability to μ̄ in D([0, tε′ ], M0,A × Mε,A × M0,A). For a small
positive η,

P

(
sup

t∈[0,tε′ ]
∣∣〈μ(n),IS

t , f
〉 − �

IS,f
t (μ̄)

∣∣ > η
)

≤ P

(
sup

t∈[0,tε′ ]
∣∣� IS,f

t∧τn
ε

(
μ(n)) − �

IS,f
t (μ̄)

∣∣ >
η

2
; τn

ε ≥ tε′
)

(3.33)

+ P

(
sup

t∈[0,tε′ ]
∣∣�n,f

t∧τn
ε

+ M
(n),IS,f
t∧τn

ε

∣∣ >
η

2

)
+ P(τn

ε < tε′).

Using the continuity of �f and the uniform convergence in probability proved
above, the first term in the right-hand side of (3.33) converges to zero. We can show
that the second term converges to zero by using Doob’s inequality together with
the estimates of the bracket of M(n),IS,f [similar to (3.13)] and of �n,f (Step 2).
Finally, the third term vanishes in view of (3.32).

The convergence of the original sequence (μ(n))n∈N∗ is then entailed by the
uniqueness of the solution to (1.3)–(1.5), implied by Step 2.

Step 5. When n → +∞, by taking the limit in (3.1), (μ(n),S)n∈N∗ converges
in D(R+, M0,A) to the solution of the following transport equation, that can be
solved in function of p̄I. For every bounded function f : (k, t) �→ ft (k) ∈ C 0,1

b (N×
R+,R) of class C 1 with bounded derivative with respect to t ,

〈μ̄S
t , ft 〉 = 〈μ̄S

0, f0〉 −
∫ t

0
〈μ̄S

s, rχp̄I
sfs − ∂sfs〉ds.(3.34)

Choosing f (k, s) = ϕ(k) exp(−rk
∫ t−s

0 p̄I(u)du), we obtain that

〈μ̄S
t , ϕ〉 = ∑

k∈N

ϕ(k)θk
t μ̄S

0(k),(3.35)

where θt = exp(−r
∫ t

0 p̄I(u)du) is the probability that a given degree 1 node re-
mains susceptible at time t . This is the announced equation (1.3). �

We end this section with a lower bound of the time tε′ until which we proved
that the convergence to Volz’s equations holds.

PROPOSITION 3.3. Under the assumptions of Theorem 1,

tε′ > τ̄ε′ := log(〈μ̄S
0, χ

2〉 + N̄ IS
0 ) − log(〈μ̄S

0, χ
2〉 + ε′)

max(β, r)
.(3.36)

PROOF. Because of the moment assumption (3.10), we can prove that (3.19)
also holds for f = χ . This is obtained by replacing in (3.20), (3.26), (3.29) and
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(3.30) ‖f ‖∞ by k and using the assumption of boundedness of the moments
of order 5 in (3.26) and (3.30). This shows that (N(n),IS)n∈N converges, uni-
formly on [0, tε′ ] and in probability, to the deterministic and continuous solution
N̄ IS = 〈μ̄IS, χ〉. We introduce the event An

ξ = {| Nn,IS
0 −nN̄ IS

0 |≤ ξ} where their dif-
ferences are bounded by ξ > 0. Recall the definition (3.9) and let us introduce the
number of edges Zn

t that were IS at time 0 and that have been removed before t .
For t ≥ τn

ε′ , we have necessarily that Zn
t ≥ N

n,IS
0 − nε′. Thus,

P({τn
ε′ ≤ t} ∩ An

ξ ) ≤ P({Zn
t > N

n,IS
0 − nε′} ∩ An

ξ )
(3.37)

≤ P
({Zn

t > n(N̄ IS
0 − ε′) − ξ} ∩ An

ξ

)
.

When susceptible (resp., infectious) individuals of degree k are contaminated
(resp., removed), at most k IS-edges are lost. Let X

n,k
t be the number of edges

that, at time 0, are IS with susceptible alter of degree k, and that have transmitted
the disease before time t . Let Y

n,k
t be the number of initially infectious individuals

x with dx(S0) = k and who have been removed before time t . X
n,k
t and Y

n,k
t are

bounded by kμ
n,S
0 (k) and μ

n,IS
0 (k). Thus,

Zn
t ≤ ∑

k∈N

k(X
n,k
t + Y

n,k
t ).(3.38)

Let us stochastically upper bound Zn
t . Since each IS-edge transmits the disease

independently at rate r , X
n,k
t is stochastically dominated by a binomial r.v. of pa-

rameters kμ
n,S
0 (k) and 1 − e−rt . We proceed similarly for Y

n,k
t . Conditionally to

the initial condition, X
n,k
t + Y

n,k
t is thus stochastically dominated by a binomial

r.v. Z̃
n,k
t of parameters (kμ

n,S
0 (k) + μ

n,IS
0 (k)) and 1 − e−max(β,r)t . Then (3.37) and

(3.38) give

P({τn
ε′ ≤ t} ∩ An

ξ ) ≤ P

(∑
k∈N

kZ̃
n,k
t

n
> N̄ IS

0 − ε′ − ξ

n

)
.(3.39)

Thanks to Assumption 3.1 and (3.10), the series
∑

k∈N kZ̃
n,k
t /n converges in L1

and hence, in probability to (〈μ̄S
0, χ

2〉 + N̄ IS
0 )(1 − e−max(β,r)t ) when n → +∞.

Thus, for sufficiently large n,

P({τn
ε′ ≤ t} ∩ An

ξ ) = 1 if t > τ̄ε′ and 0 if t < τ̄ε′ .

For all t < τ̄ε′ , it follows from Assumption 3.1, (3.10) and Lemma A.4 that

lim
n→+∞ P(τn

ε′ ≤ t) ≤ lim
n→+∞

(
P({τn

ε′ ≤ t} ∩ An
ξ ) + P((An

ξ )
c)

) = 0,

so that by Theorem 1

1 = lim
n→+∞ P(τn

ε′ ≥ τ̄ε′) = lim
n→+∞P

(
inf

t≤τ̄ε′
N

(n),IS
t ≥ ε′) = P

(
inf

t≤τ̄ε′
N̄ IS

t ≥ ε′).
This shows that tε′ ≥ τ̄ε′ a.s., which concludes the proof. �
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3.3. Proof of Volz’s equations.

PROPOSITION 3.4. The system (1.3)–(1.5) implies Volz’s equations (1.8)–
(1.11).

Before proving Proposition 3.4, we begin with a corollary of Theorem 1.

COROLLARY 3.5. For all t ∈ R+
N̄S

t = θtg
′(θt ),

N̄ IS
t = N̄ IS

0 +
∫ t

0
rp̄I

sθsg
′(θs)

(
(p̄S

s − p̄I
s)θs

g′′(θs)

g′(θs)
− 1

)
− βN̄ IS

s ds,(3.40)

N̄RS
t =

∫ t

0

(
βN̄ IS

s − rp̄R
s p̄

I
sθ

2
s g′′(θs)

)
ds.

PROOF. In the proof of Proposition 3.3, we have shown that (N(n),IS)n∈N con-
verges uniformly on compact intervals and in probability to the deterministic and
continuous solution N̄ IS = 〈μ̄IS, χ〉. Equation (1.3) with f = χ reads

N̄ S
t = ∑

k∈N

μ̄S
0(k)kθk

t = θt

+∞∑
k=1

μ̄S
0(k)kθk−1

t = θtg
′(θt ),(3.41)

that is, the first assertion of (3.40).
Choosing f = χ in (1.4), we obtain

N̄ IS
t = N̄ IS

0 −
∫ t

0
βN̄ IS

s ds +
∫ t

0

∑
k∈N

λs(k)
∑

j+�≤k−1

(k − 2j − 2 − �)

×
[

(k − 1)!
j !(k − 1 − j − �)!�!(p̄

I
s)

j (p̄R
s )

�(p̄S
s )

k−1−j−�

]
μ̄S

s(k)ds.

Notice that the term in the square brackets is the probability to obtain (j, �, k −
1 − j − �) from a draw in the multinomial distribution of parameters (k − 1,
(p̄I

s, p̄
R
s , p̄

S
s )). Hence,∑

j+�≤k−1

j ×
(

(k − 1)!
j !(k − 1 − j − �)!�!(p̄

I
s)

j (p̄R
s )

�(p̄S
s )

k−1−j−�

)
= (k − 1)p̄I

s

as we recognize the mean number of edges to Is of an individual of degree k. Other
terms are treated similarly. Hence, with the definition of λs(k), (2.1),

N̄ IS
t = N̄ IS

0 +
∫ t

0
rp̄I

s

(〈μ̄S
s, χ

2 − 2χ〉 − (2p̄I
s + p̄R

s )〈μ̄S
s, χ(χ − 1)〉) ds

−
∫ t

0
βN̄ IS

s ds.
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But since

〈μ̄S
t , χ(χ − 1)〉 = ∑

k∈N

μ̄S
0(k)k(k − 1)θk

t = θ2
t g′′(θt ),

〈μ̄S
t , χ

2 − 2χ〉 = 〈μ̄S
t , χ(χ − 1)〉 − 〈μ̄S

t , χ〉 = θ2
t g′′(θt ) − θtg

′(θt ),

we obtain by noticing that 1 − 2p̄I
s − p̄R

s = p̄S
s − p̄I

s ,

N̄ IS
t = N̄ IS

0 +
∫ t

0
rp̄I

s

(
(p̄S

s − p̄I
s)θ

2
s g′′(θs) − θsg

′(θs)
)

ds −
∫ t

0
βN̄ IS

s ds,(3.42)

which is the second assertion of (3.40). The third equation of (3.40) is obtained
similarly. �

We are now ready to prove Volz’s equations.

PROOF OF PROPOSITION 3.4. We begin with the proof of (1.8) and (1.9). Fix
again t ≥ 0. For the size of the susceptible population, taking ϕ = 1 in (1.3), we
are led to introduce the same quantity θt = exp(−r

∫ t
0 p̄I

s ds) as Volz and obtain
(1.8). For the size of the infective population, setting f = 1 in (1.4) entails

Īt = Ī0 +
∫ t

0

(∑
k∈N

rkp̄I
sμ̄

S
s(k) − βĪs

)
ds

= Ī0 +
∫ t

0

(
rp̄I

s

∑
k∈N

μ̄S
0(k)kθk

s − βĪs

)
ds

= Ī0 +
∫ t

0

(
rp̄I

sθsg
′(θs) − βĪs

)
ds

by using (1.3) with f = χ for the second equality.
Let us now consider the probability that an edge with a susceptible ego has an

infectious alter. Both equations (1.8) and (1.9) depend on p̄I
t = N̄ IS

t /N̄ S
t . It is thus

important to obtain an equation for this quantity. In [27], this equation also leads
to introduce the quantity p̄S

t .
From Corollary 3.5, we see that N̄ S and N̄ IS are differentiable and

dp̄I
t

dt
= d

dt

(
N̄ IS

t

N̄ S
t

)
= 1

N̄ S
t

d

dt
(N̄ IS

t ) − N̄ IS
t

(N̄ S
t )2

d

dt
(N̄ S

t )

=
(
rp̄I

t (p̄
S
t − p̄I

t )θt

g′′(θt )

g′(θt )
− rp̄I

t − βp̄I
t

)

−
(

p̄I
t

θtg′(θt )

(−rp̄I
t θtg

′(θt ) + θtg
′′(θt )(−rp̄I

t θt )
))

= rp̄I
t p̄

S
t θt

g′′(θt )

g′(θt )
− rp̄I

t (1 − p̄I
t ) − βp̄I

t
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by using the equations 1 and 2 of (3.40) for the derivatives of N̄S and N̄ IS with
respect to time for the second line. This achieves the proof of (1.10).

For (1.11), we notice that p̄S
t = 1 − p̄I

t − p̄R
t and achieve the proof by showing

that

p̄R
t =

∫ t

0
(βp̄I

s − rp̄I
s p̄

R
s )ds(3.43)

by using arguments similar as for p̄I
t . �

REMARK 2. Miller [18] shows that Volz’s equations can be reduced to only
three ODEs:

S̄t = g(θt ),
dR̄t

dt
= βĪt , Īt = (S̄0 + Ī0) − S̄t − R̄t ,

dθt

dt
= −rθt + β(1 − θt ) + β

g′(θt )

g′(1)
.

The last ODE is obtained by considering the probability that an edge with an in-
fectious ego drawn at random has not transmitted the disease. However, in his
simplifications, he uses that the degree distributions μ̄S

0/S̄0 and
∑

k∈N pkδk are the
same, which is not necessarily the case (see our Remark 1). Moreover, it is more
natural to have an ODE on Īt and N̄ IS

t is a natural quantity that is of interest in
itself for the dynamics.

APPENDIX: FINITE MEASURES ON N

First, some notation is needed in order to clarify the way the atoms of a given
element of MF (N) are ranked. For all μ ∈ MF (N), let Fμ be its cumulative dis-
tribution function and F−1

μ be its right inverse defined as

∀x ∈ R+ F−1
μ (x) = inf{i ∈ N,Fμ(i) ≥ x}.(A.1)

Let μ = ∑
n∈N anδn be an integer-valued measure of MF (N), that is, such that the

an’s are integers themselves. Then, for each atom n ∈ N of μ such that an > 0, we
duplicate the atom n with multiplicity an, and we rank the atoms of μ by increasing
values, sorting arbitrarily the atoms having the same value. Then, we denote for
any i ≤ 〈μ,1〉,

γi(μ) = F−1
μ (i),(A.2)

the level of the ith atom of the measure, when ranked as described above. We refer
to Example 1 for a simple illustration.

We now make precise a few topological properties of spaces of measures and
measure-valued processes. For T > 0 and a Polish space (E,dE), we denote by
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D([0, T ],E) the Skorokhod space of càdlàg (right-continuous left-limited) func-
tions from R to E (e.g., [6, 16]) equipped with the Skorokhod topology induced
by the metric

dT (f, g) := inf
α∈�([0,T ])

{
sup

(s,t)∈[0,T ]2,

s �=t

∣∣∣∣log
α(s) − α(t)

s − t

∣∣∣∣
(A.3)

+ sup
t≤T

dE(f (t), g(α(t)))

}
,

where the infimum is taken over the set �([0, T ]) of continuous increasing func-
tions α : [0, T ] → [0, T ] such that α(0) = 0 and α(T ) = T .

Limit theorems are heavily dependent on the topologies considered. We intro-
duce here several technical lemmas on the space of measures related to these ques-
tions. For any fixed 0 ≤ ε < A, recall the definition of Mε,A in (3.7). Remark that
for any ν ∈ Mε,A, and i ∈ {0, . . . ,5}, 〈ν,χi〉 ≤ A since the support of ν is included
in N.

LEMMA A.1. Let I a set and a family (ντ , τ ∈ I) of elements of Mε,A. Then,
for any real function f on N such that f (k) = o(k5), we have that

lim
K→∞ sup

τ∈I

∣∣〈ντ , f 1[K,∞)

〉∣∣ = 0.

PROOF. By the Markov inequality, for any τ ∈ I, for any K , we have∑
k≥K

|f (k)|ντ (k) ≤ A sup
k≥K

|f (k)|
k5 ,

hence,

lim
K→∞ sup

τ∈I

|〈ντ , f 〉| ≤ A lim sup
k→∞

|f (k)|
k5 = 0.

The proof is thus complete. �

LEMMA A.2. For any A > 0, the set Mε,A is a closed subset of MF (N)

embedded with the topology of weak convergence.

PROOF. Let (μn)n∈N be a sequence of Mε,A converging to μ ∈ MF (N)

for the weak topology, which implies in particular that limn→+∞ μn(k) = μ(k)

for any k ∈ N. Denoting for all n and k ∈ N, fn(k) = k5μn(k), we have that
limn→+∞ fn(k) = f (k) := k5μ(k), μ-a.e., and Fatou’s lemma implies

〈μ,χ5〉 = ∑
k∈N

f (k) ≤ lim inf
n→∞

∑
k∈N

fn(k) = lim inf
n→∞〈μn,χ

5〉.
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Since 〈μn,1〉 tends to 〈μ,1〉, we have that 〈μ,1 + χ5〉 ≤ A.
Furthermore, by uniform integrability (Lemma A.1), it is also clear that

ε ≤ lim
n→∞〈μn,χ〉 = 〈μ,χ〉,

which shows that μ ∈ Mε,A. �

LEMMA A.3. The traces on Mε,A of the total variation topology and of the
weak topology coincide.

PROOF. It is well known that the total variation topology is coarser than the
weak topology. In the reverse direction, assume that (μn)n∈N is a sequence of
weakly converging measures belonging to Mε,A. Since

dTV(μn,μ) ≤ ∑
k∈N

|μn(k) − μ(k)|

according to Lemma A.1, it is then easily deduced that the right-hand side con-
verges to 0 as n goes to infinity. �

LEMMA A.4. If the sequence (μn)n∈N of MN

ε,A converges weakly to the mea-
sure μ ∈ Mε,A, then (〈μn,f 〉)n∈N converges to 〈μ,f 〉 for all function f such that
f (k) = o(k5) for all large k.

PROOF. Triangular inequality says that

|〈μn,f 〉 − 〈μ,f 〉| ≤ ∣∣〈μn,f 1[0,K]
〉 − 〈

μ,f 1[0,K]
〉∣∣

+ ∣∣〈μ,f 1(K,+∞)

〉∣∣ + ∣∣〈μn,f 1(K,+∞)

〉∣∣.
We then conclude by uniform integrability and weak convergence. �

Recall that Mε,A can be embedded with the total variation distance topology,
hence, the topology on D([0, T ], Mε,A) is induced by the distance

ρT (μ·, ν·) = inf
α∈�([0,T ])

(
sup

(s,t)∈[0,T ]2,

s �=t

∣∣∣∣log
α(s) − α(t)

s − t

∣∣∣∣ + sup
t≤T

dTV
(
μt, να(t)

))
.

LEMMA A.5. For any p ≤ 5, the following map is continuous:

�p :
{ D(R+, Mε,A) −→ D(R+,R),

ν· �−→ 〈ν·, χp〉.
PROOF. It is sufficient to prove the continuity of the above mappings from

D([0, T ], Mε,A) to D([0, T ],R), for any T ≥ 0, where the latter are equipped
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with the corresponding Skorokhod topologies. For μ and ν two elements of Mε,A,
for any p ≤ 5, for any positive integer K , according to the Markov inequality,

|〈μ,χp〉 − 〈ν,χp〉| ≤ 2
A

Kp
+ ∣∣〈μ − ν,χp1[0,K]

〉∣∣
(A.4)

≤ 2
A

Kp
+ KpdTV(μ, ν).

Using (A.3) and (A.4) we have for any K > 0,

dT (〈μ·, χp〉, 〈ν·, χp〉) ≤ 2
A

Kp
+ KpdT (μ·, ν·),

and hence, the continuity of �p . �

Acknowledgments. Tran thanks T. L. Parsons for the invitation to the
DIMACS Workshop on Stochasticity in Population and Disease Dynamics in De-
cember 2008 and L. M. Wahl for discussions at this workshop on epidemics on
graphs. The authors also thank M. Costa and E. Pardoux for their careful reading
and for discussions which improved the manuscript.

REFERENCES

[1] ANDERSSON, H. (1998). Limit theorems for a random graph epidemic model. Ann. Appl.
Probab. 8 1331–1349. MR1661200

[2] ANDERSSON, H. and BRITTON, T. (2000). Stochastic Epidemic Models and Their Statistical
Analysis. Lecture Notes in Statistics 151. Springer, New York. MR1784822

[3] BALL, F. and NEAL, P. (2008). Network epidemic models with two levels of mixing. Math.
Biosci. 212 69–87. MR2399833

[4] BARTHÉLEMY, M., BARRAT, A., PASTOR-SATORRAS, R. and VESPIGNANI, A. (2005). Dy-
namical patterns of epidemic outbreaks in complex heterogeneous networks. J. Theoret.
Biol. 235 275–288. MR2157753

[5] BARTLETT, M. S. (1960). Stochastic Population Models in Ecology and Epidemiology.
Methuen, London. MR0118550

[6] BILLINGSLEY, P. (1968). Convergence of Probability Measures. Wiley, New York.
MR0233396

[7] BOLLOBÁS, B. (2001). Random Graphs, 2nd ed. Cambridge Univ. Press, Cambridge.
MR1864966

[8] CLÉMENÇON, S., DE ARAZOZA, H., ROSSI, F. and TRAN, V. C. A network analysis of the
HIV–AIDS epidemic in Cuba. Unpublished manuscript.

[9] CLÉMENÇON, S., TRAN, V. C. and DE ARAZOZA, H. (2008). A stochastic SIR model with
contact-tracing: Large population limits and statistical inference. J. Biol. Dyn. 2 392–414.

[10] DURRETT, R. (2007). Random Graph Dynamics. Cambridge Univ. Press, Cambridge.
MR2271734

[11] ETHIER, S. N. and KURTZ, T. G. (1986). Markov Processus, Characterization and Conver-
gence. Wiley, New York. MR0838085

[12] EVANS, L. C. (1998). Partial Differential Equations. Graduate Studies in Mathematics 19.
Amer. Math. Soc., Providence, RI. MR1625845

http://www.ams.org/mathscinet-getitem?mr=1661200
http://www.ams.org/mathscinet-getitem?mr=1784822
http://www.ams.org/mathscinet-getitem?mr=2399833
http://www.ams.org/mathscinet-getitem?mr=2157753
http://www.ams.org/mathscinet-getitem?mr=0118550
http://www.ams.org/mathscinet-getitem?mr=0233396
http://www.ams.org/mathscinet-getitem?mr=1864966
http://www.ams.org/mathscinet-getitem?mr=2271734
http://www.ams.org/mathscinet-getitem?mr=0838085
http://www.ams.org/mathscinet-getitem?mr=1625845


574 DECREUSEFOND, DHERSIN, MOYAL AND TRAN

[13] FOURNIER, N. and MÉLÉARD, S. (2004). A microscopic probabilistic description of a lo-
cally regulated population and macroscopic approximations. Ann. Appl. Probab. 14 1880–
1919. MR2099656

[14] IKEDA, N. and WATANABE, S. (1989). Stochastic Differential Equations and Diffusion Pro-
cesses, 2nd ed. North-Holland Mathematical Library 24. North-Holland, Amsterdam.
MR1011252

[15] JACOD, J. and SHIRYAEV, A. N. (1987). Limit Theorems for Stochastic Processes. Springer,
Berlin. MR0959133

[16] JOFFE, A. and MÉTIVIER, M. (1986). Weak convergence of sequences of semimartingales
with applications to multitype branching processes. Adv. in Appl. Probab. 18 20–65.
MR0827331

[17] KERMACK, W. O. and MCKENDRICK, A. G. (1927). A contribution to the mathematical
theory of epidemics. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 115 700–721.

[18] MILLER, J. C. (2011). A note on a paper by Erik Volz: SIR dynamics in random networks.
J. Math. Biol. 62 349–358.

[19] MOLLOY, M. and REED, B. (1995). A critical point for random graphs with a given degree
sequence. Random Structures Algorithms 6 161–180. MR1370952

[20] NEWMAN, M. E. J. (2002). The spread of epidemic disease on networks. Phys. Rev. E (3) 66
016128, 11. MR1919737

[21] NEWMAN, M. E. J. (2003). The structure and function of complex networks. SIAM Rev. 45
167–256. MR2010377

[22] NEWMAN, M. E. J., STROGATZ, S. H. and WATTS, D. J. (2001). Random graphs with arbi-
trary degree distributions and their applications. Phys. Rev. E (3) 64.

[23] PASTOR-SATORRAS, R. and VESPIGNANI, A. (2002). Epidemics and immunization in scale-
free networks. In Handbook of Graphs and Networks: From the Genome to the Internet
113–132. Wiley-VCH, Berlin.

[24] ROELLY-COPPOLETTA, S. (1986). A criterion of convergence of measure-valued processes:
Application to measure branching processes. Stochastics 17 43–65. MR0878553

[25] TRAN, V. C. (2007). Modèles particulaires stochastiques pour des problèmes d’évolution adap-
tative et pour l’approximation de solutions statistiques. Ph.D. thesis, Univ. Paris X—
Nanterre. Available at http://tel.archives-ouvertes.fr/tel-00125100.

[26] VAN DER HOFSTAD, R. (2011). Random graphs and complex networks. Lecture Notes. To
appear. Available at http://www.win.tue.nl/~rhofstad.

[27] VOLZ, E. (2008). SIR dynamics in random networks with heterogeneous connectivity. J. Math.
Biol. 56 293–310. MR2358436

[28] WHITT, W. (1985). Blocking when service is required from several facilities simultaneously.
AT&T Tech. J. 64 1807–1856. MR0812939

L. DECREUSEFOND

INSTITUT TELECOM

TELECOM PARISTECH, CNRS LTCI
23 AV. D’ITALIE

75013 PARIS

FRANCE

E-MAIL: laurent.decreusefond@telecom-paristech.fr
URL: http://perso.telecom-paristech.fr/~decreuse/

J.-S. DHERSIN

DÉPARTEMENT DE MATHÉMATIQUES

INSTITUT GALILÉE, LAGA, UMR 7539
UNIVERSITÉ PARIS 13
99 AV. J.-B. CLÉMENT

93430 VILLETANEUSE

FRANCE

E-MAIL: dhersin@math.univ-paris13.fr
URL: http://www.math.univ-paris13.fr/~dhersin/

http://www.ams.org/mathscinet-getitem?mr=2099656
http://www.ams.org/mathscinet-getitem?mr=1011252
http://www.ams.org/mathscinet-getitem?mr=0959133
http://www.ams.org/mathscinet-getitem?mr=0827331
http://www.ams.org/mathscinet-getitem?mr=1370952
http://www.ams.org/mathscinet-getitem?mr=1919737
http://www.ams.org/mathscinet-getitem?mr=2010377
http://www.ams.org/mathscinet-getitem?mr=0878553
http://tel.archives-ouvertes.fr/tel-00125100
http://www.win.tue.nl/~rhofstad
http://www.ams.org/mathscinet-getitem?mr=2358436
http://www.ams.org/mathscinet-getitem?mr=0812939
mailto:laurent.decreusefond@telecom-paristech.fr
http://perso.telecom-paristech.fr/~decreuse/
mailto:dhersin@math.univ-paris13.fr
http://www.math.univ-paris13.fr/~dhersin/


LARGE GRAPH LIMIT FOR AN SIR PROCESS 575

P. MOYAL

LABORATOIRE DE MATHS APPLIQUÉES

DE COMPIÈGNE

UNIVERSITÉ DE TECHNOLOGIE DE COMPIÈGNE

DÉPARTEMENT GÉNIE INFORMATIQUE

CENTRE DE RECHERCHES DE ROYALLIEU

BP 20 529
60205 COMPIÈGNE CEDEX

FRANCE

E-MAIL: pascal.moyal@utc.fr
URL: http://www.lmac.utc.fr/~moyalpas/

V. C. TRAN

LABORATOIRE PAUL PAINLEVÉ

UMR CNRS 8524
UFR DE MATHÉMATIQUES

UNIVERSITÉ DES SCIENCES

ET TECHNOLOGIES LILLE 1
59655 VILLENEUVE D’ASCQ CEDEX

FRANCE

E-MAIL: chi.tran@math.univ-lille1.fr
URL: http://labomath.univ-lille1.fr/~tran
AND

CENTRE DE MATHÉMATIQUES APPLIQUÉES

UMR 7641
ECOLE POLYTECHNIQUE

ROUTE DE SACLAY

91128 PALAISEAU CEDEX

FRANCE

mailto:pascal.moyal@utc.fr
http://www.lmac.utc.fr/~moyalpas/
mailto:chi.tran@math.univ-lille1.fr
http://labomath.univ-lille1.fr/~tran

	Introduction and notation
	SIR model on a configuration model graph
	Configuration model graph
	SIR epidemic on a CM graph
	Stochastic differential equations

	Large graph limit
	Law of large numbers scaling
	Convergence of the normalized process
	Proof of Volz's equations

	Appendix: Finite measures on N
	Acknowledgments
	References
	Author's Addresses

