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ON ERGODIC TWO-ARMED BANDITS

BY PIERRE TARRÈS1 AND PIERRE VANDEKERKHOVE

CNRS, Université de Toulouse and Université Paris-Est

A device has two arms with unknown deterministic payoffs and the aim is
to asymptotically identify the best one without spending too much time on the
other. The Narendra algorithm offers a stochastic procedure to this end. We
show under weak ergodic assumptions on these deterministic payoffs that the
procedure eventually chooses the best arm (i.e., with greatest Cesaro limit)
with probability one for appropriate step sequences of the algorithm. In the
case of i.i.d. payoffs, this implies a “quenched” version of the “annealed”
result of Lamberton, Pagès and Tarrès [Ann. Appl. Probab. 14 (2004) 1424–
1454] by the law of iterated logarithm, thus generalizing it.

More precisely, if (η�,i )i∈N ∈ {0,1}N, � ∈ {A,B}, are the deterministic
reward sequences we would get if we played at time i, we obtain infallibility
with the same assumption on nonincreasing step sequences on the payoffs as
in Lamberton, Pagès and Tarrès [Ann. Appl. Probab. 14 (2004) 1424–1454],
replacing the i.i.d. assumption by the hypothesis that the empirical averages∑n

i=1 ηA,i/n and
∑n

i=1 ηB,i/n converge, as n tends to infinity, respectively,

to θA and θB , with rate at least 1/(logn)1+ε , for some ε > 0.
We also show a fallibility result, that is, convergence with positive proba-

bility to the choice of the wrong arm, which implies the corresponding result
of Lamberton, Pagès and Tarrès [Ann. Appl. Probab. 14 (2004) 1424–1454]
in the i.i.d. case.

1. Introduction.

1.1. General introduction. The so-called two-armed bandit is a device with
two arms, each one yielding an outcome in {0,1} at each time step, irrespective of
the strategy of the player, who faces the challenge of choosing the best one without
losing too much time on the other.

The Narendra algorithm is a stochastic procedure devised to this end which
was initially introduced by Norman [12] and Shapiro and Narendra [14] (see also
[9, 10]) in the fields of mathematical psychology and learning automata. An appli-
cation to optimal adaptive asset allocation in a financial context has been developed
by Niang [11].
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Formally, let (�, F ,P) be a probability space. The Narendra two-armed bandit
algorithm is defined as follows. At each time step n ∈ N, we play source A (resp.,
source B) with probability Xn (resp., 1 − Xn), where X0 = x ∈ (0,1) is fixed and
Xn is updated according to the following rule, for all n ≥ 0:

Xn+1 =
⎧⎨
⎩

Xn + γn+1(1 − Xn), if Un+1 = A and ηA,n+1 = 1,
(1 − γn+1)Xn, if Un+1 = B and ηB,n+1 = 1,
Xn, otherwise,

(1)

where (γn)n≥1 is a deterministic sequence taking values in (0,1), Un+1 is the ran-
dom variable corresponding to the label of the arm played at time n+ 1 and η�,n+1
denotes the payoff, taking values in {0,1}, of source � ∈ {A,B} at time n + 1.

We assume without loss of generality that Un+1 = A1{In+1≤Xn} + B1{In+1>Xn},
where (In)n≥1 is a sequence of independent uniformly distributed random vari-
ables on [0,1].

The literature on this algorithm generally assumes that the sequences (ηA,n)n≥1
and (ηB,n)n≥1 are independent with Bernoulli distributions of parameters θA

and θB , where θA > θB , the aim being to determine whether (Xn)n∈N a.s. con-
verges to 1 or not as n tends to infinity.

Notwithstanding the apparent simplicity of this stochastic procedure, the first
criteria on a.s. convergence to “the good arm” under the above i.i.d. assumptions
were only obtained thirty years after the original definition of this Narendra al-
gorithm by Tarrès [15] and Lamberton, Pagès and Tarrès [6] in a more general
framework. Recently Lamberton and Pagès established the corresponding rate of
convergence [4] and proposed and studied a penalized version [5]. Note that a
game theoretical question arising in the context of two-armed bandits was recently
studied by Benaïm and Ben Arous [1] and Pagès [13].

Our work focuses on the understanding of the Narendra two-armed bandit al-
gorithm under the assumption that the payoff sequences (η�,n)n≥1, � ∈ {A,B},
are unknown and deterministic. Under the following condition (S) on the step se-
quence (required in [6] but without monotonicity) and weak ergodic assumption
(E2) on the rate at which A must be asymptotically better than B , we show that Xn

a.s. converges to 1. Heuristically, the result points out that, even with strongly de-
pendent outcomes, Xn accumulates sufficient statistical information on the ergodic
behavior of the two arms to induce a corresponding appropriate decision.

More precisely, let us introduce the following step sequence and ergodic as-
sumptions.

Step sequence conditions. Let, for all n ∈ N ∪ {∞}, �n = ∑n
k=1 γk .

Let (S1) and (S2) be the following assumptions on the step sequence (γn)n∈N:

(S1) (γn)n≥1 is nonincreasing and �∞ = ∞;
(S2) γn = O(�ne

−θB�n).

Let (S) be the set of conditions (S1) and (S2).
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Ergodic conditions. Let (E) be the assumption that the ouputs of arms A and
B satisfy

(E)
1

n

n∑
k=1

ηA,k −→
n→∞ θA and

1

n

n∑
k=1

ηB,k −→
n→∞ θB,

where θA, θB ∈ (0,1). The ergodic condition (E) means that the average payoff
of arm A (resp., arm B) is θA (resp., θB ) but does not assume anything on the
corresponding rate of convergence. In order to introduce conditions on this rate,
let us denote, for all n ∈ N,

Rn := max
�∈{A,B}

∣∣∣∣∣
n∑

i=1

(η�,i − θ�)

∣∣∣∣∣.
Given a map φ : N −→ R+ and θA, θB ∈ (0,1), let us denote by

(Eφ) the assumption that Rn/φ(n) −→
n→∞ 0.

Let (E1) and (E2) be condition (Eφ), respectively, with the following assump-
tion on φ:

(E1) φ is nondecreasing concave on [k0,∞) for some k0 ∈ N and

sup
n∈N

γnφ(n) < ∞.

(E2) φ(n) = n
(log(n+2))1+ε for some ε > 0.

Note that (E) corresponds to (Eφ) with φ(n) = n, n ∈ N, under which (E1)
holds, for instance, in the case of a step sequence γn = c/(c + n), c > 0. Also,
Lemma 1, proved in Section 2, implies that (S)–(E2) �⇒ (E1).

LEMMA 1. If condition (S) holds, then

lim sup
n→∞

γnn

logn
≤ lim sup

n→∞
�n

logn
≤ 1/θB.

Theorems 2 and 3 provide assumptions for convergence of the Narendra se-
quence (Xn)n≥0 toward 0 or 1 as n tends to infinity, respectively, convergence
toward 1 when θA > θB (i.e., asymptotic choice of the “right arm”).

THEOREM 2. Under assumptions (S1)–(E1), the Narendra sequence (Xn)n∈N

converges Px-a.s. toward 0 or 1 as n tends to infinity.

THEOREM 3. Under assumptions (S)–(E2) and θA > θB , the Narendra se-
quence (Xn)n∈N converges Px -a.s. toward 1 as n tends to infinity.
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Recall that the above conditions (E1) and (E2) are purely deterministic. If we
let the sequences (ηA,i)i∈N and (ηB,i)i∈N be distributed as i.i.d. sequences with
expectations θA and θB , then (E2) almost surely occurs as a consequence of the
law of iterated logarithm. Assuming (S) and θA > θB , Theorem 3 implies that the
algorithm (Xn)n∈N almost surely converges to 1, which is a generalization of the
corresponding infallibility Proposition 5 proved by Lamberton, Pagès and Tarrès
in [6] for nonincreasing step sequences (γn)n∈N.

In practice, the Narendra algorithm is used in the context of performance as-
sessment, or in applications either in automatic control or in financial mathematics
and the i.i.d. assumption looks rather unrealistic since the performance depends
in general on parameters that evolve slowly and randomly in time. The following
framework provides a possible generalization.

Suppose that (S�,i)i∈N, � ∈ {A,B}, are ergodic stationary Markov chains tak-
ing values in a measurable space (X, X ), with transition kernel Q� and stationary
initial distribution π�. Let us consider a measurable event C ∈ X , and define se-
quences (η�,i)i∈N, for � ∈ {A,B}, as

η�,i = 1{S�,i∈C}, i ∈ N.(2)

These random sequences (η�,i)i∈N are functions of the states of the Markov chains
and satisfy, as a consequence, the ergodic condition (E), with

θ� = π�(S�,0 ∈ C).

The sequences (S�,i)i∈N, � ∈ {A,B}, represent the agents’ outputs from
which (η�,i)i∈N extracts scores through target assessment. Note that, contrary to
(S�,i)i∈N, (η�,i)i∈N is not Markov in general.

Miao and Yang [8] establish under weak conditions (concerning mainly the tran-
sition kernels Q�) the law of iterated logarithm for additive functionals of Markov
chains, thus providing the required ergodic rate of convergence (E2).

Let us now show a simple fallibility result that will also imply the corresponding
result of [6] in the i.i.d. case.

THEOREM 4. Assume θA > θB and
∑

n≥0
∏n

k=1(1 − γkηB,k) < ∞. Then
P(limn→∞ Xn = 0) > 0.

REMARK 1.1. In the case where (ηB,k)k≥0 is an i.i.d. sequence of random
variables, then

Ex

(∑
n≥0

n∏
k=1

(1 − γkηB,k)

)
= ∑

n≥0

n∏
k=1

(1 − γkθB) < ∞

ensures that the third condition of Theorem 4 is fulfilled and, therefore, Theorem 4
implies the fallibility result Theorem 1(b) in [6].
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REMARK 1.2. In the general (ergodic) case, if
∑

γ 2
n < ∞,

∑
�n|φ′′(n)| < ∞

and lim sup�n|φ′(n)| < ∞, then the proof of Lemma 10 implies that the condi-
tions of Theorem 4 are equivalent to

∑
exp(−�nθB) < ∞ and θA > θB . These

assumptions hold, for instance, if γn = c/(c + n) and φ(n) = n/(log(n + 2))1+ε

for some ε > 0 and cθB > 1 (see also the proof of Lemma 10).

PROOF OF THEOREM 4. Recall that X0 = x ∈ (0,1). Let A be the event

A := {∀k ≥ 1, Ik ≤ Xk} =
{
∀n ≥ 0,Xn = x

n∏
k=1

(1 − γkηB,k)

}
.

Then

P(A) =
∞∏

n=1

(
1 − x

n∏
k=1

(1 − γkηB,k)

)
> 0 ⇐⇒ ∑

n≥0

n∏
k=1

(1 − γkηB,k) < ∞,

and note that this last predicate, which is the second assumption of the theorem,
obviously implies

∑
γnηB,n = ∞. Now, a.s. on A,

Xn ≤ x exp

(
−

n∑
k=1

γnηB,n

)
−→
n→∞ 0,

which concludes the proof. �

Notation. The letter C will denote a positive real constant that may change
from one inequality to the other.

We write φ′ and φ′′ for the first- and second-order discrete derivatives of φ: for
all n ≥ 1,

φ′(n) := φ(n) − φ(n − 1) and φ′′(n) := φ(n − 1) + φ(n + 1) − 2φ(n).

We let, for all n ∈ N,

αn := Rn/φ(n), βn := sup
k≥n

αk.

Note that, under assumption (Eφ), αn, βn −→
n→∞ 0.

Given two real sequences (un)n≥0 and (vn)n≥0, we write

un = �(vn),

when, for all n ≥ 0, |un| ≤ |vn|.
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1.2. Sketch of the proofs of Theorems 2 and 3. Our first aim is to write down in
Proposition 5 the evolution of (Xn)n≥0 as a stochastic perturbation of the Cauchy–
Euler procedure defined by

xn+1 = xn + γn+1h(xn),(3)

where h(x) := (θA − θB)f (x), with f (x) := x(1 − x).
However, contrary to the case of i.i.d. payoff sequences (η�,n)n≥0, � ∈ {A,B},

considered in [6], the perturbation of the scheme (3) under an ergodic assumption
(E) does not only consist of a martingale, but also of an increment whose impor-
tance depends on φ, that is, on the rate of convergence of the mean payoffs to θA

and θB . More precisely let, for all n ≥ 1,

∧n =
n∑

k=1

γkf (Xk−1)
(
ηA,k − ηB,k − (θA − θB)

)

with the convention that ∧0 = 0 and let (Mn)n≥1 be an (Fn)n≥1-adapted martin-
gale given by

Mn :=
n∑

k=1

γkεk, M0 := 0

with

εk := ηA,k(1 − Xk−1)(1Uk=A − Xk−1) + ηB,kXk−1
(
(1 − Xk−1) − 1Uk=B

)
.

PROPOSITION 5. For all n ∈ N,

Xn = x + Mn + ∧n + (θA − θB)

n∑
k=1

γkf (Xk−1).

PROOF. The updating rule (1) can be rewritten as

Xn+1 = Xn + γn+1ηA,n+1(1 − Xn)1Un+1=A − γn+1ηB,n+1Xn1Un+1=B

= Xn + γn+1ηA,n+1(1 − Xn)(1Un+1=A − Xn)
(4)

+ γn+1ηB,n+1Xn

(
(1 − Xn) − 1Un+1=B

)
+ γn+1f (Xn)(ηA,n+1 − ηB,n+1). �

Note that Proposition 5 can be interpreted as the property that the noise is mul-
tiplicative in the sense that, for all n,

γ −1
n+1(n+1 − n) = f (Xn)

(
ηA,k − ηB,k − (θA − θB)

)
is the product of a function of Xn and a function of (ηA,n+1, ηB,n+1) outcome of
the two arms at time n + 1.
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Let us now provide estimates of the evolution of (∧n)n∈N, which will be nec-
essary to the proof of Theorem 3; they will also imply Theorem 2 in passing. We
note that Laruelle and Pagès [7] recently generalized the proof of this latter result
as convergence of the ergodic dynamics toward an equilibrium point of the corre-
sponding ODE under the assumption that the noise is multiplicative and a classical
Lyapounov assumption, or more generally under a strong Lyapounov assumption,
and technical conditions.

Our estimates of n − m for large m and n are derived by discrete integra-
tion by parts. To this end, we need to get round the difficulty that the sequence
(γnf (Xn−1))n∈N is not monotonic in general.

Instead, let us define, for all n ∈ N,

�n := γn∏n
k=1(1 − γk)

, Sn := 1∏n
k=1(1 − γk)

with the convention that �0 = S0 := 1. Remark that Sn → ∞ if and only if∑
n≥1 γn = +∞.
Note that x/Sn is a trivial lower bound for Xn and that

γn = �n

Sn

with Sn =
n∑

k=0

�k.(5)

We first study the sequence (�n)n∈N defined by

�n :=
∞∑

k=n+1

γk

Sk−1

(
ηA,k − ηB,k − (θA − θB)

);
(�n)n≥1 is well defined since, for all � ∈ {A,B},

∞∑
k=2

γk

Sk−1
|η�,k − θ�| ≤

∞∑
k=2

γk

Sk−1
=

∞∑
k=2

(
1

Sk−1
− 1

Sk

)
= 1

S1

since under (S1) we have Sn −→
n→∞∞. Since (γn/Sn−1)n∈N is a nonincreasing

sequence if (γn)n∈N is itself nonincreasing [recall that γn ∈ (0,1)], we deduce
Lemma 6 by an Abel transform, that is, discrete integration. Moreover, we observe
that, for all n ≥ m ≥ 0, the evolution of ∧· between time steps m and n is given by

∧n − ∧m =
n∑

k=m+1

Sk−1f (Xk−1)
γk

Sk−1

(
ηA,k − ηB,k − (θA − θB)

)
.

Now, (Skf (Xk))k∈N is a nondecreasing sequence. Indeed, for all k ∈ N,
f (Xk) ≥ (1 − γk)f (Xk−1) since f is concave and Xk is the barycentre of Xk−1
and either 0 or 1, with weights 1 − γk and γk , where f (0) = f (1) = 0. We rely on
this monotonicity and apply an Abel transform again, which enables us to show
Lemma 7.
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LEMMA 6. Assume that (γn)n∈N is nonincreasing and that φ is nondecreasing
concave on [k0,∞) for some k0 ∈ N. Then, for all n ≥ k0,

|�n| ≤ 2βn

Sn−1
[φ′(n) + 2γnφ(n)].

LEMMA 7. Let, for all n ∈ N,

R′
n := 2 supk≥n βk[φ′(k) + 2γkφ(k)]

1 − γn

.

Under the assumptions of Lemma 6 we have, for all n ≥ m ≥ k0,

|∧n − ∧m| ≤ R′
m

[
n∑

k=m+1

γkf (Xk−1) + 2f (Xn)

]
.

Lemmas 6 and 7 are proved in Sections 3.2 and 3.3.
These results enable us to conclude the proof of Theorem 2. Indeed, by Propo-

sition 5 and Lemma 7, for all n ≥ m ≥ 0,

Xn − Xm = Mn − Mm + ∧n − ∧m + (θA − θB)

n∑
k=m+1

γkf (Xk−1)

= Mn − Mm + (
θA − θB + �(R′

m)
) n∑
k=m+1

γkf (Xk−1)(6)

+ 2�(R′
m)f (Xn).

We assume that (E1) and (S1) hold; thus, R′
n −→

n→∞ 0. Let us prove by contradiction

that
∞∑

k=1

γkf (Xk−1) < ∞ a.s.(7)

holds. Indeed, let us assume the contrary; choose m such that |R′
m| < |θA −

θB |. A.s. on {∑∞
k=1 γkf (Xk−1) = ∞}, using Chow’s lemma (see, e.g., [3]) and

E(ε2
k+1|Fk) ≤ 2f (Xk), we deduce

Mn − Mm = o

(
n∑

k=m+1

γ 2
k f (Xk−1)

)
= o

(
n∑

k=m+1

γkf (Xk−1)

)

and, therefore, for all n, m ∈ N,

Xn − Xm = (
θA − θB + �(R′

m) + on→∞(1)
) n∑
k=m+1

γkf (Xk−1) + O(1),

which is contradictory using Xn ∈ [0,1] for all n ∈ N.
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Hence, Px-almost surely, (Xn)n≥0 is a Cauchy sequence and, therefore, con-
verges to a limit random variable X∞ ∈ [0,1]. Now (7) implies that f (X∞) = 0,
since �∞ = ∞ and, therefore, X∞ = 0 or 1 a.s.

The proof of Theorem 3 itself has two parts. The first one consists in showing a
“brake phenomenon,” that is, that (Xn)n≥0 cannot in any case decrease too rapidly
to 0 as n goes to infinity. We already observed that, trivially, Xn is lower bounded
by x/Sn. A better lower bound can easily be obtained; let us define, for all n ∈ N,

SB
n := 1∏n

k=1(1 − γk1{Ik>Xk−1,ηB,k=1})
with initial condition SB

0 = 0

and, for all n ≥ 1,

�B
n := γnS

B
n , YB

n := SB
n Xn.

Note that, as a consequence of the definition of the Narendra algorithm (1), for
all n ≥ 0,

YB
n+1 =

{
YB

n + �B
n+1(1 − Xn), if Un+1 = A and ηA,n+1 = 1,

YB
n , otherwise.

(8)

Roughly speaking, SB
n is the product Sn restricted to playing and winning with

B; x/SB
n is straightforwardly a lower bound of Xn. Proposition 8, proved in Sec-

tion 4.1, further claims that, for any C > 0, C logSB
n /SB

n is an asymptotic lower
bound of Xn a.s. on {X∞ = 0}.

PROPOSITION 8. Under assumptions (S) and (E2),{
lim

n→∞Xn = 0
}

⊆
{

lim sup
n→∞

Xn

logSB
n /SB

n

= ∞
}
, Px-a.s.

The second part of the proof of Theorem 3 assumes θA > θB and is given in
Section 4.2. Recall that, by Theorem 2, Xn converges a.s. to 0 or 1 [using the re-
mark that (S)–(E2) implies (E1), see the remark before the statement of Lemma 1]
so that we only need to show that P(limXn = 0) = 0.

We study (Xn)n≥0 as a perturbed Cauchy–Euler scheme and prove by Doob’s
inequality that, starting from C logSB

n /SB
n for sufficiently large C > 0, Xn remains

bounded away from 0 with lower bounded probability, which enables us to con-
clude that X∞ �= 0 a.s.

2. Deterministic estimates on the step sequence. We first recall below the
two following preliminary remarks in [6] that (S2) implies on one hand that∑∞

n=1 γ 2
n < ∞ and, on the other hand, that �n − logSn converges as n goes to

infinity.
Then we prove Lemma 1 that (S) implies explicit asymptotic upper bounds on

(γn)n∈N and (�n)n∈N.
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PRELIMINARY REMARK 1. Assumption (S2) implies
∑∞

n=1 γ 2
n < ∞ since,

for all n ∈ N,
n∑

k=1

γ 2
k ≤ C

n∑
k=1

(�k − �k−1)�ke
−θB�k

≤ C

∫ �n

0
ue−θBu du ≤ C

∫ +∞
0

ue−θBu du < ∞

using that u �→ ue−θBu is nonincreasing for u > θ−1
B .

PRELIMINARY REMARK 2. The partial sums Sn and �n satisfy for every
n ≥ 1,

logSn −
n∑

k=1

γ 2
k

1 − γk

≤ �n ≤ logSn.(9)

This follows from the easy comparisons

�n =
n∑

k=1

�k

Sk

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

≤
∫ Sn

1

du

u
= logSn,

=
n∑

k=1

Sk−1

Sk

∫ Sk

Sk−1

du

Sk−1
≥

n∑
k=1

(1 − γk)

∫ Sk

Sk−1

du

u
,

≥ logSn −
n∑

k=1

γ 2
k

1 − γk

.

PROOF OF LEMMA 1. The first inequality is elementary, since �n ≥ nγn, us-
ing that (γn)n≥1 is a nonincreasing sequence by (S1). By assumption (S2), for
some C > 0, for all n ∈ N,

C ≥ γne
θB�n

�n

.

Using that u �→ eθBu/u is increasing on [1/θB,∞) we obtain that, for sufficiently
large n0 ∈ N,

C(n − n0) ≥
∫ �n

�n0

eθBx

x
dx ∼

n→∞
eθB�n

θB�n

.(10)

Trivially, log(eθB�n/θB�n) ∼n→∞ θB�n, so that (10) proves the second inequality.
�

3. Abel transforms.

3.1. Preliminary estimates. Lemmas 9 and 10 estimate the error in replacing
the payoffs η�,k by their “average success rate” θ� in a sum weighted by a decreas-
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ing sequence (ξn)n∈N, by the use of Abel transforms, that is, discrete integrations
by parts. More precisely let, for all n ∈ N and � ∈ {A,B},

��
n,ξ =

n∑
k=1

ξk(η�,k − θ�)

be the corresponding deviation. Lemma 9 upper bounds |��
n,ξ − ��

m,ξ | for all
n ≥ m, whereas Lemma 10 shows that �n,ξ converges to a finite value under cer-
tain assumptions, which are fulfilled, for instance, when ξ := γ and (S)–(E2) hold.

Lemma 9 is the main tool in the proof of Lemmas 6 and 7 and the second
part of Lemma 10 will be useful in the proof of Proposition 8 providing “brake
phenonemon” bounds.

LEMMA 9. Let (ξn)n∈N be a positive real-valued nonincreasing sequence. As-
sume φ is nondecreasing on [k0,∞) for some k0 ∈ N, then, for all n ≥ m ≥ k0,

|��
n,ξ − ��

m,ξ | ≤ βm

(
n∑

k=m+1

ξkφ
′(k) + 2ξmφ(m)

)
.

PROOF. Let, for all n ∈ N and � ∈ {A,B}, κ�
n := ∑n

k=1(η�,k − θ�). If n ≥ m ≥
k0, then

��
n,ξ − ��

m,ξ =
n∑

k=m+1

ξk(η�,k − θ�)

=
n∑

k=m+1

ξk(κ
�
k − κ�

k−1) =
n∑

k=m+1

ξkκ
�
k −

n−1∑
k=m

ξk+1κ
�
k(11)

=
n−1∑
k=m

(ξk − ξk+1)κ
�
k + ξnκ

�
n − ξmκ�

m.

Now, using that (ξn)n≥0 is nonincreasing,∣∣∣∣∣
n−1∑
k=m

(ξk − ξk+1)κ
�
k

∣∣∣∣∣
≤

n−1∑
k=m

(ξk − ξk+1)Rk =
n−1∑
k=m

(ξk − ξk+1)αkφ(k)

(12)

≤ βm

n−1∑
k=m

(ξk − ξk+1)φ(k) = βm

(
n−1∑
k=m

ξkφ(k) −
n∑

k=m+1

ξkφ(k − 1)

)

= βm

(
n∑

k=m+1

ξk

(
φ(k) − φ(k − 1)

) + ξmφ(m) − ξnφ(n)

)
.
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In summary, (11) and (12) imply

|��
n,ξ − ��

m,ξ | ≤ βm

(
n∑

k=m+1

ξk

(
φ(k) − φ(k − 1)

) + 2ξmφ(m)

)

= βm

(
n∑

k=m+1

ξkφ
′(k) + 2ξmφ(m)

)
.

�

REMARK 3.1. Under assumption (E2), that is, when φ(k) := k(log(k +
2))−(1+ε) for some ε > 0, then

φ′(k) ≤ 1

(log(k + 1))1+ε
, k ∈ N.

Indeed, for all x ∈ R
+,(

dφ

dx

)
(x) = 1

(log(x + 2))1+ε
− (1 + ε)x

(x + 2)(log(x + 2))2+ε

and

φ′(k) ≤ sup
x∈[k−1,k]

(
dφ

dx

)
(x).

LEMMA 10. Given a positive real-valued nondecreasing sequence (ξn)n∈N,
let, for all n ∈ N, �n := ∑n

k=1 ξk . If φ is nondecreasing on [k0,∞) for some
k0 ∈ N,

∑∞
k=1 �k|φ′′(k)| < ∞ and lim supn∈N �n|φ′(n)| = 0 then, for all � ∈

{A,B}, (��
n,ξ )n∈N converges to a finite real value as n goes to infinity.

In particular, under assumptions (S) and (E2), for all � ∈ {A,B}, (��
n,γ )n∈N

and (��
n,γ /�)n∈N [where γ = (γn)n∈N and γ /� = (γn/�n)n∈N] converge to a

finite real value as n goes to infinity.

PROOF. For all m, n ≥ k0 with n ≥ m, Lemma 9 implies

|��
n,ξ − ��

m,ξ | ≤ βm

(
n∑

k=m+1

ξkφ
′(k) + 2ξmφ(m)

)
.

But
n∑

k=m+1

ξkφ
′(k) =

n∑
k=m+1

(�k − �k−1)φ
′(k) =

n∑
k=m+1

�kφ
′(k) −

n−1∑
k=m

�kφ
′(k + 1)

=
n−1∑
k=m

�k

(
φ′(k) − φ′(k + 1)

) − �mφ′(m) + �nφ
′(n)

= −
n−1∑
k=m

�kφ
′′(k) − �mφ′(m) + �nφ

′(n).
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Let us now prove the convergence of (��
n,γ )n∈N under assumptions (S)–(E2).

Then �n = O(logn) by Lemma 1 and φ′(n) = o( 1
logn

) (see Remark 3.1) so that
�nφ

′(n) −→
n→∞ 0. Now, there exist λ, μ ∈ (0,1) such that

|φ′′(k)| = ∣∣(φ(k + 1) − φ(k)
) − (

φ(k) − φ(k − 1)
)∣∣

=
∣∣∣∣dφ

dx
(k + μ) − dφ

dx
(k − λ)

∣∣∣∣
≤ 2 sup

x∈[k−1,k+1]

∣∣∣∣
(

d2φ

dx2

)∣∣∣∣
and (

d2φ

dx2

)
(x) = 1 + ε

(x + 2)(log(x + 2))2+ε

×
[
−2 + x

x + 2

(
1 + 2 + ε

log(x + 2)

)]

= O

(
1

x(log(x + 2))2+ε

)
, x ∈ R

+ \ {0},

so that
∑

�k|φ′′(k)| < ∞ and the assumptions of the first statement are fulfilled.
The convergence of (��

n,γ /�)n∈N follows similarly, since γn/�n = O(γn). �

3.2. Proof of Lemma 6. Recall that �∞ = 0 [see the first paragraph after the
definition of (�n)n∈N, Section 1.2]. Hence, using Lemma 9,

|�n| =
∣∣∣∣∣

∞∑
k=n+1

γk

Sk−1

(
ηA,k − ηB,k − (θA − θB)

)∣∣∣∣∣
≤ 2βn

{ ∞∑
k=n+1

γk

Sk−1
φ′(k) + 2

γn

Sn−1
φ(n)

}
(13)

≤ 2βn

{
φ′(n)

∞∑
k=n+1

γk

Sk−1
+ 2

γn

Sn−1
φ(n)

}
,

where we use the concavity of φ in the last inequality.
Now

∞∑
k=n+1

γk

Sk

=
∞∑

k=n+1

�k

S2
k

=
∞∑

k=n+1

Sk − Sk−1

S2
k

≤ 1

Sn

,

so that inequality (13) implies the result.
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3.3. Proof of Lemma 7. Note that

∧n − ∧m =
n∑

k=m+1

Sk−1f (Xk−1)
γk

Sk−1

(
ηA,k − ηB,k − (θA − θB)

)

=
n∑

k=m+1

Sk−1f (Xk−1)(�k−1 − �k)

(14)

=
n∑

k=m+1

�k

(
Skf (Xk) − Sk−1f (Xk−1)

)

+ �mSmf (Xm) − �nSnf (Xn).

Recall that (Skf (Xk))k∈N is a nondecreasing sequence (see last paragraph be-
fore the statements of Lemmas 6 and 7) so that (14) implies, together with Lem-
ma 6, that, for all n ≥ m ≥ k0,

|∧n − ∧m| ≤ R′
m

[
n∑

k=m+1

Skf (Xk) − Sk−1f (Xk−1)

Sk

+ f (Xm) + f (Xn)

]

= R′
m

[
n∑

k=m+1

[f (Xk) − f (Xk−1) + γkf (Xk−1)] + f (Xm) + f (Xn)

]

= R′
m

[
n∑

k=m+1

γkf (Xk−1) + 2f (Xn)

]
.

4. Proof of Theorem 3.

4.1. Brake phenomenon bound: Proof of Proposition 8. Assume that (S) and
(E2) hold. Let

A :=
{

lim sup
n→∞

YB
n

logSB
n

< ∞
}

∩
{

lim
n→∞Xn = 0

}
.

In order to prove Proposition 8, that is, that P(A) = 0, we first upper bound SB
n

in Lemma 11. Then we show that YB
n −→

n→∞∞ a.s. on A in Lemma 12 so that, for

every λ > 0, Xn > λ/SB
n for large n ∈ N. Both lemmas are shown in Section 4.1.1;

we finally conclude in Section 4.1.2 that A almost surely does not occur.

4.1.1. Brake phenomenon: Preliminary estimates.

LEMMA 11. Under assumptions (S)–(E2), there exists L > 0 such that, for all
n ∈ N, SB

n ≤ LeθB�n a.s.
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PROOF. Recall that (S) implies
∑

γ 2
n < ∞ (see Preliminary Remark 1, Sec-

tion 2, or Lemma 1), so that there exists K > 0 such that, for all n ∈ N,

SB
n ≤ K exp

(
n∑

k=1

γk1{Ik>Xk,ηB,k=1}
)

a.s.

Now observe that
n∑

k=1

γk1{Ik>Xk,ηB,k=1} = θB�n +
n∑

k=1

γk(ηB,k − θB) −
n∑

k=1

γkηB,k1{Ik≤Xk}
(15)

= θB�n + �B
n,γ −

n∑
k=1

γkηB,k1{Ik≤Xk},

which enables us to conclude since �B
n,γ converges to a finite value by Lemma 10.

�

LEMMA 12. Under assumptions (S)–(E2), A ⊆ {lim supn→∞ YB
n = ∞},

Px-a.s.

PROOF. There exist L, L′ > 0 such that, for all n ∈ N,

γn+1S
B
n

�n+1
≤ γnS

B
n

�n

≤ L′e−θB�nSB
n ≤ LL′,(16)

where we use (S2) in the first inequality and Lemma 11 in the last one.
Now

{
lim sup
n→∞

YB
n = ∞

}
=

{ ∞∑
k=1

(YB
k+1 − YB

k ) = ∞
}

⊇
{ ∞∑

k=1

YB
k+1 − YB

k

�k

= ∞
}

=
{ ∞∑

k=1

�B
k+1(1 − Xk)

�k

1{Uk+1=A}ηA,k+1 = ∞
}

⊇ A ∩
{ ∞∑

k=1

γkS
B
k−1

�k

1{Uk=A}ηA,k = ∞
}

= A ∩
{ ∞∑

k=1

γkS
B
k−1Xk−1

�k

ηA,k = ∞
}

⊇ A ∩
{ ∞∑

k=1

γk

�k

ηA,k = ∞
}
.
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We use Xn −→
n→∞ 0 a.s. on A (and γn → 0) in the second inclusion, whereas, in

the third equality, we apply conditional Borel–Cantelli lemma (see, e.g., [2], The-
orem 2.7.33), which claims, given a filtration F = (Fn)n∈N and an F-adapted
bounded real sequence (ξn)n≥0 (i.e., ∃M > 0 s.t. ξn ≤ M a.s.), that{∑

n∈N

ξn = ∞
}

=
{∑

n∈N

E(ξn|Fn−1) = ∞
}
.

Here ξn := γnS
B
n−11{Un=A}ηA,n/�n is bounded, using (16). The last inclusion

makes use of SB
n Xn ≥ x for all n ∈ N.

Now
∑

γkηA,k/�k = ∞ a.s. on A, since, on one hand,

∞∑
k=1

γk

�k

≥
∞∑

k=1

�k+1 − �k

�k

≥
∫ ∞
�1

dx

x

and, on the other hand,

�A
n,γ/� :=

n∑
k=1

γk

�k

(ηA,k − θA)

converges (deterministically) to a finite value by Lemma 10. �

4.1.2. Proof of Proposition 8. We assume that on the contrary P(A) > 0 and
reach a contradiction by proving that lim supn→∞ YB

n / log(SB
n ) = ∞ a.s. on A.

Note that

YB
n =

n−1∑
k=0

�B
k+11{Ik+1≤Xk}ηA,k+1(1 − Xk) + x

and let, for all λ > 0,

ZB,λ
n :=

n−1∑
k=0

γk+1S
B
k 1{Ik+1≤λ/SB

k }ηA,k+1,

Z̃B,λ
n :=

n−1∑
k=0

γk+1S
B
k min

(
1,

λ

SB
k

)
ηA,k+1.

Almost surely on A, lim supn→∞ YB
n = ∞ by Lemma 12 and limn→∞ Xn =

limn→∞ γn = 0, so that, for all λ > 0

lim sup
n→∞

YB
n

log(SB
n )

≥ lim sup
n→∞

ZB,λ
n

log(SB
n )

a.s.

Fix λ > 0. To show that the right-hand side of this last inequality is infinite a.s.
on A, we aim to estimate E(ZB,λ

n ) = E(Z̃B,λ
n ) and to upper bound E((ZB,λ

n −



ERGODIC TWO-ARMED BANDITS 473

Z̃B,λ
n )2). In order to yield the latter we first observe that there exists M > 0 such

that, for all k ∈ N, γk+1S
B
k ≤ �B

k ≤ M�k , by inequality (16).
Now

E
(
(ZB,λ

n − Z̃B,λ
n )2)

= E

(
n−1∑
k=0

(γk+1S
B
k )2 min

(
1,

λ

SB
k

)(
1 − min

(
1,

λ

SB
k

))
ηA,k+1

)
(17)

≤ M�nE

(
n−1∑
k=0

γk+1S
B
k min

(
1,

λ

SB
k

)
ηA,k+1

)
= M�nE(ZB,λ

n ).

On the other hand, for all M > 0 and ε > 0,

E(ZB,λ
n ) = E

(
n−1∑
k=0

γk+1S
B
k min

(
1,

λ

SB
k

)
ηA,k+1

)

≥ λ(1 − ε)P(A)

n−1∑
k=k0(ε,λ)

γk+1ηA,k+1,

where we use that SB
n = YB

n /Xn → ∞ a.s. on A, k0(ε, λ) being a constant depend-
ing on ε and λ. Now �A

n,γ = ∑n−1
k=0 γk+1ηA,k+1 − �nθA converges by Lemma 10,

so that we obtain

λθA ≥ lim sup
n→∞

E(ZB,λ
n )

�n

≥ lim inf
n→∞

E(ZB,λ
n )

�n

≥ λP(A)θA.

Fix ρ ∈ (0,1) and let

Bn,λ := {|ZB,λ
n − Z̃B,λ

n | ≤ ρE(ZB,λ
n )}.

By (17) and Chebyshev’s inequality,

P(Bc
n,λ) ≤ M�n

ρ2E(Z
B,λ
n )

.

Therefore, for all λ > 0, if we let Cλ := A ∩ lim supn→∞ Bn,λ,

P(Cλ) ≥ lim sup
n→∞

P(A ∩ Bn,λ) ≥ P(A) − M

λρ2θAP(A)
> 0,

if we choose λ such that λ > Mθ−1
A (ρP(A))−2.

Now, almost surely on Cλ ⊆ A, Z̃B,λ
n /�n −→

n→∞λθA (since SB
n −→

n→∞∞; see

above), so that

lim sup
n→∞

YB
n

logSB
n

≥ λ(1 − ρ)θA

θB
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using that lim supn→∞ logSB
n /�n ≤ θB by Lemma 11.

Therefore,

P

({
lim sup
n→∞

YB
n

logSB
n

= ∞
}

∩ A
)

≥ P

(
lim sup

λ∈N,λ→∞
Cλ

)

≥ lim sup
λ∈N,λ→∞

P(Cλ) ≥ P(A),

which enables us to conclude.

4.2. Conclusion of the proof of Theorem 3. Let, for all n ≥ 0, T B
n := eθB�n . It

follows from Proposition 8 that

lim sup
n→∞

Xn

logT B
n /T B

n

= ∞ a.s. on X∞ = 0

using that lim supn→∞ SB
n /T B

n < ∞ by Lemma 11.
Given l ∈ N, let us estimate P(X∞ = 0|Fl). Using identity (6) and the assump-

tion θA > θB , there exists n0 ∈ N deterministic such that, for all n ≥ m ≥ n0,

Xn − Xm = Mn − Mm + (
θA − θB + �(R′

m)
) n∑
k=m+1

γkf (Xk−1)

+ 2�(R′
m)f (Xn)

≥ Mn − Mm − Xn,

so that

2Xn ≥ Xm + Mn − Mm.(18)

Let (Nn)n≥l be the (Fn)n≥l adapted martingale given by

Nn :=
n∑

i=l+1

γi1{Xi−1≤Xl}εi, Nl := 0;

recall that (εi)i∈N was defined before the statement of Proposition 5.
Let n0 be sufficiently large, so that γn0 ≤ 1/2; then, for all n ≥ n0, Xn+1 >

Xn/2. Thus, for all n ≥ l ≥ n0, inequality (18) implies

2Xn ≥ Xm + Nn − Nm ≥ Xl/2 + Nn − Nm,(19)

where m := max{l ≤ i ≤ n :Xi > Xl/2}; indeed, if m < n then, for all m ≤ k ≤
n − 1, Xk+1 ≤ Xl/2, hence, Xk ≤ Xl ; (19) also trivially holds in the case n = m.
Hence, if x− := max(−x,0) denotes the negative part of x, then

(2X∞ − Xl/2)− ≤ sup
m,n≥l

|Nn − Nm| ≤ 2 sup
n≥l

|Nn − Nl|.



ERGODIC TWO-ARMED BANDITS 475

Therefore, by Chebyshev’s inequality,

P(X∞ = 0|Fl) ≤ 4E[[(2X∞ − Xl/2)−]2|Fl]
X2

l
(20)

≤ 16
E[supn≥l(Nn − Nl)

2|Fl]
X2

l

.

Now observe that, for all k ∈ N, E(ε2
k+1|Fk) ≤ f (Xk) ≤ Xk , so that Doob’s in-

equality implies

E

[
sup
n≥l

(Nn − Nl)
2∣∣Fl

]
≤ 4E

( ∞∑
n=l+1

γ 2
n 1{Xn−1≤Xl}f (Xn−1)

)

(21)

≤ 4Xl

∞∑
n=l+1

γ 2
n .

Let us upper bound
∑∞

i=n+1 γ 2
i in terms of Tn. For sufficiently large k ∈ N,

T B
k+1 − T B

k = eθB�k+1(1 − e−θBγk+1) ≥ T B
k+1θBγk+1

2

and, on the other hand, by assumption (S),

γk ≤ C�ke
−θB�k = C log(T B

k )

θBT B
k

.

Hence, if l ∈ N was assumed sufficiently large,

∞∑
n=l+1

γ 2
n ≤ C

∞∑
n=l+1

(T B
n − T B

n−1)
logT B

n

(T B
n )2 ≤ C

∫ ∞
T B

l

log t

t2 dt ≤ 2C
logT B

l

T B
l

.(22)

In summary, it follows from identities (20)–(22) that

P(X∞ = 0|Fl) ≤ C
logT B

l

XlT
B
l

.

Now the bounded martingale P(X∞ = 0|Fl) converges, as l goes to infinity, to

1{X∞=0} ≤ C lim inf
l→∞

logT B
l

XlT
B
l

= 0 a.s.

so that P(X∞ = 0) = 0.
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