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DISTRIBUTION OF LEVELS IN HIGH-DIMENSIONAL
RANDOM LANDSCAPES

BY ZAKHAR KABLUCHKO

Ulm University

We prove empirical central limit theorems for the distribution of levels
of various random fields defined on high-dimensional discrete structures as
the dimension of the structure goes to ∞. The random fields considered in-
clude costs of assignments, weights of Hamiltonian cycles and spanning trees,
energies of directed polymers, locations of particles in the branching ran-
dom walk, as well as energies in the Sherrington–Kirkpatrick and Edwards–
Anderson models. The distribution of levels in all models listed above is
shown to be essentially the same as in a stationary Gaussian process with
regularly varying nonsummable covariance function. This type of behavior
is different from the Brownian bridge-type limit known for independent or
stationary weakly dependent sequences of random variables.

1. Statement of results.

1.1. Introduction. Strongly correlated random fields defined on high-
dimensional discrete structures arise naturally in stochastic combinatorial opti-
mization and in the physics of disordered systems. We will be interested in the
properties of the empirical process formed by the levels of such random fields.
The general setting is as follows. For every n ∈ N, let {Xn(t); t ∈ Tn} be a zero-
mean, unit-variance random field with a finite index set Tn. The empirical distri-
bution function of the field Xn counts the proportion of values of Xn which are not
greater than a given number z ∈ R. It is defined as

Fn(z) = 1

|Tn|
∑
t∈Tn

1Xn(t)≤z, z ∈ R.(1)

Here, |Tn| denotes the cardinality of the finite set Tn. For a number of models
of stochastic combinatorial optimization we will prove an empirical central limit
theorem of the following form:

{
cn

(
Fn(z) − EFn(z)

); z ∈ R
} f.d.d.−→

n→∞{p(z)W ; z ∈ R}.(2)
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Here, cn is a normalizing sequence,
f.d.d.−→ denotes the weak convergence of the

finite-dimensional distributions, p(z) = (2π)−1/2e−z2/2 is the standard Gaussian
density and W is a random variable. Both cn and W depend on the model under
consideration, W being usually normal.

1.2. Distribution of weights of subgraphs. Our first result deals with the
stochastic assignment problem. In this model, n jobs have to be assigned in a
bijective way to n machines. The set of all assignments is denoted by Tn and is
identified with the set of all permutations of n elements, so that |Tn| = n!. Let the
cost of assigning a job i to the machine j be ξi,j , where {ξi,j ; i, j ∈ {1, . . . , n}}
are independent copies of a random variable ξ satisfying Eξ = 0 and Eξ2 = 1.
The (normalized) cost of an assignment t = (t (i))ni=1 ∈ Tn is then defined by
Xn(t) = 1√

n

∑n
i=1 ξi,t (i).

THEOREM 1. Let {Xn(t); t ∈ Tn} be the random landscape of the stochastic
assignment problem. Then, Xn satisfies the empirical central limit theorem (2) with
cn = √

n and W ∼ N(0,1).

The next model we will consider is the mean-field stochastic traveling salesman
problem. Denote by Gn = (Vn,En) the undirected complete graph on a set Vn of
n ≥ 3 vertices with the set of edges En. A Hamiltonian path in Gn is a nonoriented
closed path which contains every vertex of Gn exactly once. Let Tn be the set of
Hamiltonian paths in Gn. Let the weight of an edge e ∈ En be ξe, where {ξe; e ∈
En} are independent copies of a random variable ξ satisfying Eξ = 0 and Eξ2 = 1.
The (normalized) weight of a Hamiltonian path t ∈ Tn is then defined by Xn(t) =

1√
n

∑
e∈t ξe.

THEOREM 2. Let {Xn(t); t ∈ Tn} be the random landscape of the mean-field
stochastic traveling salesman problem. Then, Xn satisfies the empirical central
limit theorem (2) with cn = √

n/2 and W ∼ N(0,1).

In the next theorem we will deal with the distribution of the weights of spanning
trees in the complete graph. As above, let Gn be the undirected complete graph
on n vertices with the set of edges denoted by En. A spanning tree is a connected
subgraph of Gn which contains all the vertices of Gn and has no cycles. Note that
the number of edges in any spanning tree of Gn is n − 1. Let Tn be the set of
all spanning trees of the complete graph Gn, the cardinality of Tn being nn−2 by
the Cayley formula. Let the weight of an edge e ∈ En be ξe, where {ξe; e ∈ En}
are independent copies of a random variable ξ satisfying Eξ = 0 and Eξ2 = 1.
The (normalized) weight of a spanning tree t ∈ Tn is then defined by Xn(t) =

1√
n−1

∑
e∈t ξe.
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THEOREM 3. Let the random landscape {Xn(t); t ∈ Tn} representing the
weights of spanning trees be defined as above. Then, Xn satisfies the empirical
central limit theorem (2) with cn = √

n/2 and W ∼ N(0,1).

REMARK 1. We believe that in all our results, the weak convergence of the
finite-dimensional distributions can be replaced by the weak convergence in the
Skorokhod space, but we will not deal with tightness questions here.

REMARK 2. In the setting of Theorems 1–3, limn→∞ EFn(z) = �(z) by the
central limit theorem, where �(z) is the standard Gaussian distribution function.
However, we cannot replace EFn(z) by �(z) in (2). In order to justify such a
replacement, a relation of the form EFn(z)−�(z) = o(1/cn) as n → ∞ would be
needed. This relation is not true in general. If the distribution of ξ is nonlattice and
E|ξ |3 < +∞, then we have, by [13], page 210,

EFn(z) − �(z) = n−1/2Q(z)p(z) + o(n−1/2), n → ∞,(3)

where Q(z) = 1
6E[ξ3](1 − z2). In this case, Theorem 1 can be written in the form

{√
n
(
Fn(z) − �(z)

); z ∈ R
} f.d.d.−→

n→∞
{
p(z)

(
W + Q(z)

); z ∈ R
}
,(4)

where W ∼ N(0,1). Similar considerations apply to Theorems 2, 3, 5, as well as
to the case d ≥ 3 of Theorem 4.

1.3. Distribution of energies of directed polymers. A d-dimensional directed
polymer of length n is a sequence t = (t (k))nk=0 of sites in Z

d such that t (0) = 0,
and t (k) and t (k + 1) are neighboring sites for all k = 0, . . . , n − 1. The set
of all polymers of length n is denoted by Tn and contains (2d)n elements. Let
{ξk(x);k ∈ N, x ∈ Z

d} be independent copies of a random variable ξ satisfying
Eξ = 0 and Eξ2 = 1. For d = 1,2, we additionally assume that E|ξ |2+δ < ∞
for some δ > 0. The (normalized) energy of a polymer t ∈ Tn is defined by
Xn(t) = 1√

n

∑n
k=1 ξk(t (k)).

THEOREM 4. Let {Xn(t); t ∈ Tn} be the random energy landscape of the di-
rected polymer model. Then, Xn satisfies the empirical central limit theorem (2)
with

cn =
⎧⎪⎨
⎪⎩

4
√

πn/4, d = 1,√
πn/ logn, d = 2,√
n, d ≥ 3.

(5)

For d = 1,2, we have W ∼ N(0,1). For d ≥ 3, the random variable W has the
same distribution as −∑∞

k=1
∑

x∈Zd pk(x)ξk(x), where pk(x) is the probability
that a simple (nearest-neighbor) random walk on Z

d starting at the origin is at
x ∈ Z

d at time k ∈ N.
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REMARK 3. If E|ξ |3 < ∞, then |EFn(z) − �(z)| ≤ C/
√

n by the Berry–
Esseen inequality (see, e.g., [19], page 111). This implies that we can replace
EFn(z) by �(z) in (2) for d = 1,2. Note that this does not apply to the case d ≥ 3.
In this case, we may use expansion (3) as in Remark 2.

1.4. Distribution of particles in the branching random walk. Branching ran-
dom walk is a model combining a Galton–Watson branching process with a ran-
dom spatial motion of particles. At time 0 there is a single particle on the real
line located at 0. At time 1, this particle is replaced by a random number of off-
springs whose displacements relative to the position of the parent particle are i.i.d.
random variables. Then, every offspring generates new particles according to the
same rules, and so on. All the random mechanisms involved are independent.

The formal definition is as follows. Let T = ⋃∞
n=0 N

n be an infinite tree with
root ∅ (we agree that N

0 = {∅}), vertices of the form t = (v1, . . . , vn), where
vi ∈ N and n = 0 corresponds to the root t = ∅ and edges connecting each such t

with its successors (v1, . . . , vn, k), where k ∈ N. The number l(t) = n is called
the length of t = (v1, . . . , vn). Let {Zt ; t ∈ T} be independent copies of a random
variable Z which takes values in N and satisfies m := EZ > 1 and EZ2 < ∞.
The random variable Zt should be thought of as the number of children of the
particle coded by the vertex t . The nth generation of the branching random walk is
the random set Tn consisting of all vertices t = (v1, . . . , vn) of length n ∈ N such
that vk ≤ Z(v1,...,vk−1) for every k = 1, . . . , n. Independently of the Zt ’s, let {ξt ; t ∈
T \ {∅}} be independent copies of a random variable ξ such that Eξ = 0, Eξ2 = 1.
The random variable ξt should be thought of as the displacement of the particle
coded by the vertex t relative to its parent. For t = (v1, . . . , vn) ∈ T \ {∅} define
Xn(t) = 1√

n

∑n
k=1 ξ(v1,...,vk). Then, {Xn(t); t ∈ Tn} are the normalized positions of

the particles in the nth generation of the branching random walk.

THEOREM 5. The random field {Xn(t), t ∈ Tn} defined as above satisfies the
empirical central limit theorem (2) with cn = √

n. The limiting random variable W

has the same distribution as −limn→∞
√

n|Tn|−1 ∑
t∈Tn

Xn(t).

In the case of Bernoulli-distributed displacements this theorem is due to [8].
The method of [8] relies strongly on the Markov property of the branching random
walk. We will recover Theorem 5 as a particular case of our general approach.

1.5. Distribution of energy levels in spin glasses. Our last result concerns the
distribution of energy levels in spin glasses. The general setting is as follows. For
every n ∈ N, let Gn = (Vn,En) be an undirected graph without loops and multiple
edges on a finite set of vertices Vn with the set of edges En. A spin configuration
is a map t :Vn → {−1,1}. Let Tn = {−1,1}Vn be the set of all spin configurations.
Spins located at vertices v1 and v2 interact if there is an edge e = {v1, v2} ∈ En,
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the energy of the interaction being t (v1)t (v2)J (e), where {J (e); e ∈ En} are inde-
pendent standard Gaussian random variables. The energy of a spin configuration
t ∈ Tn is defined by

Xn(t) = |En|−1/2
∑

e={v1,v2}∈En

t (v1)t (v2)J (e).(6)

Examples are provided by the Sherrington–Kirkpatrick model in which Gn is the
complete graph on n vertices, and the d-dimensional Edwards–Anderson model,
in which Gn is the d-dimensional discrete box with side length n and nearest-
neighbor interactions.

THEOREM 6. Let {Xn(t); t ∈ Tn} be the energy landscape defined as in (6). If
limn→∞ |En| = ∞, then the following empirical central limit theorem holds:{

|En|1/22−|Vn| ∑
t∈Tn

(
1Xn(t)≤z − �(z)

); z ∈ R

}
f.d.d.−→
n→∞

{
zp(z)√

2
W ; z ∈ R

}
,(7)

where � is the standard Gaussian distribution function and W ∼ N(0,1).

1.6. Discussion. Empirical central limit theorems have been extensively stud-
ied for stationary sequences of random variables under various short-range depen-
dence conditions. For example, it has been shown in [3, 21] that if {X(n);n ∈ Z} is
a stationary zero-mean, unit-variance Gaussian process whose covariance function
r(n) = E[X(0)X(n)] satisfies

∑
n∈Z |r(n)| < ∞, then{

1√
n

n∑
k=1

(
1X(k)≤z − �(z)

); z ∈ R

}
f.d.d.−→
n→∞{B(z); z ∈ R},(8)

where {B(z); z ∈ R} is a zero-mean Gaussian process with covariance function

Cov(B(z1),B(z2)) = ∑
k∈Z

Cov
(
1X(0)≤z1,1X(k)≤z2

)
, z1, z2 ∈ R.(9)

Similar results are available for stationary processes under mixing conditions [4],
Chapter 22, [11, 24], stationary associated sequences [25], to cite only a few ref-
erences.

There has been also much interest in proving empirical central limit theorems
for stationary long-range dependent processes (see [10, 12, 22, 23], as well as the
monographs [9, 15, 17] for further references). It has been shown that if {X(n);
n ∈ Z} is a stationary zero-mean, unit-variance Gaussian process whose covariance
function r satisfies r(n) = L(n)n−D for some function L that varies slowly at +∞
and some D ∈ (0,1), then{

CD

L1/2(n)n1−(1/2)D

n∑
k=1

(
1X(k)≤z − �(z)

); z ∈ R

}
f.d.d.−→
n→∞{p(z)W ; z ∈ R},(10)
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where CD > 0 is some explicit constant and W ∼ N(0,1) (see [10, 22] for stronger
results).

The models considered in the present paper look, at a first sight, rather differ-
ent from stationary Gaussian processes with regularly varying covariance function.
Nevertheless, as far as the empirical process is concerned, they behave in essen-
tially the same way as in (10). A nonrigorous explanation of this phenomenon will
be given in Section 1.7.

Let us also mention that several authors proved Poisson limit theorems for the
local distribution of values of highly-correlated random fields in small windows [1,
2, 5–7]. As opposed to these results, we consider the distribution of values of
random fields on a global scale.

1.7. Idea of the proofs. Let us describe a nonrigorous argument justifying our
results. As an approximation to the models considered in Theorems 1–5, we take
{Xn(t); t ∈ Tn} to be a Gaussian process with zero-mean, unit-variance marginals
and a covariance structure given by E[Xn(t1)Xn(t2)] = εn for all t1 	= t2, where
εn ∈ (0,1) is some sequence tending to 0 as n → ∞. Intuitively, the sequence εn

represents the order of the overlap of two generic assignments, Hamiltonian paths,
etc.

Let Fn be the empirical distribution function of Xn defined as in (1). The pro-
cess Xn can be represented (in distribution) as Xn(t) = √

1 − εnX
′
n(t) + √

εnN ,
where {X′

n(t); t ∈ Tn} and N are independent standard Gaussian random variables.
Thus, we have a representation

Fn(z) = F ′
n

(
z − √

εnN√
1 − εn

)
, z ∈ R,

where F ′
n(z) = 1

|Tn|
∑

t∈Tn
1X′

n(t)≤z is the empirical distribution function of X
′
n. By

the central limit theorem, we have F ′
n ≈ � as n → ∞ with a Brownian bridge error

term of order 1/
√|Tn|, where � is the standard Gaussian distribution function.

Now, the common feature of the models considered in Theorems 1–5 is that εn,
the order of the correlation of two generic elements in Tn, is much larger than
1/|Tn|. So, the order of the Brownian bridge fluctuations is much smaller than the
order of the shift

√
εnN . Thus, we may write

Fn(z) = F ′
n

(
z − √

εnN√
1 − εn

)
≈ �

(
z − √

εnN√
1 − εn

)
≈ �(z) − √

εnp(z)N,(11)

where ≈ means that we are ignoring terms of order oP (
√

εn) as n → ∞. This
leads to a result of the form{

1√
εn

(
Fn(z) − �(z)

); z ∈ R

}
f.d.d.−→
n→∞{−p(z)N; z ∈ R}.(12)

For example, let {X(n);n ∈ Z} be a stationary zero-mean, unit-variance Gaus-
sian process whose covariance function r satisfies r(n) = L(n)n−D , where L is
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a slowly varying function and D > 0. Then, for generic k1, k2 in Tn = {1, . . . , n},
Cov(X(k1),X(k2)) is of order εn ≈ L(n)n−D . If D ∈ (0,1), then εn is asymp-
totically larger than 1/|Tn| and the heuristic applies; cf. (10). In the models of
Section 1.2 and in the branching random walk, we have εn ≈ 1/n, whereas |Tn|
grows exponentially, so that again εn is larger than 1/|Tn|. For directed polymers,
εn depends on the dimension d and is again larger than 1/|Tn|.

On a more rigorous level, our proofs will be based on an adaptation of the reduc-
tion method of [22]. This method was introduced in the setting of stationary Gaus-
sian processes with regularly varying covariance. The idea is to approximate the
empirical distribution function by a certain expansion involving Hermite polyno-
mials. Recall that the Hermite polynomials form an orthogonal system with respect
to the weight p, the standard Gaussian density; see Section 3.1 for precise defini-
tions. Every function which is square integrable with respect to the weight p can
be expanded into a Hermite–Fourier series. For the function f (x) = 1x≤z − �(z)

(here, z ∈ R is fixed), the first two terms in the Hermite–Fourier expansion are

f (x) = 1x≤z − �(z) = −p(z)x − 1
2zp(z)(x2 − 1) + · · · .(13)

To prove Theorems 1–5, we will show that the random variable
∑

t∈Tn
(1Xn(t)≤z −

P[Xn(t) ≤ z]) can be approximated in the L2-sense by the random variable
−p(z)

∑
t∈Tn

Xn(t) corresponding to the first term of the expansion (13). The state-
ments justifying this approximation are Lemma 1 and Proposition 1 below. For the
proof of Theorem 6, we need a more accurate approximation involving the second
Hermite polynomial since there, we have

∑
t∈Tn

Xn(t) = 0 by symmetry reasons.
In the setting of Theorem 6, we will prove that

∑
t∈Tn

(1Xn(t)≤z − �(z)) can be
approximated by −1

2zp(z)
∑

t∈Tn
(X2

n(t) − 1).

1.8. Notation. Let us collect the notation which will be used throughout the
paper. The standard Gaussian density and distribution function are denoted by
p(z) = (2π)−1/2e−z2/2 and �(z) = ∫ z

−∞ p(t) dt , respectively. We denote by ξ a
random variable satisfying Eξ = 0 and Eξ2 = 1. Let �n be the distribution func-
tion of (ξ1 + · · · + ξn)/

√
n, where {ξi; i ∈ N} are independent copies of ξ . By the

central limit theorem, limn→∞ �n(z) = �(z) for every z ∈ R. Throughout, C is a
large positive constant whose value may change from line to line.

2. Proofs for combinatorial models.

2.1. Local limit theorems. We start by recalling two classical local limit the-
orems which will be needed in our proofs. The first of them deals with lattice
random variables. Recall that a random variable is called lattice if its values are of
the form b + hZ for some b ∈ R and h ≥ 0.
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THEOREM 7 ([13], page 233, or [19], page 187). Let {ξi; i ∈ N} be indepen-
dent copies of a random variable ξ satisfying Eξ = 0 and Eξ2 = 1. Assume that
the values of ξ are of the form b + hZ, where h > 0 is maximal with this property.
Then, the following asymptotic relation holds uniformly in z ∈ nb + hZ:

P[ξ1 + · · · + ξn = z] = h√
n
p

(
z√
n

)
+ o

(
1√
n

)
, n → ∞.(14)

The next theorem is an analogue of Theorem 7 for nonlattice distributions. Re-
call the notation introduced at the end of Section 1.

THEOREM 8 ([20]). Let ξ be a nonlattice random variable satisfying Eξ =
0 and Eξ2 = 1. Then, the following asymptotic relation holds uniformly in z1,

z2 ∈ R:

�n(z2) − �n(z1) = �(z2) − �(z1) + o(1)(|z2 − z1| + n−1/2),(15)

n → ∞.

COROLLARY 1. Regardless of whether ξ is lattice or nonlattice, there is
a constant C > 0 depending on ξ such that for all n ∈ N and z1, z2 ∈ R,

|�n(z2) − �n(z1)| ≤ C|z2 − z1| + Cn−1/2.(16)

PROOF. If the distribution of ξ is nonlattice, then the corollary follows imme-
diately from (15) and the fact that the function � is Lipschitz. Suppose that ξ is
lattice as in Theorem 7. Without restriction of generality, let z1 < z2 and define
In = (nb + hZ) ∩ (

√
nz1,

√
nz2]. Then by Theorem 7,

�n(z2) − �n(z1) = ∑
z∈In

(
h√
n
p

(
z√
n

)
+ o

(
1√
n

))
≤ ∑

z∈In

C√
n
,

where the o-term is uniform in z ∈ R. Since the cardinality of In differs from
h−1√n(z2 − z1) by at most 1, we obtain the statement of the corollary. �

REMARK 4. With an additional assumption E|ξ |3 < ∞, Corollary 1 follows
from the Berry–Esseen inequality (see [19], page 111).

2.2. The main lemma. The next lemma will play a crucial role in the sequel.
Essentially, it provides an estimate for the dependence between the random vari-
ables 1X1≤z and 1X2≤z, where X1 and X2 are two normalized sums of i.i.d. random
variables having a nontrivial overlap. In our applications, X1 and X2 will be the
normalized weights of two Hamiltonian paths, spanning trees, etc. We will reg-
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ularize 1X1≤z and 1X2≤z by subtracting certain terms motivated by the Hermite
expansion of the function f (x) = 1x≤z.

LEMMA 1. Let {ξi; i ∈ N} be independent copies of a random variable ξ sat-
isfying Eξ = 0 and Eξ2 = 1. Let z ∈ R be fixed. Given r ∈ N ∪ {0}, n ∈ N with
r ≤ n, define two random variables Y1, Y2 by

Yi = 1Xi≤z − �n(z) + p(z)Xi, i = 1,2,(17)

where X1 = 1√
n

∑n
i=1 ξi and X2 = 1√

n

∑2n−r
i=n−r+1 ξi . Then, there is a constant C

depending only on the distribution of ξ such that for all r ∈ N ∪ {0}, n ∈ N with
r ≤ n, we have

0 ≤ E[Y1Y2] ≤ C
r

n
.(18)

Further, if εn > 0 is any sequence with limn→∞ εn = 0, then there is a sequence δn

such that limn→∞ δn = 0 and for every r ∈ N ∪ {0}, n ∈ N with r ≤ εnn, we have

0 ≤ E[Y1Y2] ≤ δn

r

n
.(19)

PROOF. Since the statement is trivially fulfilled for r = 0 and r = n, we as-
sume 0 < r < n henceforth. It will be convenient to introduce the following nota-
tion: for u ∈ R, we write

ρ = r

n
∈ (0,1), z(u) = z − u

√
ρ√

1 − ρ
.(20)

It follows from (17) that we have

E[Y1Y2] = Cov(1X1≤z,1X2≤z) + 2p(z)E[1X1≤zX2] + p2(z)ρ.(21)

We start by considering the first term on the right-hand side of (21). We are going
to show that

Cov(1X1≤z,1X2≤z)
(22)

= 1

2

∫
R

∫
R

(
�n−r (z(u)) − �n−r (z(v))

)2
�r(du)�r(dv).

Define three independent random variables X̃1, X̃, X̃2 by

X̃1 = 1√
n

n−r∑
i=1

ξi, X̃ = 1√
n

n∑
i=n−r+1

ξi, X̃2 = 1√
n

2n−r∑
i=n+1

ξi .(23)

Note that X1 = X̃1 + X̃ and X2 = X̃2 + X̃. The distribution function of X̃/
√

ρ

is �r . Conditioning on the event X̃/
√

ρ ∈ du and using the independence of
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X̃1, X̃, X̃2, we obtain

E[1X1≤z1X2≤z] = P[X̃1 + X̃ ≤ z, X̃2 + X̃ ≤ z]
=

∫
R

(
P

[
X̃1 ≤ z − u

√
ρ

])2
�r(du)

(24)
=

∫
R

�2
n−r (z(u)) �r(du)

= 1

2

∫
R

∫
R

(
�2

n−r (z(u)) + �2
n−r (z(v))

)
�r(du)�r(dv).

In a similar way, we obtain

E[1X1≤z]E[1X2≤z] = (P[X̃1 + X̃ ≤ z])2

=
(∫

R

�n−r (z(u))�r(du)

)2

(25)

=
∫

R

∫
R

�n−r (z(u))�n−r (z(v))�r(du)�r(dv).

Bringing (24) and (25) together, we obtain (22). Let us consider the second term
on the right-hand side of (21). Conditioning on X̃/

√
ρ ∈ du, we obtain

2p(z)E[1X1≤zX2]
= 2p(z)E[1

X̃1+X̃≤z
X̃]

= 2p(z)
√

ρ

∫
R

uP
[
X̃1 ≤ z − u

√
ρ

]
�r(du)(26)

= 2p(z)
√

ρ

∫
R

u�n−r (z(u))�r(du)

= p(z)
√

ρ

∫
R

∫
R

(u − v)
(
�n−r (z(u)) − �n−r (z(v))

)
�r(du)�r(dv).

Also, we have

1

2

∫
R

∫
R

(u − v)2�r(du)�r(dv) = 1.(27)

Bringing (21), (22), (26), (27) together, we obtain

E[Y1Y2] = 1

2

∫
R

∫
R

�2(u, v)�r(du)�r(dv),(28)

where �(u,v) is given by

�(u,v) = �n−r (z(u)) − �n−r (z(v)) + p(z)(u − v)
√

ρ.(29)

Let us now prove the first statement of the lemma. Note that (28) implies that
E[Y1Y2] ≥ 0. It follows from (17) that EY 2

1 = EY 2
2 ≤ 9. By the Cauchy–Schwarz
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inequality, equation (18) is fulfilled for r ∈ [n/2, n] and every n ∈ N with C = 18.
Let us henceforth assume that r ≤ n/2 (and so, ρ ≤ 1/2). Applying Corollary 1
and recalling (20), we obtain, both in the lattice and in the nonlattice case,

|�n−r (z(u)) − �n−r (z(v))| ≤ C

( |u − v|√ρ√
1 − ρ

+ 1√
n − r

)
(30)

≤ C(|u − v| + 1)
√

ρ.

It follows from (29) and (30) that |�(u,v)| ≤ C(|u − v| + 1)
√

ρ. Hence,

�2(u, v) ≤ C
(
(u − v)2 + 1

)
ρ.(31)

Inserting this into (28) yields

E[Y1Y2] ≤ Cρ

∫
R

∫
R

(
(u − v)2 + 1

)
�r(du)�r(dv) = 3Cρ.(32)

This completes the proof of (18).
Let us prove the second statement of the lemma. It suffices to show that for

every δ > 0 there is N = N(δ) such that for every n > N and r ≤ εnn, we have
E[Y1Y2] ≤ δρ. It follows from (31), (27) and the weak convergence of �r to � as
r → ∞ that we can choose B = B(δ) such that for all n, r ∈ N with r ≤ n/2,∫

R2\[−B,B]2
�2(u, v)�r(du)�r(dv) < δρ.(33)

Assume first that the distribution of ξ is nonlattice. We always assume that r ≤
εnn. By Theorem 8, the following holds uniformly in u, v ∈ [−B,B] as n → ∞:

�n−r (z(u)) − �n−r (z(v)) = p(z)
(
z(u) − z(v)

) + o
(√

ρ
)

= −p(z)
(
(u − v) + o(1)

)√
ρ.

Together with (29), this implies that �(u,v) = o(
√

ρ) uniformly in u, v ∈ [−B,B]
as n → ∞. It follows that for n large enough,∫

[−B,B]2
�2(u, v)�r(du)�r(dv) < δρ.(34)

This, together with (33) and (28), completes the proof in the nonlattice case.
Assume now that the random variable ξ is lattice with values in the set b + hZ,

with h being maximal with this property. Let u, v ∈ [−B,B] ∩ r−1/2(rb + hZ)

with u < v. Note that by (20), z(u) − z(v) ∈ (n − r)−1/2hZ. Hence, the number of
points in the set

In,r (u, v) := (z(v), z(u)] ∩ (n − r)−1/2(
(n − r)b + hZ

)
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is equal to h−1(n − r)1/2(z(u) − z(v)). By Theorem 7,

�n−r (z(u)) − �n−r (z(v)) = ∑
x∈In,r (u,v)

P

[
ξ1 + · · · + ξn−r√

n − r
= x

]

= ∑
x∈In,r (u,v)

(
h√

n − r
p(x) + o

(
1√

n − r

))

= (v − u)p(z)
√

ρ + o
(√

ρ
)
.

It follows that �(u,v) = o(
√

ρ) as n → ∞ uniformly in u, v ∈ [−B,B] ∩
r−1/2(rb + hZ). Hence, equation (34) holds for n large enough and the proof is
complete. �

2.3. An empirical central limit theorem for overlapping sums. In this section,
we state and prove a result from which we will deduce Theorems 1–5. It is an
empirical central limit theorem for overlapping sums of independent random vari-
ables. Let {ξe; e ∈ E} be independent copies of a random variable ξ satisfying
Eξ = 0 and Eξ2 = 1, where E is some countable index set. For every n ∈ N, let
Tn ⊂ 2E be a finite collection of (typically, overlapping) subsets of E, each subset
having cardinality n. Define a random field {Xn(t); t ∈ Tn} by

Xn(t) = 1√
n

∑
e∈t

ξe.(35)

Let �n(z) = P[Xn(t) ≤ z], where z ∈ R, be the distribution function of Xn(t).
The covariance function of the random field Xn is given by ρn(t1, t2) = 1

n
|t1 ∩ t2|.

Define also sn ≥ 0 by

s2
n = Var

[∑
t∈Tn

Xn(t)

]
= ∑

t1,t2∈Tn

ρn(t1, t2).(36)

PROPOSITION 1. Let the random field {Xn(t); t ∈ Tn} be defined as above.
Assume that for some random variable V and some sequence εn > 0 with
limn→∞ εn = 0, the following two conditions are satisfied:

1

sn

∑
t∈Tn

Xn(t)
d−→

n→∞ V,(37)

lim
n→∞

1

s2
n

∑
t1,t2∈Tn

ρn(t1, t2)1ρn(t1,t2)>εn = 0.(38)

Then, the following convergence of stochastic processes holds true:{
1

sn

∑
t∈Tn

(
1Xn(t)≤z − �n(z)

); z ∈ R

}
f.d.d.−→
n→∞{−p(z)V ; z ∈ R}.(39)
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PROOF. For z ∈ R, define a zero-mean random field {Yn(t; z); t ∈ Tn} by

Yn(t; z) = 1Xn(t)≤z − �n(z) + p(z)Xn(t).(40)

We will show that

lim
n→∞ Var

[
1

sn

∑
t∈Tn

Yn(t; z)
]

= lim
n→∞

1

s2
n

∑
t1,t2∈Tn

E[Yn(t1; z)Yn(t2; z)] = 0.(41)

By the first part of Lemma 1, we have for every t1, t2 ∈ Tn,

0 ≤ E[Yn(t1; z)Yn(t2; z)] ≤ Cρn(t1, t2).(42)

This allows us to estimate the contribution of those terms in (41) which satisfy
ρn(t1, t2) > εn. It follows from (42) and (38) that as n → ∞,∑

t1,t2∈Tn

ρn(t1,t2)>εn

E[Yn(t1; z)Yn(t2; z)] ≤ C
∑

t1,t2∈Tn

ρn(t1,t2)>εn

ρn(t1, t2) = o(s2
n).(43)

Let us consider the terms with ρn(t1, t2) ≤ εn. It follows from the second part
of Lemma 1 that there is a sequence δn > 0 such that limn→∞ δn = 0 and for
every t1, t2 such that ρn(t1, t2) ≤ εn, we have

0 ≤ E[Yn(t1; z)Yn(t2; z)] ≤ δnρn(t1, t2).(44)

It follows from (44) and (36) that as n → ∞,∑
t1,t2∈Tn

ρn(t1,t2)≤εn

E[Yn(t1; z)Yn(t2; z)] ≤ δn

∑
t1,t2∈Tn

ρn(t1,t2)≤εn

ρn(t1, t2) = o(s2
n).(45)

Combining (43) and (45), we obtain (41).
Take some z1, . . . , zd ∈ R. Recalling (40), we may write for every i = 1, . . . , d ,

1

sn

∑
t∈Tn

(
1Xn(t)≤zi

− �n(zi)
) = −p(zi)

sn

∑
t∈Tn

Xn(t) + 1

sn

∑
t∈Tn

Yn(t; zi).

The first term on the right-hand side converges to −p(zi)V in distribution by (37),
whereas the second term converges to 0 in probability by (41). This completes the
proof. �

2.4. Proofs of Theorems 1–3. In this section we derive Theorems 1–3 as
consequences of Proposition 1. We will replace condition (38) by the following
one: ∑

t1,t2∈Tn

r2
n(t1, t2) = O(ns2

n), n → ∞.(46)
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Here, rn(t1, t2) = |t1 ∩ t2| is the overlap of the sets t1, t2 ∈ Tn. Condition (46)
implies that (38) holds with εn = 1/

√
n. Indeed, we have, as n → ∞,∑

t1,t2∈Tn

ρn(t1, t2)1ρn(t1,t2)>1/
√

n ≤ √
n

∑
t1,t2∈Tn

ρ2
n(t1, t2) = o(s2

n).

PROOF OF THEOREM 1. The number of assignments on the set of n elements
is given by |Tn| = n!. To apply Proposition 1, we take E = N × N and identify an
assignment t ∈ Tn with the subset {(i, t (i)); i = 1, . . . , n} of E. To verify condi-
tion (37) of Proposition 1, note that

∑
t∈Tn

Xn(t) = 1√
n

∑
t∈Tn

n∑
i=1

ξi,t (i) = (n − 1)!√
n

n∑
i,j=1

ξi,j .(47)

It follows that s2
n defined in (36) is given by

s2
n = Var

[∑
t∈Tn

Xn(t)

]
= n!(n − 1)!.(48)

The central limit theorem together with (47) and (48) implies that the random
variable s−1

n

∑
t∈Tn

Xn(t) converges weakly to the standard Gaussian distribution
as n → ∞. This verifies condition (37) with V ∼ N(0,1).

Let us verify condition (46). Let t̃ ∈ Tn be the identical assignment, that is,
t̃ (i) = i, i = 1, . . . , n. We have

∑
t1,t2∈Tn

r2
n(t1, t2) = n! ∑

t∈Tn

r2
n(t, t̃) = n! ∑

t∈Tn

(
n∑

i=1

1t (i)=i

)2

= 2(n!)2,

where the last equality follows from the well-known fact that the expectation of the
squared number of fixed points in a random permutation is 2. Together with (48),
this verifies condition (46). The proof is completed by applying Proposition 1. �

PROOF OF THEOREM 2. To apply Proposition 1, we take E to be the set of
all two-element subsets of N and identify the set Vn of vertices of the complete
graph Gn with {1, . . . , n}. Then, any (nonoriented) Hamiltonian path t ∈ Tn can be
viewed as a subset of E. Let us verify condition (37) of Proposition 1. The number
of Hamiltonian paths in the complete graph Gn, n ≥ 3, is given by |Tn| = 1

2(n−1)!.
The number of Hamiltonian paths containing a given edge is easily seen to be
(n − 2)!. Hence,∑

t∈Tn

Xn(t) = 1√
n

∑
t∈Tn

∑
e∈t

ξe = 1√
n

∑
e∈En

ξe

∑
t∈Tn

1e∈t = (n − 2)!√
n

∑
e∈En

ξe.(49)

Note that the number of edges in Gn is |En| = 1
2n(n−1). It follows that s2

n defined
in (36) is given by

s2
n = Var

[∑
t∈Tn

Xn(t)

]
= 1

2
(n − 1)!(n − 2)!.(50)
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By the central limit theorem, combined with (49) and (50), the random variable
s−1
n

∑
t∈Tn

Xn(t) converges weakly to the standard Gaussian distribution as n →
∞. This verifies condition (37) of Proposition 1.

We prove that (46) holds. We have

∑
t1,t2∈Tn

r2
n(t1, t2) = ∑

t1,t2∈Tn

( ∑
e∈En

1e∈t11e∈t2

)2

= ∑
t1,t2∈Tn

∑
e,f ∈En

1e∈t11e∈t21f ∈t11f ∈t2(51)

= ∑
e,f ∈En

(∑
t∈Tn

1e∈t1f ∈t

)2

.

The sum
∑

t∈Tn
1e∈t1f ∈t represents the number of Hamiltonian paths containing

the edges e and f . If e = f , then there are (n − 2)! such paths. If the edges e

and f have exactly one common vertex, then the number of Hamiltonian paths
containing e and f is easily seen to be (n − 3)!. Finally, if the edges e and f do
not have a common vertex, then the number of paths containing both e and f is
2(n − 3)!. The number of pairs (e, f ) ∈ E2

n having exactly one common vertex is
6
(n

3

)
, and the number of pairs (e, f ) ∈ E2

n without a common vertex is 6
(n

4

)
. It

follows from (51) that
∑

t1,t2∈Tn
r2
n(t1, t2) is equal to(

n

2

)(
(n − 2)!)2 + 6

(
n

3

)(
(n − 3)!)2 + 24

(
n

4

)(
(n − 3)!)2

.

This expression is of order O(ns2
n) as n → ∞. It follows that (46) is fulfilled. The

proof is completed by applying Proposition 1. �

PROOF OF THEOREM 3. By Cayley’s theorem, the number of spanning trees
on n vertices is given by |Tn| = nn−2. Since each spanning tree has n − 1 edges,
and since there are n(n− 1)/2 edges, any edge is contained in 2nn−3 trees. Hence,

∑
t∈Tn

Xn(t) = 1√
n − 1

∑
t∈Tn

∑
e∈t

ξe = 2nn−3
√

n − 1

∑
e∈En

ξe.(52)

It follows that

s2
n = Var

[∑
t∈Tn

Xn(t)

]
= 2n2n−5.(53)

By the central limit theorem together with (52) and (53), the random variable
s−1
n

∑
t∈Tn

Xn(t) converges weakly to the standard Gaussian distribution as n →
∞.
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Let us verify condition (46). As in (51), we have

∑
t1,t2∈Tn

r2
n(t1, t2) = ∑

e,f ∈En

(∑
t∈Tn

1e∈t1f ∈t

)2

.

Given two edges e and f , we will compute the number of spanning trees
Nn(e, f ) = ∑

t∈Tn
1e∈t1f ∈t in the complete graph Gn containing these two edges.

For e = f , we have shown that this number is equal to 2nn−3. We claim that
if the edges e and f have exactly one common vertex, then Nn(e, f ) = 3nn−4,
whereas if e and f do not have common vertices, then Nn(e, f ) = 4nn−4. For
completeness, we will prove this by using the transfer current theorem giving an
interpretation of random spanning trees in terms of electric networks (see [18],
Section 8.2). It says that the probability that a uniformly chosen spanning tree (in
any finite graph) contains two given edges e and f is given by the determinant

det
(

Y(e, e) Y (e, f )

Y (f, e) Y (f,f )

)
,(54)

where Y(g,h) denotes the (signed) current which flows through the (somehow
oriented) edge h if a battery is hooked up between the ends of the (somehow ori-
ented) edge g = (v1, v2) with such voltage that the total current flowing through
the graph is 1. By Kirchhoff’s laws and symmetry reasons, we have Y(g, g) = 2/n,
Y(g,h) = 1/n if h is of the form (v1, v) for some vertex v 	= v2, and Y(g,h) = 1/n

if h = (v, v2) for some vertex v 	= v1. If g and h have no vertices in common, then
Y(g,h) = 0. Inserting this into (54) and recalling that the total number of spanning
trees in Tn is nn−2, we obtain the above mentioned formulae for Nn(e, f ).

Recall from the proof of Theorem 2 that the number of pairs (e, f ) ∈ E2
n hav-

ing exactly one common vertex is 6
(n

3

)
, whereas the number of pairs (e, f ) ∈ E2

n

having no vertices in common is 6
(n

4

)
. Thus,

∑
t1,t2∈Tn

r2
n(t1, t2) = 4

(
n

2

)
n2(n−3) + 54

(
n

3

)
n2(n−4) + 96

(
n

4

)
n2(n−4).

The right-hand side is of order O(ns2
n) as n → ∞. This completes the proof

of (46). �

2.5. Proof of Theorem 4. We will verify conditions (37) and (38) of Propo-
sition 1. Recall that pk(x) is the probability that a simple (nearest-neighbor)
d-dimensional random walk which starts at the origin, visits the site x ∈ Z

d at
time k ∈ N ∪ {0}. Note that with sn defined by (36), we have

∑
t∈Tn

Xn(t) = (2d)n√
n

n∑
k=1

∑
x∈Zd

pk(x)ξk(x),(55)

s2
n = (2d)2n

n

n∑
k=1

∑
x∈Zd

p2
k(x).(56)
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First, we find an asymptotic formula for
∑n

k=1
∑

x∈Zd p2
k(x) as n → ∞. A sym-

metry argument shows that
∑

x∈Zd p2
k(x) = p2k(0). Also, by the multidimensional

local limit theorem (e.g., [16], Section 1.2), p2k(0) ∼ 21−d(πk/d)−d/2 as k → ∞.
Thus, in the case d ≥ 3 we have

S2 :=
∞∑

k=1

∑
x∈Zd

p2
k(x) < ∞.(57)

For d = 1,2, we obtain the following asymptotics as n → ∞:

n∑
k=1

∑
x∈Zd

p2
k(x) ∼ 21−d

n∑
k=1

(
d

πk

)d/2

∼

⎧⎪⎪⎨
⎪⎪⎩

2
√

n

π
, d = 1,

1

π
logn, d = 2.

(58)

In the case d ≥ 3, combining (55)–(57), we obtain the following relation verifying
condition (37):

1

sn

∑
t∈Tn

Xn(t)
d−→

n→∞
1

S

∞∑
k=1

∑
x∈Zd

pk(x)ξk(x),

where the series on the right-hand side converges in the L2-sense.
In the case d = 1,2, we will verify condition (37) by proving that the random

variable 1
sn

∑
t∈Tn

Xn(t) converges as n → ∞ to the standard Gaussian distribution.
To this end, we will show that a triangular array in which the nth row consists of the
random variables {pk(x)ξk(x);k = 1, . . . , n, x ∈ Z

d} (with only finitely of them
being nonzero) satisfies the Lyapunov condition: for some δ > 0 and as n → ∞,

n∑
k=1

∑
x∈Zd

E[|pk(x)ξk(x)|2+δ] = o

((
n∑

k=1

∑
x∈Zd

p2
k(x)

)(2+δ)/2)
.(59)

Note that supx∈Zd pk(x) = O(k−d/2) as k → ∞ by the multidimensional local
limit theorem (see [16], Section 1.2). Recalling the assumption E|ξ |2+δ < ∞, we
have

n∑
k=1

∑
x∈Zd

E[|pk(x)ξk(x)|2+δ] = C

n∑
k=1

∑
x∈Zd

p2+δ
k (x)

≤ C

n∑
k=1

(
k−(1+δ)d/2

∑
x∈Zd

pk(x)

)

= C

n∑
k=1

k−(1+δ)d/2

≤ Cn−(1+δ)d/2+1.
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It follows from (58) that for d = 1,2, the Lyapunov condition (59) holds. To com-
plete the verification of condition (37) of Proposition 1, recall (55), (56) and apply
the Lyapunov central limit theorem.

Let us verify condition (38) for every d ∈ N. Arguing as in (51), we obtain

∑
t1,t2∈Tn

r2
n(t1, t2) = ∑

k1,k2=1,...,n

x1,x2∈Zd

(∑
t∈Tn

1t (k1)=x11t (k2)=x2

)2

.(60)

The sum
∑

t∈Tn
1t (k1)=x11t (k2)=x2 counts the polymers t ∈ Tn with the prop-

erty t (k1) = x1, t (k2) = x2. For 1 ≤ k1 ≤ k2 ≤ n, the number of such paths is
(2d)npk1(x1)pk2−k1(x2 − x1). It follows that∑

t1,t2∈Tn

r2
n(t1, t2) ≤ 2 · (2d)2n

∑
1≤k1≤k2≤n

∑
x1,x2∈Zd

p2
k1

(x1)p
2
k2−k1

(x2 − x1)

≤ 2 · (2d)2n

(
n∑

k=0

∑
x∈Zd

p2
k(x)

)2

.

With εn = n−1/4, it follows that for any dimension d ∈ N,

∑
t1,t2∈Tn

rn(t1,t2)>εnn

rn(t1, t2) ≤ 1

n3/4

∑
t1,t2∈Tn

r2
n(t1, t2) = o(ns2

n), n → ∞,

where the last step follows from (56) combined with (57) (in the case d ≥ 3) or (58)
(in the case d = 1,2). This verifies condition (38). The proof of Theorem 4 can be
now completed by applying Proposition 1.

2.6. Proof of Theorem 5. Given two vertices t1 = (v1, . . . , vn) ∈ T and t2 =
(w1, . . . ,wn) ∈ T of length n ∈ N denote by rn(t1, t2) = min{i ∈ N :vi 	= wi} − 1
the number of common ancestors, excluding ∅, of t1 and t2. The next lemma will
be needed in the proof of Theorem 5.

LEMMA 2. Fix k ∈ N. Define a stochastic process {V (k)
n ;n ∈ N} by

V (k)
n = 1

m2n

∑
t1,t2∈Tn

t1 	=t2

rk
n(t1, t2).(61)

Then, the limit V
(k)∞ := limn→∞ V

(k)
n exists in (0,∞) a.s.

PROOF. Let An = σ {Zt ; l(t) < n} be the σ -algebra generated by the ge-
nealogical structure of the first n generations of the branching random walk. By
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definition, the random variable V
(k)
n is An-measurable. We will show that the se-

quence {V (k)
n ;n ∈ N} is a submartingale with respect to the filtration {An;n ∈ N}.

We have

V
(k)
n+1 = 1

m2n+2

∑
t1,t2∈Tn

t1 	=t2

Zt1Zt2r
k
n(t1, t2) + 1

m2n+2

∑
t∈Tn

Zt (Zt − 1)nk.

By our assumptions, m = EZt > 1 and γ2 := E[Zt(Zt − 1)] ∈ (0,∞). It follows
that

E
[
V

(k)
n+1|An

] = V (k)
n + γ2n

k

m2n+2 |Tn| > V (k)
n ,(62)

whence the submartingale property. The sequence {V (k)
n ;k ∈ N} is bounded in L1,

since applying (62) recursively, we obtain

E
[
V

(k)
n+1

] = E
[
V (k)

n

] + γ2n
k

mn+2 = · · · = γ2

n∑
i=1

ik

mi+2 .(63)

By the martingale convergence theorem, V
(k)∞ = limn→∞ V

(k)
n exists in [0,∞) a.s.

To see that the limit is nonzero a.s., consider particles in generation n which are
offsprings of some fixed particle in generation 1. It is a classical fact that the
number of these offsprings divided by mn−1 converges to an a.s. nonzero random
variable (see [14], page 13). Since for any of these two offsprings t1, t2, we have
rn(t1, t2) ≥ 1, it follows that V

(k)∞ > 0 a.s. �

PROOF OF THEOREM 5. Given vertices t1, t2 ∈ T of length n ∈ N, note that
ρn(t1, t2) := E[Xn(t1)Xn(t2)] = 1

n
rn(t1, t2). For n ∈ N, let sn > 0 be a random vari-

able defined by

s2
n = ∑

t1,t2∈Tn

ρn(t1, t2).

First we prove that we have a.s. finite random variables V,W defined by

V = lim
n→∞

1

sn

∑
t∈Tn

Xn(t), W = − lim
n→∞

√
n

|Tn|
∑
t∈Tn

Xn(t).(64)

By Lemma 2, we have

lim
n→∞

√
nm−nsn = lim

n→∞

√
V

(1)
n + m−2nn|Tn| =

√
V

(1)∞ ∈ (0,∞) a.s.,(65)

where we have also used that limn→∞ m−n|Tn| exists in (0,∞) a.s. (see [14],
page 13). It has been observed in [8] that {√nm−n ∑

t∈Tn
Xn(t);n ∈ N} is an L2-

bounded martingale with respect to the filtration {Bn;n ∈ N}, where Bn is the
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σ -algebra generated by the genealogical structure {Zt ; l(t) < n} and the displace-
ments {ξt ; l(t) ≤ n} of the first n generations of the branching random walk. By the
martingale convergence theorem and (65), we obtain that the limits in (64) exist
a.s. Also, it follows from Lemma 2 and (65) that

lim
n→∞

1

ns2
n

∑
t1,t2∈Tn

r2
n(t1, t2) = lim

n→∞
m2n

ns2
n

(
V (2)

n + n2

m2n
|Tn|

)
= V

(2)∞
V

(1)∞
,(66)

which is finite a.s.
The proof of Theorem 5 can be completed as follows. Since the set Tn of par-

ticles in the nth generation is random, we cannot apply Proposition 1 directly. To
overcome this difficulty, we will use a conditioning argument. We may assume that
the random variables {Zt ; t ∈ T} representing the numbers of children are defined
on a probability space (�Z, AZ,μZ) and the random variables {ξt ; t ∈ T \ {∅}}
representing the displacements are defined on (�ξ , Aξ ,μξ ). Then, we can define
the branching random walk on the product �Z × �ξ of both the spaces. Fix some
τ ∈ �Z and restrict all random variables to the set {τ } × �ξ endowed with the
probability measure δτ × μξ , where δτ is the Dirac measure at τ . Essentially, this
means that we fix the realization of the Galton–Watson tree but do not fix the
displacements of the particles. Note that the set Tn becomes deterministic after
such restriction. It follows from (64) and (66) that conditions (37) and (46) of
Proposition 1 are fulfilled (in the restricted setting) for μZ-a.e. τ ∈ �Z . Applying
Proposition 1, we obtain that for μZ-a.e. τ ∈ �Z ,

{ √
n

|Tn|
∑
t∈Tn

(
1Xn(t)≤z − �n(z)

); z ∈ R

}
f.d.d.−→
n→∞{p(z)W ; z ∈ R},

where the random variables under consideration are restricted to the space {τ } ×
�ξ . To complete the proof, integrate over τ ∈ �Z . �

3. Proof of Theorem 6.

3.1. Hermite polynomials. We need to recall some facts about Hermite poly-
nomials. Recall that p(z) = (2π)−1/2e−z2/2 is the standard Gaussian density. Let
L2(R,p) be the set of all measurable functions f : R → R such that ‖f ‖2

L2(R,p)
:=∫

R
f 2(z)p(z) dz is finite. The space L2(R,p) is a separable Hilbert space endowed

with the scalar product 〈f,g〉L2(R,p) = ∫
R

f (z)g(z)p(z) dz. The (normalized) Her-

mite polynomials h0, h1, . . . are defined by hn(z) = (−1)n(n!)−1/2ez2/2 dn

dzn e−z2/2.
The sequence {hn}n=0,1,... is an orthonormal basis in L2(R,p). For the proof of
the next lemma see [21], Lemma 1.1, or [15], page 55.
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LEMMA 3. Let (X,Y ) be a zero-mean Gaussian vector with EX2 = EY 2 = 1
and E[XY ] = ρ. Then, for every i, j ∈ N ∪ {0},

E[hi(X)hj (Y )] =
{

ρi, if i = j,

0, if i 	= j.

Given f ∈ L2(R,p) and k ∈ N, we denote by Pkf the orthogonal projection of
f onto the orthogonal complement of the k-dimensional linear subspace spanned
by the first k Hermite polynomials h0, . . . , hk−1. That is,

(Pkf )(z) =
∞∑
i=k

〈f,hi〉L2(R,p)hi(z) = f (z) −
k−1∑
i=0

〈f,hi〉L2(R,p)hi(z).(67)

LEMMA 4. Let (X,Y ) be a zero-mean Gaussian vector with EX2 = EY 2 = 1
and E[XY ] = ρ. Then, for any f,g ∈ L2(R,p) and k ∈ N,

|E[Pkf (X)Pkg(Y )]| ≤ |ρ|k‖f ‖L2(R,p)‖g‖L2(R,p).(68)

PROOF. Write fi = 〈f,hi〉L2(R,p) and gi = 〈g,hi〉L2(R,p) for i ∈ N ∪ {0}. We
have Pkf (X) = ∑∞

i=k fihi(X) and Pkg(Y ) = ∑∞
i=k gihi(Y ). Using Lemma 3 and

the inequality |ρ| ≤ 1, we obtain

|E[Pkf (X)Pkg(Y )]| =
∣∣∣∣∣

∞∑
i=k

ρifigi

∣∣∣∣∣ ≤ |ρ|k
∞∑
i=0

|fi ||gi |.

To complete the proof, apply the Cauchy–Schwarz inequality. �

3.2. Reduction method. The following proposition is an empirical central
limit theorem for Gaussian processes.

PROPOSITION 2. For every n ∈ N, let {Xn(t); t ∈ Tn} be a zero-mean, unit-
variance Gaussian process. Let ρn(t1, t2) = E[Xn(t1)Xn(t2)] be the covariance
function of Xn. Define ςn ≥ 0 by

ς2
n := Var

[∑
t∈Tn

(
X

2
n(t) − 1

)] = 2
∑

t1,t2∈Tn

ρ2
n(t1, t2).(69)

Suppose that for some random variable V and for some sequence εn > 0 satisfying
limn→∞ εn = 0, the following three conditions hold:

lim
n→∞

1

ς2
n

∑
t1,t2∈Tn

ρn(t1, t2) = 0,(70)

1

ςn

∑
t∈Tn

(
X

2
n(t) − 1

) d−→
n→∞ V,(71)

lim
n→∞

1

ς2
n

∑
t1,t2∈Tn

ρ2
n(t1, t2)1|ρn(t1,t2)|>εn = 0.(72)
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Then, the following convergence of stochastic processes holds true:{
1

ςn

∑
t∈Tn

(
1Xn(t)≤z − �(z)

); z ∈ R

}
f.d.d.−→
n→∞

{
−1

2
zp(z)V ; z ∈ R

}
.(73)

PROOF. The proof is based on the reduction method of [22]. For x, z ∈ R,
write f (x; z) = 1x≤z. For z ∈ R, define a zero-mean random field {Yn(t; z); t ∈
Tn} by

Yn(t; z) := (P3f (·; z))(Xn(t)),(74)

where P3 is the projection operator given in (67). Since the first three Hermite
polynomials are given by h0(x) = 1, h1(x) = x, h2(x) = 1√

2
(x2 − 1), this means

that

Yn(t; z) = 1Xn(t)≤z − �(z) + p(z)Xn(t) + 1
2zp(z)

(
X

2
n(t) − 1

)
.(75)

By Lemma 4 with k = 3 and f = g, we have E[Yn(t1; z)Yn(t2; z)] ≤ C|ρn(t1, t2)|3
for every t1, t2 ∈ Tn, where the constant C does not depend on z ∈ R. It follows
that

Var
[∑
t∈Tn

Yn(t; z)
]

= ∑
t1,t2∈Tn

E[Yn(t1; z)Yn(t2; z)]

≤ C
∑

t1,t2∈Tn

|ρn(t1, t2)|3

(76)
≤ Cεn

∑
t1,t2∈Tn

ρ2
n(t1, t2) + C

∑
t1,t2∈Tn

|ρn(t1,t2)|>εn

ρ2
n(t1, t2)

= o(ς2
n)

as n → ∞, where the last step follows from the assumption limn→∞ εn = 0 and
condition (72). Take some z1, . . . , zd ∈ R. Then, for every i = 1, . . . , d , it follows
from (75) that we have the following decomposition:

1

ςn

∑
t∈Tn

(
1Xn(t)≤zi

− �(zi)
)

= −p(zi)

ςn

∑
t∈Tn

Xn(t) − zip(zi)

2ςn

∑
t∈Tn

(
X

2
n(t) − 1

)

+ 1

ςn

∑
t∈Tn

Yn(t; zi).

As n → ∞, the first term converges to 0 in probability by condition (70).
The second term converges in distribution to −1

2zip(zi)V by condition (71).
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Finally, the third term converges to 0 in probability by (76). This completes the
proof. �

3.3. Completing the proof of Theorem 6. We will verify the conditions of
Proposition 2. Given a spin configuration t ∈ Tn and an edge e = {v1, v2} ∈ En,
we write t � e = t (v1)t (v2) ∈ {+1,−1}. Recall that the energy of a spin configura-
tion t ∈ Tn is given by

Xn(t) = |En|−1/2
∑
e∈En

(t � e)J (e),(77)

where {J (e); e ∈ En} are independent standard Gaussian random variables.
We start by verifying condition (70) of Proposition 2. Since

∑
t∈Tn

(t � e) = 0
for every edge e ∈ En, we have∑

t∈Tn

Xn(t) = |En|−1/2
∑
t∈Tn

∑
e∈En

(t � e)J (e)

= |En|−1/2
∑
e∈En

J (e)
∑
t∈Tn

(t � e)

= 0.

Hence,
∑

t1,t2∈Tn
ρn(t1, t2) = 0, which implies that condition (70) holds.

Let us verify condition (71) of Proposition 2. Note that for every different edges
e1, e2 ∈ En, we have

∑
t∈Tn

(t � e1)(t � e2) = 0. Hence,∑
t∈Tn

(
X

2
n(t) − 1

)

= |En|−1
∑
t∈Tn

∑
e1,e2∈En

(
(t � e1)(t � e2)J (e1)J (e2) − 1e1=e2

)
(78)

= |Tn|
|En|

∑
e∈En

(
J 2(e) − 1

)
.

By Lemma 3, E[(X2
n(t1) − 1)(X2

n(t2) − 1)] = 2ρ2
n(t1, t2). It follows from this

and (78) that

ς2
n = Var

[∑
t∈Tn

(
X

2
n(t) − 1

)] = |Tn|2
|En|2 Var

[ ∑
e∈En

(
J 2(e) − 1

)] = 2|Tn|2
|En| .(79)

The central limit theorem together with (78) and (79) implies that condition (71)
is satisfied with V ∼ N(0,1).

Let us verify condition (72) of Proposition 2. It follows from (77) that for every
t1, t2 ∈ Tn, ρn(t1, t2) = |En|−1 ∑

e∈En
(t1 � e)(t2 � e). Define a spin configuration
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t̃ ∈ Tn by requiring that t̃ (v) = 1 for every vertex v ∈ Vn. It follows that∑
t1,t2∈Tn

ρ4
n(t1, t2) = |Tn|

∑
t∈Tn

ρ4
n(t̃ , t)

= |Tn||En|−4
∑
t∈Tn

( ∑
e∈En

(t � e)

)4

(80)

= |Tn||En|−4
∑

e1,e2,e3,e4∈En

∑
t∈Tn

4∏
k=1

(t � ek).

It will be convenient to write η(e1, . . . , e4) = ∑
t∈Tn

∏4
k=1(t � ek). If some ver-

tex v ∈ Vn belongs to exactly one or exactly three of the edges e1, . . . , e4, then
η(e1, . . . , e4) = 0 by spin flip symmetry. Consider some quadruple e1, . . . , e4 for
which η(e1, . . . , e4) 	= 0. We will show that there are at most C|En|2 such quadru-
ples. The union of all vertices belonging to e1, . . . , e4 consists of 2 or 4 elements.
In both cases, we can find i, j ∈ 1, . . . ,4 such that the union of vertices belonging
to e1, . . . , e4 coincides with the union of the vertices of ei, ej . There are at most
|En|2 possibilities to choose ei and ej and a bounded number of choices for the
remaining two edges. To summarize, there are at most C|En|2 terms of the form
η(e1, . . . , e4) which are nonzero, and any such term is bounded by |Tn|. It follows
from these considerations and (80) that

∑
t1,t2∈Tn

ρ4
n(t1, t2) ≤ |Tn||En|−4 · C|En|2|Tn| ≤ C

|Tn|2
|En|2 .(81)

Now we are able to verify condition (72). Since limn→∞ |En| = ∞, we can choose
εn > 0 in such a way that limn→∞ εn = 0 but limn→∞ ε2

n|En| = ∞. Recalling (79)
and (81), we obtain

1

ς2
n

∑
t1,t2∈Tn

ρ2
n(t1, t2)1|ρn(t1,t2)|>εn ≤ 1

ς2
nε2

n

∑
t1,t2∈Tn

ρ4
n(t1, t2) ≤ C

ε2
n|En| ,

which converges to 0 as n → ∞. This completes the verification of condition (72)
of Proposition 2.
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