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THE BELLMAN EQUATION FOR POWER UTILITY
MAXIMIZATION WITH SEMIMARTINGALES

BY MARCEL NUTZ1

ETH Zürich

We study utility maximization for power utility random fields with and
without intermediate consumption in a general semimartingale model with
closed portfolio constraints. We show that any optimal strategy leads to a so-
lution of the corresponding Bellman equation. The optimal strategies are de-
scribed pointwise in terms of the opportunity process, which is characterized
as the minimal solution of the Bellman equation. We also give verification
theorems for this equation.

1. Introduction. A classical problem of mathematical finance is the maxi-
mization of expected utility obtained from consumption or from terminal wealth.
This paper focuses on power utility functions and presents the corresponding dy-
namic programming in a general constrained semimartingale framework. The ho-
mogeneity of these utility functions leads to a factorization of the value process
into a part depending on the current wealth and the so-called opportunity pro-
cess L. In our setting, the Bellman equation describes the drift rate of L and clar-
ifies the local structure of our problem. Finding an optimal strategy boils down to
maximizing a random function y �→ g(ω, t, y) on R

d for every state ω and date t .
This function is given in terms of the semimartingale characteristics of L as well as
the asset returns, and its maximum yields the drift rate of L. The role of the oppor-
tunity process is to augment the information contained in the return characteristics
in order to have a local sufficient statistic for the global optimization problem.

We present three main results. First, we show that if there exists an optimal
strategy for the utility maximization problem, the opportunity process L solves the
Bellman equation and we provide a local description of the optimal strategies. We
state the Bellman equation in two forms, as an identity for the drift rate of L and
as a backward stochastic differential equation (BSDE) for L. Second, we char-
acterize the opportunity process as the minimal solution of this equation. Finally,
given some solution and an associated strategy, one can ask whether the strategy
is optimal and the solution is the opportunity process. We present two different
approaches which lead to verification theorems not comparable in strength unless
the constraints are convex.
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The present dynamic programming approach should be seen as complementary
to convex duality, which remains the only method to obtain existence of optimal
strategies in general models (see Kramkov and Schachermayer [21], Karatzas and
Žitković [20], Karatzas and Kardaras [19]). However, convex duality alone offers
limited insight into the optimal strategies for incomplete markets. In some cases,
the Bellman equation can be solved directly by analytic methods, for example,
in the setting of Example 5.8 with continuous asset prices or in the Lévy process
setting of Nutz [26]. In addition to the existence, one then obtains a way to compute
the optimal strategies (at least numerically) and study their properties.

This paper is organized as follows. The next section specifies the optimization
problem in detail, recalls the opportunity process and the martingale optimality
principle and fixes the notation for the characteristics. We also introduce set-valued
processes describing the budget condition and state the assumptions on the port-
folio constraints. Section 3 derives the Bellman equation, first as a drift condition
and then as a BSDE. It becomes more explicit as we specialize to the case of
continuous asset prices. The definition of a solution of the Bellman equation is
given in Section 4, where we show the minimality of the opportunity process. Sec-
tion 5 deals with the verification problem, which is converse to the derivation of
the Bellman equation since it requires the passage from the local maximization
to the global optimization problem. We present an approach via the value process
and a second approach via a deflator, which corresponds to the dual problem in
a suitable setting. Appendix A belongs to Section 3 and contains the measurable
selections for the construction of the Bellman equation. It is complemented by Ap-
pendix B, where we construct an alternative parametrization of the market model
by representative portfolios.

2. Preliminaries. The following notation is used. If x, y ∈ R, we denote
x+ = max{x,0} and x ∧ y = min{x, y}. We set 1/0 := ∞ where necessary. If
z ∈ R

d is a d-dimensional vector, zi is its ith coordinate, z� its transpose and
|z| = (z�z)1/2 the Euclidean norm. If X is an R

d -valued semimartingale and π

is an R
d -valued predictable integrand, the vector stochastic integral is a scalar

semimartingale with initial value zero and denoted by
∫
π dX or by π • X. The

quadratic variation is the d × d-matrix [X] := [X,X] and if Y is a scalar semi-
martingale, [X,Y ] is the d-vector with [X,Y ]i := [Xi,Y ]. When the reference
measure is understood, relations between measurable functions hold almost every-
where unless otherwise mentioned. Our reference for any unexplained notion from
stochastic calculus is Jacod and Shiryaev [15].

2.1. The optimization problem. We fix the time horizon T ∈ (0,∞) and a
stochastic basis (�, F ,F,P ), where the filtration F = (Ft )t∈[0,T ] satisfies the
usual assumptions of right continuity and completeness as well as F0 = {∅,�}
P -a.s. We consider an R

d -valued càdlàg semimartingale R with R0 = 0 represent-
ing the returns of d risky assets. Their discounted prices are given by the stochas-
tic exponential S = E(R) = (E(R1), . . . , E(Rd)); in the financial application, the
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components of S are assumed to be positive. Our agent also has a bank account at
his disposal; it does not pay interest.

The agent is endowed with a deterministic initial capital x0 > 0. A trading
strategy is a predictable R-integrable R

d -valued process π , where πi indicates
the fraction of wealth (or the portfolio proportion) invested in the ith risky asset.
A consumption strategy is a nonnegative optional process c such that

∫ T
0 ct dt <∞

P -a.s. We want to consider two cases. Either consumption occurs only at the ter-
minal time T (utility from “terminal wealth” only) or there is intermediate con-
sumption plus a bulk consumption at the time horizon. To unify the notation, we
introduce the measure μ on [0, T ] by

μ(dt) :=
{

0, in the case without intermediate consumption,
dt, in the case with intermediate consumption.

Let also μ◦ := μ + δ{T }, where δ{T } is the unit Dirac measure at T . The wealth
process X(π, c) corresponding to a pair (π, c) is defined by the equation

Xt(π, c)= x0 +
∫ t

0
Xs−(π, c)πs dRs −

∫ t

0
csμ(ds), 0≤ t ≤ T .

We define the set of trading and consumption pairs

A0(x0) := {(π, c) :X(π, c) > 0,X−(π, c) > 0 and cT =XT (π, c)}.
These are the strategies that satisfy the budget constraint. The convention cT =
XT (π, c) means that all the remaining wealth is consumed at time T . We consider
also exogenous constraints imposed on the agent. For each (ω, t) ∈�× [0, T ] we
are given a set Ct (ω) ⊆ R

d which contains the origin. The set of (constrained)
admissible strategies is

A(x0) := {(π, c) ∈A0(x0) :πt(ω) ∈ Ct (ω) for all (ω, t)},
which is nonempty as 0 ∈ Ct (ω). Further assumptions on the set-valued mapping
C will be introduced in Section 2.4. We fix the initial capital x0 and usually write
A for A(x0). Abusing the notation, we write c ∈A and call c admissible if there
exists π such that (π, c) ∈A; an analogous convention is used for similar expres-
sions.

We will often parametrize the consumption strategies as a fraction of wealth.
Let (π, c) ∈A and X =X(π, c). Then

κ := c

X

is called the propensity to consume corresponding to (π, c). This yields a one-to-
one correspondence between the pairs (π, c) ∈ A and the pairs (π, κ) such that
π ∈A and κ is a nonnegative optional process satisfying

∫ T
0 κs ds <∞ P -a.s. and

κT = 1 (see Nutz [25], Remark 2.1, for details). We shall abuse the notation and
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identify a consumption strategy with the corresponding propensity to consume; for
example, we write (π, κ) ∈A. Note that

X(π,κ)= x0E(π • R− κ • μ).

This simplifies verifying that some pair (π, κ) is admissible as X(π,κ) > 0 implies
X−(π, κ) > 0; cf. [15], II.8a.

The preferences of the agent are modeled by a time-additive random utility func-
tion as follows. Let D be a càdlàg, adapted, strictly positive process such that
E[∫ T0 Dsμ

◦(ds)] <∞ and fix p ∈ (−∞,0) ∪ (0,1). We define the power utility
random field

Ut(x) :=Dt

1

p
xp, x ∈ (0,∞), t ∈ [0, T ].

This is the general form of a p-homogeneous utility random field such that a con-
stant consumption yields finite expected utility. Interpretations and applications
for the process D are discussed in [25]. We denote by U∗ the convex conjugate of
x �→Ut(x),

U∗t (y)= sup
x>0
{Ut(x)− xy} = −1

q
yqD

β
t ;(2.1)

here q := p
p−1 ∈ (−∞,0) ∪ (0,1) is the exponent conjugate to p and the con-

stant β := 1
1−p > 0 is the relative risk tolerance of U . Note that we exclude the

well-studied logarithmic utility (e.g., Goll and Kallsen [11]) which corresponds to
p = 0.

The expected utility corresponding to a consumption strategy c ∈ A is
E[∫ T0 Ut(ct )μ

◦(dt)], that is, either E[UT (cT )] or E[∫ T0 Ut(ct ) dt +UT (cT )]. The
(value of the) utility maximization problem is said to be finite if

u(x0) := sup
c∈A(x0)

E

[∫ T

0
Ut(ct )μ

◦(dt)
]
<∞.(2.2)

Note that this condition is void if p < 0 as then U < 0. If (2.2) holds, a strategy
(π, c) ∈A(x0) is called optimal if E[∫ T0 Ut(ct )μ

◦(dt)] = u(x0).
Finally, we introduce the following sets which are of minor importance and used

only in the case p < 0:

Af :=
{
(π, c) ∈A :

∫ T

0
Ut(ct )μ

◦(dt) >−∞
}
,

AfE :=
{
(π, c) ∈A :E

[∫ T

0
Ut(ct )μ

◦(dt)
]
>−∞

}
.

Anticipating that (2.2) will be in force, the indices stand for “finite” and “finite
expectation.” Clearly AfE ⊆Af ⊆A, and equality holds if p ∈ (0,1).
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2.2. Opportunity process. We recall the opportunity process, a reduced form
of the value process in the language of control theory. We assume (2.2) in this
section, which ensures that the following process is finite. By [25], Proposition 3.1
and Remark 3.7, there exists a unique càdlàg semimartingale L, called opportunity
process, such that

Lt

1

p
(Xt(π, c))

p = ess sup
c̃∈A(π,c,t)

E

[∫ T

t
Us(c̃s)μ

◦(ds)
∣∣∣Ft

]
(2.3)

for any (π, c) ∈A, where A(π, c, t) := {(π̃, c̃) ∈A : (π̃, c̃)= (π, c) on [0, t]}. We
note that LT =DT and that u(x0)= L0

1
p
x
p
0 is the value function from (2.2). The

following is contained in [25], Lemma 3.5.

LEMMA 2.1. L is a special semimartingale for all p. If p ∈ (0,1), then
L,L− > 0, up to evanescence. If p < 0, the same holds provided that an optimal
strategy exists.

PROPOSITION 2.2 ([25], Proposition 3.4). Let (π, c) ∈AfE . Then the process

Lt

1

p
(Xt(π, c))

p +
∫ t

0
Us(cs)μ(ds), t ∈ [0, T ],

is a supermartingale; it is a martingale if and only if (π, c) is optimal.

This is the “martingale optimality principle.” The expected terminal value of
this process equals E[∫ T0 Ut(ct )μ

◦(dt)], hence, the assertion fails for (π, c) ∈A \
AfE .

2.3. Semimartingale characteristics. In the remainder of this section we in-
troduce tools which are necessary to describe the optimization problem locally.
The use of semimartingale characteristics and set-valued processes follows [11]
and [19], which consider logarithmic utility and convex constraints. That problem
differs from ours in that it is “myopic,” that is, the characteristics of R are sufficient
to describe the local problem and so there is no need for an opportunity process.

We refer to [15] for background regarding semimartingale characteristics and
random measures. Let μR be the integer-valued random measure associated with
the jumps of R and let h : Rd → R

d be a cut-off function, that is, h is bounded
and h(x) = x in a neighborhood of x = 0. Let (BR,CR, νR) be the predictable
characteristics of R relative to h. The canonical representation of R (cf. [15],
II.2.35) is

R = BR +Rc + h(x) ∗ (μR − νR)+ (x − h(x)
) ∗μR.(2.4)

The finite variation process (x−h(x)) ∗μR contains essentially the “large” jumps
of R. The rest is the canonical decomposition of the special semimartingale R̄ =
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R − (x − h(x)) ∗ μR , which has bounded jumps: BR = BR(h) is predictable of
finite variation, Rc is a continuous local martingale and h(x) ∗ (μR − νR) is a
purely discontinuous local martingale.

As L is a special semimartingale (Lemma 2.1), it has a canonical decomposition
L=L0+AL+ML. Here L0 is constant, AL is predictable of finite variation and
also called the drift of L, ML is a local martingale and AL

0 =ML
0 = 0. Analogous

notation will be used for other special semimartingales. It is then possible to con-
sider the characteristics (AL,CL, νL) of L with respect to the identity instead of a
cut-off function. Writing x′ for the identity on R, the canonical representation is

L=L0 +AL +Lc + x′ ∗ (μL − νL)

(see [15], II.2.38). It will be convenient to use the joint characteristics of the
R

d×R-valued process (R,L). We denote a generic point in R
d×R by (x, x′) and

let (BR,L,CR,L, νR,L) be the characteristics of (R,L) with respect to the function
(x, x′) �→ (h(x), x′). More precisely, we choose “good” versions of the charac-
teristics so that they satisfy the properties given in [15], II.2.9. For the (d + 1)-
dimensional process (R,L) we have the canonical representation(

R

L

)
=
(

0
L0

)
+
(
BR

AL

)
+
(
Rc

Lc

)
+
(
h(x)

x′
)
∗ (μR,L − νR,L)

+
(
x − h(x)

0

)
∗μR,L.

We denote by (bR,L, cR,L,FR,L;A) the differential characteristics with respect
to a predictable locally integrable increasing process A, for example,

At := t +∑
i

Var(BRL,i)t +
∑
i,j

Var(CRL,ij )t + (|(x, x′)|2 ∧ 1
) ∗ νR,L

t .

Then bR,L • A = BR,L, cR,L • A = CR,L and FR,L • A = νR,L. We shall write
bR,L = (bR, aL)� and cR,L =

(
cR cRL

(cRL)� cL

)
, that is, cRL is a d-vector satisfying

(cRL) •A= 〈Rc,Lc〉. We will often use that∫
Rd×R

(|x|2 + |x′|2)∧ (1+ |x′|)FR,L(d(x, x′)) <∞,(2.5)

because L is a special semimartingale; cf. [15], II.2.29. Let Y be any scalar semi-
martingale with differential characteristics (bY , cY ,F Y ) relative to A and a cut-off
function h̄. We call

aY := bY +
∫ (

x − h̄(x)
)
FY (dx)

the drift rate of Y whenever the integral is well defined with values in [−∞,∞],
even if it is not finite. Note that aY does not depend on the choice of h̄. If Y

is special, the drift rate is finite and even A-integrable (and vice versa). As an
example, aL is the drift rate of L and aL •A=AL yields the drift.
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REMARK 2.3. Assume Y is a nonpositive scalar semimartingale. Then its drift
rate aY is well defined with values in [−∞,∞). Indeed, the fact that Y = Y− +
	Y ≤ 0 implies that x ≤−Y−, FY (dx)-a.e.

If Y is a scalar semimartingale with drift rate aY ∈ [−∞,0], we call Y a semi-
martingale with nonpositive drift rate. Here aY need not be finite, as in the case
of a compound Poisson process with negative, nonintegrable jumps. We refer to
Kallsen [17] for the concept of σ -localization. Denoting by L(A) the set of A-
integrable processes and recalling that F0 is trivial, we conclude the following, for
example, from [19], Appendix 3.

LEMMA 2.4. Let Y be a semimartingale with nonpositive drift rate.

(i) Y is a σ -supermartingale⇔ aY is finite⇔ Y is σ -locally of class (D).
(ii) Y is a local supermartingale⇔ aY ∈ L(A)⇔ Y is locally of class (D).

(iii) If Y is uniformly bounded from below, it is a supermartingale.

2.4. Constraints and degeneracies. We introduce some set-valued processes
that will be used in the sequel, that is, for each (ω, t) they describe a subset of R

d .
We refer to Rockafellar [28] and Aliprantis and Border [1], Section 18, for back-
ground.

We start by expressing the budget constraint in this fashion. The process

C 0
t (ω) := {y ∈R

d :FR
t (ω){x ∈R

d :y�x <−1} = 0
}

was called the natural constraints in [19]. Clearly C 0 is closed, convex and
contains the origin. Moreover, one can check (see [19], Section 3.3) that it is
predictable in the sense that for each closed G ⊆ R

d , the lower inverse image
(C 0)−1(G)= {(ω, t) :Ct (ω)∩G �=∅} is predictable. (Here one can replace closed
by compact or by open; see [28], 1A.) A statement such as “C 0 is closed” means
that C 0

t (ω) is closed for all (ω, t); moreover, we will often omit the arguments
(ω, t). We also consider the slightly smaller set-valued process

C 0,∗ := {y ∈R
d :FR{x ∈R

d :y�x ≤−1} = 0
}
.

These processes relate to the budget constraint as follows.

LEMMA 2.5. A process π ∈ L(R) satisfies E(π • R)≥ 0 (> 0) up to evanes-
cence if and only if π ∈ C 0(C 0,∗) P ⊗A-a.e.

PROOF. Recall that E(π • R) > 0 if and only if 1+ π�	R > 0 ([15], II.8a).
Writing V (x)= 1{x : 1+π�x≤0}(x), we have (P ⊗A){π /∈ C 0,∗} =E[V (x)∗ νR

T ] =
E[V (x) ∗ μR

T ] = E[∑s≤T 1{x : 1+π�s 	Rs≤0}]. For the equivalence with C 0, inter-
change strict and nonstrict inequality signs. �
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The process C 0,∗ is not closed in general (nor relatively open). Clearly, we
have C 0,∗ ⊆ C 0, and in fact C 0 is the closure of C 0,∗; for y ∈ C 0

t (ω), the se-
quence {(1− 1/n)y}n≥1 is in C 0,∗

t (ω) and converges to y. This implies that C 0,∗
is predictable; cf. [1], 18.3. We will not be able to work directly with C 0,∗ because
closedness is essential for the measurable selection arguments that will be used.

We turn to the exogenous portfolio constraints, that is, the set-valued process C
containing the origin. We consider the following conditions:

(C1) C is predictable.
(C2) C is closed.
(C3) If p ∈ (0,1): there exists a (0,1)-valued process η such that

y ∈ (C ∩C 0) \C 0,∗ �⇒ ηy ∈ C for all η ∈ (η,1),P ⊗A-a.e.

Condition (C3) is clearly satisfied if C ∩C 0 ⊆ C 0,∗, which includes the case of a
continuous process R, and it is always satisfied if C is convex or, more generally,
star-shaped with respect to the origin. If p < 0, (C3) should be read as always
being satisfied.

We require (C3) to exclude a degenerate situation where, despite the Inada con-
dition U ′(0) =∞, it is actually desirable for the agent to have a wealth process
that vanishes in some states. That situation, illustrated in the subsequent example,
would necessitate a more complicated notation while it can arise only in cases that
are of minor interest.

EXAMPLE 2.6. We assume that there is no intermediate consumption and
x0 = 1. Consider the one-period binomial model of a financial market, that is,
S = E(R) is a scalar process which is constant up to time T , where it has a sin-
gle jump, say P [	RT = −1] = p0 and P [	RT = K] = 1 − p0, where K > 0
is a constant and p0 ∈ (0,1). The filtration is generated by R and we consider
C ≡ {0} ∪ {1}. Then E[U(XT (π))] = U(1) if πT = 0 and E[U(XT (π))] =
p0U(0)+ (1−p0)U(1+K) if πT = 1. If U(0) >−∞, and if K is large enough,
πT = 1 performs better despite the fact that its terminal wealth vanishes with prob-
ability p0 > 0. Of course, this cannot happen if U(0)=−∞, that is, p < 0.

By adjusting the constants in the example, one can also see that under noncon-
vex constraints, there is in general no uniqueness for the optimal wealth processes
(even if they are positive).

The final set-valued process is related to linear dependencies of the assets. As
in [19], the predictable process of null-investments is

N := {y ∈R
d :y�bR = 0, y�cR = 0,FR{x :y�x �= 0} = 0

}
.

Its values are linear subspaces of R
d , hence closed, and provide the pointwise

description of the null-space of H �→H • R. That is, H ∈ L(R) satisfies H • R ≡ 0
if and only if H ∈N P ⊗A-a.e. An investment with values in N has no effect
on the wealth process.
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3. The Bellman equation. We have now introduced the necessary notation to
formulate our first main result. Two special cases of our Bellman equation can be
found in the pioneering work of Mania and Tevzadze [23] and Hu, Imkeller and
Müller [14]. These articles consider models with continuous asset prices and we
shall indicate the connections as we specialize to that case in Section 3.3. A re-
lated equation also arises in the study of mean–variance hedging by Černý and
Kallsen [5] in the context of locally square-integrable semimartingales, although
they do not use dynamic programming explicitly. Due to the quadratic setting, that
equation is more explicit than ours and the mathematical treatment is quite differ-
ent. Czichowsky and Schweizer [7] study a cone-constrained version of the related
Markowitz problem and there the equation is no longer explicit.

The Bellman equation highlights the local structure of our utility maximization
problem. In addition, it has two main benefits. First, it can be used as an abstract
tool to derive properties of the optimal strategies and the opportunity process (e.g.,
Nutz [27]). Second, one can try to solve the equation directly in a given model and
to deduce the optimal strategies. This is the point of view taken in Section 5 and
obviously requires the precise form of the equation.

The following assumptions are in force for the entire Section 3.

ASSUMPTIONS 3.1. The value of the utility maximization problem is finite,
there exists an optimal strategy (π̂, ĉ) ∈A and C satisfies (C1)–(C3).

3.1. Bellman equation in joint characteristics. Our first main result is the
Bellman equation stated as a description of the drift rate of the opportunity process.
We recall the conjugate function U∗t (y)=− 1

q
yqD

β
t .

THEOREM 3.2. The drift rate aL of the opportunity process satisfies

−p−1aL =U∗(L−)
dμ

dA
+ max

y∈C∩C 0
g(y),(3.1)

where g is the predictable random function

g(y) := L−y�
(
bR + cRL

L−
+ (p− 1)

2
cRy

)

+
∫

Rd×R

x′y�h(x)FR,L(d(x, x′))
(3.2)

+
∫

Rd×R

(L− + x′){p−1(1+ y�x)p

− p−1 − y�h(x)}FR,L(d(x, x′)).
The unique (P ⊗μ◦-a.e.) optimal propensity to consume is

κ̂ =
(
D

L

)1/(1−p)

.(3.3)
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Any optimal trading strategy π∗ satisfies

π∗ ∈ arg max
C∩C 0

g,(3.4)

and the corresponding optimal wealth process and consumption are given by

X∗ = x0E(π∗ • R − κ̂ • μ); c∗ =X∗κ̂ .

We shall see in the proof that the maximization in (3.1) can be understood as a
local version of the optimization problem. Indeed, recalling (2.1), the right-hand
side of (3.1) is the maximum of a single function over certain points (k, y) ∈
R+ × R

d that correspond to the admissible controls (κ,π). Moreover, optimal
controls are related to maximizers of this function, a characteristic feature of any
dynamic programming equation. The maximum of g is not explicit due to the
jumps of R; this simplifies in the continuous case considered in Section 3.3 below.
Some mathematical comments are also in order.

REMARK 3.3. (i) The random function g is well defined on C 0 in the ex-
tended sense (see Lemma A.2) and it does not depend on the choice of the cut-off
function h by [15], II.2.25.

(ii) For p < 0 we have a more precise statement: given π∗ ∈ L(R) and κ̂ as
in (3.3), (π∗, κ̂) is optimal if and only if π∗ takes values in C ∩ C 0 and maxi-
mizes g. This will follow from Corollary 5.4 applied to the triplet (L,π∗, κ̂).

(iii) For p ∈ (0,1), partial results in this direction follow from Section 5. The
question is trivial for convex C by the next item.

(iv) If C is convex, arg maxC∩C 0 g is unique in the sense that the difference of
any two elements lies in N (see Lemma A.3).

We split the proof of Theorem 3.2 into several steps; the plan is as follows. Let
(π, κ) ∈AfE and denote X =X(π,κ). We recall from Proposition 2.2 that

Z(π,κ) := L
1

p
Xp +

∫
Us(κsXs)μ(ds)

is a supermartingale, and a martingale if and only if (π, κ) is optimal. Hence, we
shall calculate its drift rate and then maximize over (π, κ); the maximum will be
attained at any optimal strategy. This is fairly straightforward and essentially the
content of Lemma 3.7 below. In the Bellman equation, we maximize over a subset
of R

d for each (ω, t) and not over a set of strategies. This final step is a measurable
selection problem and its solution will be the second part of the proof.

LEMMA 3.4. Let (π, κ) ∈Af . The drift rate of Z(π,κ) is

aZ(π,κ) =X(π,κ)
p
−
(
p−1aL + f (κ)

dμ

dA
+ g(π)

)
∈ [−∞,∞),

where ft (k) := Ut(k)− Lt−k and g is given by (3.2). Moreover, aZ(π̂,κ̂) = 0 and
aZ(π,κ) ∈ (−∞,0] for (π, κ) ∈AfE .
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PROOF. We can assume that the initial capital is x0 = 1. Let (π, κ) ∈Af , then
in particular Z := Z(π,κ) is finite. We also set X := X(π,κ). By Itô’s formula,
we have Xp = E(π • R − κ • μ)p = E(Y ) with

Y = p(π •R− κ • μ)+ p(p− 1)

2
π�cRπ •A

+ {(1+ π�x)p − 1− pπ�x} ∗μR.

Integrating by parts in the definition of Z and using Xs = Xs− μ(ds)-a.e. (path-
by-path), we have X

−p
− • Z = p−1(L−L0 +L− • Y + [L,Y ])+U(κ) • μ. Here

[L,Y ] = [Lc,Y c] +∑	L	Y

= pπ�cRL •A+ px′π�x ∗μR,L

+ x′{(1+ π�x)p − 1− pπ�x} ∗μR,L.

Thus X
−p
− • Z equals

p−1(L−L0)+L−π •R + f (κ) • μ

+L−
(p− 1)

2
π�cRπ •A+ π�cRL •A+ x′π�x ∗μR,L

+ (L− + x′){p−1(1+ π�x)p − p−1 − π�x} ∗μR,L.

Writing x = h(x)+ x − h(x) and R̄ =R − (x − h(x)) ∗μR as in (2.4),

X
−p
− • Z = p−1(L−L0)+L−π • R̄+ f (κ) • μ

+L−π�
(
cRL

L−
+ (p− 1)

2
cRπ

)
•A+ x′π�h(x) ∗μR,L(3.5)

+ (L− + x′){p−1(1+ π�x)p − p−1 − π�h(x)} ∗μR,L.

Since π need not be locally bounded, we use from now on a predictable cut-off
function h such that π�h(x) is bounded, for example, h(x)= x1{|x|≤1}∩{|π�x|≤1}.
Then the compensator of x′π�h(x) ∗μR,L exists, since L is special.

Let (π, κ) ∈ AfE . Then the compensator of the last integral in the right-hand
side of (3.5) also exists; indeed, all other terms in that equality are special, since
Z is a supermartingale. The drift rate can now be read from (3.5) and (2.4), and
it is nonpositive by the supermartingale property. The drift rate vanishes for the
optimal (π̂ , κ̂) by the martingale condition from Proposition 2.2.

Now consider (π, κ) ∈Af \AfE . Note that necessarily p < 0 (otherwise Af =
AfE). Thus Z ≤ 0, so by Remark 2.3 the drift rate aZ is well defined with values in
[−∞,∞)—alternatively, this can also be read from the integrals in (3.5) via (2.5).
Using directly the definition of aZ , we find the same formula for aZ is as above.

�



374 M. NUTZ

We do not have the supermartingale property for (π, κ) ∈Af \AfE , so it is not
evident that aZ(π,κ) ≤ 0 in that case. However, we have the following.

LEMMA 3.5. Let (π, κ) ∈Af . Then aZ(π, κ) ∈ [0,∞] implies aZ(π, κ)= 0.

PROOF. Denote Z =Z(π,κ). For p > 0 we have Af =AfE and the claim is
immediate from Lemma 3.4. Let p < 0. Then Z ≤ 0 and in view of Lemma 2.4(iii),
aZ ∈ [0,∞] implies that Z is a submartingale. Therefore, we have that E[ZT ] =
E[∫ T0 Ut(κtXt (π, κ))μ

◦(dt)] > −∞, that is, (π, κ) ∈ AfE . Now Lemma 3.4
yields aZ(π, κ)≤ 0. �

We observe in Lemma 3.4 that the drift rate splits into separate functions in-
volving κ and π , respectively. For this reason, we can single out the following
proof:

PROOF OF THE CONSUMPTION FORMULA (3.3). Let (π, κ) ∈ A. Note the
following feature of our parametrization: we have (π, κ∗) ∈ A for any nonnega-
tive optional process κ∗ such that

∫ T
0 κ∗s μ(ds) <∞ and κ∗T = 1. Indeed, the pro-

cess X(π,κ)= x0E(π • R − κ • μ) is positive by assumption. As μ is continuous,
X(π,κ∗)= x0E(π • R − κ∗ • μ) is also positive.

In particular, let (π̂, κ̂) be optimal, β = (1 − p)−1 and κ∗ = (D/L)β , then
(π̂, κ∗) ∈ A. In fact, the paths of U(κ∗X(π̂, κ∗)) = p−1Dβp+1X(π̂, κ∗)pL−βp
are bounded P -a.s. (because the processes are càdlàg; L,L− > 0, and βp + 1 =
β > 0) so that (π̂, κ∗) ∈Af .

Note that P ⊗ μ-a.e., we have κ∗ = (D/L−)β = arg maxk≥0 f (k), hence,
f (κ∗) ≥ f (κ̂). Suppose (P ⊗ μ){f (κ∗) > f (κ̂)} > 0, then the formula from
Lemma 3.4 and aZ(π̂,κ̂) = 0 imply aZ(π̂,κ∗) ≥ 0 and (P ⊗ A){aZ(π̂,κ∗) > 0} > 0,
a contradiction to Lemma 3.5. It follows that κ̂ = κ∗ P ⊗ μ-a.e. since f has a
unique maximum. �

REMARK 3.6. The previous proof does not use the assumptions (C1)–(C3).

LEMMA 3.7. Let π be a predictable process with values in C ∩C 0,∗. Then

(P ⊗A){g(π̂) < g(π)} = 0.

PROOF. We argue by contradiction and assume (P ⊗ A){g(π̂) < g(π)} > 0.
By redefining π , we may assume that π = π̂ on the complement of this predictable
set. Then

g(π̂)≤ g(π) and (P ⊗A){g(π̂) < g(π)}> 0.(3.6)

Using that π is σ -bounded, we can find a constant C > 0 such that the process
π̃ := π1|π |≤C + π̂1|π |>C again satisfies (3.6), that is, we may assume that π is
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R-integrable. Since π ∈ C ∩C 0,∗, this implies (π, κ̂) ∈A (as observed above, the
consumption κ̂ plays no role here). The contradiction follows as in the previous
proof. �

In view of Lemma 3.7, the main task will be to construct a measurable maxi-
mizing sequence for g.

LEMMA 3.8. Under Assumptions 3.1, there exists a sequence (πn) of pre-
dictable C ∩C 0,∗-valued processes such that

lim sup
n

g(πn)= sup
C∩C 0

g, P ⊗A-a.e.

We defer the proof of this lemma to Appendix A, together with the study of the
properties of g. The theorem can then be proved as follows.

PROOF OF THEOREM 3.2. Let πn be as in Lemma 3.8. Then Lemma 3.7,
with π = πn, yields g(π̂) = supC∩C 0 g, which is (3.4). By Lemma 3.4 we have
0 = aZ(π̂,κ̂) = p−1aL + f (κ̂)

dμ
dA
+ g(π̂). This is (3.1) as f (κ̂) = U∗(L−) holds

P ⊗μ-a.e. due to (3.3). �

3.2. Bellman equation as BSDE. In this section we express the Bellman equa-
tion as a BSDE. The unique orthogonal decomposition of the local martingale ML

with respect to R; cf. [15], III.4.24 leads to the representation

L=L0 +AL + ϕL • Rc +WL ∗ (μR − νR)+NL,(3.7)

where, using the notation of [15], ϕL ∈ L2
loc(R

c), WL ∈ Gloc(μ
R), and NL is a

local martingale such that 〈(NL)c,Rc〉 = 0 and MP
μR(	NL|P̃)= 0. The last state-

ment means that E[(V	NL) ∗μR
T ] = 0 for any sufficiently integrable predictable

function V = V (ω, t, x). We also introduce

ŴL
t :=

∫
Rd

WL(t, x)νR({t} × dx),

then 	(WL ∗ (μR − νR)) =WL(	R)1{	R �=0} − ŴL by definition of the purely
discontinuous local martingale WL ∗ (μR − νR) and we can write

	L=	AL +WL(	R)1{	R �=0} − ŴL +	NL.

We recall that Assumptions 3.1 are in force. Now (3.1) can be restated as follows,
the random function g being the same as before but in new notation.

COROLLARY 3.9. The opportunity process L and the processes defined by
(3.7) satisfy the BSDE

L= L0 − pU∗(L−) • μ− p max
y∈C∩C 0

g(y) •A

(3.8)
+ ϕL •Rc +WL ∗ (μR − νR)+NL
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with terminal condition LT =DT , where g is given by

g(y) := L−y�
(
bR + cR

(
ϕL

L−
+ (p− 1)

2
y

))

+
∫

Rd

(
	AL +WL(x)− ŴL)y�h(x)FR(dx)

+
∫

Rd

(
L− +	AL +WL(x)− ŴL){p−1(1+ y�x)p − p−1 − y�h(x)}

× FR(dx).

We observe that the orthogonal part NL does not appear in the definition of g.
In a suitable setting, it is linked to the “dual problem” (see Remark 5.18).

It is possible (but notationally more cumbersome) to prove a version of Lem-
ma 3.4 using g as in Corollary 3.9 and the decomposition (3.7), thus involving
only the characteristics of R instead of the joint characteristics of (R,L). Using
this approach, we see that the increasing process A in the BSDE can be chosen
based on R and without reference to L. This is desirable if we want to consider
other solutions of the equation, as in Section 4. One consequence is that A can be
chosen to be continuous if and only if R is quasi left-continuous; cf. [15], II.2.9.
Since p−1AL = −f (κ̂) • μ − g(π̂) • A, Var(AL) is absolutely continuous with
respect to A+μ, and we conclude the following.

REMARK 3.10. If R is quasi left-continuous, AL is continuous.

If R is quasi left-continuous, νR({t} ×R
d)= 0 for all t by [15], II.1.19; hence,

ŴL = 0 and we have the simpler formula

g(y)= L−y�
(
bR + cR

(
ϕL

L−
+ (p− 1)

2
y

))
+
∫

Rd
WL(x)y�h(x)FR(dx)

+
∫

Rd

(
L− +WL(x)

){p−1(1+ y�x)p − p−1 − y�h(x)}FR(dx).

3.3. The case of continuous prices. In this section we specialize the previous
results to the case where R is a continuous semimartingale and mild additional
conditions are satisfied. As usual in this setting, the martingale part of R will be
denoted by M rather than Rc. In addition to Assumptions 3.1, the following con-
ditions are in force for the present Section 3.3.

ASSUMPTIONS 3.11.

(i) R is continuous,
(ii) R =M + ∫ d〈M〉λ for some λ ∈ L2

loc(M) (structure condition),
(iii) the orthogonal projection of C onto N ⊥ is closed.
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Note that C 0,∗ =R
d due to (i), in particular (C3) is void. When R is continuous,

it necessarily satisfies (ii) when a no-arbitrage property holds (see Schweizer [29]).
By (i) and (ii) we can write the differential characteristics of R with respect to,
for example, At := t +∑d

i=1〈Mi〉t . It will be convenient to factorize cR = σσ�,
where σ is a predictable matrix-valued process, hence, σσ�dA = d〈M〉. Then
(ii) implies N = kerσ� because σσ�y = 0 implies (σ�y)�(σ�y) = 0. Since
σ� : ker(σ�)⊥→ σ�R

d is a homeomorphism, we see that (iii) is equivalent to

σ�C is closed.

This condition depends on the semimartingale R. It is equivalent to the closedness
of C itself if σ has full rank. For certain constraint sets (e.g., closed polyhedral or
compact), the condition is satisfied for all matrices σ , but not so, for example, for
nonpolyhedral cone constraints. We mention that violation of (iii) leads to nonex-
istence of optimal strategies in simple examples; cf. [26], Example 3.5, and we
refer to Czichowsky and Schweizer [8] for background.

Under (i), (3.7) is the more usual Kunita–Watanabe decomposition

L= L0 +AL + ϕL •M +NL,

where ϕL ∈ L2
loc(M) and NL is a local martingale such that [M,NL] = 0 (see

Ansel and Stricker [2], Case 3). If ∅ �= K ⊆ R
d is a closed set, we denote the

Euclidean distance to K by dK(x)=min{|x − y| :y ∈K}, and d2
K is the squared

distance. We also define the (set-valued) projection �K which maps x ∈R
d to the

points in K with minimal distance to x,

�K(x)= {y ∈K : |x − y| = dK(x)} �=∅.

If K is convex, �K is the usual (single-valued) Euclidean projection. In the present
continuous setting, the random function g simplifies to

g(y)= L−y�σσ�
(
λ+ ϕL

L−
+ p− 1

2
y

)
,(3.9)

and so the Bellman BSDE becomes more explicit.

COROLLARY 3.12. Any optimal trading strategy π∗ satisfies

σ�π∗ ∈�σ�C
{
σ�(1− p)−1

(
λ+ ϕL

L−

)}
.

The opportunity process satisfies the BSDE

L= L0 − pU∗(L−) • μ+ F(L−, ϕL) •A+ ϕL •M +NL; LT =DT ,

where

F(L−, ϕL)= 1

2
L−
{
p(1− p)d2

σ�C

(
σ�(1− p)−1

(
λ+ ϕL

L−

))

+ p

p− 1

∣∣∣∣σ�
(
λ+ ϕL

L−

)∣∣∣∣2
}
.
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If C is a convex cone, F(L−, ϕL)= p
2(p−1)L−|�σ�C {σ�(λ+ ϕL

L− )}|2. If C =R
d ,

then F(L−, ϕL) •A= p
2(p−1)

∫
L−(λ+ ϕL

L− )
� d〈M〉(λ+ ϕL

L− ) and the unique (mod.

N ) optimal trading strategy is π∗ = (1− p)−1(λ+ ϕL

L− ).

PROOF. Let β = (1− p)−1. Then σ�(arg maxC g)=�σ�C {σ�β(λ+ ϕL

L− )}
by completing the square in (3.9), moreover, for any π∗ ∈ arg maxC g,

g(π∗)= 1

2
L−
{
β

(
λ+ ϕL

L−

)�
σσ�

(
λ+ ϕL

L−

)
− β−1d2

σ�C

(
σ�β

(
λ+ ϕL

L−

))}
.

In the case where C , and hence σ�C , is a convex cone, � := �σ�C is single-
valued, positively homogeneous, and �x is orthogonal to x − �x for any x

in R
d . Writing � := σ�(λ + ϕL

L− ) we get g(π∗) = L−β(��)�(� − 1
2��) =

L− 1
2β(��)�(��). Finally, �� =� if C =R

d . The result follows from Corol-
lary 3.9. �

Of course the consumption formula (3.3) and Remark 3.3 still apply. We re-
mark that the BSDE for the unconstrained case C = R

d (and μ= 0, D = 1) was
previously obtained in [23] in a similar spirit. A variant of the constrained BSDE
for an Itô process model (and μ = 0, D = 1) appears in [14], where a converse
approach is taken: the equation is derived only formally and then existence results
for BSDEs are employed together with a verification argument. We shall extend
that result in Section 5 (Example 5.8) when we study verification.

If L is continuous, the BSDE of Corollary 3.12 simplifies if it is stated for
log(L) rather than L, but in general the given form is more convenient as the
jumps are “hidden” in NL.

REMARK 3.13. (i) Continuity of R does not imply that L is continuous. For
instance, in the Itô process model of Barndorff-Nielsen and Shephard [3] with
Lévy driven coefficients, the opportunity process is not continuous (see, e.g., The-
orem 3.3 and the subsequent remark in Kallsen and Muhle-Karbe [18]). If R sat-
isfies the structure condition and the filtration F is continuous, it clearly follows
that L is continuous. Here F is called continuous if all F-martingales are contin-
uous, as, for example, for the Brownian filtration. In general, L is related to the
predictable characteristics of the asset returns rather than their levels. As an exam-
ple, Lévy models have jumps but constant characteristics; here L turns out to be a
smooth function (see [26]).

(ii) In the present setting we see that F has quadratic growth in ϕL, so that
the Bellman equation is a “quadratic BSDE” (see also Example 5.8). In general,
F does not satisfy the bounds which are usually assumed in the theory of such
BSDEs. Together with existence results for the utility maximization problem (see
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the citations from the Introduction), the Bellman equation yields various exam-
ples of BSDEs with the opportunity process as a solution. This includes terminal
conditions DT which are integrable and unbounded (see also [25], Remark 2.4).

4. Minimality of the opportunity process. This section considers the Bell-
man equation as such, having possibly many solutions, and we characterize the
opportunity process as the minimal solution. As mentioned above, it seems more
natural to use the BSDE formulation for this purpose (but see Remark 4.4). We
first have to clarify what we mean by a solution of the BSDE. We consider R and
A as given. Since the finite variation part in the BSDE is predictable, a solution
will certainly be a special semimartingale. If � is any special semimartingale, there
exists a unique orthogonal decomposition ([15], III.4.24),

�= �0 +A� + ϕ� • Rc +W� ∗ (μR − νR)+N�,(4.1)

using the same notation as in (3.7). These processes are essentially unique, and so
it suffices to consider the left-hand side of the BSDE for the notion of a solution.
(In BSDE theory, a solution would be, at least, a quadruple.) We define the random
function g� as in Corollary 3.9, with L replaced by �. Since � is special, we have∫

Rd×R

(|x|2 + |x′|2)∧ (1+ |x′|)FR,�(d(x, x′)) <∞,(4.2)

and the arguments from Lemma A.2 show that g� is well defined on C 0 with values
in R∪{sign(p)∞}. Hence, we can consider (formally at first) the BSDE (3.8) with
L replaced by �, that is,

�= �0 − pU∗(�−) • μ− p max
y∈C∩C 0

g�(y) •A+ ϕ� •Rc

(4.3)
+W� ∗ (μR − νR)+N�

with terminal condition �T =DT .

DEFINITION 4.1. A càdlàg special semimartingale � is called a solution of the
Bellman equation (4.3) if:

• �, �− > 0,
• there exists a C ∩C 0,∗-valued process π̌ ∈L(R) such that

g�(π̌)= sup
C∩C 0

g� <∞,

• � and the processes from (4.1) satisfy (4.3) with �T =DT .

Moreover, we define κ̌ := (D/�)β , where β = (1− p)−1. We call (π̌, κ̌) the strat-
egy associated with �, and for brevity, we also call (�, π̌, κ̌) a solution.
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If the process π̌ is not unique, we choose and fix one. The assumption � > 0
excludes pathological cases where � jumps to zero and becomes positive imme-
diately afterwards, and thereby ensures that κ̌ is admissible. More precisely, the
following holds.

REMARK 4.2. Let (�, π̌, κ̌) be a solution of the Bellman equation.

(i) (π̌, κ̌) ∈AfE .
(ii) supC∩C 0 g� is a predictable, A-integrable process.

(iii) If p ∈ (0,1), g� is finite on C ∩C 0.
(iv) The condition � > 0 is automatically satisfied if either (a) p ∈ (0,1) or

if (b) p < 0 and there is no intermediate consumption and Assumptions 3.1 are
satisfied.

PROOF. (i) We have
∫ T

0 κ̌sμ(ds) <∞ P -a.s. since the paths of � are bounded
away from zero. Moreover,

∫ T
0 Ut(κ̌tXt (π̌, κ̌))μ(dt) <∞ as in the proof of (3.3)

(stated after Lemma 3.5). This shows (π̌ , κ̌) ∈Af . The fact that (π̌, κ̌) ∈AfE is
contained in the proof of Lemma 4.9 below.

(ii) We have 0= g�(0)≤ supC∩C 0 g� = g�(π̌). Hence, supC∩C 0 g� •A is well
defined, and it is finite because otherwise (4.3) could not hold.

(iii) Note that p > 0 implies g� >−∞ by its definition and (4.2), while g� <∞
by assumption.

(iv) If p > 0, (4.3) states that A� is decreasing. As �− > 0 implies � ≥ 0, � is
a supermartingale by Lemma 2.4. Since �T = DT > 0, the minimum principle
for nonnegative supermartingales shows � > 0. Under (b) the assertion is a con-
sequence of Theorem 4.5 below (which shows � ≥ L > 0) upon noting that the
condition � > 0 is not used in its proof when there is no intermediate consump-
tion. �

It may seem debatable to make existence of the maximizer π̌ part of the def-
inition of a solution. However, associating a control with the solution is crucial
for the following theory. Some justification is given by the following result for the
continuous case (where C 0,∗ =R

d ).

PROPOSITION 4.3. Let � be any càdlàg special semimartingale such that
�, �− > 0. Under Assumptions 3.11, (C1) and (C2), there exists a C ∩C 0,∗-valued
predictable process π̌ such that g�(π̌)= supC∩C 0 g� <∞, and any such process
is R-integrable.

PROOF. As g� is analogous to (3.9), it is continuous and its supremum over
R

d is finite. By continuity of R and the structure condition, π ∈ L(R) if and only
if
∫ T

0 π� d〈M〉π = ∫ T0 |σ�π |2 dA<∞ P -a.s.
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Assume first that C is compact, then Lemma A.4 yields a measurable selector
π for arg maxC g. As in the proof of Corollary 3.12, σ�π ∈�σ�C σ�ψ holds for

ψ := β(λ+ ϕ�

�− ), which satisfies
∫ T

0 |σ�ψ |2 dA<∞ by definition of λ and ϕ�. We

note that |σ�π | ≤ |σ�ψ | + |σ�π − σ�ψ | ≤ 2|σ�ψ | due to the definition of the
projection and 0 ∈ C .

In the general case we approximate C by a sequence of compact constraints
C n := C ∩ {x ∈R

d : |x| ≤ n}, each of which yields a selector πn for arg maxC n g.
By the above, |σ�πn| ≤ 2|σ�ψ |, so the sequence (σ�πn)n is bounded for fixed
(ω, t). A random index argument as in the proof of Lemma A.4 yields a selector ϑ
for a cluster point of this sequence. We have ϑ ∈ σ�C by closedness of this set and
we find a selector π̌ for ((σ�)−1ϑ)∩C using [28], 1Q. We have π̌ ∈ arg maxC g

as the sets C n increase to C , and
∫ T

0 |σ�π̌ |2 dA ≤ 2
∫ T

0 |σ�ψ |2 dA <∞ shows
π̌ ∈ L(R). �

Another example for the construction of π̌ is given in [26], Section 5. In general,
two ingredients are needed: existence of a maximizer for fixed (ω, t) will typically
require a compactness condition in the form of a no-arbitrage assumption (in the
previous proof, this is the structure condition). Moreover, a measurable selection
is required; here the techniques from the Appendices may be useful.

REMARK 4.4. The BSDE formulation of the Bellman equation has the advan-
tage that we can choose A based on R and speak about the class of all solutions.
However, we do not want to write proofs in this cumbersome notation. Once we
fix a solution � (and maybe L, and finitely many other semimartingales), we can
choose a new reference process Ã=A+A′ (where A′ is increasing), with respect
to which our semimartingales admit differential characteristics; in particular we
can use the joint characteristics (bR,�, cR,�,FR,�; Ã). As we change A, all drift
rates change in that they are multiplied by dÃ/dA, so any (in)equalities between
them are preserved. With this in mind, we shall use the joint characteristics of
(R, �) in the sequel without further comment and treat the two formulations of the
Bellman equation as equivalent.

Our definition of a solution of the Bellman equation is loose in terms of integra-
bility assumptions. Even in the continuous case, it is unclear “how many” solutions
exist. The next result shows that we can always identify L by taking the smallest
one, that is, L≤ � for any solution �.

THEOREM 4.5. Under Assumptions 3.1, the opportunity process L is charac-
terized as the minimal solution of the Bellman equation.

REMARK 4.6. As a consequence, the Bellman equation has a bounded so-
lution if and only if the opportunity process is bounded (and similarly for other
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integrability properties). In conjunction with [25], Section 4.2, this yields exam-
ples of quadratic BSDEs which have bounded terminal value (for DT bounded),
but no bounded solution.

The proof of Theorem 4.5 is based on the following result; it is the fundamental
property of any Bellman equation.

PROPOSITION 4.7. Let (�, π̌, κ̌) be a solution of the Bellman equation. For
any (π, κ) ∈Af ,

Z(π,κ) := �
1

p
(X(π, κ))p +

∫
Us(κsXs(π, κ))μ(ds)(4.4)

is a semimartingale with nonpositive drift rate. Moreover, Z(π̌, κ̌) is a local mar-
tingale.

PROOF. Let (π, κ) ∈ Af . Note that Z := Z(π,κ) satisfies sign(p)Z ≥ 0,
hence has a well-defined drift rate aZ by Remark 2.3. The drift rate can be cal-
culated as in Lemma 3.4: if f � is defined similarly to the function f in that lemma
but with L replaced by �, then

aZ =X(π,κ)
p
−
{
p−1a� + f �(κ)

dμ

dA
+ g�(π)

}

=X(π,κ)
p
−
{(

f �(κ)− f �(κ̌)
) dμ
dA
+ g�(π)− g�(π̌)

}
.

This is nonpositive because κ̌ and π̌ maximize f � and g�. For the special case
(π, κ) := (π̌, κ̌) we have aZ = 0 and so Z is a σ -martingale, thus a local martin-
gale as sign(p)Z ≥ 0. �

REMARK 4.8. In Proposition 4.7, “semimartingale with nonpositive drift
rate” can be replaced by “σ -supermartingale” if g� is finite on C ∩C 0.

Theorem 4.5 follows from the next lemma (which is actually stronger). We re-
call that for p < 0 the opportunity process L can be defined without further as-
sumptions.

LEMMA 4.9. Let � be a solution of the Bellman equation. If p < 0, then L≤ �.
For p ∈ (0,1), the same holds if (2.2) is satisfied and there exists an optimal strat-
egy.

PROOF. Let (�, π̌, κ̌) be a solution and define Z(π,κ) as in (4.4).
Case p < 0: we choose (π, κ) := (π̌ , κ̌). As Z(π̌, κ̌) is a negative local martin-

gale by Proposition 4.7, it is a submartingale. In particular, E[ZT (π̌, κ̌)]> −∞,
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and using LT = DT , this is the statement that the expected utility is finite,
that is, (π̌, κ̌) ∈ AfE—this completes the proof of Remark 4.2(i). Recall that
μ◦ = μ+ δ{T }. With X̌ := X(π̌, κ̌) and č := κ̌X̌, and using �T = DT = LT , we
deduce

�t
1

p
X̌

p
t +

∫ t

0
Us(čs)μ(ds)

= Zt(π̌, κ̌)≤E[ZT (π̌, κ̌)|Ft ]
≤ ess sup

c̃∈A(π̌,č,t)

E

[∫ T

t
Us(c̃s)μ

◦(ds)
∣∣∣Ft

]
+
∫ t

0
Us(čs)μ(ds)

= Lt

1

p
X̌

p
t +

∫ t

0
Us(čs)μ(ds),

where the last equality holds by (2.3). As 1
p
X̌

p
t < 0, we have �t ≥ Lt .

Case p ∈ (0,1): We choose (π, κ) := (π̂, κ̂) to be an optimal strategy. Then
Z(π̂, κ̂) ≥ 0 is a supermartingale by Proposition 4.7 and Lemma 2.4(iii), and we
obtain

�t
1

p
X̂

p
t +

∫ t

0
Us(ĉs)μ(ds)= Zt(π̂, κ̂)≥E[ZT (π̂, κ̂)|Ft ]

= E

[∫ T

0
Us(ĉs)μ

◦(ds)
∣∣∣Ft

]

= Lt

1

p
X̂

p
t +

∫ t

0
Us(ĉs)μ(ds)

by the optimality of (π̂, κ̂) and (2.3). More precisely, we have used the fact that
(π̂, κ̂) is also conditionally optimal (see [25], Remark 3.3). As 1

p
X̂

p
t > 0, we con-

clude �t ≥ Lt . �

5. Verification. Suppose that we have found a solution of the Bellman equa-
tion; then we want to know whether it is the opportunity process and whether the
associated strategy is optimal. In applications, it might not be clear a priori that
an optimal strategy exists or even that the utility maximization problem is finite.
Therefore, we stress that in this section these properties are not assumed. Also, we
do not need the assumptions on C made in Section 2.4—they are not necessary
because we start with a given solution.

Generally speaking, verification involves the candidate for an optimal control,
(π̌, κ̌) in our case, and all the competing ones. It is often very difficult to check
a condition involving all these controls, so it is desirable to have a verification
theorem whose assumptions involve only (π̌, κ̌).

We present two verification approaches. The first one is via the value process
and is classical for general dynamic programming: it uses little structure of the
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given problem. For p ∈ (0,1), it yields the desired result. However, in a general
setting, this is not the case for p < 0. The second approach uses the concavity
of the utility function. To fully exploit this and make the verification conditions
necessary, we will assume that C is convex. In this case, we shall obtain the desired
verification theorem for all values of p.

5.1. Verification via the value process. The basis of this approach is the fol-
lowing simple result; we state it separately for better comparison with Lemma 5.10
below. In the entire section, Z(π,κ) is defined by (4.4) whenever � is given.

LEMMA 5.1. Let � be any positive càdlàg semimartingale with �T =DT and
let (π̌ , κ̌) ∈A. Assume that for all (π, κ) ∈AfE , the process Z(π,κ) is a super-
martingale. Then Z(π̌, κ̌) is a martingale if and only if (2.2) holds and (π̌, κ̌) is
optimal and �= L.

PROOF. “⇒”: Recall that Z0(π, κ) = �0
1
p
x
p
0 does not depend on (π, κ) and

that E[ZT (π, κ)] = E[∫ T0 Ut(κt (Xt(π, κ)))μ
◦(dt)] is the expected utility corre-

sponding to (π, κ). With X̌ := X(π̌, κ̌), the (super)martingale condition implies
that E[∫ T0 Ut(κ̌t X̌t )μ

◦(dt)] ≥ E[∫ T0 Ut(κtXt (π, κ))μ
◦(dt)] for all (π, κ) ∈AfE .

Since for (π, κ) ∈A\AfE the expected utility is−∞, this shows that (π̌, κ̌) is op-
timal with E[ZT (π̌, κ̌)] = Z0(π̌, κ̌)= �0

1
p
x
p
0 <∞. In particular, the opportunity

process L is well defined. By Proposition 2.2, L 1
p
X̌p+ ∫ Us(čs)μ(ds) is a martin-

gale, and as its terminal value equals ZT (π̌, κ̌), we deduce �= L by comparison
with (4.4), using X̌ > 0.

The converse is contained in Proposition 2.2. �

We can now state our first verification theorem.

THEOREM 5.2. Let (�, π̌, κ̌) be a solution of the Bellman equation.

(i) If p ∈ (0,1), the following are equivalent:
(a) Z(π̌, κ̌) is of class (D),
(b) Z(π̌, κ̌) is a martingale,
(c) (2.2) holds and (π̌, κ̌) is optimal and �= L.

(ii) If p < 0, the following are equivalent:
(a) Z(π,κ) is of class (D) for all (π, κ) ∈AfE ,
(b) Z(π,κ) is a supermartingale for all (π, κ) ∈AfE ,
(c) (π̌, κ̌) is optimal and �= L.

PROOF. When p > 0 and (π, κ) ∈Af , Z(π,κ) is positive and aZ(π,κ) ≤ 0 by
Proposition 4.7, hence, Z(π,κ) is a supermartingale according to Lemma 2.4. By
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Proposition 4.7, Z(π̌, κ̌) is a local martingale, so it is a martingale if and only if it
is of class (D). Lemma 5.1 implies the result.

If p < 0, Z(π,κ) is negative. Thus the local martingale Z(π̌, κ̌) is a sub-
martingale, and a martingale if and only if it is also a supermartingale. Note
that a class (D) semimartingale with nonpositive drift rate is a supermartingale.
Conversely, any negative supermartingale Z is of class (D) due to the bounds
0 ≥ Z ≥ E[ZT |F]. Lemma 5.1 implies the result after noting that if � = L, then
Proposition 2.2 yields (b). �

Theorem 5.2 is “as good as it gets” for p > 0, but as announced, the result for
p < 0 is not satisfactory. In particular settings, this can be improved.

REMARK 5.3 (p < 0). (i) Assume we know a priori that if there is an optimal
strategy (π̂, κ̂) ∈A, then

(π̂, κ̂) ∈A(D) := {(π, κ) ∈A :X(π,κ)p is of class (D)}.
In this case we can reduce our optimization problem to the class A(D). If, in ad-
dition, � is bounded (which is not a strong assumption when p < 0), the class
(D) condition in Theorem 5.2(ii) is automatically satisfied for (π, κ) ∈A(D). The
verification then reduces to checking that (π̌ , κ̌) ∈A(D).

(ii) How can we establish the condition needed for (i)? One possibility is to
show that L is uniformly bounded away from zero; then the condition follows (see
the argument in the next proof). Of course, L is not known when we try to apply
this. However, [25], Section 4.2, gives verifiable conditions for L to be (bounded
and) bounded away from zero. They are stated for the unconstrained case C =R

d ,
but can be used nevertheless: if LR

d
is the opportunity process corresponding to

C = R
d , the actual L satisfies L ≥ LR

d
because the supremum in (2.3) is taken

over a smaller set in the constrained case.

In the situation where � and L−1 are bounded, we can also use the following
result. Note also its use in Remark 3.3(ii) and recall that 1/0 :=∞.

COROLLARY 5.4. Let p < 0 and let (�, π̌, κ̌) be a solution of the Bellman
equation. Let L be the opportunity process and assume that �/L is uniformly
bounded. Then (π̌, κ̌) is optimal and �= L.

PROOF. Fix arbitrary (π, κ) ∈ AfE and let X = X(π,κ). The process
L 1

p
(X(π, κ))p + ∫ Us(κsXs)μ(ds) is a negative supermartingale by Proposi-

tion 2.2, hence, of class (D). Since
∫
Us(κsXs)μ(ds) is decreasing and its terminal

value is integrable (definition of AfE), L 1
p
Xp is also of class (D). The assumption

yields that � 1
p
Xp is of class (D), and then so is Z(π,κ). �

As bounded solutions are of special interest in BSDE theory, let us note the
following consequence.
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COROLLARY 5.5. Let p < 0. Under Assumptions 3.1 the following are equiv-
alent:

(i) L is bounded and bounded away from zero;
(ii) there exists a unique bounded solution of the Bellman equation, and this

solution is bounded away from zero.

One can note that in the setting of [25], Section 4.2, these conditions are further
equivalent to a reverse Hölder inequality for the market model.

We give an illustration of Theorem 5.2 also for the case p ∈ (0,1). Thus far, we
have considered only the given exponent p and assumed (2.2). In many situations,
there will exist some p0 ∈ (p,1) such that, if we consider the exponent p0 instead
of p, the utility maximization problem is still finite. Note that by Jensen’s inequal-
ity this is a stronger assumption. We define for q0 ≥ 1 the class of semimartingales
� bounded in Lq0(P ),

B(q0) :=
{
� : sup

τ
‖�τ‖Lq0 (P ) <∞

}
,

where the supremum ranges over all stopping times τ .

COROLLARY 5.6. Let p ∈ (0,1) and let there be a constant k1 > 0 such that
D ≥ k1. Assume that the utility maximization problem is finite for some p0 ∈ (p,1)
and let q0 ≥ 1 be such that q0 > p0/(p0 − p). If (�, π̌, κ̌) is a solution of the
Bellman equation (for p) with � ∈ B(q0), then �= L and (π̌, κ̌) is optimal.

PROOF. Let � ∈ B(q0) be a solution, (π̌ , κ̌) the associated strategy and let
X̌ =X(π̌, κ̌). By Theorem 5.2 and an argument as in the previous proof, it suffices
to show that �X̌p is of class (D). Let δ > 1 be such that δ/q0 + δp/p0 = 1. For
every stopping time τ , Hölder’s inequality yields

E[(�τ X̌p
τ )

δ] =E[(�q0
τ )δ/q0(X̌p0

τ )δp/p0] ≤E[�q0
τ ]δ/q0E[X̌p0

τ ]δp/p0 .

We show that this is bounded uniformly in τ ; then {�τ X̌p
τ : τ stopping time} is

bounded in Lδ(P ) and hence uniformly integrable. Indeed, E[�q0
τ ] is bounded by

assumption. The set of wealth processes corresponding to admissible strategies is
stable under stopping. Therefore, E[DT

1
p0

X̌
p0
τ ] ≤ u(p0)(x0), the value function for

the utility maximization problem with exponent p0. The result follows as DT ≥ k1.
�

REMARK 5.7. In [25], Example 4.6, we give a condition which implies that
the utility maximization problem is finite for all p0 ∈ (0,1). Conversely, given
such a p0 ∈ (p,1), one can show that L ∈ B(p0/p) if D is uniformly bounded
from above (see [27], Corollary 4.2).
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EXAMPLE 5.8. We apply our results in an Itô model with bounded mean–
variance tradeoff process together with an existence result for BSDEs. For the
case of utility from terminal wealth only, we retrieve (a minor generalization of)
the pioneering result of [14], Section 3; the case with intermediate consumption is
new. Let W be an m-dimensional standard Brownian motion (m≥ d) and assume
that F is generated by W . We consider

dRt = bt dt + σt dWt,

where b is predictable R
d -valued and σ is predictable R

d×m-valued with every-
where full rank; moreover, we consider constraints C satisfying (C1) and (C2). We
are in the situation of Assumptions 3.3 with dM = σ dW and λ= (σσ�)−1b. The
process θ := σ�λ is called market price of risk. We assume that there are constants
ki > 0 such that

0 < k1 ≤D ≤ k2 and
∫ T

0
|θs |2 ds ≤ k3.

The latter condition is called bounded mean–variance tradeoff. We remark
that dQ/dP = E(−λ • M)T = E(−θ • W)T defines a local martingale measure
for E(R). By [25], Section 4.2, the utility maximization problem is finite for all
p and the opportunity process L is bounded and bounded away from zero. It is
continuous due to Remark 3.13(i).

As suggested above, we write the Bellman BSDE for Y := log(L) rather than
L in this setting. If Y = AY + ϕY •M +NY is the Kunita–Watanabe decomposi-
tion, we write Z := σ�ϕY and choose Z⊥ such that Z⊥ • W = NY by Brownian
representation. The orthogonality of the decomposition implies σ�Z⊥ = 0 and
Z�Z⊥ = 0. We write δ = 1 if there is intermediate consumption and δ = 0 other-
wise. Then Itô’s formula and Corollary 3.12 (with At := t) yield the BSDE

dY = f (Y,Z,Z⊥) dt + (Z +Z⊥) dW ; YT = log(DT )(5.1)

with

f (Y,Z,Z⊥)= 1

2
p(1− p)d2

σ�C

(
β(θ +Z)

)+ q

2
|θ +Z|2

+ δ(p− 1)Dβ exp
(
(q − 1)Y

)− 1

2
(|Z|2 + |Z⊥|2).

Here β = (1− p)−1 and q = p/(p − 1); the dependence on (ω, t) is suppressed
in the notation. Using the orthogonality relations and p(1− p)β2 =−q , one can
check that f (Y,Z,Z⊥)= f (Y,Z + Z⊥,0)=: f (Y, Z̃), where Z̃ := Z + Z⊥. As
0 ∈ C , we have d2

σ�C
(x) ≤ |x|2. Hence, there exist a constant C > 0 and an in-

creasing continuous function φ such that

|f (y, z̃)| ≤ C
(|θ |2 + φ(y)+ |z̃|2).
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The following monotonicity property handles the exponential nonlinearity caused
by the consumption: as p− 1 < 0 and q − 1 < 0,

−y[f (y, z̃)− f (0, z̃)] ≤ 0.

Thus we have Briand and Hu’s [4], Condition (A.1) after noting that they call −f
what we call f , and [4], Lemma 2 states the existence of a bounded solution Y

to the BSDE (5.1). Let us check that � := exp(Y ) is the opportunity process. We
define an associated strategy (π̌, κ̌) by κ̌ := (D/�)β and Proposition 4.3; then we
have a solution (�, π̌, κ̌) of the Bellman equation in the sense of Definition 4.1. For
p < 0 [p ∈ (0,1)], Corollary 5.4 (Corollary 5.6) yields � = L and the optimality
of (π̌ , κ̌). In fact, the same verification argument applies if we replace π̌ by any
other predictable C -valued π∗ such that σ�π∗ ∈ �σ�C {β(θ + Z)}; recall from
Proposition 4.3 that π∗ ∈ L(R) holds automatically. To conclude: we have that

L= exp(Y ) is the opportunity process,

and the set of optimal strategies equals the set of all (π∗, κ̂) such that:

• κ̂ = (D/L)β μ◦-a.e.,
• π∗ is predictable, C -valued and σ�π∗ ∈�σ�C {β(θ +Z)} P ⊗ dt-a.e.

One can remark that the previous arguments show Y ′ = log(L) whenever Y ′ is a
solution of the BSDE (5.1) which is uniformly bounded from above. Hence, we
have proved uniqueness for (5.1) in this class of solutions, which is not immediate
from BSDE theory. One can also note that, in contrast to [14], we did not use the
theory of BMO martingales in this example. Finally, we remark that the existence
of an optimal strategy can also be obtained by convex duality, under the additional
assumption that C is convex.

We close this section with a formula intended for future applications.

REMARK 5.9. Let (�, π̌, κ̌) be a solution of the Bellman equation. Sometimes
exponential formulas can be used to verify that Z(π̌, κ̌) is of class (D).

Let h be a predictable cut-off function such that π̌�h(x) is bounded, for exam-
ple, h(x)= x1{|x|≤1}∩{|π̌�x|≤1}, and define � to be the local martingale

�−1− •M� + pπ̌ •Rc

+ pπ̌�h(x) ∗ (μR − νR)+ p(x′/�−)π̌�h(x) ∗ (μR,� − νR,�)

+ (1+ x′/�−){(1+ π̌�x)p − 1− pπ̌�h(x)} ∗ (μR,� − νR,�).

Then E(�) > 0, and if E(�) is of class (D), then Z(π̌, κ̌) is also of class (D).

PROOF. Let Z = Z(π̌, κ̌). By a calculation as in the proof of Lemma 3.4
and the local martingale condition from Proposition 4.7, ( 1

p
X̌

p
−)−1 • Z = �− • � .
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Hence, Z = Z0E(�) in the case without intermediate consumption. For the gen-
eral case, we have seen in the proof of Corollary 5.4 that Z is of class (D)
whenever � 1

p
X̌p is. Writing the definition of κ̌ as κ̌p−1 = �−/D μ-a.e., we

have � 1
p
X̌p = Z − ∫ κ̌�− 1

p
X̌p dμ = (�− 1

p
X̌

p
−) • (� − κ̌ • μ), hence, � 1

p
X̌p =

Z0E(� − κ̌ • μ)= Z0E(�) exp(−κ̌ • μ). It remains to note that exp(−κ̌ • μ)≤ 1.
�

5.2. Verification via deflator. The goal of this section is a verification theorem
which involves only the candidate for the optimal strategy and holds for general
semimartingale models. Our plan is as follows. Let (�, π̌, κ̌) be a solution of the
Bellman equation and assume for the moment that C is convex. As the concave
function g� has a maximum at π̌ , the directional derivatives at π̌ in all directions
should be nonpositive (if they can be defined). A calculation will show that, at the
level of processes, this yields a supermartingale property which is well known from
duality theory and allows for verification. In the case of nonconvex constraints, the
directional derivatives need not be defined in any sense. Nevertheless, the formally
corresponding quantities yield the expected result. To make the first-order condi-
tions necessary, we later specialize to convex C . As in the previous section, we
first state a basic result; it is essentially classical.

LEMMA 5.10. Let � be any positive càdlàg semimartingale with �T = DT .
Suppose there exists (π̌ , κ̌) ∈A with κ̌ = (D/�)β and let X̌ := X(π̌, κ̌). Assume
Y := �X̌p−1 has the property that for all (π, κ) ∈A,

�(π, κ) :=X(π,κ)Y +
∫

κsXs(π, κ)Ysμ(ds)

is a supermartingale. Then �(π̌, κ̌) is a martingale if and only if (2.2) holds and
(π̌, κ̌) is optimal and �= L.

PROOF. “⇒”: let (π, κ) ∈A and denote c = κX(π, κ) and č = κ̌X̌. Note the
partial derivative ∂U(č) = Dκ̌p−1X̌p−1 = �X̌p−1 = Y . Concavity of U implies
U(c)−U(č)≤ ∂U(č)(c− č)= Y(c− č), hence,

E

[∫ T

0
Us(cs)μ

◦(ds)
]
−E

[∫ T

0
Us(čs)μ

◦(ds)
]

≤E

[∫ T

0
Ys(cs − čs)μ

◦(ds)
]

=E[�T (π, κ)] −E[�T (π̌, κ̌)].
Let �(π̌, κ̌) be a martingale; then �0(π, κ) = �0(π̌, κ̌) and the supermartin-
gale property imply that the last line is nonpositive. As (π, κ) was arbitrary,
(π̌, κ̌) is optimal with expected utility E[∫ T0 Us(čs)μ

◦(ds)] = E[ 1
p
�T (π̌, κ̌)] =

1
p
�0(π̌, κ̌)= 1

p
x
p
0 �0 <∞. The rest is as in the proof of Lemma 5.1. �
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The process Y is a supermartingale deflator in the language of [19]. We refer
to [25] for the connection of the opportunity process with convex duality, which
in fact suggests Lemma 5.10. Note that unlike Z(π,κ) from the previous section,
�(π, κ) is positive for all values of p.

Our next goal is to link the supermartingale property to local first-order condi-
tions. Let y, y̌ ∈ C ∩C 0 (we will plug in π̌ for y̌). The formal directional derivative
of g� at y̌ in the direction of y is (y − y̌)�∇g�(y̌)=G�(y, y̌), where, by formal
differentiation under the integral sign [cf. (3.2)],

G�(y, y̌) := �−(y − y̌)�
(
bR + cR�

�−
+ (p− 1)cRy̌

)

+
∫

Rd×R

(y − y̌)�x′h(x)FR,�(d(x, x′))
(5.2)

+
∫

Rd×R

(�− + x′){(1+ y̌�x)p−1(y − y̌)�x − (y − y̌)�h(x)}

× FR,�(d(x, x′)).

We take this expression as the definition of G�(y, y̌) whenever the last integral is
well defined [the first one is finite by (4.2)]. The differentiation cannot be justified
in general, but see the subsequent section.

LEMMA 5.11. Let y ∈ C 0 and y̌ ∈ C 0,∗ ∩ {g� >−∞}. Then G�(y, y̌) is well
defined with values in (−∞,∞] and G�(·, y̌) is lower semicontinuous on C 0.

PROOF. Writing (y− y̌)�x = 1+ y�x− (1+ y̌�x), we can express G�(y, y̌)

as

�−(y − y̌)�
(
bR + cR�

�−
+ (p− 1)cRy̌

)
+
∫

Rd×R

(y − y̌)�x′h(x)FR,�(d(x, x′))

+
∫

Rd×R

(�− + x′)
{

1+ y�x
(1+ y̌�x)1−p − 1− (y + (p− 1)y̌

)�
h(x)

}

× FR,�(d(x, x′))

−
∫

Rd×R

(�− + x′){(1+ y̌�x)p − 1− py̌�h(x)}FR,�(d(x, x′)).

The first integral is finite and continuous in y by (4.2). The last integral above
occurs in the definition of g�(y̌) [cf. (3.2)] and it is finite if g�(y̌) >−∞ and equals
+∞ otherwise. Finally, consider the second integral above and call its integrand

ψ = ψ(y, y̌, x, x′). The Taylor expansion 1+y�x
(1+y̌�x)1−p = 1+ (y + (p − 1)y̌)�x +

(p−1)
2 (2y + (p − 2)y̌)�xx�y̌ + o(|x|3) shows that

∫
{|x|+|x′|≤1}ψ dFR,� is well

defined and finite. It also shows that given a compact K ⊂ R
d , there is ε > 0
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such that
∫
{|x|+|x′|≤ε}ψ dFR,� is continuous in y ∈ K (and also in y̌ ∈ K). The

details are as in Lemma A.2. Moreover, for y ∈ C 0 we have the lower bound ψ ≥
(�−+x′){−1− (y+ (p−1)y̌)�h(x)}, which is FR,�-integrable on {|x|+|x′|> ε}
for any ε > 0, again by (4.2). The result now follows by Fatou’s lemma. �

We can now connect the local first-order conditions for g� and the global su-
permartingale property: it turns out that the formal derivative G� determines the
sign of the drift rate of �, cf. (5.3) below, which leads to the following proposition.
Here and in the sequel, we denote X̌ =X(π̌, κ̌).

PROPOSITION 5.12. Let (�, π̌, κ̌) be a solution of the Bellman equation and
(π, κ) ∈A. Then �(π, κ) := �X̌p−1X(π,κ)+ ∫ κs�sX̌

p−1
s Xs(π, κ)μ(ds) is a su-

permartingale (local martingale) if and only if G�(π, π̌)≤ 0 (= 0).

PROOF. Define R̄ =R− (x − h(x)) ∗μR as in (2.4). In the sequel, we abbre-
viate π̄ := (p−1)π̌ +π and similarly κ̄ := (p−1)κ̌+ κ . We defer to Lemma C.1
a calculation showing that (X̌p−1

− X−(π, κ))−1 • (�X̌p−1X(π,κ)) equals

�− �0 + �−π̄ • R̄− �−κ̄ • μ

+ �−(p− 1)
(
p− 2

2
π̌ + π

)�
cRπ̌ •A+ π̄�cR� •A+ π̄�x′h(x) ∗μR,�

+ (�− + x′){(1+ π̌�x)p−1(1+ π�x)− 1− π̄�h(x)} ∗μR,�.

Here we use a predictable cut-off function h such that π̄�h(x) is bounded; for
example, h(x)= x1{|x|≤1}∩{|π̄�x|≤1}. Since (�, π̌, κ̌) is a solution, the drift of � is

A� =−pU∗(�−) • μ− pg�(π̌) •A= (p− 1)�−κ̌ • μ− pg�(π̌) •A.

By Remark 2.3, � := �(π, κ) has a well-defined drift rate a� with values in
(−∞,∞]. From the two formulas above and (2.4) we deduce

a� = X̌
p−1
− X(π,κ)−G�(π, π̌).(5.3)

Here X̌
p−1
− X(π,κ)− > 0 by admissibility. If � is a supermartingale, then a� ≤ 0,

and the converse holds by Lemma 2.4 in view of � ≥ 0. �

We obtain our second verification theorem from Proposition 5.12 and Lem-
ma 5.10.

THEOREM 5.13. Let (�, π̌, κ̌) be a solution of the Bellman equation. Assume
that P ⊗A-a.e., G�(y, π̌) ∈ [−∞,0] for all y ∈ C ∩C 0,∗. Then

�(π̌, κ̌) := �X̌p +
∫

κ̌s�sX̌
p
s μ(ds)

is a local martingale. It is a martingale if and only if (2.2) holds and (π̌ , κ̌) is
optimal and �=L is the opportunity process.
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If C is not convex, one can imagine situations where the directional derivative
of g� at the maximum is positive, that is, the assumption on G�(y, π̌) is sufficient
but not necessary. This changes in the subsequent section.

5.2.1. The convex-constrained case. We assume in this section that C is con-
vex; then C ∩C 0 is also convex. Our aim is to show that the nonnegativity condi-
tion on G� in Theorem 5.13 is automatically satisfied in this case. We start with an
elementary but crucial observation about “differentiation under the integral sign.”

LEMMA 5.14. Consider two distinct points y0 and y̌ in R
d and let C = {ηy0+

(1− η)y̌ : 0≤ η ≤ 1}. Let ρ be a function on �×C, where � is some Borel space
with measure ν, such that x �→ ρ(x, y) is ν-measurable,

∫
ρ+(x, ·)ν(dx) <∞

on C, and y �→ ρ(x, y) is concave. In particular, the directional derivative

Dy̌,yρ(x, ·) := lim
ε→0+

ρ(x, y̌ + ε(y − y̌))− ρ(x, y̌)

ε

exists in (−∞,∞] for all y ∈ C. Let α be another concave function on C.
Define γ (y) := α(y)+ ∫ ρ(x, y)ν(dx) and assume that γ (y0) >−∞ and that

γ (y̌)=maxC γ <∞. Then for all y ∈ C,

Dy̌,yγ =Dy̌,yα+
∫

Dy̌,yρ(x, ·)ν(dx) ∈ (−∞,0](5.4)

and in particular Dy̌,yρ(x, ·) <∞ ν(dx)-a.e.

PROOF. Note that γ is concave, hence, we also have γ >−∞ on C. Let v =
(y − y̌) and ε > 0, then γ (y̌+εv)−γ (y̌)

ε
= α(y̌+εv)−α(y̌)

ε
+ ∫ ρ(x,y̌+εv)−ρ(x,y̌)

ε
ν(dx).

By concavity, these quotients increase monotonically as ε ↓ 0, in particular their
limits exist. The left-hand side is nonpositive as y̌ is a maximum and monotone
convergence yields (5.4). �

For completeness, let us mention that if γ (y0)=−∞, there are examples where
the left-hand side of (5.4) is −∞ but the right-hand side is finite; we shall deal
with this case separately. We deduce the following version of Theorem 5.13; as
discussed, it involves only the control (π̌, κ̌).

THEOREM 5.15. Let (�, π̌, κ̌) be a solution of the Bellman equation and as-
sume that C is convex. Then �(π̌, κ̌) := �X̌p + ∫ κ̌s�sX̌

p
s μ(ds) is a local martin-

gale. It is a martingale if and only if (2.2) holds and (π̌, κ̌) is optimal and �=L.

PROOF. To apply Theorem 5.13, we have to check that G�(y, π̌) ∈ [−∞,0]
for y ∈ C ∩C 0,∗. Recall that π̌ is a maximizer for g� and that G� was defined by
differentiation under the integral sign. Lemma 5.14 yields G�(y, π̌)≤ 0 whenever
y ∈ {g� > −∞}. This ends the proof for p ∈ (0,1) as g� is then finite. If p < 0,



BELLMAN EQUATION FOR POWER UTILITY 393

the definition of g� and Remark A.7 show that the set {g� >−∞} contains the set⋃
η∈[0,1) η(C ∩ C 0) which, in turn, is dense in C ∩ C 0,∗. Hence, {g� > −∞} is

dense in C ∩ C 0,∗ and we obtain G�(y, π̌) ∈ [−∞,0] for all y ∈ C ∩ C 0,∗ using
the lower semicontinuity from Lemma 5.11. �

REMARK 5.16. (i) We note that �(π̌, κ̌) = pZ(π̌, κ̌) if Z is defined as in
(4.4). In particular, Remark 5.9 can be used also for �(π̌, κ̌).

(ii) Muhle–Karbe [24] considers certain one-dimensional (unconstrained) affine
models and introduces a sufficient optimality condition in the form of an algebraic
inequality (see [24], Theorem 4.20(3)). This condition can be seen as a special
case of the statement that GL(y, π̌) ∈ [−∞,0] for y ∈ C 0,∗; in particular, we have
shown its necessity.

Of course, all our verification results can be seen as a uniqueness result for the
Bellman equation. As an example, Theorem 5.15 yields the following corollary.

COROLLARY 5.17. If C is convex, there is at most one solution of the Bellman
equation in the class of solutions (�, π̌, κ̌) such that �(π̌, κ̌) is of class (D).

Similarly, one can give corollaries for the other results. We close with a com-
ment concerning convex duality.

REMARK 5.18. (i) A major insight in [21] was that the “dual domain” for
utility maximization (here with C =R

d ) should be a set of supermartingales rather
than (local) martingales when the price process has jumps. A one-period example
for log-utility ([21], Example 5.1′) showed that the supermartingale solving the
dual problem can indeed have nonvanishing drift. In that example it is clear that
this arises when the budget constraint becomes binding. For general models and
log-utility, [11] comments on this phenomenon. The calculations of this section
yield an instructive “local” picture also for power utility.

Under Assumptions 3.1, the opportunity process L and the optimal strategy
(π̂, κ̂) solve the Bellman equation. Assume that C is convex and let X̂ =X(π̂, κ̂).
Consider Ŷ = LX̂p−1, which was the solution to the dual problem in [25]. We
have shown that Ŷ E(π • R) is a supermartingale for every π ∈A; that is, Ŷ is a su-
permartingale deflator. Choosing π = 0, we see that Ŷ is itself a supermartingale,
and by (5.3) its drift rate satisfies

aŶ = X̂
p−1
− GL(0, π̂)=−X̂p−1

− π̂�∇g(π̂).

Hence, Ŷ is a local martingale if and only if π̂�∇g(π̂) = 0. One can say that
−π̂�∇g(π̂) < 0 means that the constraints are binding, whereas in an “uncon-
strained” case the gradient of g would vanish, that is, Ŷ has nonvanishing drift
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rate at a given (ω, t) whenever the constraints are binding. Even if C = R
d , we

still have the budget constraint C 0 in the maximization of g. If, in addition, R is
continuous, C 0 = R

d and we are truly in an unconstrained situation. Then Ŷ is a
local martingale; indeed, in the setting of Corollary 3.12 we calculate

Ŷ = y0E
(
−λ •M + 1

L−
•NL

)
, y0 := L0x

p−1
0 .

Note how NL, the martingale part of L orthogonal to R, yields the solution to the
dual problem.

(ii) From the proof of Proposition 5.12 we have that the general formula for the
local martingale part of Ŷ is

MŶ = X̂
p−1
− •

(
ML +L−(p− 1)π̂ •MR̄

+ (p− 1)π̂�x′h(x) ∗ (μR,L − νR,L)

+ (L− + x′){(1+ π̂�x)p−1 − 1− (p− 1)π̂�h(x)}
∗ (μR,L − νR,L)

)
.

This is relevant in the problem of q-optimal equivalent martingale measures; cf.
Goll and Rüschendorf [12] for a general perspective. Let u(x0) <∞, D ≡ 1,
μ= 0, C = R

d , and assume that the set M of equivalent local martingale mea-
sures for S = E(R) is nonempty. Given q = p/(p − 1) ∈ (−∞,0) ∪ (0,1) conju-
gate to p, Q ∈M is called q-optimal if E[−q−1(dQ/dP )q ] is finite and minimal
over M . If q < 0, that is, p ∈ (0,1), then u(x0) <∞ is equivalent to the exis-
tence of some Q ∈M such that E[−q−1(dQ/dP )q] <∞; moreover, Assump-
tions 3.1 are satisfied (see Kramkov and Schachermayer [21, 22]). Using [21],
Theorem 2.2(iv), we conclude that:

(a) the q-optimal martingale measure exists if and only if aŶ ≡ 0 and MŶ is a
true martingale;

(b) in that case, 1+ y−1
0 MŶ is its P -density process.

This generalizes earlier results of [12] as well as of Grandits [13], Jeanblanc, Klöp-
pel and Miyahara [16] and Choulli and Stricker [6].

APPENDIX A: PROOF OF LEMMA 3.8: A MEASURABLE
MAXIMIZING SEQUENCE

The main goal of this Appendix is to construct a measurable maximizing se-
quence for the random function g; cf. Lemma 3.8. The entire section is under As-
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sumptions 3.1. Before beginning the proof, we discuss the properties of g; recall
that

g(y) := L−y�
(
bR + cRL

L−
+ (p− 1)

2
cRy

)

+
∫

Rd×R

x′y�h(x)FR,L(d(x, x′))
(A.1)

+
∫

Rd×R

(L− + x′){p−1(1+ y�x)p − p−1 − y�h(x)}

× FR,L(d(x, x′)).

LEMMA A.1. L− + x′ is strictly positive FL(dx′)-a.e.

PROOF. We have

(P ⊗ νL){L− + x′ ≤ 0} = E
[
1{L−+x′≤0} ∗ νL

T

]
= E

[
1{L−+x′≤0} ∗μL

T

]
= E

[∑
s≤T

1{Ls≤0}1{	Ls �=0}
]
,

which vanishes as L> 0 by Lemma 2.1. �

Fix (ω, t) and let l := Lt−(ω). Furthermore, let F be any Lévy measure on
R

d+1 which is equivalent to F
R,L
t (ω) and satisfies (2.5). Equivalence implies

that C 0
t (ω),C 0,∗

t (ω) and Nt (ω) are the same if defined with respect to F instead
of FR . Given ε > 0, let

IF
ε (y) :=

∫
{|x|+|x′|≤ε}

(l + x′){p−1(1+ y�x)p − p−1 − y�h(x)}F(d(x, x′))

and

IF
>ε(y) :=

∫
{|x|+|x′|>ε}

(l + x′){p−1(1+ y�x)p − p−1 − y�h(x)}F(d(x, x′)),

so that

IF (y) := IF
ε (y)+ IF

>ε(y)

is the last integral in (A.1) when F = F
R,L
t (ω). We know from the proof of Lem-

ma 3.4 that IFR,L
(π) is well defined and finite for any π ∈AfE [of course, when

p > 0, this is essentially due to the assumption (2.2)]. For general F , IF has the
following properties.
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LEMMA A.2. Consider a sequence yn→ y∞ in C 0.

(i) For any y ∈ C 0, the integral IF (y) is well defined in R∪ {sign(p)∞}.
(ii) For ε ≤ (2 supn |yn|)−1 we have IF

ε (yn)→ IF
ε (y∞).

(iii) If p ∈ (0,1), then IF is l.s.c., that is, lim infn IF (yn)≥ IF (y∞).
(iv) If p < 0, then IF is u.s.c., that is, lim supn I

F (yn) ≤ IF (y∞). Moreover,
y ∈ C 0 \C 0,∗ implies IF (y)=−∞.

PROOF. The first item follows from the subsequent considerations.
(ii) We may assume that h is the identity function on {|x| ≤ ε}, then on this set

p−1(1+ y�x)p − p−1− y�h(x)=:ψ(z)|z=y�x, where the function ψ is smooth
on {|z| ≤ 1/2} ⊆R satisfying

ψ(z)= p−1(1+ z)p − p−1 − z= p− 1

2
z2 + o(|z|3),

because 1 + z is bounded away from 0. Thus ψ(z) = z2ψ̃(z) with a function ψ̃

that is continuous and in particular bounded on {|z| ≤ 1/2}.
As a Lévy measure, F integrates (|x′|2 + |x|2) on compacts; in particular,

G(d(x, x′)) := |x|2F(d(x, x′)) defines a finite measure on {|x|+ |x′| ≤ ε}. Hence,
IF
ε (y) is well defined and finite for |y| ≤ (2ε)−1, and dominated convergence

shows that IF
ε (y)= ∫{|x|+|x′|≤ε}(l + x′)ψ̃(y�x)G(d(x, x′)) is continuous in y on

{|y| ≤ (2ε)−1}.
(iii) For |y| bounded by a constant C, the integrand in IF is bounded from below

by C′ + |x′| for some constant C′ depending on y only through C. We choose ε

as before. As C′ + |x′| is F -integrable on {|x| + |x′|> ε} by (2.5), IF (y) is well
defined in R∪ {∞} and l.s.c. by Fatou’s lemma.

(iv) The first part follows as in (iii), now the integrand is bounded from above
by C′ + |x′|. If y ∈ C 0 \ C 0,∗, Lemma A.1 shows that the integrand equals −∞
on a set of positive F -measure. �

LEMMA A.3. The function g is concave. If C is convex, g has at most one
maximum on C ∩C 0, modulo N .

PROOF. We first remark that the assertion is not trivial because g need not
be strictly concave on N ⊥, for example, the process Rt = t (1, . . . ,1)� was not
excluded.

Note that g is of the form g(y)=Hy+J (y), where Hy = L−y�bR+y�cRL+∫
x′y�h(x)FR,L is linear and J (y)= (p−1)

2 L−y�cRy + IFR,L
(y) is concave. We

may assume that h(x)= x1{|x|≤1}.
Let y1, y2 ∈ C ∩C 0 be such that g(y1)= g(y2)= supg =: g∗ <∞, our aim is

to show y1 − y2 ∈N . By concavity, g∗ = g((y1 + y2)/2))= [g(y1)+ g(y2)]/2,
which implies J ((y1 + y2)/2)) = [J (y1) + J (y2)]/2 due to the linearity of H .
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Using the definition of J , this shows that J is constant on the line segment con-
necting y1 and y2. A first consequence is that the difference y1 − y2 lies in the set
{y :y�cR = 0,FR{x :y�x �= 0} = 0} and a second is that Hy1 =Hy2. It remains
to show (y1 − y2)

�bR = 0 to have y1 − y2 ∈N .
Note that FR{x :y�x �= 0} = 0 implies FR,L{x :y�h(x) �= 0} = 0. Moreover,

y�cR = 0 implies y�cRL = 0 due to the absolute continuity 〈Rc,i,Lc〉  〈Rc,i〉
which follows from the Kunita–Watanabe inequality. Therefore, the first conse-
quence above implies

∫
x′(y1 − y2)

�h(x)FR,L = 0 and (y1 − y2)
�cRL = 0, and

now the second consequence and the definition of H yield 0 = H(y1 − y2) =
L−(y1 − y2)

�bR . Thus (y1 − y2)
�bR = 0 as L− > 0 and the proof is complete.

�

We can now move toward the main goal of this section. Clearly we need some
variant of the “measurable maximum theorem” (see, e.g., [1], 18.19; [19], Theo-
rem 9.5; [28], 2K). We state a version that is tailored to our needs and has a simple
proof; the technique is used also in Proposition 4.3.

LEMMA A.4. Let D be a predictable set-valued process with nonempty com-
pact values in 2R

d
. Let f (y)= f (ω, t, y) be a proper function on D with values

in R∪ {−∞} such that:

(i) f (ϕ) is predictable whenever ϕ is a D -valued predictable process,
(ii) y �→ f (y) is upper semicontinuous on D for fixed (ω, t).

Then there exists a D -valued predictable process π such that f (π)=maxD f .

PROOF. We start with the Castaing representation ([28], 1B) of D : there exist
D -valued predictable processes (ϕn)n≥1 such that {ϕn :n≥ 1} =D for each (ω, t).
By (i), f ∗ := maxn f (ϕn) is predictable, and f ∗ = maxD f by (ii). Fix k ≥ 1
and let �n := {f ∗ − f (ϕn) ≤ 1/k}, �n :=�n \ (�1 ∪ · · · ∪�n−1). If we define
πk :=∑n ϕn1�n , then f ∗ − f (πk)≤ 1/k and πk ∈D .

It remains to select a cluster point. By compactness, (πk)k≥1 is bounded for each
(ω, t), so there is a convergent subsequence along “random indices” τk . More pre-
cisely, there exists a strictly increasing sequence of integer-valued predictable pro-
cesses τk = {τk(ω, t)} and a predictable process π∗ such that limk π

τk(ω,t)
t (ω) =

π∗t (ω) for all (ω, t). See, for example, the proof of Föllmer and Schied [10],
Lemma 1.63. We have f ∗ = f (π∗) by (ii). �

Our random function g satisfies property (i) of Lemma A.4 because the char-
acteristics are predictable (recall the definition [15], II.1.6). We also note that the
intersection of closed predictable processes is predictable ([28], 1M). The sign of
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p is important as it switches the semicontinuity of g; we start with the immediate
case p < 0 and denote Br(R

d)= {x ∈R
d : |x| ≤ r}.

PROOF OF LEMMA 3.8 FOR p < 0. In this case g is u.s.c. on C ∩ C 0 (Lem-
ma A.2). Let D(n) := C ∩ C 0 ∩ Bn(R

d). Lemma A.4 yields a predictable pro-
cess πn ∈ arg maxD(n) g for each n≥ 1, and clearly limn g(π

n)= supC∩C 0 g. As
g(πn)≥ g(0)= 0, we have πn ∈ C 0,∗ by Lemma A.2. �

A.1. Measurable maximizing sequence for p ∈ (0,1). Fix p ∈ (0,1). Since
the continuity properties of g are not clear, we will use an approximating sequence
of continuous functions. (See also Appendix B, where an alternative approach is
discussed and the continuity is clarified under an additional assumption on C .) We
will approximate g using Lévy measures with enhanced integrability, a method
suggested by [19] in a similar problem. This preserves monotonicity properties
that will be useful to pass to the limit.

All this is not necessary if R is locally bounded, or more generally if FR,L

satisfies the following condition. We start with fixed (ω, t).

DEFINITION A.5. Let F be a Lévy measure on R
d+1 which is equivalent to

FR,L and satisfies (2.5). (i) We say that F is p-suitable if∫
(1+ |x′|)(1+ |x|)p1{|x|>1}F(d(x, x′)) <∞.

(ii) The p-suitable approximating sequence for F is the sequence (Fn)n≥1 of
Lévy measures defined by dFn/dF = fn, where

fn(x)= 1{|x|≤1} + e−|x|/n1{|x|>1}.

It is easy to see that each Fn in (ii) shares the properties of F , while in addi-
tion being p-suitable because (1+ |x|)pe−|x|/n is bounded. As the sequence fn is
increasing, monotone convergence shows that

∫
V dFn ↑ ∫ V dF for any measur-

able function V ≥ 0 on R
d+1. We denote by gF the function which is defined as

in (A.1) but with FR,L replaced by F .

LEMMA A.6. If F is p-suitable, gF is real-valued and continuous on C 0.

PROOF. Pick yn→ y in C 0. The only term in (A.1) for which continuity is
not evident is the integral IF = IF

ε + IF
>ε , where we choose ε as in Lemma A.2.

We have IF
ε (yn)→ IF

ε (y) by that lemma. When F is p-suitable, the continuity of
IF
>ε follows from the dominated convergence theorem. �

REMARK A.7. Define the set

(C ∩C 0)" := ⋃
η∈[0,1)

η(C ∩C 0).
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Its elements y have the property that 1+y�x is FR(dx)-essentially bounded away
from zero. Indeed, y = ηy0 with η ∈ [0,1) and FR{y�0 x ≥ −1} = 0, therefore,
1 + y�x ≥ 1 − η, FR-a.e. In particular, (C ∩ C 0)" ⊆ C 0,∗. If C is star-shaped
with respect to the origin, we also have (C ∩C 0)" ⊆ C .

We introduce the compact-valued process D(r) := C ∩C 0 ∩Br(R
d).

LEMMA A.8. Let F be p-suitable. Under (C3), arg maxD(r) g
F ⊆ C 0,∗.

More generally, this holds whenever F is a Lévy measure equivalent to FR,L

satisfying (2.5) and gF is finite-valued.

PROOF. Assume that y̌ ∈ C 0 \ C 0,∗ is a maximum of gF . Let η ∈ (η,1) be
as in the definition of (C3) and y0 := ηy̌. By Lemma 5.14, the directional deriva-
tive Dy̌,y0g can be calculated by differentiating under the integral sign. For the
integrand of IF we have

Dy̌,y0{p−1(1+y�x)p−p−1−y�h(x)} = (1−η){(1+ y̌�x)p−1y̌�x− y̌�h(x)}.
But this is infinite on a set of positive measure as y̌ ∈ C 0 \ C 0,∗ means that
F {y̌�x =−1}> 0, contradicting the last assertion of Lemma 5.14. �

Let F be a Lévy measure on R
d+1 which is equivalent to FR,L and satis-

fies (2.5). The following lemma is the crucial step in our argument.

LEMMA A.9. Let (Fn) be the p-suitable approximating sequence for F and
fix r > 0. For each n, arg maxD(r) g

Fn �= ∅, and for any y∗n ∈ arg maxD(r) g
Fn it

holds that lim supn g
F (y∗n)= supD(r) g

F .

PROOF. We first show that

IFn(y)→ IF (y) for any y ∈ C 0.(A.2)

Recall that IFn(y)= ∫ (l+x′){p−1(1+y�x)p−p−1−y�h(x)}fn(x)F (d(x, x′)),
where fn is nonnegative and increasing in n. As fn = 1 in a neighborhood of the
origin, we need to consider only I

Fn
>ε (for ε = 1, say). Its integrand is bounded

below, simultaneously for all n, by a negative constant times (1+ |x′|), which is
F -integrable on the relevant domain. As (fn) is increasing, we can apply mono-
tone convergence on the set {(x, x′) :p−1(1 + y�x)p − p−1 − y�h(x) ≥ 0} and
dominated convergence on the complement to deduce (A.2).

Existence of y∗n ∈ arg maxD(r) g
Fn is clear by compactness of D(r) and con-

tinuity of gFn (Lemma A.6). Let y ∈ D(r) be arbitrary. By definition of y∗n and
(A.2),

lim sup
n

gFn(y∗n)≥ lim sup
n

gFn(y)= gF (y).
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We show lim supn g
F (y∗n)≥ lim supn g

Fn(y∗n). We can split the integral IFn(y) into
a sum of three terms: the integral over {|x| ≤ 1} is the same as for IF , since fn = 1
on this set. We can assume that the cut-off h vanishes outside {|x| ≤ 1}. The second
term is then ∫

{|x|>1}
(l + x′)p−1(1+ y�x)pfn dF,

here the integrand is nonnegative and hence increasing in n, for all y; and the third
term is ∫

{|x|>1}
(l + x′)(−p−1)fn dF,

which is decreasing in n but converges to
∫
{|x|>1}(l+x′)(−p−1) dF . Thus we have

that

gF (y∗n)≥ gFn(y∗n)− εn

with the sequence εn := ∫{|x|>1}(l+ x′)(−p−1)(fn− 1) dF ↓ 0. Together, we con-

clude supD(r) g
F ≥ lim supn g

F (y∗n)≥ lim supn g
Fn(y∗n)≥ supD(r) g

F . �

PROOF OF LEMMA 3.8 FOR p ∈ (0,1). Fix r > 0. By Lemma A.4 we can find
measurable selectors πn,r for arg maxD(r) g

Fn ; that is, πn,r
t (ω) plays the role of y∗n

in Lemma A.9. Taking πn := πn,n and noting that D(n) ↑ C ∩ C 0, the preceding
Lemma A.9 shows that πn are C ∩ C 0-valued predictable processes such that
lim supn g(π

n)= supC∩C 0 g P ⊗ A-a.e. Lemma A.8 shows that πn takes values
in C 0,∗. �

APPENDIX B: PARAMETRIZATION BY
REPRESENTATIVE PORTFOLIOS

This Appendix introduces an equivalent transformation of the model (R,C )

with specific properties (Theorem B.3). The main idea is to substitute the given as-
sets by wealth processes that represent the investment opportunities of the model.
While the result is of independent interest, the main conclusion in our context is
that the approximation technique from Appendix A.1 for the case p ∈ (0,1) can
be avoided, at least under slightly stronger assumptions on C : if the utility max-
imization problem is finite, the corresponding Lévy measure in the transformed
model is p-suitable (cf. Definition A.5) and hence the corresponding function g

is continuous. This is not only an alternative argument to prove Lemma 3.8. In
applications, continuity can be useful to construct a maximizer for g (rather than
a maximizing sequence) if one does not know a priori that there exists an optimal
strategy. A static version of our construction was carried out for the case of Lévy
processes in [26], Section 4.
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In this Appendix we use the following assumptions on the set-valued process C
of constraints:

(C1) C is predictable.
(C2) C is closed.
(C4) C is star-shaped with respect to the origin: ηC ⊆ C for all η ∈ [0,1].
Since we already obtained a proof of Lemma 3.8, we do not strive for min-

imal conditions here. Clearly (C4) implies condition (C3) from Section 2.4, but
its main implication is that we can select a bounded (hence R-integrable) process
in the subsequent lemma. The following result is the construction of the j th rep-
resentative portfolio, a portfolio with the property that it invests in the j th asset
whenever this is feasible.

LEMMA B.1. Fix 1 ≤ j ≤ d and let Hj = {x ∈ R
d :xj �= 0}. There exists a

bounded predictable C ∩C 0,∗-valued process φ satisfying

{φj = 0} = {C ∩C 0,∗ ∩Hj =∅}.
PROOF. Let B1 = B1(R

d) be the closed unit ball and H := Hj . Condition
(C4) implies {C ∩ C 0,∗ ∩H = ∅} = {C ∩ B1 ∩ C 0,∗ ∩H =∅}, hence, we may
substitute C by C ∩ B1. Define the closed sets Hk = {x ∈ R

d : |xj | ≥ k−1} for
k ≥ 1, then

⋃
k Hk = H . Moreover, let Dk = C ∩ C 0 ∩ Hk . This is a compact-

valued predictable process, so there exists a predictable process φk such that
φk ∈ Dk (hence φ

j
k �= 0) on the set �k := {Dk �= ∅} and φk = 0 on the comple-

ment. Define �k := �k \ (�1 ∪ · · · ∪�k−1) and φ′ :=∑k φk1�k . Then |φ′| ≤ 1
and {φ′j = 0} = {C ∩ C 0 ∩H =∅} = {C ∩ C 0,∗ ∩H =∅}; the second equality
uses (C4) and Remark A.7. These two facts also show that φ := 1

2φ
′ has the same

property while in addition being C ∩C 0,∗-valued. �

REMARK B.2. The previous proof also applies if instead of (C4), for example,
the diameter of C is uniformly bounded and C 0 = C 0,∗.

If � is a d × d-matrix with columns φ1, . . . , φd ∈ L(R), the matrix stochastic
integral R̃ = � • R is the R

d -valued process given by R̃j = φj
• R. Moreover, if

ψ ∈ L(� • R) is R
d -valued, then �ψ ∈ L(R) and

ψ • (� • R)= (�ψ) • R.(B.1)

If D is a set-valued process which is predictable, closed and contains the origin,
then the pre-image �−1D shares these properties; cf. [28], 1Q. Convexity and
star-shape are also preserved.

We obtain the following model if we sequentially replace the given assets by
representative portfolios; here ej denotes the j th unit vector in R

d for 1 ≤ j ≤ d

(i.e., eij = δij ).



402 M. NUTZ

THEOREM B.3. There exists a predictable R
d×d -valued uniformly bounded

process � such that the financial market model with returns

R̃ :=� • R

and constraints C̃ :=�−1C has the following properties: for all 1≤ j ≤ d ,

(i) 	R̃j >−1 (positive prices),
(ii) ej ∈ C̃ ∩ C̃ 0,∗, where C̃ 0,∗ =�−1C 0,∗ (entire wealth can be invested in

each asset),
(iii) the model (R̃, C̃ ) admits the same wealth processes as (R,C ).

PROOF. We treat the components one by one. Let j = 1 and let φ = φ(1) be as
in Lemma B.1. We replace the first asset R1 by the process φ • R, or equivalently,
we replace R by � • R, where �=�(1) is the d × d-matrix

�=

⎛
⎜⎜⎜⎝

φ1

φ2 1
...

. . .

φd 1

⎞
⎟⎟⎟⎠ .

The new natural constraints are �−1C 0 and we replace C by �−1C . Note that
e1 ∈�−1(C ∩C 0,∗) because �e1 = φ ∈ C ∩C 0,∗ by construction.

We show that for every C ∩ C 0,∗-valued process π ∈ L(R) there exists ψ

predictable such that �ψ = π . In view of (B.1), this will imply that the new
model admits the same wealth processes as the old one. On the set {φ1 �= 0} =
{� is invertible} we take ψ = �−1π and on the complement we choose ψ1 ≡ 0
and ψj = πj for j ≥ 2; this is the same as inverting � on its image. Note that
{φ1 = 0} ⊆ {π1 = 0} by the choice of φ.

We proceed with the second component of the new model in the same way, and
then continue until the last one. We obtain matrices �(j) for 1 ≤ j ≤ d and set
�̂=�(1) · · ·�(d). Then �̂ has the required properties. Indeed, the construction
and �(i)ej = ej for i �= j imply ej ∈ �̂−1(C ∩ C 0,∗). This is (ii), and (i) is a
consequence of (ii). �

Coming back to the utility maximization problem, note that property (iii) im-
plies that the value functions and the opportunity processes for the models (R,C )

and (R̃, C̃ ) coincide up to evanescence; we identify them in the sequel. Further-
more, if g̃ denotes the analogue of g in the model (R̃, C̃ ), cf. (A.1), we have the
relation

g̃(y)= g(�y), y ∈ C̃ 0.

Finding a maximizer for g̃ is equivalent to finding one for g and if (π̃, κ) is an op-
timal strategy for (R̃, C̃ ), then (�π̃, κ) is optimal for (R,C ). In fact, most prop-
erties of interest carry over from (R,C ) to (R̃, C̃ ), in particular any no-arbitrage
property that is defined via the set of admissible (positive) wealth processes.



BELLMAN EQUATION FOR POWER UTILITY 403

REMARK B.4. A classical no-arbitrage condition defined in a slightly differ-
ent way is that there exist a probability measure Q ≈ P under which E(R) is a
σ -martingale; cf. Delbaen and Schachermayer [9]. In this case, E(R̃) is even a
local martingale under Q, as it is a σ -martingale with positive components.

Property (ii) from Theorem B.3 is useful to apply the following result.

LEMMA B.5. Let p ∈ (0,1) and assume ej ∈ C ∩ C 0,∗ for 1 ≤ j ≤ d . Then
u(x0) <∞ implies that FR,L is p-suitable. If, in addition, there exists a constant
k1 such that D ≥ k1 > 0, it follows that

∫
{|x|>1} |x|pFR(dx) <∞.

PROOF. As p > 0 and u(x0) < ∞, L is well defined and L,L− > 0, by
Section 2.2. No further properties were used to establish Lemma 3.4, whose
formula shows that g(π) is finite P ⊗ A-a.e. for all π ∈ A = AfE . In par-
ticular, from the definition of g, it follows that

∫
(L− + x′){p−1(1 + π�x)p −

p−1 − π�h(x)}FR,L(d(x, x′)) is finite. If D ≥ k1, [25], Lemma 3.5, shows that
L ≥ k1, hence, L− + x′ ≥ k1 FL(dx′)-a.e. and

∫ {p−1(1 + π�x)p − p−1 −
π�h(x)}FR(dx) <∞. We choose π = ej (and κ arbitrary) for 1 ≤ j ≤ d to de-
duce the result. �

In general, the condition u(x0) <∞ does not imply any properties of R; for
instance, in the trivial cases C = {0} or C 0,∗ = {0}. The transformation changes
the geometry of C and C 0,∗ such that Theorem B.3(ii) holds, and then the situation
is different.

COROLLARY B.6. Let p ∈ (0,1) and u(x0) <∞. In the model (R̃, C̃ ) of
Theorem B.3, F R̃,L is p-suitable and hence, g̃ is continuous.

Therefore, to prove Lemma 3.8 under (C4), we may substitute (R,C ) by (R̃, C̃ )

and avoid the use of p-suitable approximating sequences. In some cases, Lem-
ma B.5 applies directly in (R,C ). In particular, if the asset prices are strictly pos-
itive (	Rj > −1 for 1 ≤ j ≤ d), then the positive orthant of R

d is contained in
C 0,∗ and the condition of Lemma B.5 is satisfied as soon as ej ∈ C for 1≤ j ≤ d .

APPENDIX C: OMITTED CALCULATION

This Appendix contains a calculation which was omitted in the proof of Propo-
sition 5.12.

LEMMA C.1. Let (�, π̌, κ̌) be a solution of the Bellman equation, (π, κ) ∈A,
X := X(π,κ) and X̌ := X(π̌, κ̌). Define R̄ = R − (x − h(x)) ∗ μR as well as
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π̄ := (p− 1)π̌ + π and κ̄ := (p− 1)κ̌ + κ . Then ξ := �X̌p−1X satisfies

(X̌
p−1
− X−)−1 • ξ

= �− �0 + �−π̄ • R̄ − �−κ̄ • μ

+ �−(p− 1)
(
p− 2

2
π̌ + π

)�
cRπ̌ •A+ π̄�cR� •A+ π̄�x′h(x) ∗μR,�

+ (�− + x′){(1+ π̌�x)p−1(1+ π�x)− 1− π̄�h(x)} ∗μR,�.

PROOF. We may assume x0 = 1. This calculation is similar to the one in the
proof of Lemma 3.4 and, therefore, we shall be brief. By Itô’s formula we have
X̌p−1 = E(ζ ) for

ζ = (p− 1)(π̌ •R− κ̌ • μ)+ (p− 1)(p− 2)

2
π̌�cRπ̌ •A

+ {(1+ π̌�x)p−1 − 1− (p− 1)π̌�x} ∗μR.

Thus X̌p−1X = E(ζ + π • R − κ • μ+ [ζ,π • R])=: E(�) with

[R,ζ ] = [Rc, ζ c] +∑	R	ζ

= (p− 1)cRπ̌ •A+ (p− 1)π̌�xx ∗μR

+ x{(1+ π̌�x)p−1 − 1− π̌�x} ∗μR

and recombining the terms yields

� = π̄ •R− κ̄ • μ+ (p− 1)
(
p− 2

2
π̌ + π

)�
cRπ̌ •A

+ {(1+ π̌�x)p−1(1+ π�x)− 1− π̄�x} ∗μR.

Then (X̌
p−1
− X−)−1 • ξ = �− �0 + �− •� + [�,�], where

[�,�] = [�c,�c] +∑	�	�

= π̄�cR� •A+ π̄�x′x ∗μR,�

+ x′{(1+ π̌�x)p−1(1+ π�x)− 1− π̄�x} ∗μR,�.

We arrive at

(X̌
p−1
− X−)−1 • ξ

= �− �0 + �−π̄ •R− �−κ̄ • μ

+ �−(p− 1)
(
p− 2

2
π̌ + π

)�
cRπ̌ •A+ π̄�cR� •A+ π̄�x′x ∗μR,�

+ (�− + x′){(1+ π̌�x)p−1(1+ π�x)− 1− π̄�x} ∗μR,�.

The result follows by writing x = h(x)+ x − h(x). �
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