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RANDOMIZED SCHEDULING ALGORITHM FOR QUEUEING
NETWORKS!

BY DEVAVRAT SHAH AND JINWOO SHIN
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There has recently been considerable interest in design of low-complexity,
myopic, distributed and stable scheduling algorithms for constrained queue-
ing network models that arise in the context of emerging communication
networks. Here we consider two representative models. One, a queueing net-
work model that captures randomly varying number of packets in the queues
present at a collection of wireless nodes communicating through a shared
medium. Two, a buffered circuit switched network model for an optical core
of future internet to capture the randomness in calls or flows present in the
network. The maximum weight scheduling algorithm proposed by Tassiu-
las and Ephremides [IEEE Trans. Automat. Control 37 (1992) 1936-1948],
leads to a myopic and stable algorithm for the packet-level wireless network
model. But computationally it is expensive (NP-hard) and centralized. It is
not applicable to the buffered circuit switched network due to the requirement
of nonpreemption of the calls in the service. As the main contribution of this
paper, we present a stable scheduling algorithm for both of these models. The
algorithm is myopic, distributed and performs few logical operations at each
node per unit time.

1. Introduction. The primary task of a communication network architect is
to provision as well as utilize network resources efficiently to satisfy the demands
imposed on it. The main algorithmic problem is that of allocating or scheduling
resources among various entities or data units, for example, packets, flows, that
are contending to access them. In recent years the question of designing a simple,
myopic, distributed and high-performance (aka stable) scheduling algorithm has
received considerable interest in the context of emerging communication network
models. Two such models that we consider in this paper are that of a wireless
network and a buffered circuit switched network.

The wireless network consists of wireless transmission capable nodes. Each
node receives exogenous demand in the form of packets. These nodes communi-
cate these packets through a shared wireless medium. Hence, their simultaneous
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transmissions may contend with each other. The purpose of a scheduling algo-
rithm is to resolve these contentions among transmitting nodes so as to utilize
the wireless network bandwidth efficiently while keeping the queues at nodes fi-
nite. Naturally, the desired scheduling algorithm should be distributed, simple/low-
complexity and myopic (i.e., utilize only the network state information like queue-
sizes).

The buffered circuit switched network can be utilized to model the dynamics of
flows or calls in an optical core of future internet. Here a link capacitated network
is given with a collection of end-to-end routes. At the ingress (i.e., input or entry
point) of each route, calls arriving as per exogenous process are buffered or queued.
Each such call desires resources on each link of its route for a random amount of
time duration. Due to link capacity constraints, calls of routes sharing links contend
for resources. And a scheduling algorithm is required to resolve this contention so
as to utilize the network links efficiently while keeping buffers or queues at ingress
of routes finite. Again, the scheduling algorithm is desired to be distributed, simple
and myopic.

An important scheduling algorithm is the maximum weight algorithm that was
proposed by Tassiulas and Ephremides [31]. It was proposed in the context of a
packet queueing network model with generic scheduling constraints. It is primar-
ily applicable in a scenario where scheduling decisions are synchronized or made
every discrete time. It suggests scheduling queues, subject to constraints, that have
the maximum net weight at each time step with the weight of a queue being its
queue-size. They established stability or throughput optimality (precisely, positive
recurrence and subsequently ergodicity of the associated network Markov pro-
cess) property of this algorithm for this general class of networks. Further, this
algorithm, as the description suggests, is myopic. Due to the general applicability
and myopic nature, this algorithm and its variants have received a lot of attention
in recent years (see, e.g., [3, 4, 19, 25, 26, 28]).

The maximum weight algorithm provides a myopic and stable scheduling algo-
rithm for the wireless network model. However, it requires solving a combinatorial
optimization problem, the maximum weight independent set problem, to come up
with a schedule every time. And the problem of finding a maximum weight inde-
pendent set is known to be NP-hard as well as hard to approximate in general [32].
To address this concern, there has been a long line of research conducted to de-
vise implementable approximations of the maximum weight scheduling algorithm
(e.g., [6, 10, 18, 22, 29]). A comprehensive survey of such maximum weight in-
spired and other algorithmic approaches that have been studied over more than
four decades in the context of wireless networks can be found in [14, 24].

In the context of buffered circuit switched network, calls have random service
requirement. Therefore, scheduling decisions cannot be synchronized and the max-
imum weight scheduling algorithm is not applicable. In [30], a “batching-like”
modification of the maximum weight algorithm was proposed for such a network
model. However, no entirely myopic (nonbatching) and distributed algorithm is
known to be stable for this network model.
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1.1. Contributions. We propose a scheduling algorithm for both wireless and
buffered circuit switched network model. The algorithm utilizes only local queue-
size information to make scheduling decisions. That is, the algorithm is myopic
and distributed. It is randomized and requires each queue (or node) in the network
to perform few (literally, constant) logical operations per scheduling decision. We
establish that it is stable or throughput optimal. That is, the associated network
Markov process is ergodic as long as the network is under-loaded.

The basic idea behind the algorithm design is simple. The randomized schedul-
ing algorithm can be seen as a distributed (reversible) Markovian dynamics over
the space of schedules with the transition probabilities dependent on the queue-
sizes. For the wireless network, it corresponds to the known Glauber dynamics; cf.
[17] over the space of independent sets of the wireless network interference graph;
for the buffered circuit switched network, it corresponds to the known stochastic
loss network; cf. [15].

The stationary distribution of this reversible dynamics over schedules, assuming
queue-sizes are fixed, has a product-form. The variational characterization of this
product-form stationary distribution suggests that the expected weight of schedule
(with respect to this product-form stationary distribution) is close to that of the
maximum weight schedule which is essentially sufficient for establishing stability.
Therefore, assuming that queue-sizes are essentially fixed or, change over a much
slower time-scale compared to the time-scale over which scheduling dynamics
reaches stationarity, the algorithm is effectively the maximum weight.

The main technical contribution of this paper is in effectively establishing
the validity of such a “time-scale separation” assumption between the network
queueing dynamics and the scheduling dynamics induced by the algorithm. To
make this possible, we use an appropriately slowly changing function such as
f(x) =loglog(x + e) of queue-size as weight in contrast to the standard f(x) = x
weight function; cf. [31]. Selection of such a weight function helps because, even
though the queue-sizes changes at a constant rate, the function [like loglog(- + e)]
of queue-sizes change very slowly. This effectively induces the desired “time-
scale separation.” Technically, establishing validity of time-scale separation re-
quires studying the mixing property of time varying Markov chain over the space
of schedules.

To establish the stability (ergodicity of associated network Markov process)
property of the algorithm, we exhibit an appropriate Lyapunov function. We note
that use of Lyapunov function for establishing stability is somewhat standard now
(see, e.g., [25, 28, 31]). Usually difficulty lies in finding an appropriate candidate
function followed by establishing that it is indeed a Lyapunov function.

1.2. Organization. We start by describing two network models, the wireless
network and the buffered circuit switched network in Section 2. We formally intro-
duce the problem of scheduling and performance metric for scheduling algorithms.
The maximum weight scheduling algorithm is described as well. Our randomized
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algorithm and its throughput optimality for both network models are presented in
Section 3. The paper beyond Section 3 is dedicated to establishing the throughput
optimality. Necessary technical preliminaries are presented in Section 4. Here we
relate our algorithm for both models with appropriate reversible Markov chains on
the space of schedules and state useful properties of these Markov chains. We also
describe known sufficient conditions, including Lyapunov drift criteria, for estab-
lishing ergodicity. Detailed proofs of our main results are presented in Section 5.

2. Setup.

2.1. Wireless network. We consider a single-hop wireless network of n (>2)
queues. Queues receive work as per exogenous arrivals and work leaves the system
upon receiving service. Specifically, let Q; (1) € Ry = {x € R:x > 0} denote the
amount of work in the ith queue at time r € R and Q) = [Q; (t)]1<i<n; initially
t =0 and Q(0) = 0.2 Work arrives at each queue in terms of unit-sized packets
as per a discrete-time process. Let A; (s, t) denote the amount of work arriving at
queue i in time interval [s, ¢] for 0 < s < ¢. For simplicity, assume that for each

i, A;j(-) is an independent Bernoulli process with parameter A;, where A;(7) 2
A;(0,7). Thatis, A;(t +1) — A;j(r) € {0, 1} and Pr(A;(z + 1) — Aj(z) = 1) = A;
forall i and T € Z4 = {k € Z:k > 0}. Throughout this paper we will use 7 € Z,
and ¢ € R to denote discrete and continuous time, respectively. Denote the arrival
rate vector as A = [A;]1<i<,. We assume that arrivals happen at the end of a time
slot.

The work from queues is served at the unit rate, but subject to interference con-
straints. Specifically, let G = (V, E) denote the inference graph between the n
queues, represented by vertices V = {1, ...,n} and edges E; an (i, j) € E implies
that queues i and j cannot transmit simultaneously since their transmission inter-
feres with each other. Formally, let o;(¢) € {0, 1} denotes whether the queue i is
transmitting at time ¢, that is, work in queue i is being served at unit rate at time ¢
and o (t) = [0;(¢)]. Then, it must be that for r e R,

o (1) eT(G) 2 {p=I[p]e(0.1})":p; + p; < 1forall (i, j) € E}.
The total amount of work served at queue i in time interval [s, ¢] is
t
Di(s, 1) :f oi (Mg >0y dy,
N

where Iiy) denotes the indicator function.
In summary, the above model induces the following queueing dynamics: for any
O<s<tandl<i<n,

t
0i(t) = Qi(s) — / 6: (N0, (-0dy + Ai(s.1).

N

2Bold letters are reserved for vectors; 0, 1 represent vectors of all 0’s and all 1’s, respectively.
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2.2. Buffered circuit switched network. We consider a buffered circuit
switched network. Here the network is represented by a capacitated graph G =
(V, E) with V being vertices, E C V x V being links (or edges) with each link
e € E having a finite integral capacity C, € N. This network is accessed by a fixed
set of n (>2) routes Ry, ..., R,; each route is a collection of interconnected links.
At each route R;, flows arrive as per an exogenous arrival process. For simplicity,
we assume it to be an independent Poisson process of rate A; and let A; (s, ¢) de-
note total number of flow arrivals at route R; in time interval [s, ¢]. Upon arrival
of a flow at route R;, it joins the queue or buffer at the ingress of R;. Let Q;(¢)
denote the number of flows in this queue at time #; initially t =0 and Q;(0) =0.

Each flow arriving at R;, comes with the service requirement of using unit ca-
pacity simultaneously on all the links of R; for a time duration—it is assumed to
be distributed independently as per exponential of unit mean. Now a flow in the
queue of route R; can get simultaneous possession of links along route R; in the
network at time ¢, if there is a unit capacity available at all of these links. To this
end, let z;(¢) denote the number of flows that are active along route R;, that is,
posses links along the route R;. Then, by capacity constraints on the links of the
network, it must be that z(¢) = [z; (¢)] satisfies

z(t)eXé{z=[z,-]eZ’jr: Z zifce,‘v’eeE}.

i:eeR;

This represents the scheduling constraints of the circuit switched network model
similar to the interference constraints of the wireless network model.

Finally, a flow active on route R; departs the network after the completion of its
service requirement and frees unit capacity on the links of R;. Let D; (s, ) denote
the number of flows which are served (hence, leave the system) in time interval

[s,1].

2.3. Scheduling algorithm and performance metric. In both models described
above, the scheduling is the key operational question. In the wireless network,
queues need to decide which of them transmit subject to interference constraints. In
the circuit switched network, queues need to agree on which flows becomes active
subject to network capacity constraints. And, a scheduling algorithm is required to
make these decisions every time.

In the wireless network, the scheduling algorithm decides the schedule o (¢) €
Z(G) at each time . We are interested in distributed scheduling algorithms, that
is, queue i decides o;(¢) using its local information such as its queue-size Q;(¢).
We assume that queues have instantaneous carrier sensing information, that is, if
a queue (or node) j starts transmitting at time ¢, then all neighboring queues can
listen to this transmission immediately.

In buffered circuit switched network, the scheduling algorithm decides active
flows or schedules z(¢) at time 7. Again, our interest is in distributed scheduling
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algorithms, that is, queue at ingress of route R; decides z;(¢) using its local infor-
mation. Each queue (or route) can obtain instantaneous information on whether all
links along its route have unit capacity available or not.

In summary, both models need scheduling algorithms to decide when each
queue (or its ingress port) will request the network for availability of resources;
upon a positive answer (or successful request) from the network, the queue ac-
quires network resources for a certain amount of time. And these decisions need
to be based on local information.

From the perspective of network performance, we would like the scheduling
algorithm to be such that the queues in network remain as small as possible for
the largest possible range of arrival rate vectors. To formalize this notion of per-
formance, we define the capacity regions for both of these models. Let A, be the
capacity region of the wireless network model defined as

A, =Conv(Z(G))
(H

= {yeRﬁr:yf Z og 0, with ag > 0, and Z oy < 1}.
aeZ(G) a€I(G)

And let A . be the capacity region of the buffered circuit switched network defined
as

A, = Conv(X)
(2)

= {yeR’i:yf Zazz,withazzo,and Zazf l}.
72eX zeX

Intuitively, these bounds of capacity regions come from the fact that any algorithm
produces the “service rate” from Z(G) (or X') each time and hence, the time av-
erage of the service rate induced by any algorithm must belong to its convex hull.
Therefore, if arrival rates A can be “served well” by any algorithm, then it must
belong to Conv(Z(G)) [or Conv(X)].

Motivated by this, we call an arrival rate vector A admissible if A € A and say
that an arrival rate vector A is strictly admissible if A € A?, where A is the interior
of A formally defined as

A’ ={\ e R, : X < 1" componentwise, for some A* € A}.

Equivalently, we may say that the network is under-loaded. Now we are ready to
define a performance metric for a scheduling algorithm. Specifically, we desire the
scheduling algorithm to be throughput optimal as defined below.

DEFINITION 1 (Throughput optimal). A scheduling algorithm is called
throughput optimal, or stable, or providing 100% throughput, if for any A € A°
the (appropriately defined) underlying network Markov process is ergodic.
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In the above definition and throughout this paper, by ergodic we mean that (a)
the network Markov process has a unique stationary distribution and (b) starting
from any initial state, the distribution of the Markov process converges to this
stationary distribution.

2.4. The MW algorithm. Here we describe a popular algorithm known as the
maximum weight, or in short, MW, algorithm that was proposed by Tassiulas and
Ephremides [31]. It is throughput optimal for a large class of network models. The
algorithm readily applies to the wireless network model. However, it does not ap-
ply (exactly) in the case of circuit switched network. This algorithm requires solv-
ing a hard combinatorial problem each time slot, for example, maximum weight
independent set for wireless network, which is NP-hard in general. Therefore, it
is far from being practically useful. In a nutshell, the randomized algorithm pro-
posed in this paper will overcome these drawbacks of the MW algorithm while
retaining the throughput optimality property. For completeness, next we provide a
brief description of the MW algorithm.

In the wireless network model, the MW algorithm chooses a schedule o (7) €
Z(G) every time step T € Z as follows:

o(t) e argmax Q(7) - p.
peI(G)

In other words, the algorithm changes its decision once in unit time utilizing the
information Q(7). The maximum weight property allows one to establish positive
recurrence by means of Lyapunov drift criteria (see Lemma 5) when the arrival
rate is admissible, that is, A € AY . However, as indicated above, picking such a
schedule every time is computationally burdensome. A natural generalization of
this, called MW- f algorithm, that uses weight f(Q;(-)) instead of Q;(-) for an
increasing nonnegative function f also leads to throughput optimality; cf. see [25,
26, 28].

For the buffered circuit switched network model, the MW algorithm is not appli-
cable. To understand this, consider the following. The MW algorithm would require
the network to schedule active flows as z(t) € X where

z(t) € argmax Q(7) - z.
zeX

This will require the algorithm to possibly preempt some of active flows without
the completion of their service requirement. This is not allowed in this model.

3Here and everywhere else, we use notation u - v = Zle u;v; for any d-dimensional vectors
u,veR? Thatis, Q(x) - p =Y Qi (1) - pi.
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3. Main result. As stated above, the MW algorithm is not practical for wire-
less network and is not applicable to circuit switched network. However, it has
the desirable throughput optimality property. As the main result of this paper, we
provide a simple, randomized algorithm that is applicable to both wireless and cir-
cuit switched network as well as throughput optimal. The algorithm requires each
node (or queue) to perform only a few logical operations at each time step, it is
distributed and effectively it “simulates” the MW- f algorithm for an appropriate
choice of f. In that sense, it is a simple, randomized, distributed implementation
of the MW algorithm.

In what follows, we shall describe algorithms for wireless network and buffered
circuit switched network, respectively. We will state their throughput optimality
property. While these algorithms seem different, philosophically they are very
similar—also, witnessed in the commonality in their proofs.

3.1. Algorithm for wireless network. Let t € R, denote the time index and
W(t) = [W;(1)] € R", be the vector of weights at the n queues. The W(z) will be
a function of Q(#) to be determined later. In a nutshell, the algorithm described
below will choose a schedule o (¢) € Z(G) so that the weight, W(¢) - o (¢), is as
large as possible.

The algorithm is randomized and asynchronous. Each node (or queue) has an
independent exponential clock of rate 1 (i.e., Poisson process of rate 1). Let the kth
tick of the clock of node i happen at time Tki; Té =0 for all i. By definition Tk" i1

Tk", k > 0, are i.i.d. mean 1 exponential random variables. Each node changes its
scheduling decision only at its clock ticks. That is, for node i the o;(#) remains
constant for ¢ € (Tki , Tki 411 Clearly, with probability 1 no two clock ticks across
nodes happen at the same time.

Initially, we assume that ¢;(0) = O for all i. The node i at the kth clock tick,
t = T{, listens to the medium and does the following:

o If any neighbor of i is transmitting, that is, o;(¢) = 1 for some j € NG) =
{j’:(@i,j") € E},thenseto;(t") =0.
o Else, set
exp(Wi (1))

1, with probablhty H—WO‘))’
eXpiWi

oi(tT) =
0, otherwise.

Here, we assume that if o;(¢) = 1, then node i will always transmit data irre-
spective of the value of Q;(¢) so that the neighbors of node i can infer o;(¢) by
listening to the medium.

3.1.1. Throughout optimality. The above described algorithm for wireless net-
work is throughput optimal for an appropriate choice of weight W(r). Define
weight W;(¢) at node i in the algorithm for wireless network as

3) Wi (1) = max{ f(Qi([t])), / f (Omax(lt])},
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where* f(x) =loglog(x + e) and Qmnax(-) = max; Q;(-). The nonlocal informa-
tion of Omax(1?]) can be replaced by its approximate estimation that can be com-
puted through a very simple distributed algorithm. This does not alter the through-
put optimality property of the algorithm. A discussion is provided in Section 6. We
state the following property of the algorithm.

THEOREM 1. Suppose the algorithm of Section 3.1 uses the weight as per (3).
Then, for any A € A and Bernoulli arrival process, the network Markov process
is ergodic.

In this paper, Theorem 1 (as well as Theorem 2) is established for the choice
of f(x) = loglog(x + e¢). However, the proof technique of this paper extends
naturally for any choice of f:R; — R, that satisfies the following conditions:
f(©0) =0, f is a monotonically strictly increasing function, limy_, , f(x) = 00
and

xlirgoexp(f(x))f’(f_l(5f(x))) =0 for any 6 € (0, 1).

Examples of such functions include f(x) = e(x)log(x + 1), where £(0) = 1 and
as x — 00, €(x) monotonically decreases to 0, but £(x) log(x 4+ 1) monotonically

increases to 0o; f(x) = 4/log(x + 1); f(x) =logloglog(x + ¢°), etc.

3.2. Algorithm for buffered circuit switched network. In a buffered circuit
switched network, the scheduling algorithm decided when each of the ingress node
(or queue) should request the network for availability of resources (links) along its
route and upon positive response from the network, it acquires the resources. Our
algorithm to make such a decision at each node is described as follows:

o Each ingress node of a route, say R;, generates request as per a time varying
Poisson process whose rate at time ¢ is equal to exp(W;(¢)).

o If the request generated by an ingress node of route, say R;, is accepted, a flow
from the head of its queue leaves the queue and acquires the resources in the
network. Else, do nothing.

In the above, like the algorithm for wireless network, we assume that if the
request of ingress node i is accepted, a new flow will acquire resources in the
network along its route. This is irrespective of whether queue is empty or not—if
queue is empty, a dummy flow is generated. This is merely for technical reasons.

4Unless stated otherwise, here and everywhere else the log(-) is natural logarithm, that is, base e.
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3.2.1. Throughput optimality. We describe a specific choice of weight W(z)
for which the algorithm for circuit switched network as described above is through-
put optimal. Specifically, for route R; its weight at time ¢ is defined as

“) Wi (1) = max{ f (Q: ([t1)), / f (Qmax(L1 1)},

where f(x) = loglog(x + e). The remark about distributed estimation of
Omax(2])) after (3) applies here as well. We state the following property of the
algorithm.

THEOREM 2. Suppose the algorithm of Section 3.2 uses the weight as per (4).
Then, for any A € A, and Poisson arrival process, the network Markov process is
ergodic.

4. Technical preliminaries.

4.1. Finite state Markov chain. Consider a discrete-time, time-homogeneous
Markov chain over a finite state space €2. Let its probability transition matrix be

P =[P;jle ]lelxml. If P is irreducible and aperiodic, then the Markov chain is
known to have a unique stationary distribution 7 = [r;] € ]lel and it is ergodic,
that is,

Tli)ngonTi—wri forany i, j € Q.
The adjoint of P, also known as the time-reversal of P, denoted by P*, is defined
as

5) mP,-"}:yrij' forany i, j € Q.

By definition, P* has 7 as its stationary distribution as well. If P = P* then P is
called reversible or time reversible.

Similar notions can be defined for a continuous time Markov process over £2.
To this end, let P(s,t) = [P;;(s,1)] € ]le‘xlm denote its transition matrix over
time interval [s, #]. The Markov process is called time-homogeneous if P (s, t) is
stationary, that is, P(s,t) = P(0,¢ — s) for all 0 < s < ¢ and is called reversible if
P(s, t) isreversible for all 0 < s < ¢. Further, if P (0, ¢) is irreducible and aperiodic
for all # > 0, then this time-homogeneous reversible Markov process has a unique
stationary distribution 7 and it is ergodic, that is,

lim Pj;(0,1) — m; for any i, j € Q.
—00

4.2. Mixing time of Markov chain. Given an ergodic finite state Markov chain,
the distribution at time t converges to the stationary distribution starting from any
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initial condition as described above. We will need quantitative bounds on the time
it takes for them to reach “close” to the stationary distribution. This time to reach
stationarity is known as the mixing time of the Markov chain. Here we introduce
necessary preliminaries related to this notion. We refer an interested reader to sur-
vey papers [16, 23]. We start with the definition of distances between probability
distributions.

DEFINITION 2 (Distance of measures). Given two probability distributions
v and w on a finite space 2, we define the following two distances. The total
variation distance, denoted as ||[v — u||Tv is

1
lv—plltv = 5 > i — il
ieQ

The x? distance, denoted as 15 = Tl i

v 2 ) v; 2
——12=w—mmm=2m~——1.
Nz

ieQ i
More generally, for any two vectors u, v € R'm, we define

2 2
V130 =D uiv;.

ieQ

We make note of the following relation between the two distances defined
above: using the Cauchy—Schwarz inequality, we have

%
©) H——lH > 20|y — plly.
w 2,

Next, we define a matrix norm that will be useful in determining the rate of con-
vergence or the mixing time of a finite-state Markov chain.

DEFINITION 3 (Matrix norm). Consider a |2| x |2| nonnegative valued ma-

trix A € R‘f‘x‘m and a given vector u € ]lel. Then, the matrix norm of A with
respect to u is defined as

1 AVIl2 u
[Alla= sup ———,
v:Eu[v]=0 ||V||2,u

where Ey[v] =", u;v;.

The following are known properties (most of them are easily verifiable) of the
defined matrix norm (see, e.g., [12]).



RANDOMIZED NETWORK SCHEDULING 139

121 €2] IQI

(P1) For matrices A, B € R} and T € R}

A+ Bllx < |Allx + | Bllx-
(P2) For matrix A € R 7 e RI% and c e R,
lcAllz = lclll Al

(P3) Let A and B be transition matrices of reversible Markov chains, that is,
A = A* and B = B*. Let both of them have 7 as their unique stationary distribu-
tion. Then,

IABllz < [[Allz I Bllx-

(P4) Let A be the transition matrix of an irreducible and aperiodic Markov
chain that is reversible, that is, A = A*. Then, A has n real eigenvalues 1 = A; >
AM>--->A,>—1and

[Allx < Amax = max{A2, [An|},
where 7 is the stationary distribution of the Markov chain.

For a probability matrix P, we will mostly be interested in the matrix norm of P
with respect to its stationary distribution 7, that is, || P||,. Therefore, in this paper
if we use a matrix norm for a probability matrix without mentioning the reference
measure, then it is with respect to the stationary distribution.

With these definitions, it follows that for any distribution @ on 2

P
@) B2 <ie|& -1 .
T 2, v 2,
since E [ﬂ —1]1=0, where = = [ui/m;]. The Markov chains of our interest will

be revers1ble that is, P = P* Therefore, for a reversible Markov chain starting
with initial distribution 1 (0), the distribution p(7) at time t is such that

) p(7) (0)
T

—1 -1

2,71 2,7 .
Now starting from any state i, that is, probability distribution with unit mass on
state i, the initial distance || @ — 1||2,7 in the worst case is bounded above by
~/1/Tmin Where myin = min; ;. Therefore, for any 6 > 0 we have || %r) — 127 <
8 for any t such that’
- log 1 /7tmin +1log1/6 @(log 1 /7 min + log 1/8)
log 1/ Pl 1—P| '

5Throughout this paper, we shall utilize the standard order-notation: for two functions
g fRy = Ry, g() = o(f(x)) means liminfyoog(¥)/f(x) = 00; g(x) = Q(f(x))
means liminfy_ 00 g(x)/f(x) > 0; g(x) = O(f(x)) means 0 < liminfy 550 g(x)/f(x) <
limsup, o g(¥)/f(x) < 00; g(x) = O(f(x)) means limsup,_, o, g(x)/f(x) < 00; g(x) =
o(f(x)) means limsup,_, o, g(x)/f (x) =0.
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This suggests that the “mixing time,” that is, time to reach (close to) the station-
ary distribution of the Markov chain scales inversely with 1 — || P||. Therefore, we
will define the “mixing time” of a (reversible) Markov chain with transition matrix
Pas1/(1—|P|).

4.3. Glauber dynamics and algorithm for wireless network. We will describe
the relation between the algorithm for wireless network; cf. Section 3.1 and a spe-
cific irreducible, aperiodic, reversible Markov chain on the space of independent
sets Z(G) or schedules for wireless network with graph G = (V, E). It is also
known as the Glauber dynamics, which is used by the standard Metropolis and
Hastings [11, 20] sampling mechanism that is described next.

4.3.1. Glauber dynamics and its mixing time. We shall start off with the defi-
nition of the Glauber dynamics followed by a useful bound on its mixing time.

DEFINITION 4 (Glauber dynamics). Consider a graph G = (V, E) of n =|V|
nodes with node weights W = [W;] € R,. The Glauber dynamics based on
weight W, denoted by GD(W), is a Markov chain on the space of independent
sets of G, Z(G). The transitions of this Markov chain are described next. Suppose
the Markov chain is currently in the state o € Z(G). Then, the next state, say o’ is
decided as follows: pick a node i € V uniformly at random and

o seto; =g for j #i;
o if oy =0 for all k € N (i), then set

W.
o 1. with probabitity — PV
ol = I+ exp(W,)

l
0, otherwise,

o elseset o/ =0.

It can be verified that the Glauber dynamics GD(W) is reversible with stationary
distribution 7 given by
9) e xXexp(W- o) for any o € 7(G).

Now we describe bound on the mixing time of Glauber dynamics.

LEMMA 3. Let P be the transition matrix of the Glauber dynamics GD(W)
with n nodes. Then,

1
10 Pli=1- ’
(10) 1P|l < n222143 exp(2(n + 1) Wnax)
1
) oD <1

n22nt4exp2(n + 1) Wax)
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PROOF. By the property (P4) of the matrix norm, it is sufficient to establish
that

1
- n222”+3 exp(2(n + 1)Wmax) ’

1
Ay > —1 )
N= - n222n+3 exp(2(n + 1) Wiax)

M <l

(12)

where Ay, Ay are the second largest and the smallest eigenvalues of P, respec-
tively, with N = |Z(G)|.

First, an upper bound on A;. By Cheeger’s inequality [2, 5, 7, 13, 27], it is well
known that A, <1 — %2 where @ is the conductance of P, defined as

. (S, 59
= min _,
SCZ(G): n(S)<1/2 w (S) 7 (5¢)
where S =Z(G)\ S, O(S, S) =3 g5cs.6'csc o Pog’. Now we have
® > mi S, §¢

z min (S, 5%
> 1 P
= PCI,I:}I;OJT” o
- ! 1

Tin - MiN — —————
— o + exp(W;)

1 1 1

Z —

2t exp(mWmax) 1 1+ exp(Wnax)

1

> .
~ n2exp((n 4+ 1) Winax)

This implies the desired bound on A;.
Now, we lower bound Ay . For this, note that for any o # 0, under GD(W) with
WeRY,

1
PaaZ%-

Foro =0,

Py = Pyp> —.
70T 0 = T exp(Winax)

Therefore, it follows that for n > 2 and W € R’} , P can be decomposed as

(13) P=nl+0-nQ,
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where

TIZEH}}HPM

(14) 1

>
~ 2max{2n, 1 + exp(Wiax)}’

and by construction Q corresponds to the transition matrix of an irreducible, ape-
riodic, reversible Markov chain on Z(G) with the same stationary distribution .
More generally, Q and P have identical eigenvectors. Since all eigenvalues of Q
belong to [—1, 1], from decomposition (13), it follows that the smallest eigenvalue
of P must satisfy

1
( ) - max{2n, 1+ eXP(Wmax)}
1
> -1+

n?22n+3 eXp(Z(n + 1) Wax) ‘
Thus, we have established that

1

Pl<1-— '
|| ” = n222n+3 exp(z(n =+ l)Wmax)

Now consider P~ Using properties (P1), (P2) and (P3) of matrix norm,
we have

k pk
Hen(P—I) ” _ "e‘” i n*P
k!

k=0

o0

k k
<oy nIPIT _ naen-n
k=0
< ¢~/ (22" exp2(n+1) Winax)
1
<1- ,
- n22n+4 exp(2(n + 1) Wiax)

where we have used the bound of ||P|| and the fact that ¢e™* < 1 — x/2 for all
x € [0, 1]. This completes the proof of Lemma 3. [

4.3.2. Relation to algorithm. Now we relate our algorithm for wireless net-
work scheduling described in Section 3.1 with an appropriate continuous time ver-
sion of the Glauber dynamics with time-varying weights. Recall that Q(¢) and
o () denote the queue-size vector and schedule at time ¢. The algorithm changes
its scheduling decision, o (#), when a node’s exponential clock of rate 1 ticks. Due



RANDOMIZED NETWORK SCHEDULING 143

to memoryless property of exponential distribution and independence of clocks
of all nodes, this is equivalent to having a global exponential clock of rate n and
upon clock tick one of the n nodes gets chosen. This node decides its transition
as explained in Section 3.1. Thus, the effective dynamics of the algorithm upon a
global clock tick is such that the schedule o (7) evolves exactly as per the Glauber
dynamics GD(W(¢)). Here recall that W(¢) is determined based on Q([¢]). With
abuse of notation, let the transition matrix of this Glauber dynamics be denoted by
GD(W(1)).
Consider any 7 € Z . Let Q(t), o (7) be the states at time 7. Then,

o0
E[86(c+1)|Q(1), 0 ()] = > 85(x) Pr(¢ = k) GD(W(1))¥,
k=0
where we have used notation §, for the distribution with singleton support {0} and
¢ is a Poisson random variable of mean n. In the above, the expectation is taken
with respect to the distribution of ¢ (t + 1) given Q(t), o (7) and the notation E[u]
for a d-dimensional random vector u = [i;]1<i<4 € R4 denotes

Elu] = [Elui11<i<a-

Therefore, E[d4(r+1)|Q(7), 0(7)] is interpreted as the distribution of o (t + 1)
(i.e., schedule at time 7 + 1) given Q(7), o (7).
Now it follows that

E[‘sa(t+l)|Q(7)» U(T)] = 6a(r)en(GD(W(r))_1)

(16)

=d85(0)P(7),
where P(7) 2 nGDW@)-D) [y general, for any § € [0, 1]
17 E[85(:+51Q(0), 6 ()] = 8¢.r) P (1),

where P®(7) 2 8n(GDW()—1)

4.4. Loss network and algorithm for circuit switched network. For the buffered
circuit switched network, the Markov chain of interest is related to the classical
stochastic loss network model. This model has been popularly utilized to study the
performance of various systems including the telephone networks, human resource
allocation, etc.; cf. see [15]. The stochastic loss network mo