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RANDOMIZED SCHEDULING ALGORITHM FOR QUEUEING
NETWORKS1

BY DEVAVRAT SHAH AND JINWOO SHIN

Massachusetts Institute of Technology

There has recently been considerable interest in design of low-complexity,
myopic, distributed and stable scheduling algorithms for constrained queue-
ing network models that arise in the context of emerging communication
networks. Here we consider two representative models. One, a queueing net-
work model that captures randomly varying number of packets in the queues
present at a collection of wireless nodes communicating through a shared
medium. Two, a buffered circuit switched network model for an optical core
of future internet to capture the randomness in calls or flows present in the
network. The maximum weight scheduling algorithm proposed by Tassiu-
las and Ephremides [IEEE Trans. Automat. Control 37 (1992) 1936–1948],
leads to a myopic and stable algorithm for the packet-level wireless network
model. But computationally it is expensive (NP-hard) and centralized. It is
not applicable to the buffered circuit switched network due to the requirement
of nonpreemption of the calls in the service. As the main contribution of this
paper, we present a stable scheduling algorithm for both of these models. The
algorithm is myopic, distributed and performs few logical operations at each
node per unit time.

1. Introduction. The primary task of a communication network architect is
to provision as well as utilize network resources efficiently to satisfy the demands
imposed on it. The main algorithmic problem is that of allocating or scheduling
resources among various entities or data units, for example, packets, flows, that
are contending to access them. In recent years the question of designing a simple,
myopic, distributed and high-performance (aka stable) scheduling algorithm has
received considerable interest in the context of emerging communication network
models. Two such models that we consider in this paper are that of a wireless
network and a buffered circuit switched network.

The wireless network consists of wireless transmission capable nodes. Each
node receives exogenous demand in the form of packets. These nodes communi-
cate these packets through a shared wireless medium. Hence, their simultaneous
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transmissions may contend with each other. The purpose of a scheduling algo-
rithm is to resolve these contentions among transmitting nodes so as to utilize
the wireless network bandwidth efficiently while keeping the queues at nodes fi-
nite. Naturally, the desired scheduling algorithm should be distributed, simple/low-
complexity and myopic (i.e., utilize only the network state information like queue-
sizes).

The buffered circuit switched network can be utilized to model the dynamics of
flows or calls in an optical core of future internet. Here a link capacitated network
is given with a collection of end-to-end routes. At the ingress (i.e., input or entry
point) of each route, calls arriving as per exogenous process are buffered or queued.
Each such call desires resources on each link of its route for a random amount of
time duration. Due to link capacity constraints, calls of routes sharing links contend
for resources. And a scheduling algorithm is required to resolve this contention so
as to utilize the network links efficiently while keeping buffers or queues at ingress
of routes finite. Again, the scheduling algorithm is desired to be distributed, simple
and myopic.

An important scheduling algorithm is the maximum weight algorithm that was
proposed by Tassiulas and Ephremides [31]. It was proposed in the context of a
packet queueing network model with generic scheduling constraints. It is primar-
ily applicable in a scenario where scheduling decisions are synchronized or made
every discrete time. It suggests scheduling queues, subject to constraints, that have
the maximum net weight at each time step with the weight of a queue being its
queue-size. They established stability or throughput optimality (precisely, positive
recurrence and subsequently ergodicity of the associated network Markov pro-
cess) property of this algorithm for this general class of networks. Further, this
algorithm, as the description suggests, is myopic. Due to the general applicability
and myopic nature, this algorithm and its variants have received a lot of attention
in recent years (see, e.g., [3, 4, 19, 25, 26, 28]).

The maximum weight algorithm provides a myopic and stable scheduling algo-
rithm for the wireless network model. However, it requires solving a combinatorial
optimization problem, the maximum weight independent set problem, to come up
with a schedule every time. And the problem of finding a maximum weight inde-
pendent set is known to be NP-hard as well as hard to approximate in general [32].
To address this concern, there has been a long line of research conducted to de-
vise implementable approximations of the maximum weight scheduling algorithm
(e.g., [6, 10, 18, 22, 29]). A comprehensive survey of such maximum weight in-
spired and other algorithmic approaches that have been studied over more than
four decades in the context of wireless networks can be found in [14, 24].

In the context of buffered circuit switched network, calls have random service
requirement. Therefore, scheduling decisions cannot be synchronized and the max-
imum weight scheduling algorithm is not applicable. In [30], a “batching-like”
modification of the maximum weight algorithm was proposed for such a network
model. However, no entirely myopic (nonbatching) and distributed algorithm is
known to be stable for this network model.
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1.1. Contributions. We propose a scheduling algorithm for both wireless and
buffered circuit switched network model. The algorithm utilizes only local queue-
size information to make scheduling decisions. That is, the algorithm is myopic
and distributed. It is randomized and requires each queue (or node) in the network
to perform few (literally, constant) logical operations per scheduling decision. We
establish that it is stable or throughput optimal. That is, the associated network
Markov process is ergodic as long as the network is under-loaded.

The basic idea behind the algorithm design is simple. The randomized schedul-
ing algorithm can be seen as a distributed (reversible) Markovian dynamics over
the space of schedules with the transition probabilities dependent on the queue-
sizes. For the wireless network, it corresponds to the known Glauber dynamics; cf.
[17] over the space of independent sets of the wireless network interference graph;
for the buffered circuit switched network, it corresponds to the known stochastic
loss network; cf. [15].

The stationary distribution of this reversible dynamics over schedules, assuming
queue-sizes are fixed, has a product-form. The variational characterization of this
product-form stationary distribution suggests that the expected weight of schedule
(with respect to this product-form stationary distribution) is close to that of the
maximum weight schedule which is essentially sufficient for establishing stability.
Therefore, assuming that queue-sizes are essentially fixed or, change over a much
slower time-scale compared to the time-scale over which scheduling dynamics
reaches stationarity, the algorithm is effectively the maximum weight.

The main technical contribution of this paper is in effectively establishing
the validity of such a “time-scale separation” assumption between the network
queueing dynamics and the scheduling dynamics induced by the algorithm. To
make this possible, we use an appropriately slowly changing function such as
f (x) = log log(x + e) of queue-size as weight in contrast to the standard f (x) = x

weight function; cf. [31]. Selection of such a weight function helps because, even
though the queue-sizes changes at a constant rate, the function [like log log(· + e)]
of queue-sizes change very slowly. This effectively induces the desired “time-
scale separation.” Technically, establishing validity of time-scale separation re-
quires studying the mixing property of time varying Markov chain over the space
of schedules.

To establish the stability (ergodicity of associated network Markov process)
property of the algorithm, we exhibit an appropriate Lyapunov function. We note
that use of Lyapunov function for establishing stability is somewhat standard now
(see, e.g., [25, 28, 31]). Usually difficulty lies in finding an appropriate candidate
function followed by establishing that it is indeed a Lyapunov function.

1.2. Organization. We start by describing two network models, the wireless
network and the buffered circuit switched network in Section 2. We formally intro-
duce the problem of scheduling and performance metric for scheduling algorithms.
The maximum weight scheduling algorithm is described as well. Our randomized
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algorithm and its throughput optimality for both network models are presented in
Section 3. The paper beyond Section 3 is dedicated to establishing the throughput
optimality. Necessary technical preliminaries are presented in Section 4. Here we
relate our algorithm for both models with appropriate reversible Markov chains on
the space of schedules and state useful properties of these Markov chains. We also
describe known sufficient conditions, including Lyapunov drift criteria, for estab-
lishing ergodicity. Detailed proofs of our main results are presented in Section 5.

2. Setup.

2.1. Wireless network. We consider a single-hop wireless network of n (≥2)

queues. Queues receive work as per exogenous arrivals and work leaves the system
upon receiving service. Specifically, let Qi(t) ∈ R+ = {x ∈ R :x ≥ 0} denote the
amount of work in the ith queue at time t ∈ R+ and Q(t) = [Qi(t)]1≤i≤n; initially
t = 0 and Q(0) = 0.2 Work arrives at each queue in terms of unit-sized packets
as per a discrete-time process. Let Ai(s, t) denote the amount of work arriving at
queue i in time interval [s, t] for 0 ≤ s < t . For simplicity, assume that for each

i, Ai(·) is an independent Bernoulli process with parameter λi , where Ai(τ )
�=

Ai(0, τ ). That is, Ai(τ + 1) − Ai(τ ) ∈ {0,1} and Pr(Ai(τ + 1) − Ai(τ ) = 1) = λi

for all i and τ ∈ Z+ = {k ∈ Z :k ≥ 0}. Throughout this paper we will use τ ∈ Z+
and t ∈ R+ to denote discrete and continuous time, respectively. Denote the arrival
rate vector as λ = [λi]1≤i≤n. We assume that arrivals happen at the end of a time
slot.

The work from queues is served at the unit rate, but subject to interference con-
straints. Specifically, let G = (V ,E) denote the inference graph between the n

queues, represented by vertices V = {1, . . . , n} and edges E; an (i, j) ∈ E implies
that queues i and j cannot transmit simultaneously since their transmission inter-
feres with each other. Formally, let σi(t) ∈ {0,1} denotes whether the queue i is
transmitting at time t , that is, work in queue i is being served at unit rate at time t

and σ (t) = [σi(t)]. Then, it must be that for t ∈ R+,

σ (t) ∈ I(G)
�= {ρ = [ρi] ∈ {0,1}n :ρi + ρj ≤ 1 for all (i, j) ∈ E

}
.

The total amount of work served at queue i in time interval [s, t] is

Di(s, t) =
∫ t

s
σi(y)I{Qi(y)>0} dy,

where I{x} denotes the indicator function.
In summary, the above model induces the following queueing dynamics: for any

0 ≤ s < t and 1 ≤ i ≤ n,

Qi(t) = Qi(s) −
∫ t

s
σi(y)I{Qi(y)>0} dy + Ai(s, t).

2Bold letters are reserved for vectors; 0,1 represent vectors of all 0’s and all 1’s, respectively.
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2.2. Buffered circuit switched network. We consider a buffered circuit
switched network. Here the network is represented by a capacitated graph G =
(V ,E) with V being vertices, E ⊂ V × V being links (or edges) with each link
e ∈ E having a finite integral capacity Ce ∈ N. This network is accessed by a fixed
set of n (≥2) routes R1, . . . ,Rn; each route is a collection of interconnected links.
At each route Ri , flows arrive as per an exogenous arrival process. For simplicity,
we assume it to be an independent Poisson process of rate λi and let Ai(s, t) de-
note total number of flow arrivals at route Ri in time interval [s, t]. Upon arrival
of a flow at route Ri , it joins the queue or buffer at the ingress of Ri . Let Qi(t)

denote the number of flows in this queue at time t ; initially t = 0 and Qi(0) = 0.
Each flow arriving at Ri , comes with the service requirement of using unit ca-

pacity simultaneously on all the links of Ri for a time duration—it is assumed to
be distributed independently as per exponential of unit mean. Now a flow in the
queue of route Ri can get simultaneous possession of links along route Ri in the
network at time t , if there is a unit capacity available at all of these links. To this
end, let zi(t) denote the number of flows that are active along route Ri , that is,
posses links along the route Ri . Then, by capacity constraints on the links of the
network, it must be that z(t) = [zi(t)] satisfies

z(t) ∈ X �=
{

z = [zi] ∈ Z
n+ :

∑
i : e∈Ri

zi ≤ Ce,∀e ∈ E

}
.

This represents the scheduling constraints of the circuit switched network model
similar to the interference constraints of the wireless network model.

Finally, a flow active on route Ri departs the network after the completion of its
service requirement and frees unit capacity on the links of Ri . Let Di(s, t) denote
the number of flows which are served (hence, leave the system) in time interval
[s, t].

2.3. Scheduling algorithm and performance metric. In both models described
above, the scheduling is the key operational question. In the wireless network,
queues need to decide which of them transmit subject to interference constraints. In
the circuit switched network, queues need to agree on which flows becomes active
subject to network capacity constraints. And, a scheduling algorithm is required to
make these decisions every time.

In the wireless network, the scheduling algorithm decides the schedule σ (t) ∈
I(G) at each time t . We are interested in distributed scheduling algorithms, that
is, queue i decides σi(t) using its local information such as its queue-size Qi(t).
We assume that queues have instantaneous carrier sensing information, that is, if
a queue (or node) j starts transmitting at time t , then all neighboring queues can
listen to this transmission immediately.

In buffered circuit switched network, the scheduling algorithm decides active
flows or schedules z(t) at time t . Again, our interest is in distributed scheduling
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algorithms, that is, queue at ingress of route Ri decides zi(t) using its local infor-
mation. Each queue (or route) can obtain instantaneous information on whether all
links along its route have unit capacity available or not.

In summary, both models need scheduling algorithms to decide when each
queue (or its ingress port) will request the network for availability of resources;
upon a positive answer (or successful request) from the network, the queue ac-
quires network resources for a certain amount of time. And these decisions need
to be based on local information.

From the perspective of network performance, we would like the scheduling
algorithm to be such that the queues in network remain as small as possible for
the largest possible range of arrival rate vectors. To formalize this notion of per-
formance, we define the capacity regions for both of these models. Let �w be the
capacity region of the wireless network model defined as

�w = Conv(I(G))
(1)

=
{

y ∈ R
n+ : y ≤ ∑

σ∈I(G)

ασ σ , with ασ ≥ 0, and
∑

σ∈I(G)

ασ ≤ 1
}
.

And let �cs be the capacity region of the buffered circuit switched network defined
as

�cs = Conv(X )
(2)

=
{

y ∈ R
n+ : y ≤ ∑

z∈X
αzz, with αz ≥ 0, and

∑
z∈X

αz ≤ 1
}
.

Intuitively, these bounds of capacity regions come from the fact that any algorithm
produces the “service rate” from I(G) (or X ) each time and hence, the time av-
erage of the service rate induced by any algorithm must belong to its convex hull.
Therefore, if arrival rates λ can be “served well” by any algorithm, then it must
belong to Conv(I(G)) [or Conv(X )].

Motivated by this, we call an arrival rate vector λ admissible if λ ∈ � and say
that an arrival rate vector λ is strictly admissible if λ ∈ �o, where �o is the interior
of � formally defined as

�o = {λ ∈ R
n+ :λ < λ∗ componentwise, for some λ∗ ∈ �}.

Equivalently, we may say that the network is under-loaded. Now we are ready to
define a performance metric for a scheduling algorithm. Specifically, we desire the
scheduling algorithm to be throughput optimal as defined below.

DEFINITION 1 (Throughput optimal). A scheduling algorithm is called
throughput optimal, or stable, or providing 100% throughput, if for any λ ∈ �o

the (appropriately defined) underlying network Markov process is ergodic.
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In the above definition and throughout this paper, by ergodic we mean that (a)
the network Markov process has a unique stationary distribution and (b) starting
from any initial state, the distribution of the Markov process converges to this
stationary distribution.

2.4. The MW algorithm. Here we describe a popular algorithm known as the
maximum weight, or in short, MW, algorithm that was proposed by Tassiulas and
Ephremides [31]. It is throughput optimal for a large class of network models. The
algorithm readily applies to the wireless network model. However, it does not ap-
ply (exactly) in the case of circuit switched network. This algorithm requires solv-
ing a hard combinatorial problem each time slot, for example, maximum weight
independent set for wireless network, which is NP-hard in general. Therefore, it
is far from being practically useful. In a nutshell, the randomized algorithm pro-
posed in this paper will overcome these drawbacks of the MW algorithm while
retaining the throughput optimality property. For completeness, next we provide a
brief description of the MW algorithm.

In the wireless network model, the MW algorithm chooses a schedule σ (τ ) ∈
I(G) every time step τ ∈ Z+ as follows3:

σ (τ ) ∈ arg max
ρ∈I(G)

Q(τ ) · ρ.

In other words, the algorithm changes its decision once in unit time utilizing the
information Q(τ ). The maximum weight property allows one to establish positive
recurrence by means of Lyapunov drift criteria (see Lemma 5) when the arrival
rate is admissible, that is, λ ∈ �o

w . However, as indicated above, picking such a
schedule every time is computationally burdensome. A natural generalization of
this, called MW-f algorithm, that uses weight f (Qi(·)) instead of Qi(·) for an
increasing nonnegative function f also leads to throughput optimality; cf. see [25,
26, 28].

For the buffered circuit switched network model, the MW algorithm is not appli-
cable. To understand this, consider the following. The MW algorithm would require
the network to schedule active flows as z(τ ) ∈ X where

z(τ ) ∈ arg max
z∈X

Q(τ ) · z.

This will require the algorithm to possibly preempt some of active flows without
the completion of their service requirement. This is not allowed in this model.

3Here and everywhere else, we use notation u · v = ∑d
i=1 uivi for any d-dimensional vectors

u,v ∈ R
d . That is, Q(τ ) · ρ =∑i Qi(τ ) · ρi .
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3. Main result. As stated above, the MW algorithm is not practical for wire-
less network and is not applicable to circuit switched network. However, it has
the desirable throughput optimality property. As the main result of this paper, we
provide a simple, randomized algorithm that is applicable to both wireless and cir-
cuit switched network as well as throughput optimal. The algorithm requires each
node (or queue) to perform only a few logical operations at each time step, it is
distributed and effectively it “simulates” the MW-f algorithm for an appropriate
choice of f . In that sense, it is a simple, randomized, distributed implementation
of the MW algorithm.

In what follows, we shall describe algorithms for wireless network and buffered
circuit switched network, respectively. We will state their throughput optimality
property. While these algorithms seem different, philosophically they are very
similar—also, witnessed in the commonality in their proofs.

3.1. Algorithm for wireless network. Let t ∈ R+ denote the time index and
W(t) = [Wi(t)] ∈ R

n+ be the vector of weights at the n queues. The W(t) will be
a function of Q(t) to be determined later. In a nutshell, the algorithm described
below will choose a schedule σ (t) ∈ I(G) so that the weight, W(t) · σ (t), is as
large as possible.

The algorithm is randomized and asynchronous. Each node (or queue) has an
independent exponential clock of rate 1 (i.e., Poisson process of rate 1). Let the kth
tick of the clock of node i happen at time T i

k ; T i
0 = 0 for all i. By definition T i

k+1 −
T i

k , k ≥ 0, are i.i.d. mean 1 exponential random variables. Each node changes its
scheduling decision only at its clock ticks. That is, for node i the σi(t) remains
constant for t ∈ (T i

k , T i
k+1]. Clearly, with probability 1 no two clock ticks across

nodes happen at the same time.
Initially, we assume that σi(0) = 0 for all i. The node i at the kth clock tick,

t = T i
k , listens to the medium and does the following:

◦ If any neighbor of i is transmitting, that is, σj (t) = 1 for some j ∈ N (i) =
{j ′ : (i, j ′) ∈ E}, then set σi(t

+) = 0.
◦ Else, set

σi(t
+) =

⎧⎨⎩1, with probability
exp(Wi(t))

1 + exp(Wi(t))
,

0, otherwise.
Here, we assume that if σi(t) = 1, then node i will always transmit data irre-

spective of the value of Qi(t) so that the neighbors of node i can infer σi(t) by
listening to the medium.

3.1.1. Throughout optimality. The above described algorithm for wireless net-
work is throughput optimal for an appropriate choice of weight W(t). Define
weight Wi(t) at node i in the algorithm for wireless network as

Wi(t) = max
{
f (Qi(�t�)),

√
f (Qmax(�t�))},(3)
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where4 f (x) = log log(x + e) and Qmax(·) = maxi Qi(·). The nonlocal informa-
tion of Qmax(�t�) can be replaced by its approximate estimation that can be com-
puted through a very simple distributed algorithm. This does not alter the through-
put optimality property of the algorithm. A discussion is provided in Section 6. We
state the following property of the algorithm.

THEOREM 1. Suppose the algorithm of Section 3.1 uses the weight as per (3).
Then, for any λ ∈ �o

w and Bernoulli arrival process, the network Markov process
is ergodic.

In this paper, Theorem 1 (as well as Theorem 2) is established for the choice
of f (x) = log log(x + e). However, the proof technique of this paper extends
naturally for any choice of f : R+ → R+ that satisfies the following conditions:
f (0) = 0, f is a monotonically strictly increasing function, limx→∞ f (x) = ∞
and

lim
x→∞ exp(f (x))f ′(f −1(δf (x))) = 0 for any δ ∈ (0,1).

Examples of such functions include f (x) = ε(x) log(x + 1), where ε(0) = 1 and
as x → ∞, ε(x) monotonically decreases to 0, but ε(x) log(x + 1) monotonically
increases to ∞; f (x) = √

log(x + 1); f (x) = log log log(x + ee), etc.

3.2. Algorithm for buffered circuit switched network. In a buffered circuit
switched network, the scheduling algorithm decided when each of the ingress node
(or queue) should request the network for availability of resources (links) along its
route and upon positive response from the network, it acquires the resources. Our
algorithm to make such a decision at each node is described as follows:

◦ Each ingress node of a route, say Ri , generates request as per a time varying
Poisson process whose rate at time t is equal to exp(Wi(t)).

◦ If the request generated by an ingress node of route, say Ri , is accepted, a flow
from the head of its queue leaves the queue and acquires the resources in the
network. Else, do nothing.

In the above, like the algorithm for wireless network, we assume that if the
request of ingress node i is accepted, a new flow will acquire resources in the
network along its route. This is irrespective of whether queue is empty or not—if
queue is empty, a dummy flow is generated. This is merely for technical reasons.

4Unless stated otherwise, here and everywhere else the log(·) is natural logarithm, that is, base e.
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3.2.1. Throughput optimality. We describe a specific choice of weight W(t)

for which the algorithm for circuit switched network as described above is through-
put optimal. Specifically, for route Ri its weight at time t is defined as

Wi(t) = max
{
f (Qi(�t�)),

√
f (Qmax(�t�))},(4)

where f (x) = log log(x + e). The remark about distributed estimation of
Qmax(�t�)) after (3) applies here as well. We state the following property of the
algorithm.

THEOREM 2. Suppose the algorithm of Section 3.2 uses the weight as per (4).
Then, for any λ ∈ �o

cs and Poisson arrival process, the network Markov process is
ergodic.

4. Technical preliminaries.

4.1. Finite state Markov chain. Consider a discrete-time, time-homogeneous
Markov chain over a finite state space 
. Let its probability transition matrix be
P = [Pij ] ∈ R

|
|×|
|
+ . If P is irreducible and aperiodic, then the Markov chain is

known to have a unique stationary distribution π = [πi] ∈ R
|
|
+ and it is ergodic,

that is,

lim
τ→∞P τ

ji → πi for any i, j ∈ 
.

The adjoint of P , also known as the time-reversal of P , denoted by P ∗, is defined
as

πiP
∗
ij = πjPji for any i, j ∈ 
.(5)

By definition, P ∗ has π as its stationary distribution as well. If P = P ∗ then P is
called reversible or time reversible.

Similar notions can be defined for a continuous time Markov process over 
.
To this end, let P(s, t) = [Pij (s, t)] ∈ R

|
|×|
|
+ denote its transition matrix over

time interval [s, t]. The Markov process is called time-homogeneous if P(s, t) is
stationary, that is, P(s, t) = P(0, t − s) for all 0 ≤ s < t and is called reversible if
P(s, t) is reversible for all 0 ≤ s < t . Further, if P(0, t) is irreducible and aperiodic
for all t > 0, then this time-homogeneous reversible Markov process has a unique
stationary distribution π and it is ergodic, that is,

lim
t→∞Pji(0, t) → πi for any i, j ∈ 
.

4.2. Mixing time of Markov chain. Given an ergodic finite state Markov chain,
the distribution at time τ converges to the stationary distribution starting from any
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initial condition as described above. We will need quantitative bounds on the time
it takes for them to reach “close” to the stationary distribution. This time to reach
stationarity is known as the mixing time of the Markov chain. Here we introduce
necessary preliminaries related to this notion. We refer an interested reader to sur-
vey papers [16, 23]. We start with the definition of distances between probability
distributions.

DEFINITION 2 (Distance of measures). Given two probability distributions
ν and μ on a finite space 
, we define the following two distances. The total
variation distance, denoted as ‖ν − μ‖TV is

‖ν − μ‖TV = 1

2

∑
i∈


|νi − μi |.

The χ2 distance, denoted as ‖ ν
μ

− 1‖2,μ is∥∥∥∥ ν

μ
− 1
∥∥∥∥2

2,μ

= ‖ν − μ‖2
2,1/μ =∑

i∈


μi

(
νi

μi

− 1
)2

.

More generally, for any two vectors u,v ∈ R
|
|
+ , we define

‖v‖2
2,u =∑

i∈


uiv
2
i .

We make note of the following relation between the two distances defined
above: using the Cauchy–Schwarz inequality, we have∥∥∥∥ ν

μ
− 1
∥∥∥∥

2,μ

≥ 2‖ν − μ‖TV.(6)

Next, we define a matrix norm that will be useful in determining the rate of con-
vergence or the mixing time of a finite-state Markov chain.

DEFINITION 3 (Matrix norm). Consider a |
| × |
| nonnegative valued ma-
trix A ∈ R

|
|×|
|
+ and a given vector u ∈ R

|
|
+ . Then, the matrix norm of A with

respect to u is defined as

‖A‖u = sup
v : Eu[v]=0

‖Av‖2,u

‖v‖2,u
,

where Eu[v] =∑i uivi .

The following are known properties (most of them are easily verifiable) of the
defined matrix norm (see, e.g., [12]).
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(P1) For matrices A,B ∈ R
|
|×|
|
+ and π ∈ R

|
|
+ ,

‖A + B‖π ≤ ‖A‖π + ‖B‖π .

(P2) For matrix A ∈ R
|
|×|
|
+ , π ∈ R

|
|
+ and c ∈ R,

‖cA‖π = |c|‖A‖π .

(P3) Let A and B be transition matrices of reversible Markov chains, that is,
A = A∗ and B = B∗. Let both of them have π as their unique stationary distribu-
tion. Then,

‖AB‖π ≤ ‖A‖π‖B‖π .

(P4) Let A be the transition matrix of an irreducible and aperiodic Markov
chain that is reversible, that is, A = A∗. Then, A has n real eigenvalues 1 = λ1 >

λ2 ≥ · · · ≥ λn > −1 and

‖A‖π ≤ λmax = max{λ2, |λn|},
where π is the stationary distribution of the Markov chain.

For a probability matrix P , we will mostly be interested in the matrix norm of P

with respect to its stationary distribution π , that is, ‖P‖π . Therefore, in this paper
if we use a matrix norm for a probability matrix without mentioning the reference
measure, then it is with respect to the stationary distribution.

With these definitions, it follows that for any distribution μ on 
∥∥∥∥μP

π
− 1
∥∥∥∥

2,π

≤ ‖P ∗‖
∥∥∥∥μπ − 1

∥∥∥∥
2,π

,(7)

since Eπ [μ
π

− 1] = 0, where μ
π

= [μi/πi]. The Markov chains of our interest will
be reversible, that is, P = P ∗. Therefore, for a reversible Markov chain starting
with initial distribution μ(0), the distribution μ(τ) at time τ is such that∥∥∥∥μ(τ)

π
− 1
∥∥∥∥

2,π

≤ ‖P‖τ

∥∥∥∥μ(0)

π
− 1
∥∥∥∥

2,π

.(8)

Now starting from any state i, that is, probability distribution with unit mass on
state i, the initial distance ‖μ(0)

π
− 1‖2,π in the worst case is bounded above by√

1/πmin where πmin = mini πi . Therefore, for any δ > 0 we have ‖μ(τ)
π

−1‖2,π ≤
δ for any τ such that5

τ ≥ log 1/πmin + log 1/δ

log 1/‖P‖ = �

(
log 1/πmin + log 1/δ

1 − ‖P‖
)
.

5Throughout this paper, we shall utilize the standard order-notation: for two functions
g,f : R+ → R+, g(x) = ω(f (x)) means lim infx→∞ g(x)/f (x) = ∞; g(x) = 
(f (x))

means lim infx→∞ g(x)/f (x) > 0; g(x) = �(f (x)) means 0 < lim infx→∞ g(x)/f (x) ≤
lim supx→∞ g(x)/f (x) < ∞; g(x) = O(f (x)) means lim supx→∞ g(x)/f (x) < ∞; g(x) =
o(f (x)) means lim supx→∞ g(x)/f (x) = 0.
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This suggests that the “mixing time,” that is, time to reach (close to) the station-
ary distribution of the Markov chain scales inversely with 1 − ‖P‖. Therefore, we
will define the “mixing time” of a (reversible) Markov chain with transition matrix
P as 1/(1 − ‖P‖).

4.3. Glauber dynamics and algorithm for wireless network. We will describe
the relation between the algorithm for wireless network; cf. Section 3.1 and a spe-
cific irreducible, aperiodic, reversible Markov chain on the space of independent
sets I(G) or schedules for wireless network with graph G = (V ,E). It is also
known as the Glauber dynamics, which is used by the standard Metropolis and
Hastings [11, 20] sampling mechanism that is described next.

4.3.1. Glauber dynamics and its mixing time. We shall start off with the defi-
nition of the Glauber dynamics followed by a useful bound on its mixing time.

DEFINITION 4 (Glauber dynamics). Consider a graph G = (V ,E) of n = |V |
nodes with node weights W = [Wi] ∈ R

n+. The Glauber dynamics based on
weight W, denoted by GD(W), is a Markov chain on the space of independent
sets of G, I(G). The transitions of this Markov chain are described next. Suppose
the Markov chain is currently in the state σ ∈ I(G). Then, the next state, say σ ′ is
decided as follows: pick a node i ∈ V uniformly at random and

◦ set σ ′
j = σj for j �= i;

◦ if σk = 0 for all k ∈ N (i), then set

σ ′
i =

⎧⎨⎩1, with probability
exp(Wi)

1 + exp(Wi)
,

0, otherwise,

◦ else set σ ′
i = 0.

It can be verified that the Glauber dynamics GD(W) is reversible with stationary
distribution π given by

πσ ∝ exp(W · σ ) for any σ ∈ I(G).(9)

Now we describe bound on the mixing time of Glauber dynamics.

LEMMA 3. Let P be the transition matrix of the Glauber dynamics GD(W)

with n nodes. Then,

‖P‖ ≤ 1 − 1

n222n+3 exp(2(n + 1)Wmax)
,(10)

∥∥en(P−I )
∥∥≤ 1 − 1

n22n+4 exp(2(n + 1)Wmax)
.(11)
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PROOF. By the property (P4) of the matrix norm, it is sufficient to establish
that

λ2 ≤ 1 − 1

n222n+3 exp(2(n + 1)Wmax)
,

(12)

λN ≥ −1 + 1

n222n+3 exp(2(n + 1)Wmax)
,

where λ2, λN are the second largest and the smallest eigenvalues of P , respec-
tively, with N = |I(G)|.

First, an upper bound on λ2. By Cheeger’s inequality [2, 5, 7, 13, 27], it is well
known that λ2 ≤ 1 − �2

2 where � is the conductance of P , defined as

� = min
S⊂I(G) : π(S)≤1/2

Q(S,Sc)

π(S)π(Sc)
,

where Sc = I(G) \ S, Q(S,Sc) =∑σ∈S,σ ′∈Sc πσPσσ ′ . Now we have

� ≥ min
S⊂I(G)

Q(S,Sc)

≥ min
Pσσ ′ �=0

πσPσσ ′

≥ πmin · min
i

1

n

1

1 + exp(Wi)

≥ 1

2n exp(nWmax)
· 1

n

1

1 + exp(Wmax)

≥ 1

n2n+1 exp((n + 1)Wmax)
.

This implies the desired bound on λ2.
Now, we lower bound λN . For this, note that for any σ �= 0, under GD(W) with

W ∈ R
n+,

Pσσ ≥ 1

2n
.

For σ = 0,

Pσσ = P00 ≥ 1

1 + exp(Wmax)
.

Therefore, it follows that for n ≥ 2 and W ∈ R
n+, P can be decomposed as

P = ηI + (1 − η)Q,(13)
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where

η = 1

2
min

σ
Pσσ

(14)

≥ 1

2 max{2n,1 + exp(Wmax)} ,

and by construction Q corresponds to the transition matrix of an irreducible, ape-
riodic, reversible Markov chain on I(G) with the same stationary distribution π .
More generally, Q and P have identical eigenvectors. Since all eigenvalues of Q

belong to [−1,1], from decomposition (13), it follows that the smallest eigenvalue
of P must satisfy

λN ≥ −1 + 2η

≥ −1 + 1

max{2n,1 + exp(Wmax)}(15)

≥ −1 + 1

n222n+3 exp(2(n + 1)Wmax)
.

Thus, we have established that

‖P‖ ≤ 1 − 1

n222n+3 exp(2(n + 1)Wmax)
.

Now consider en(P (τ)−I ). Using properties (P1), (P2) and (P3) of matrix norm,
we have ∥∥en(P−I )

∥∥=
∥∥∥∥∥e−n

∞∑
k=0

nkP k

k!
∥∥∥∥∥

≤ e−n
∞∑

k=0

nk‖P‖k

k! = en(‖P‖−1)

≤ e−n/(n222n+3 exp(2(n+1)Wmax))

≤ 1 − 1

n22n+4 exp(2(n + 1)Wmax)
,

where we have used the bound of ‖P‖ and the fact that e−x ≤ 1 − x/2 for all
x ∈ [0,1]. This completes the proof of Lemma 3. �

4.3.2. Relation to algorithm. Now we relate our algorithm for wireless net-
work scheduling described in Section 3.1 with an appropriate continuous time ver-
sion of the Glauber dynamics with time-varying weights. Recall that Q(t) and
σ (t) denote the queue-size vector and schedule at time t . The algorithm changes
its scheduling decision, σ (t), when a node’s exponential clock of rate 1 ticks. Due
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to memoryless property of exponential distribution and independence of clocks
of all nodes, this is equivalent to having a global exponential clock of rate n and
upon clock tick one of the n nodes gets chosen. This node decides its transition
as explained in Section 3.1. Thus, the effective dynamics of the algorithm upon a
global clock tick is such that the schedule σ (t) evolves exactly as per the Glauber
dynamics GD(W(t)). Here recall that W(t) is determined based on Q(�t�). With
abuse of notation, let the transition matrix of this Glauber dynamics be denoted by
GD(W(t)).

Consider any τ ∈ Z+. Let Q(τ ),σ (τ ) be the states at time τ . Then,

E
[
δσ (τ+1)|Q(τ ),σ (τ )

]= ∞∑
k=0

δσ (τ ) Pr(ζ = k)GD(W(τ ))k,

where we have used notation δσ for the distribution with singleton support {σ } and
ζ is a Poisson random variable of mean n. In the above, the expectation is taken
with respect to the distribution of σ (τ +1) given Q(τ ),σ (τ ) and the notation E[u]
for a d-dimensional random vector u = [ui]1≤i≤d ∈ R

d denotes

E[u] = [E[ui]]1≤i≤d .

Therefore, E[δσ (τ+1)|Q(τ ),σ (τ )] is interpreted as the distribution of σ (τ + 1)

(i.e., schedule at time τ + 1) given Q(τ ),σ (τ ).
Now it follows that

E
[
δσ (τ+1)|Q(τ ),σ (τ )

]= δσ (τ )e
n(GD(W(τ ))−I )

(16)
= δσ (τ )P (τ ),

where P(τ)
�= en(GD(W(τ ))−I ). In general, for any δ ∈ [0,1]

E
[
δσ (τ+δ)|Q(τ ),σ (τ )

]= δσ (τ )P
δ(τ ),(17)

where P δ(τ )
�= eδn(GD(W(τ ))−I ).

4.4. Loss network and algorithm for circuit switched network. For the buffered
circuit switched network, the Markov chain of interest is related to the classical
stochastic loss network model. This model has been popularly utilized to study the
performance of various systems including the telephone networks, human resource
allocation, etc.; cf. see [15]. The stochastic loss network model is very similar to
the model of the buffered circuit switched network with the only difference that it
does not have any buffers at the ingress nodes.

4.4.1. Loss network and its mixing time. A loss network is described by a net-
work graph G = (V ,E) with capacitated links [Ce]e∈E , n (≥2) routes {Ri :Ri ⊂
E,1 ≤ i ≤ n} and without any buffer or queues at the ingress of each route. For
each route Ri , there is a dedicated exogenous, independent Poisson arrival process
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with rate φi . Let zi(t) be the number of active flows on route i at time t , with
notation z(t) = [zi(t)]. Clearly, z(t) ∈ X due to network capacity constraints. At
time t when a new exogenous flow arrives on route Ri , if it can be accepted by the
network, that is, z(t) + ei ∈ X , then it is accepted with zi(t) → zi(t) + 1, or else,
it is dropped (and hence, lost forever). Each flow holds unit amount of capacity on
all links along its route for time that is distributed as exponential distribution with
mean 1, independent of everything else. Upon the completion of holding time, the
flow departs and frees unit capacity on all links of its own route.

Therefore, effectively this loss network model can be described as a finite state
Markov process with state space X . Given state z = [zi] ∈ X , the possible transi-
tions and corresponding rates are given as

zi →
{

zi + 1, with rate φi if z + ei ∈ X ,
zi − 1, with rate xi .

(18)

It can be verified that this Markov process is irreducible, aperiodic, and time-
reversible. Therefore, it is positive recurrent (due to the finite state space) and has
a unique stationary distribution. Its stationary distribution π is known (cf. [15]) to
have the following product-form: for any z ∈ X ,

πz ∝
n∏

i=1

φ
zi

i

zi ! .(19)

We will be interested in the discrete-time (or embedded) version of this Markov
processes, which can be defined as follows.

DEFINITION 5 (Loss network). A loss network Markov chain with capacitated
graph G = (V ,E), capacities Ce, e ∈ E and n routes Ri,1 ≤ i ≤ n, denoted by
LN(φ) is a Markov chain on X . The transition probabilities of this Markov chain
are described next. Given a current state z ∈ X , the next state z∗ ∈ X is decided by
first picking a route Ri uniformly at random and performing the following: z∗

j = zj

for j �= i and z∗
i is decided by

z∗
i =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
zi + 1, with probability

φi

R · 1{z+ei∈X },

zi − 1, with probability
zi

R ,

zi, otherwise,

where R =∑i φi + Cmax.

LN(φ) has the same stationary distribution as in (19) and it is also irreducible,
aperiodic, and reversible. Next, we state a bound on the mixing time of the loss
network Markov chain LN(φ) as follows.
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LEMMA 4. Let P be the transition matrix of LN(φ) with n routes. If φ =
exp(W) with6 Wi ≥ 0 for all i, then,

‖P‖ ≤ 1 − 1

8n4C
2nCmax+2n+2
max exp(2(nCmax + 1)Wmax)

,(20)

∥∥enR(P−I )
∥∥≤ 1 − 1

16n3C
2nCmax+2n+2
max exp(2(nCmax + 1)Wmax)

.(21)

PROOF. Similar to the proof of Lemma 3, it is sufficient to establish

λ2 ≤ 1 − 1

8n4C
2nCmax+2n+2
max exp(2(nCmax + 1)Wmax)

,

(22)

λN ≥ −1 + 1

8n4C
2nCmax+2n+2
max exp(2(nCmax + 1)Wmax)

,

where λ2, λN are the second largest and the smallest eigenvalue of reversible tran-
sition matrix P , respectively, with N = |X |.

First, we shall bound λ2 using Cheeger’s inequality as in the proof of Lemma 3.
A simple lower bound for the conductance � of P is given by

� ≥ πmin · min
Pzz′ �=0

Pzz′ .(23)

To obtain the lower bound of πmin, recall the equation (19),

πz = 1

Z

n∏
i=1

φ
zi

i

zi ! ,

where Z =∑z∈X
∏n

i=1
φ

zi
i

zi ! , and consider the following:

Z ≤ |X |φnCmax
max ≤ Cn

max exp(nCmaxWmax)

and
n∏

i=1

φ
zi

i

zi ! ≥ 1

(Cmax!)n ≥ 1

C
nCmax
max

.

By combining the above inequalities, we obtain

πmin ≥ 1

C
nCmax+n
max exp(nCmaxWmax)

.(24)

6We use the following notation: given a function g : R → R and a d-dimensional vector u ∈ R
d ,

let g(u) = [g(ui)] ∈ R
d .
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On the other hand, one can bound minPzz′ �=0 Pzz′ as follows:

Pzz′ ≥ 1

n
· 1

R ≥ 1

n
· 1

nφmax + Cmax
≥ 1

2n2Cmax exp(Wmax)
,(25)

where we use the fact that x + y ≤ 2xy if x, y ≥ 1. Now, by combining (24)
and (25), we have

� ≥ 1

2n2C
nCmax+n+1
max exp((nCmax + 1)Wmax)

.

Therefore, bound on λ2 as desired in (22) follows through Cheeger’s inequality.
For λN , like Lemma 3, we shall lower bound the diagonal entries of the transi-

tion matrix P . Specifically, for any state z, it follows that for n ≥ 2, φ = exp(W)

with W ∈ R
n+ and Cmax ≥ 1,

Pzz ≥ 1

n

(n − 1)φmin

R

≥ 1

2Cmax + 2n exp(Wmax)
(26)

≥ 1

8n4C
2nCmax+2n+2
max exp(2(nCmax + 1)Wmax)

.

From above and arguments similar to those in Lemma 3, we obtain the desired
conclusion as

‖P‖ ≤ 1 − 1

8n4C
2nCmax+2n+2
max exp(2(nCmax + 1)Wmax)

.

Furthermore, using this bound and arguments similar to those in the proof of
Lemma 3, we have∥∥enR(P−I )

∥∥≤ 1 − 1

16n3C
2nCmax+2n+2
max exp(2(nCmax + 1)Wmax)

.
�

4.4.2. Relation to algorithm. The scheduling algorithm for buffered circuit
switched network described in Section 3.2 effectively simulates a stochastic loss
network with time-varying arrival rates φ(t) where φi (t) = exp(Wi(t)). That is,
the relation of the algorithm in Section 3.2 with loss network is similar to the
relation of the algorithm in Section 3.1 with Glauber dynamics that we explained
in the previous section. To this end, for a given τ ∈ Z+, let Q(τ ) and z(τ ) be queue-
size vector and active flows at time τ . With abuse of notation, let LN(exp(W(τ )))

be the transition matrix of the corresponding loss network with W(τ ) dependent
on Q(τ ). Then, for any δ ∈ [0,1]

E
[
δz(τ+δ)|Q(τ ), z(τ )

]= δz(τ )e
nδR(τ )(LN(exp(W(τ )))−I ),(27)

where R(τ ) =∑i exp(Wi(τ )) + Cmax.7

7See Section 4.3.2 for a detailed explanation of notation such as δz.
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4.4.3. Background on ergodic Markov processes. Here we introduce neces-
sary background for establishing ergodicity of the network Markov processes of
interest. In this paper, we will be concerned with discrete-time, time-homogeneous
Markov process or chain evolving over a complete, separable metric (Polish)
space X. Let BX denote the Borel σ -algebra on X. Let X(τ) denote the state of
Markov process at time τ ∈ Z+.

Let μx(τ ) be distribution of X(τ) at time τ ≥ 1 given X(0) = x ∈ X. As noted
earlier, we shall call Markov process X(·) ergodic, if there exists a unique station-
ary distribution π such that μx(τ ) converges to π as τ → ∞, for any initial state
x ∈ X. The following are sufficient conditions that will imply ergodicity of such a
Markov process (see [1], pages 198–202, and [8], Section 4.2, for details).

(C1) There exists a bounded set A ∈ BX such that

Ex[TA] < ∞ for any x ∈ X,(28)

sup
x∈A

Ex[TA] < ∞.(29)

In the above, the stopping time TA = inf{τ ≥ 1 :X(τ) ∈ A}; notation Prx(·) ≡
Pr(·|X(0) = x) and Ex[·] ≡ E[·|X(0) = x].

(C2) Given A satisfying (28) and (29), there exists x∗ ∈ X, finite � ≥ 1 and
δ > 0 such that

Prx
(
X(�) = x∗) ≥ δ for any x ∈ A,(30)

Prx∗
(
X(1) = x∗)> 0.(31)

Given this, the following path-wise ergodic property is satisfied (cf. [1, 21]): for
any x ∈ X and nonnegative measurable function f : X → R+,

lim
T →∞

1

T

T −1∑
τ=0

f (X(τ)) → Eπ [f ], Prx-almost surely.

Here Eπ [f ] = ∫ f (z)π(z). Note that Eπ [f ] may not be finite.
Our interest will be in verifying conditions (C1) and (C2). As we shall see,

condition (C2) will follow easily due to the structure of the Markov process. The
condition (C1) will be established using the Lyapunov drift criteria, also known as
the Lyapunov–Foster criteria. Specifically, we shall utilize the following lemma;
cf. [8], Theorem 1.

LEMMA 5. Let L : X → R+ be a function such that L(x) → ∞ as |x| → ∞.
For any κ > 0, let Bκ = {x :L(x) ≤ κ}. And let there exist functions h,g : X → Z+
such that for any x ∈ X,

Ex[L(X(g(x))) − L(X(0))] ≤ −h(x),

that satisfy the following conditions:
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(a) infx∈X h(x) > −∞.
(b) lim infL(x)→∞ h(x) > 0.
(c) supL(x)≤γ g(x) < ∞ for all γ > 0.
(d) lim supL(x)→∞ g(x)/h(x) < ∞.

Then, there exists constant κ0 > 0 so that for all κ0 < κ , the following holds:

Ex[TBκ ] < ∞ for any x ∈ X,(32)

sup
x∈Bκ

Ex[TBκ ] < ∞.(33)

5. Proofs of Theorems 1 and 2. This section provides proofs of Theorems 1
and 2. We shall start by introducing necessary formalism, summarize the key steps
of the proof and then provide detailed proof.

5.1. Network Markov process. We describe discrete-time network Markov
processes under both algorithms that we shall utilize throughout. Let τ ∈ Z+ be
the time index. Let Q(τ ) = [Qi(τ)] be the queue-size vector at time τ , x(τ ) be
the schedule at time τ with x(τ ) = σ (τ ) ∈ I(G) for the wireless network and
x(τ ) = z(τ ) ∈ X for the circuit switched network. It can be checked that the tu-
ple X(τ) = (Q(τ ),x(τ )) is the Markov state of the network for both setups. Here
X(τ) ∈ X where X = R

n+ × I(G) or X = Z
n+ × X . Clearly, X is a Polish space

endowed with the natural product topology. Let BX be the Borel σ -algebra of X
with respect to this product topology. For any x = (Q,x) ∈ X, we define norm of x
denoted by |x| as

|x| = |Q| + |x|,
where |Q| denotes the standard �1 norm while |x| is defined as its index in
{0, . . . , |
| − 1}, which is assigned arbitrarily. Since |x| is always bounded, |x| →
∞ if and only if |Q| → ∞. Theorems 1 and 2 wish to establish that the Markov
process X(τ) is ergodic.

5.2. Proof plan. To establish ergodicity of X(τ), we will verify conditions
(C1) and (C2) stated in Section 4.4.3. To verify condition (C1), using Lemma 5, we
shall establish the existence of an appropriate Lyapunov function implied by our
randomized scheduling algorithms. In a nutshell, we shall show that our scheduling
algorithms are simulating the maximum weight scheduling algorithm with respect
to an appropriate weight function of the queue-size. This will lead to the desired
Lyapunov function and a drift criteria. The condition (C2) follows by showing
that the “empty” state of the network verifies it. Next, we give an overview of the
detailed proof which is stated in four steps: the first three steps are concerned with
the verification of (C1) or Lyapunov drift criteria while the fourth step is concerned
with (C2).
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Recall that the randomized algorithms for wireless or circuit switched network
are effectively asynchronous, continuous versions of the time-varying GD(W(t))

or LN(exp(W(t))), respectively. Let π(t) be the stationary distribution of the
Markov chain GD(W(t)) or LN(exp(W(t))); μ(t) be the distribution of the sched-
ule, either σ (t) or z(t), under our algorithm at time t . In the first step, roughly
speaking, we argue that the weight of schedule sampled as per the stationary distri-
bution π(t) is close to the weight of maximum weight schedule for both networks
(with an appropriately defined weight). In the second step, roughly speaking, we
argue that indeed the distribution μ(t) is close enough to that of π(t) for all time t .
In the third step, using these two properties we establish the Lyapunov drift cri-
teria for appropriately defined Lyapunov function; cf. Lemma 5. This concludes
the verification of (C1) for both models. In the fourth and final step, we establish
that Markov processes are ergodic by showing that the “empty” state of the system
satisfies condition (C2) under both models.

5.3. Formal proof. To this end, we are interested in establishing Lyapunov
drift criteria; cf. Lemma 5. For this, consider Markov process starting at time 0
in state X(0) = (Q(0),x(0)) and as per hypothesis of both theorems, let λ ∈ (1 −
ε)Conv(
) with some ε > 0 and 
 = I(G) (or X ).

5.3.1. Step one. Let π(0) be the stationary distribution of GD(W(0)) or
LN(exp(W(0))). Lemma 6 states that the average weight of schedule as per π(0)

is essentially as good as that of the maximum weight schedule with respect to
weight f (Q(0)).

LEMMA 6. Let x be distributed over 
 as per π(0) given Q(0). Then,

Eπ(0)[f (Q(0)) · x] ≥
(

1 − ε

4

)(
max
y∈


f (Q(0)) · y
)

− O(1).(34)

In the above and throughout the paper, the order notation subsumes constants
that do not depend on the scaling of queue-sizes. However, it may depend on all
other (nonscaling, constant) system parameters such as n, ε, etc.

The proof of Lemma 6 is based on the variational characterization of distribution
in the exponential form. Specifically, we state the following proposition which is
a direct adaptation of the known results in literature; cf. [9].

PROPOSITION 7. Let T :
 → R and let M(
) be space of all distributions
on 
. Define F : M(
) → R as

F(μ) = Eμ(T (x)) + HER(μ),

where HER(μ) is the standard discrete entropy of μ. Then, F is uniquely maxi-
mized by the distribution ν, where

νx = 1

Z
exp(T (x)) for any x ∈ 
,



150 D. SHAH AND J. SHIN

where Z is the normalization constant (or partition function). Further, with respect
to ν, we have

Eν[T (x)] ≥
[
max
x∈X

T (x)
]
− log|
|.

PROOF. Observe that the definition of distribution ν implies that for any
x ∈ 
,

T (x) = logZ + logνx.

Using this, for any distribution μ on 
, we obtain

F(μ) =∑
x

μxT (x) −∑
x

μx logμx

=∑
x

μx(logZ + logνx) −∑
x

μx logμx

=∑
x

μx logZ +∑
x

μx log
νx

μx

= logZ +∑
x

μx log
νx

μx

≤ logZ + log
(∑

x
μx

νx

μx

)
= logZ

with equality if and only if μ = ν. To complete other claim of proposition, con-
sider x∗ ∈ arg maxT (x). Let μ be Dirac distribution μx = 1[x=x∗]. Then, for this
distribution

F(μ) = T (x∗).

But, F(ν) ≥ F(μ). Also, the maximal entropy of any distribution on 
 is log|
|.
Therefore,

T (x∗) ≤ F(ν)

= Eν[T (x)] + HER(ν)(35)

≤ Eν[T (x)] + log|
|.
Rearrangement of terms in (35) will imply the second claim of Proposition 7. This
completes the proof of Proposition 7. �

PROOF OF LEMMA 6. The proof is based on known observations in the con-
text of classical loss networks literature; cf. [15]. In what follows, for simplicity,
we use π = π(0) for a given Q = Q(0). From (9) and (19), it follows that for
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both network models, the stationary distribution π has the following form: for any
x ∈ 
,

πx ∝∏
i

exp(Wixi)

xi ! = exp
(∑

i

Wixi − log(xi !)
)
.

To apply Proposition 7, this suggests the choice of function T : X → R as

T (x) =∑
i

Wixi − log(xi !) for any x ∈ 
.

Observe that for any x ∈ 
, xi takes one of the finitely many values in wireless or
circuit switched network for all i. Therefore, it easily follows that

0 ≤∑
i

log(xi !) ≤ O(1),

where the constant may depend on n and the problem parameter (e.g., Cmax in
circuit switched network). Therefore, for any x ∈ 
,

T (x) ≤∑
i

Wixi

(36)
≤ T (x) + O(1).

Define x̂ = arg maxx∈


∑
i Wixi . From (36) and Proposition 7, it follows that

Eπ

[∑
i

Wixi

]
≥ Eπ [T (x)]

≥ max
x∈


T (x) − log|
|
≥ T (̂x) − log|
|(37)

=
(∑

i

Wix̂i

)
− O(1) − log|
|

=
(
max
x∈


W · x
)

− O(1).

From the definition of weight in both algorithms [(3) and (4)] for a given Q, weight
W = [Wi] is defined as

Wi = max
{
f (Qi),

√
f (Qmax)

}
.

Define η
�= ε

4 maxx∈
 ‖x‖1
. To establish the proof of Lemma 6, we will consider Qmax

such that it is large enough satisfying

ηf (Qmax) ≥
√

f (Qmax).
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For smaller Qmax we do not need to argue as that case (34) [due to O(1) term] is
straightforward. Therefore, in the remainder we assume Qmax large enough. For
this large enough Qmax, it follows that for all i,

0 ≤ Wi − f (Qi) ≤
√

f (Qmax) ≤ ηf (Qmax).(38)

Using (38), for any x ∈ 
,

0 ≤ W · x − f (Q) · x = (W − f (Q)
) · x

≤ ‖x‖1‖W − f (Q)‖∞
≤ ‖x‖1 × ηf (Qmax)(39)

(a)≤ ε

4
f (Qmax)

(b)≤ ε

4

(
max
y∈


f (Q) · y
)
,

where (a) is from our choice of η = ε
4 maxx∈
 ‖x‖1

. For (b), we use the fact that
the singleton set {i}, that is, independent set {i} for wireless network and a sin-
gle active on route i for circuit switched network, is a valid schedule. And, for
i = arg maxj Qj , it has weight f (Qmax). Therefore, the weight of the maximum
weighted schedule among all possible schedules in 
 is at least f (Qmax). Finally,
using (37) and (39) we obtain

Eπ [f (Q) · x] ≥ Eπ [W · x] − ε

4

(
max
y∈


f (Q) · y
)

≥
(
max
y∈


W · y
)

− O(1) − ε

4

(
max
y∈


f (Q) · y
)

≥
(
max
y∈


f (Q) · y
)

− O(1) − ε

4

(
max
y∈


f (Q) · y
)

=
(

1 − ε

4

)(
max
y∈


f (Q) · y
)

− O(1).

This completes the proof of Lemma 6. �

5.3.2. Step two. Let μ(t) be the distribution of schedule x(t) over 
 at time t ,
given initial state X(0) = (Q(0),x(0)). We wish to show that for any initial con-
dition x(0) ∈ 
, for t large (but not too large) enough, μ(t) is close to π(0) if
Qmax(0) is large enough. Formal statement is as follows.

LEMMA 8. For a large enough Qmax(0),

‖μ(t) − π(0)‖TV < ε/4(40)
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for t ∈ I = [b1(Qmax(0)), b2(Qmax(0))], where b1, b2 are integer-valued functions
on R+ such that

b1, b2 = polylog(Qmax(0)) and b2/b1 = �(log(Qmax(0))).

In the above, the constants may depend on ε,Cmax and n.

The notation polylog(z) represents a positive real-valued function of z that scales
no faster than a finite degree polynomial of log z.

PROOF OF LEMMA 8. We shall prove this lemma for the wireless network.
The proof of buffered circuit switch network follows in an identical manner.
Hence, we shall skip it. Therefore, we shall assume 
 = I(G) and x(t) = σ (t).

First, we establish the desired claim for integral times. The argument for nonin-
tegral times will follow easily as argued near the end of this proof. For t = τ ∈ Z+,
we have

μ(τ + 1) = E
[
δσ (τ+1)

]
= E

[
δσ (τ ) · P(τ)

]
,

where recall that P(τ)=en(GW(W(τ ))−I ) and the last equality follows from (16).
Again recall that the expectation is with respect to the joint distribution of
{Q(τ ),σ (τ )}. Hence, it follows that

μ(τ + 1) = E
[
δσ (τ ) · P(τ)

]
= E

[
E
[
δσ (τ ) · P(τ)|Q(τ )

]]
(a)= E

[
E
[
δσ (τ )|Q(τ )

] · P(τ)
]

= E[μ̃(τ ) · P(τ)],
where

μ̃(τ ) = μ̃(Q(τ ))
�= E

[
δσ (τ )|Q(τ )

]
.

In the above, the expectation is taken with respect to the conditional marginal
distribution of σ (τ ) given Q(τ ); (a) follows from the linearity of expectation and
the fact that P(τ) is a function of Q(τ ). Next, we establish the relation between
μ(τ) and μ(τ + 1):

μ(τ + 1) = E[μ̃(τ ) · P(τ)]
= E[μ̃(τ ) · P(0)] + E

[
μ̃(τ ) · (P(τ) − P(0)

)]
= E[μ̃(τ )] · P(0) + e(τ )

= μ(τ) · P(0) + e(τ ),
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where e(τ )
�= E[μ̃(τ ) · (P (τ) − P(0))]. Here the expectation is with respect to

Q(τ ). Similarly,

μ(τ + 1) = μ(τ) · P(0) + e(τ )

= (μ(τ − 1) · P(0) + e(τ − 1)
) · P(0) + e(τ )

= μ(τ − 1) · P(0)2 + e(τ − 1) · P(0) + e(τ ).

Therefore, recursively we obtain

μ(τ + 1) = μ(0) · P(0)τ+1 +
τ∑

s=0

e(τ − s) · P(0)s .(41)

We will choose b1 [which will depend on Qmax(0)] such that for τ ≥ b1,

‖μ(0) · P(0)τ − π(0)‖TV ≤ ε/8.(42)

That is, b1 is the mixing time of P(0). Using inequalities (6), (8) and Lemma 3, it
follows that

b1 ≡ b1(Qmax(0)) = polylog(Qmax(0)).(43)

In the above, constants may depend on n and ε. Therefore, from (41) and (42), it
suffices to show that ∥∥∥∥∥

τ−1∑
s=0

e(τ − 1 − s) · P(0)s

∥∥∥∥∥
1

≤ ε/4(44)

for τ ∈ I = [b1, b2] with an appropriate choice of b2 = b2(Qmax(0)).8 To this end,
we choose

b2 ≡ b2(Qmax(0)) = �b1 log(Qmax(0))�.(45)

Thus, b2(Qmax(0)) = polylog(Qmax(0)) as well. With this choice of b2, we obtain
the following bound on e(τ ) to conclude (44):

‖e(τ )‖1 = ∥∥E[μ̃(τ ) · (P(τ) − P(0)
)]∥∥

1

≤ E
[∥∥μ̃(τ ) · (P(τ) − P(0)

)∥∥
1

]
(a)≤ O

(
E[‖P(τ) − P(0)‖∞])

(b)= O
(
E[‖GW(W(τ )) − GW(W(0))‖∞])

(c)= O

(
E

[
max

i

∣∣∣∣ 1

1 + exp(Wi(τ ))
− 1

1 + exp(Wi(0))

∣∣∣∣])(46)

8Note that ‖u‖TV = 1
2‖u‖1. Hence, ‖∑τ−1

s=0 e(τ − 1 − s) · P(0)s‖TV ≤ ε/8.
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(d)= O
(
E[max

i
|Wi(τ) − Wi(0)|]

)
(e)= O

(
max

i
E[|Wi(τ) − Wi(0)|]

)
.

In the above, (a) follows from the standard norm inequality and the fact that
‖μ̃(τ )‖1 = 1, (b) follows from Lemma 10 in the Appendix, (c) follows directly
from the definition of transition matrix GD(W), (d) follows from 1-Lipschitz9

property of function 1/(1 + ex) and (e) follows from the fact that vector W(τ )

being O(1) dimensional.10

Next, we will show that for all i and τ ≤ b2,

E[|Wi(τ) − Wi(0)|] = O

(
1

superpolylog(Qmax(0))

)
,(47)

the notation superpolylog(z) represents a positive real-valued function of z that
scales faster than any finite degree polynomial of log z. This is enough to conclude
(44) (hence, complete the proof of Lemma 8) since∥∥∥∥∥

τ−1∑
s=0

e(τ − 1 − s) · P(0)s

∥∥∥∥∥
1

≤
τ−1∑
s=0

‖e(τ − 1 − s) · P(0)s‖1

=
τ−1∑
s=0

O
(‖e(τ − 1 − s)‖1

)
(a)= O

(
τ

superpolylog(Qmax(0))

)
(b)≤ ε

4
,

where we use (46) and (47) to obtain (a), (b) holds for large enough Qmax(0) and
τ ≤ b2 = polylog(Qmax(0)).

Now to complete the proof, we only need to establish (47). This is the step
that utilizes “slowly varying” property of function f (x) = log log(x + e). First,
we provide an intuitive sketch of the argument. Somewhat involved details will
follow. To explain the intuition behind (47), let us consider a simpler situation
where i is such that Qi(0) = Qmax(0) and f (Qi(τ )) >

√
f (Qmax(τ )) for a given

τ ∈ [0, b2]. That is, let Wi(τ) = f (Qi(τ )). Now, consider the following sequence

9A function f : R → R is k-Lipschitz if |f (s) − f (t)| ≤ k|s − t | for all s, t ∈ R.
10We note here that the O(·) notation means existences of constants that do not depend scaling

quantities such as time τ and Q(0); however it may depend on the fixed system parameters such as
number of queues. The use of this terminology is to retain the clarity of exposition.



156 D. SHAH AND J. SHIN

of inequalities:

|Wi(τ) − Wi(0)| = |f (Qi(τ )) − f (Qi(0))|
(a)≤ f ′(ζ )|Qi(τ) − Qi(0)| for some ζ around Qi(0)

(b)≤ f ′(min{Qi(τ),Qi(0)})O(τ)(48)

(c)≤ f ′(Qi(0) − O(τ)
)
O(τ)

(d)= O

(
τ

Qi(0)

)
.

In the above, (a) follows from the mean value theorem; (b) follows from mono-
tonicity of f ′ and Lipschitz property of Qi(·) (as a function of τ )—which holds de-
terministically for wireless network due to the assumption of the Bernoulli arrival
process and probabilistically for circuit switched network; (c) uses the same Lips-
chitz property; (d) uses the fact that τ ≤ b2 and b2 = polylog(Qmax(0)), Qmax(0) =
Qi(0). Therefore, effectively, the bound of (48) is O(1/superpolylog(Qmax(0)).

The above explains the gist of the argument that is to follow. However, to
make it precise, we will need to provide lots more details. Toward this, we con-
sider the following two cases: (i) f (Qi(0)) ≥ √

f (Qmax(0)) and (ii) f (Qi(0)) <√
f (Qmax(0)). In what follows, we provide detailed arguments for (i). The argu-

ments for case (ii) are similar in spirit and will be provided later in the proof.
Case (i). Consider an i such that f (Qi(0)) ≥ √

f (Qmax(0)). Then,

E[|Wi(τ) − Wi(0)|]
= E[|Wi(τ) − f (Qi(0))|]

(49)
= E

[|f (Qi(τ )) − f (Qi(0))| · I{f (Qi(τ ))≥√
f (Qmax(τ ))}

]
+ E

[∣∣√f (Qmax(τ )) − f (Qi(0))
∣∣ · I{f (Qi(τ ))<

√
f (Qmax(τ ))}

]
,

where each equality follows from (3) and recall that IA is the indicator function of
event A. The first term in (49) can be bounded as

E
[|f (Qi(τ )) − f (Qi(0))| · I{f (Qi(τ ))≥√

f (Qmax(τ ))}
]

≤ E[|f (Qi(τ )) − f (Qi(0))|]
(o)≤ E[f ′(min{Qi(τ),Qi(0)})|Qi(τ) − Qi(0)|]
(a)≤
√

E[f ′(min{Qi(τ),Qi(0)})2] ·
√

E
[(

Qi(τ) − Qi(0)
)2]

(b)≤
√

f ′
(

Qi(0)

2

)2

+ �

(
τ

Qi(0)

)
· O(τ)(50)
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(c)≤
√√√√f ′

(
1

2
f −1

(√
f (Qmax(0))

))2

+ �

(
τ

f −1(
√

f (Qmax(0)))

)
× O(τ)

(d)= O

(
1

superpolylog(Qmax(0))

)
.

In the above, (o) follows from concavity of f . For (a), we use the standard Cauchy–
Schwarz inequality E[XY ] ≤ √

E[X2]√E[Y 2]. For (b), note that given Qi(0),
E[[Qi(0) − Qi(τ)]2] = O(τ 2) for both network models—for wireless network,
it is deterministically true since we assume the Bernoulli arrival process and Q(·)
is Lipschitz; for circuit switched network, it is due to the fact that the arrival as well
as (the overall) departure processes are bounded rate Poisson processes. Given this,
using Markov’s inequality it follows that

Pr
(

min{Qi(τ),Qi(0)} ≤ Qi(0)

2

)
= O

(
τ

Qi(0)

)
.

Finally, using the fact that supy∈R+ f ′(y) = O(1), we obtain (b). Now (c) follows
from the condition of Qi(0) that f (Qi(0)) ≥ √

f (Qmax(0)) and (d) is implied by
τ ≤ b2 = polylog(Qmax(0)), f (x) = log log(x + e).

Next, we bound the second term in (49). We will use notation

A(τ) = {f (Qi(τ )) <
√

f (Qmax(τ )) and
√

f (Qmax(τ )) ≥ f (Qi(0))
}
,

B(τ) = {f (Qi(τ )) <
√

f (Qmax(τ )) and
√

f (Qmax(τ )) < f (Qi(0))
}
.

Then,

E
[∣∣√f (Qmax(τ )) − f (Qi(0))

∣∣ · I{f (Qi(τ ))<
√

f (Qmax(τ ))}
]

= E
[(√

f (Qmax(τ )) − f (Qi(0))
) · IA(τ)

]
+ E

[(
f (Qi(0)) −

√
f (Qmax(τ ))

) · IB(τ)

]
(a)≤ E

[(√
f (Qmax(τ )) −

√
f (Qmax(0))

) · IA(τ)

]
(51)

+ E
[(

f (Qi(0)) − f (Qi(τ ))
) · IB(τ)

]
(b)≤ E[|f (Qmax(τ )) − f (Qmax(0))|]

+ E[|f (Qi(0)) − f (Qi(τ ))|]
= O

(
1

superpolylog(Qmax(0))

)
.
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In the above, (a) follows because we are considering case (i) with f (Qi(0)) ≥√
f (Qmax(0)) and definition of event B(τ); (b) follows from 1-Lipschitz prop-

erty of
√· function and appropriate removal of indicator random variables. For

the final conclusion, we observe that the arguments used to establish (50) imply
the O(1/superpolylog(Qmax(0))) bound on both the terms in very similar manner;
for the term corresponding to |f (Qmax(τ )) − f (Qmax(0))|, one has to adapt ar-
guments of (50) by essentially replacing the index i by max. This concludes the
proof of (47) for case (i) of f (Qi(0)) ≥ √

f (Qmax(0)).
Case (ii). Now consider i such that f (Qi(0)) <

√
f (Qmax(0)). Then,

E[|Wi(τ) − Wi(0)|]
= E

[∣∣Wi(τ) −
√

f (Qmax(0))
∣∣]

(52)
= E

[∣∣f (Qi(τ )) −
√

f (Qmax(0))
∣∣ · I{f (Qi(τ ))≥√

f (Qmax(τ ))}
]

+ E
[∣∣√f (Qmax(τ )) −

√
f (Qmax(0))

∣∣ · I{f (Qi(τ ))<
√

f (Qmax(τ ))}
]
.

First observe that by 1-Lipschitz property of
√· function, the second term can be

bounded as [similar to (51)]

E
[∣∣√f (Qmax(τ )) −

√
f (Qmax(0))

∣∣ · I{f (Qi(τ ))<
√

f (Qmax(τ ))}
]

≤ E[|f (Qmax(τ )) − f (Qmax(0))|](53)

= O

(
1

superpolylog(Qmax(0))

)
.

Therefore, we are left with proving the first term of (52). We will follow a similar
line of arguments as those used for (51). Define

A′(τ ) = {f (Qi(τ )) ≥
√

f (Qmax(τ )) and
√

f (Qmax(0)) ≥ f (Qi(τ ))
}
,

B ′(τ ) = {f (Qi(τ )) ≥
√

f (Qmax(τ )) and
√

f (Qmax(0)) < f (Qi(τ ))
}
.

Then,

E
[∣∣f (Qi(τ )) −

√
f (Qmax(0))

∣∣ · I{f (Qi(τ ))≥√
f (Qmax(τ ))}

]
= E

[(√
f (Qmax(0)) − f (Qi(τ ))

) · IA′(τ )

]
+ E

[(
f (Qi(τ )) −

√
f (Qmax(0))

) · IB ′(τ )

]
(a)≤ E

[(√
f (Qmax(0)) −

√
f (Qmax(τ ))

) · IA′(τ )

]
+ E

[(
f (Qi(τ )) −

√
f (Qmax(0))

) · IB ′(τ )

]
(54)
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(b)≤ O

(
1

superpolylog(Qmax(0))

)
+ E

[(
f (Qi(τ )) −

√
f (Qmax(0))

) · IB ′(τ )

]
.

In the above, (a) follows because we are considering case (i) with f (Qi(τ )) ≥√
f (Qmax(τ )) and definition of event B(τ); (b) follows from 1-Lipschitz property

of
√· function and appropriate removal of indicator random variables as follows:

E
[(√

f (Qmax(0)) −
√

f (Qmax(τ ))
) · IA′(τ )

]
≤ E[|f (Qmax(τ )) − f (Qmax(0))|](55)

= O

(
1

superpolylog(Qmax(0))

)
.

Finally, to complete the proof of case (ii) using (52), we wish to establish

E
[(

f (Qi(τ )) −
√

f (Qmax(0))
) · IB ′(τ )

]= O

(
1

superpolylog(Qmax(0))

)
.(56)

Now suppose x ∈ R+ be such that f (x) = √
f (Qmax(0)). Then,

E
[(

f (Qi(τ )) −
√

f (Qmax(0))
) · IB ′(τ )

]
= E

[(
f (Qi(τ )) − f (x)

) · IB ′(τ )

]
(a)≤ E

[
f ′(x)

(
Qi(τ) − x

) · IB ′(τ )

]
= f ′(x)E

[(
Qi(τ) − x

) · IB ′(τ )

]
(57)

(b)≤ f ′(x)E
[(

Qi(τ) − Qi(0)
) · IB ′(τ )

]
≤ f ′(x)E[|Qi(τ) − Qi(0)|]
(c)= f ′(x)O(τ)

(d)= O

(
1

superpolylog(Qmax(0))

)
.

In the above, (a) follows from concavity of f ; (b) from Qi(0) ≤ x and Qi(τ) ≥
x implied by case (ii) and B ′(τ ), respectively; (c) follows from arguments used
earlier that for any i, E[(Qi(τ ) − Qi(0))2] = O(τ 2); (d) follows from τ ≤ b2 =
polylog(Qmax(0)) and

f ′(x) = O

(
1

superpolylog(Qmax(0))

)
.

This complete the proof of (47) for both cases and the proof of Lemma 8 for inte-
gral time steps. A final remark regarding the validity of this result for nonintegral
times is in order.
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Consider t ∈ I and t /∈ Z+. Let τ = �t� and t = τ + δ for δ ∈ (0,1). Then, it
follows that [using formal definition P δ as in (17)]

μ(t) = μ(τ + δ)

= μ(τ)P δ(0) + E
[
μ̃(τ )

(
P δ(τ ) − P δ(0)

)]
(58)

= μ(0)P (0)τP δ(0) + e(τ + δ).

Now it can be checked that P δ(0) is a probability matrix and has π(0) as its sta-
tionary distribution for any δ > 0 and we have argued that for τ large enough
μ(0)P (0)τ is close to π(0). Therefore, μ(0)P (0)τP δ(0) is also equally close to
π(0). For e(τ + δ), it can be easily argued that the bound obtained in (46) for
e(τ + 1) will dominate the bound for e(τ + δ). Therefore, the statement of lemma
holds for any nonintegral t as well. This completes the proof of Lemma 8. �

5.3.3. Step three: Wireless network. In this section, we prove Lemma 5 for the
wireless network model. For Markov process X(t) = (Q(t),σ (t)), we consider
Lyapunov function

L(X(t)) =∑
i

F (Qi(t)),

where F(x) = ∫ x
0 f (y) dy and recall that f (x) = log log(x +e). For this Lyapunov

function, it suffices to find appropriate functions h and g as per Lemma 5 for a
large enough Qmax(0). Therefore, we assume that Qmax(0) is large enough so that
it satisfies the conditions of Lemma 8. To this end, from Lemma 8, we have that
for t ∈ I , ∣∣Eπ(0)[f (Q(0)) · σ ] − Eμ(t)[f (Q(0)) · σ ]∣∣

≤ ε

4

(
max

ρ∈I(G)
f (Q(0)) · ρ

)
.

Thus, from Lemma 6, it follows that

Eμ(t)[f (Q(0)) · σ ] ≥
(

1 − ε

2

)(
max

ρ∈I(G)
f (Q(0)) · ρ

)
− O(1).(59)

Now we can bound the difference between L(X(τ + 1)) and L(X(τ)) as

L
(
X(τ + 1)

)− L(X(τ))

= (F (Q(τ + 1)
)− F(Q(τ ))

) · 1

≤ f
(
Q(τ + 1)

) · (Q(τ + 1) − Q(τ )
)

≤ f (Q(τ )) · (Q(τ + 1) − Q(τ )
)+ n,
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where the first inequality is from the convexity of F and the last inequality follows
from the fact that f (Q(·)) is 1-Lipschitz (as a function of τ ).11 Therefore,

L
(
X(τ + 1)

)− L(X(τ))

= (F (Q(τ + 1)
)− F(Q(τ ))

) · 1

≤ f (Q(τ )) ·
(
A(τ, τ + 1) −

∫ τ+1

τ
σ (y)1{Qi(y)>0} dy

)
+ n(60)

(a)≤ f (Q(τ )) · A(τ, τ + 1) −
∫ τ+1

τ
f (Q(y)) · σ (y)1{Qi(y)>0} dy + 2n

= f (Q(τ )) · A(τ, τ + 1) −
∫ τ+1

τ
f (Q(y)) · σ (y) dy + 2n,

where, again, (a) follows from the fact that f (Q(·)) is 1-Lipschitz. Given initial
state X(0) = x, taking the expectation of (60) for τ, τ + 1 ∈ I ,

Ex
[
L
(
X(τ + 1)

)− L(X(τ))
]

≤ Ex[f (Q(τ )) · A(τ, τ + 1)] −
∫ τ+1

τ
Ex[f (Q(y)) · σ (y)]dy + 2n

= Ex[f (Q(τ )) · λ] −
∫ τ+1

τ
Ex[f (Q(y)) · σ (y)]dy + 2n,

where the last equality follows from the independence between Q(τ ) and A(τ, τ +
1) (recall, Bernoulli arrival process). Therefore,

Ex
[
L
(
X(τ + 1)

)− L(X(τ))
]

≤ Ex[f (Q(τ )) · λ] −
∫ τ+1

τ
Ex[f (Q(0)) · σ (y)]dy

−
∫ τ+1

τ
Ex
[(

f (Q(y)) − f (Q(0))
) · σ (y)

]
dy + 2n

(a)≤ f
(
Q(0) + τ · 1

) · λ −
∫ τ+1

τ
Ex[f (Q(0)) · σ (y)]dy

−
∫ τ+1

τ

(
f
(
Q(0) − y · 1

)− f (Q(0))
) · 1dy + 2n

(b)≤ f (Q(0)) · λ + f (τ · 1) · λ −
(

1 − ε

2

)(
max

ρ∈I(G)
f (Q(0)) · ρ

)
+
∫ τ+1

τ
f (y · 1) · 1dy + O(1)

11Recall that Q(·) is 1-Lipschitz since we assume the Bernoulli arrival process for wireless network.
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≤ f (Q(0)) · λ −
(

1 − ε

2

)(
max

ρ∈I(G)
f (Q(0)) · ρ

)
+ 2nf (τ + 1) + O(1).

In the above, (a) uses Lipschitz property of Q(·) (as a function of τ ); (b) follows
from (59) and the inequality that for f (x) = log log(x + e), f (x)+f (y)+ log 2 ≥
f (x+y) for all x, y ∈ R+. The O(1) term is constant, dependent on n and captures
the constant from (59).

Now, since λ ∈ (1 − ε)Conv(I(G)), we obtain

Ex
[
L
(
X(τ + 1)

)− L(X(τ))
]

≤ −ε

2

(
max

ρ∈I(G)
f (Q(0)) · ρ

)
+ 2nf (τ + 1) + O(1)

≤ −ε

2
f (Qmax(0)) + 2nf (τ + 1) + O(1).

Therefore, summing τ from b1 = b1(Qmax(0)) to b2 = b2(Qmax(0)) [recall defini-
tion of b1, b2 from (43) and (45), resp.], we have

Ex[L(X(b2)) − L(X(b1))]

≤ −ε

2
(b2 − b1)f (Qmax(0)) + 2n

b2−1∑
τ=b1

f (τ + 1) + O(b2 − b1)(61)

≤ −ε

2
(b2 − b1)f (Qmax(0)) + 2n(b2 − b1)f (b2) + O(b2 − b1).

Thus, we obtain

Ex[L(X(b2)) − L(X(0))]
= Ex[L(X(b1)) − L(X(0))] + Ex[L(X(b2)) − L(X(b1))]
(a)≤ Ex

[
f (Q(b1)) · (Q(b1) − Q(0)

)]− ε

2
(b2 − b1)f (Qmax(0))

(62)

+ 2n

b2−1∑
τ=b1

f (τ + 1) + O(b2 − b1)

(b)≤ nb1f
(
Qmax(0) + b1

)− ε

2
(b2 − b1)f (Qmax(0))

+ 2n(b2 − b1)f (b2) + O(b2 − b1),

where (a) follows from the convexity of L and (b) is due to the 1-Lipschitz property
of Q(·). Now if we choose g(x) = b2 and

h(x) = −nb1f
(
Qmax(0) + b1

)+ ε

2
(b2 − b1)f (Qmax(0))

− 2n(b2 − b1)f (b2) − O(b2 − b1),
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the desired inequality follows:

Ex[L(X(g(x))) − L(X(0))] ≤ −h(x).

The desired conditions of Lemma 5 can be checked as follows. First observe that
with respect to Qmax(0), the function h scales as b2(Qmax(0))f (Qmax(0)) due to
b2/b1 = �(logQmax(0)) as per Lemma 8. Further, h is a function that is lower
bounded and its value goes to ∞ as Qmax(0) goes to ∞. Therefore, h/g scales as
f (Qmax(0)). These properties will imply the verification conditions of Lemma 5.

5.3.4. Step three: Buffered circuit switched network. In this section we prove
Lemma 5 for the circuit switched network model. Similar to wireless network,
we are interested in large enough Qmax(0) that satisfies condition of Lemma 8.
Given the state X(t) = (Q(t), z(t)) of the Markov process, we shall consider the
following Lyapunov function:

L(X(t)) =∑
i

F (Ri(t)).

Here R(t) = [Ri(t)] with Ri(t) = Qi(t)+zi(t) and, as before, F(x) = ∫ x
0 f (y) dy.

Now we proceed toward finding appropriate functions h and g as desired in Lem-
ma 5. For any τ ∈ Z+,

L
(
X(τ + 1)

)− L(X(τ))

= (F (R(τ + 1)
)− F(R(τ ))

) · 1

≤ f
(
R(τ + 1)

) · (R(τ + 1) − R(τ )
)
,

= f
(
R(τ ) + A(τ, τ + 1) − D(τ, τ + 1)

) · (A(τ, τ + 1) − D(τ, τ + 1)
)

≤ f (R(τ )) · (A(τ, τ + 1) − D(τ, τ + 1)
)+ ‖A(τ, τ + 1) − D(τ, τ + 1)‖2

2.

Given initial state X(0) = x, taking expectation for τ, τ + 1 ∈ I , we have

Ex
[
L
(
X(τ + 1)

)− L(X(τ))
]

≤ Ex[f (R(τ )) · A(τ, τ + 1)] − Ex[f (R(τ )) · D(τ, τ + 1)]
(63)

+ Ex[‖A(τ, τ + 1) − D(τ, τ + 1)‖2
2]

= Ex[f (R(τ )) · λ] − Ex[f (R(τ )) · D(τ, τ + 1)] + O(1).

The last equality follows from the fact that arrival process is Poisson with rate
vector λ and R(τ ) is independent of A(τ, τ + 1). In addition, the overall departure
process for any i, Di(·), is governed by a Poisson process of rate at most Cmax.
Therefore, the second moment of the difference of arrival and departure processes
in unit time is O(1).
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Now we consider each term in (63) separately as

Ex[f (R(τ )) · λ] = f (R(0)) · λ + Ex
[(

f (R(τ )) − f (R(0))
) · λ]

(64)
≤ f (R(0)) · λ + Ex[‖f (R(τ )) − f (R(0))‖1]

and

Ex[f (R(τ )) · D(τ, τ + 1)]
= Ex[f (R(0)) · D(τ, τ + 1)] + Ex

[(
f (R(τ )) − f (R(0))

) · D(τ, τ + 1)
]

(65)

≥ Ex[f (R(0)) · D(τ, τ + 1)] − O
(
Ex[‖f (R(τ )) − f (R(0))‖1]),

where the last inequality in (65) is because Di(·) is governed by a Poisson process
of rate at most Cmax = O(1). In what follows, we will bound each term in (64) and
(65). The first term on the right-hand side in (64) can be bounded as

f (R(0)) · λ ≤ (1 − ε)
(
max
y∈X

f (R(0)) · y
)

(66)

≤ −3ε

4

(
max
y∈X

f (R(0)) · y
)

+ Eπ(0)[f (R(0)) · z] + O(1),

where the first inequality is due to λ ∈ (1 − ε)Conv(X ) and the second inequality
follows from Lemma 6 with the fact that |fi(R(τ )) − fi(Q(τ ))| < f (Cmax) =
O(1) for all i. On the other hand, the first term in the right-hand side of (65) can
be bounded below as

Ex[f (R(0)) · D(τ, τ + 1)] = f (R(0)) · Ex[D(τ, τ + 1)]
≥ f (R(0)) ·

∫ τ+1

τ
Ex[z(s)]ds(67)

=
∫ τ+1

τ
Eμ(s)[f (R(0)) · z]ds.

In the above, we have used the fact that Di(·) is a Poisson process with rate given
by zi(·). Further, the second terms in the right-hand side of (64) and (65) can be
bounded using

Ex[‖f (R(τ )) − f (R(0))‖1] ≤ Ex
[
f
(|R(τ ) − R(0)|)]+ O(1)

≤ f
(
Ex[|R(τ ) − R(0)|])+ O(1)

(68)
≤ nf (Cmaxτ) + O(1)

= O(f (τ)),

where the first inequality follows from f (x + y) ≤ f (x) + f (y) + O(1) for any
x, y ∈ R+ and the second inequality follows by applying Jensen’s inequality for
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concave function f . Combining (63)–(68), we obtain

Ex
[
L
(
X(τ + 1)

)− L(X(τ))
]

≤ −3ε

4

(
max
y∈X

f (R(0)) · y
)

+ Eπ(0)[f (R(0)) · z]

−
∫ τ+1

τ
Eμ(s)[f (R(0)) · z]ds + O(f (τ))

≤ −3ε

4

(
max
y∈X

f (R(0)) · y
)

+
∫ τ+1

τ

(
max
y∈X

f (R(0)) · y
)
‖μ(s) − π(0)‖TV ds + O(f (τ))

(a)≤ −ε

2

(
max
y∈X

f (R(0)) · y
)

+ O(f (τ))

≤ −ε

2
f (Qmax(0)) + O(f (τ)),

where (a) follows from Lemma 8. Summing this for τ ∈ I = [b1, b2 −1], it follows
that

Ex[L(X(b2)) − L(X(b1))] ≤ −ε

2
f (Qmax(0))(b2 − b1)

(69)
+ O

(
(b2 − b1)f (b2)

)
.

Therefore, we have

Ex[L(X(b2)) − L(X(0))]
= Ex[L(X(b1)) − L(X(0))] + Ex[L(X(b2)) − L(X(b1))]
(a)≤ Ex

[
f (R(b1)) · (R(b1) − R(0)

)]+ Ex[L(X(b2)) − L(X(b1))]
=∑

i

Ex
[
f (Ri(b1)) · (Ri(b1) − Ri(0)

)]+ Ex[L(X(b2)) − L(X(b1))]

(b)≤ ∑
i

√
Ex[f (Ri(b1))2]

√
Ex
[(

Ri(b1) − Ri(0)
)2]

+ Ex[L(X(b2)) − L(X(b1))]
(c)≤ ∑

i

√
f (Ex[Ri(b1)])2 + O(1) · O(b1) + Ex[L(X(b2)) − L(X(b1))]

(d)= nf
(
Qmax(0) + O(b1)

) · O(b1) − ε

2
f (Qmax(0))(b2 − b1)

+ O
(
(b2 − b1)f (b2)

)
�= −h(x).
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Here (a) follows from convexity of L; (b) follows from Cauchy–Schwarz; (c) is
due to the bounded second moment of Ex[(Ri(b1) − Ri(0))2] = O(b2

1) as argued
earlier in the proof and observing that there exists a concave function f̃ such that
f 2 = f̃ + O(1) over R+, subsequently Jensen’s inequality can be applied; (d) fol-
lows from (69). Finally, choose g(x) = b2.

With these choices of h and g, the desired conditions of Lemma 5 can be
checked as follows. First observe that with respect to Qmax(0), the function h

scales as b2(Qmax(0))f (Qmax(0)) due to b2/b1 = �(logQmax(0)) as per (43),
(45) in Lemma 8. Further, h is a function that is lower bounded and its value goes
to ∞ as Qmax(0) goes to ∞. Therefore, h/g scales as f (Qmax(0)). These proper-
ties will imply the verification conditions of Lemma 5.

5.3.5. Step four. For completing the proof of ergodicity of the Markov pro-
cess, we need to verify condition (C2) stated in Section 4.4.3. From the first
three steps of the proof and Lemma 5, it follows that for large enough κ > 0,
set Bκ = {x ∈ X :L(x) ≤ κ} satisfies (C1). For this set, we wish to verify (C2).
The following lemma, for wireless network, establishes (C2) for any such Bκ . An
identical result for buffered circuit switched network can be established following
essentially the same argument and hence, shall be skipped.

LEMMA 9. Let the network Markov process X(·) start with the state x ∈ Bκ

at time 0, that is, X(0) = x. Then, there exists Tκ ≥ 1 and γκ > 0 such that

Tκ∑
τ=1

Prx
(
X(τ) = 0

)≥ γκ ∀x ∈ Bκ.

Here 0 = (0,0) ∈ X denote the state where all components of Q are 0 and the
schedule is the empty independent set. Further, Pr0(X(1) = 0) > 0.

PROOF. Consider any x ∈ Bκ . Then by definition L(x) ≤ κ + 1 for given
κ > 0. Hence, by definition of L(·), it can be easily checked that each queue is
bounded above by κ . Consider some large enough (soon to be determined) Tκ . By
the property of Bernoulli (it would be Poisson for circuit switched network) arrival
process, there is a positive probability θ0

κ > 0 of no arrivals happening to the sys-
tem during time interval of length Tκ . Assuming that no arrival happens, we will
show that in large enough time t1

κ , with probability θ1
κ > 0 each queue receives at

least κ amount of service and after that, in additional time t2 with positive proba-
bility θ2 > 0, the empty set schedule is reached. This will imply that by defining

Tκ
�= t1

κ + t2 the state 0 ∈ X is reached with probability at least

γκ
�= θ0

κ θ1
κ θ2 > 0.
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And this will immediately imply the desired result of Lemma 9. To this end, we
need to show existence of t1

κ , θ1
κ and t2, θ2 with properties stated above to complete

the proof of Lemma 9.
First, existence of t1

κ , θ1
κ . For this, note that the Markov chain corresponding to

the scheduling algorithm has time varying transition probabilities and is irreducible
over the space of all independent sets, I(G). If there are no new arrivals and initial
x ∈ Bκ , then clearly queue-sizes are uniformly bounded by κ . Therefore, the tran-
sition probabilities of all feasible transitions for this time varying Markov chain
is uniformly lower bounded by a strictly positive constant (dependent on κ,n). It
can be easily checked that the transition probability induced graph on I(G) has
diameter at most 2n and Markov chain transits as per exponential clock of overall
rate n. Therefore, it follows that starting from any initial scheduling configuration,
there exists finite time t̂κ such that a schedule is reached so that any given queue i

is scheduled for at least unit amount of time with probability at least θ̂κ > 0. Here,

both t̂κ , θ̂κ depend on n, κ . Therefore, it follows that in time t1
κ

�= κn̂tκ all queues

become empty with probability at least θ1
κ

�= (θ̂κ)nκ . Next, to establish existence
of t2, θ2 as desired, observe that once the system reaches empty queues, it follows
that, in the absence of new arrivals, the empty schedule 0 is reached after some
finite time t2 with probability θ2 > 0 by similar properties of the Markov chain
on I(G) when all queues are 0. Here t2 and θ2 are dependent on n only. Finally,
Pr0(X(1) = 0) > 0 follows from the above arguments easily. This completes the
proof of Lemma 9. �

6. Discussion. This paper introduced a new randomized scheduling algorithm
for two constrained queueing network models: wireless network and buffered cir-
cuit switched network. The algorithm is simple, distributed, myopic and through-
put optimal. The main reason behind the throughput optimality property of the
algorithm is two-fold: (1) The relation of algorithm dynamics to the Markovian
dynamics over the space of schedules that have a certain product-form station-
ary distribution and (2) choice of slowly increasing weight function log log(· + e)

that allows for an effective time scale separation between algorithm dynamics and
the queueing dynamics. We chose wireless network and buffered circuit switched
network model to explain the effectiveness of our algorithm because (a) they are
becoming of great interest [33, 34] and (b) they represent two different, general
class of network models: synchronized packet network model and asynchronous
flow network model.

Now we turn to discuss the distributed implementation of our algorithm. As
described in Section 3.1, given the weight information at each wireless node (or
ingress of a route), the algorithm completely distributed. The weight, as defined
in (3) [or (4)], depends on the local queue-size as well as the Qmax information.
As is, Qmax is global information. To keep the exposition simpler, we have used
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the precise Qmax information to establish the throughput property. However, as
remarked earlier in Section 3.1 [soon after (3)], the Qmax can be replaced by its
appropriate distributed estimation without altering the throughput optimality prop-
erty. Such a distributed estimation can be obtained through an extremely simple
Markovian-like algorithm that requires each node to perform broadcast of exactly
one number in unit time. A detailed description of such an algorithm can be found
in Section 3.3 of [24].

On the other hand, consider the algorithm that does not use Qmax information.
That is, instead of (3) or (4), let weight be

Wi(t) = f (Qi(�t�)).
We conjecture that this algorithm is throughput optimal.

APPENDIX: A USEFUL LEMMA

LEMMA 10. Let P1,P2 ∈ R
N×N . Then,

‖eP1 − eP2‖∞ ≤ eNM‖P1 − P2‖∞,

where M = max{‖P1‖∞,‖P1‖∞}.

PROOF. Using mathematical induction, we first establish that for any k ∈ N,

‖P k
1 − P k

2 ‖∞ ≤ k(NM)k−1‖P1 − P2‖∞.(70)

To this end, the base case k = 1 follows trivially. Suppose it is true for some k ≥ 1.
Then, the inductive step can be justified as

‖P k+1
1 − P k+1

2 ‖∞
= ‖P1(P

k
1 − P k

2 ) + (P1 − P2)P
k
2 ‖∞

≤ ‖P1(P
k
1 − P k

2 )‖∞ + ‖(P1 − P2)P
k
2 ‖∞

(a)≤ N‖P1‖∞‖P k
1 − P k

2 ‖∞ + N‖P1 − P2‖∞‖P k
2 ‖∞

(b)≤ NM × k(NM)k−1‖P1 − P2‖∞ + N‖P1 − P2‖∞ × Nk−1Mk

= (k + 1)(NM)k‖P1 − P2‖∞.

In the above, (a) follows from an easily verifiable fact that for any Q1,Q2 ∈
R

N×N ,

‖Q1Q2‖∞ ≤ N‖Q1‖∞‖Q2‖∞.
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We use induction hypothesis to justify (b). Using (70), we have

‖eP1 − eP2‖∞ =
∥∥∥∥∑

k

1

k!(P
k
1 − P k

2 )

∥∥∥∥∞
≤∑

k

1

k!‖P
k
1 − P k

2 ‖∞

≤∑
k

1

k!k(NM)k−1‖P1 − P2‖∞

= eNM‖P1 − P2‖∞. �
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