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ERROR ANALYSIS OF TAU-LEAP SIMULATION METHODS

BY DAVID F. ANDERSON1, ARNAB GANGULY2 AND THOMAS G. KURTZ2

University of Wisconsin, Madison

We perform an error analysis for numerical approximation methods of
continuous time Markov chain models commonly found in the chemistry and
biochemistry literature. The motivation for the analysis is to be able to com-
pare the accuracy of different approximation methods and, specifically, Euler
tau-leaping and midpoint tau-leaping. We perform our analysis under a scal-
ing in which the size of the time discretization is inversely proportional to
some (bounded) power of the norm of the state of the system. We argue that
this is a more appropriate scaling than that found in previous error analyses in
which the size of the time discretization goes to zero independent of the rest
of the model. Under the present scaling, we show that midpoint tau-leaping
achieves a higher order of accuracy, in both a weak and a strong sense, than
Euler tau-leaping; a result that is in contrast to previous analyses. We present
examples that demonstrate our findings.

1. Introduction. This paper provides an error analysis for numerical approx-
imation methods for continuous time Markov chain models that are becoming in-
creasingly common in the chemistry and biochemistry literature. Our goals of the
paper are two-fold. First, we want to demonstrate the importance of considering
appropriate scalings in which to carry out error analyses for the methods of in-
terest. Second, we wish to provide such an error analysis in order to compare the
accuracy of two different approximation methods. We perform our analysis on
the Euler tau-leaping method first presented in [11] and a midpoint tau-leaping
method developed below, which is only a slight variant of one presented in [11].
The midpoint tau-leaping method will be demonstrated to be more accurate than
Euler tau-leaping in both a strong and a weak sense, a result that is in contrast to
previous error analyses. We will discuss why previous error analyses made differ-
ing predictions than does ours and argue that the scaling provided here, or variants
thereof, is a more natural and appropriate choice for error analyses of such meth-
ods. We also provide examples that demonstrate our findings.

1.1. The basic model. The motivation for the class of mathematical models
under consideration comes from chemistry and biochemistry, and more generally
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from population processes (though we choose the language of chemistry through-
out the paper). We assume the existence of a chemical reaction system consisting
of (i) d chemical species {S1, S2, . . . , Sd} and (ii) a finite set of possible reac-
tions, which we index by k. Each reaction requires some number of the species
as inputs and provides some number of the species as outputs. For example, the
reaction S1 → 2S2 would require one molecule of S1 for the input and provide two
molecules of S2 for the output. If reaction k occurs at time t , then the state of the
system X(t) ∈ Z

d≥0 is updated via addition of the reaction vector νk ∈ Z
d , which

represents the net change in the abundances of the underlying species:

X(t) = X(t−) + νk.

Returning briefly to the example S1 → 2S2, the associated reaction vector for this
reaction would be [−1,2,0, . . . ,0]T . Finally, we denote by νs

k the vector in Z
d≥0

representing the source of the kth reaction. Returning again to the example S1 →
2S2, the source vector for this reaction is νs

k = [1,0, . . . ,0]T .
We assume that the waiting times for the k reactions are exponentially dis-

tributed with intensity functions λk : Rd≥0 → R≥0. We extend each λk to all of R
d

by setting it to zero outside R
d≥0. This model is a continuous time Markov chain in

Z
d≥0 with generator

(Af )(x) = ∑
k

λk(x)
(
f (x + νk) − f (x)

)
,(1.1)

where f : Zd → R is arbitrary. Kolmogorov’s forward equation for this model,
termed the “chemical master equation” in the chemistry and biology literature, is

d

dt
P (x, t |π) = ∑

k

P (x − νk, t |π)λk(x − νk) − ∑
k

P (x, t |π)λk(x),

where for x ∈ Z
d≥0 P(x, t |π) represents the probability that X(t) = x, conditioned

upon the initial distribution π . One representation for path-wise solutions to this
model uses a random time change of Poisson processes,

X(t) = X(0) + ∑
k

Yk

(∫ t

0
λk(X(s)) ds

)
νk,(1.2)

where the Yk are independent, unit-rate Poisson processes (see, e.g., [16]). Note

that X̃(t)
def= X(t) − ∑

k

∫ t
0 λk(X(s)) ds νk is a martingale with quadratic covaria-

tion matrix [X]t = ∑
k Yk(

∫ t
0 λk(X(s)) ds)νkν

T
k .

A common choice of intensity function for chemical reaction systems, and the
one we adopt throughout, is mass action kinetics. Under mass action kinetics, the



2228 D. F. ANDERSON, A. GANGULY AND T. G. KURTZ

intensity function for the kth reaction is

λk(x) = c̃k

(
x

x − νs
k

)
= c̃k∏d

�=1 νs
k�!

d∏
�=1

x�!
(x� − νs

k�)!
1{x�≥0}

(1.3)
def= ck

d∏
�=1

x�!
(x� − νs

k�)!
1{x�≥0},

where c̃k is a positive constant and ck is defined by the above equation. Mass
action kinetics arises by thinking of c̃k�t as the approximate probability that a
particular set of the molecules needed in the kth reaction will react over a time-
period of size �t , and then counting the number of ways such a reaction could
happen. Implicit in the assumption of mass action kinetics is that the vessel under
consideration is “well stirred.” For ease of notation, we will henceforth drop the
indicator functions from our representation of mass action kinetics. More general
rates will be discussed in the remark at the top of page six.

1.2. Numerical methods. There are a number of numerical methods that pro-
duce statistically exact sample paths for the model described above. These include
the stochastic simulation algorithm, better known as Gillespie’s algorithm [9, 10],
the first reaction method [9] and the next reaction method [1, 8]. All such algo-
rithms perform the same two basic steps multiple times until a sample path is
produced over a desired time interval: first, conditioned on the current state of the
system the amount of time that passes until the next reaction takes place, �, is
computed and second the specific reaction that has taken place is found. If, how-
ever,

∑
k λk(X(t)) � 0 then � ≈ (

∑
k λk(X(t)))−1 � 1 and the time needed to

produce a single exact sample path over a time interval can be prohibitive.
The approximate algorithm “tau-leaping” was developed by Dan Gillespie in

[11] in an effort to overcome the problem that � may be prohibitively small. The
basic idea of tau-leaping is to hold the intensity functions fixed over the time in-
terval [tn, tn + h] at the values λk(X(tn)), where X(tn) is the current state of the
system, and, under this assumption, compute the number of times each reaction
takes place over this period. As the waiting times for the reactions are exponen-
tially distributed, this leads to the following algorithm.

ALGORITHM 1 (Euler tau-leaping). Set Z(0) = X(0), t0 = 0, n = 0 and re-
peat the following until tn+1 > T .

(1) Set Z(tn+1) = Z(tn) + ∑
k Pk,n(λk(Z(tn))h)νk , set tn+1 = tn + h and set

n = n + 1, where Pk,n(x) are independent Poisson random variables with param-
eters x.

Several improvements and modifications have been made to the basic algorithm
described above over the years. However, they are mainly concerned with how to
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choose the step-size adaptively [4, 12] and/or how to ensure that population values
do not go negative during the course of a simulation [2, 3, 5], and are not explicitly
relevant to the current discussion.

Similar to (1.2), a path-wise representation of Euler tau-leaping can be given
through a random time change of Poisson processes,

Z(t) = X(0) + ∑
k

Yk

(∫ t

0
λk

(
Z ◦ η(s)

)
ds

)
νk,(1.4)

where η(s) = tn if tn ≤ s < tn+1 and the Yk are as before. Noting that
∫ tn+1

0 λk(Z ◦
η(s)) ds = ∑n

i=0 λk(Z(ti))(ti+1 − ti) explains our choice to call this method “Euler
tau-leaping.” Defining the operator

(Bzf )(x) = ∑
k

λk(z)
(
f (x + νk) − f (x)

)
,(1.5)

we see that for t > 0

Ef (Z(t)) = Ef
(
Z ◦ η(t)

) + E

∫ t

η(t)

(
BZ◦η(t)f

)
(Z(s)) ds,(1.6)

so long as the expectations exist. Further, we note that Z̃(t)
def= Z(t)−∑

k

∫ t
0 λk(Z◦

η(s)) dsνk is a martingale with quadratic covariation matrix

[Z̃]t = ∑
k

Yk

(∫ t

0
λk

(
Z ◦ η(s)

)
ds

)
νkν

T
k .

It is natural to believe that a midpoint type method would be more accurate than
an Euler type method in many situations. We therefore define the function

ρ(z)
def= z + 1

2
h

∑
k

λk(z)νk,

which computes an approximate midpoint for the system assuming the state of the
system is z and the time-step is h.

ALGORITHM 2 (Midpoint tau-leaping). Set Z(0) = X(0), t0 = 0, n = 0 and
repeat the following until tn+1 > T .

(1) Set Z(tn+1) = Z(tn) + ∑
k Pk,n(λk ◦ ρ ◦ Z(tn)h)νk , set tn+1 = tn + h and

set n = n + 1, where Pk,n(x) are independent Poisson random variables with pa-
rameters x.

Similar to (1.2) and (1.4), Z(t) can be represented via a random time change of
Poisson processes:

Z(t) = X(0) + ∑
k

Yk

(∫ t

0
λk ◦ ρ ◦ Z ◦ η(s) ds

)
νk,
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where η(·) is as before. For Bz defined via (1.5) and any 0 < t and any function f

Ef (Z(t)) = Ef
(

Z ◦ η(t)
) + E

∫ t

η(t)

(
Bρ◦Z◦η(t)f

)
(Z(s)) ds.(1.7)

Finally, Z̃(t)
def= Z(t)−∑

k

∫ t
0 λk ◦ρ ◦ Z ◦η(s) ds νk is a martingale with quadratic

covariation matrix [Z̃]t = ∑
k Yk(

∫ t
0 λk ◦ ρ ◦ Z ◦ η(s) ds)νkν

T
k . The main goal of

this paper is to show that the midpoint tau-leaping algorithm is indeed more accu-
rate than the Euler tau-leaping method under an appropriate, and natural, scaling
described in Section 2.

REMARK. Historically, the time discretization parameter for tau-leaping has
been τ , thus giving the method its name. We choose to break from this tradition
and denote our time-step by h so as not to confuse τ with a stopping time.

1.3. Previous error analyses. Under the scaling h → 0, Rathinam et al. [18]
performed a consistency check of Euler tau-leaping and found that the local trun-
cation error was O(h2) for all moments. They also showed that under this same
scaling Euler tau-leaping is first order accurate in a weak sense in the special case
that the intensity functions λk are linear [18]. Li extended these results by showing
that as h → 0 Euler tau-leaping has a strong error (in the L2 norm) of order 1/2
and a weak error of order one [17], which agree with classical results pertaining to
numerical analysis of SDEs driven by Brownian motions (see, e.g., [13]).

Under the scaling h → 0, it is readily seen that midpoint tau-leaping is no more
accurate than Euler tau-leaping. This follows since midpoint tau-leaping consists
of making an O(h2) correction to the intensity functions used in Euler tau-leaping.
As h → 0, this correction becomes negligible as Poisson processes “ignore” O(h2)

corrections, and the accuracy of the two methods will be the same.
We simply note that while the analyses performed in [18] and [17] and the

argument made in the previous paragraph are technically correct, performing an
analysis as h → 0, independent of the rest of the model, is at odds with the useful
regime of tau-leaping. That is, tau-leaping would only be used in a regime where
h � �, where � is the expected amount of time between reactions, for otherwise
an exact method would be performed. Therefore, we should require that

h �
(∑

k

λk(Z(t))

)−1

or h
∑
k

λk(Z(t)) � 1,(1.8)

where Z(t) is the state of the system. In Section 2, we will present a natural scaling
for the models under consideration that does satisfy (1.8) and under which we will
perform our analysis.
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1.4. Paper outline. The remainder of the paper is organized as follows. In
Section 2, we give some natural assumptions on the models considered in this
paper and introduce the scaling under which we perform our analysis. In Section 3,
we perform a strong error analysis for both the Euler and midpoint tau-leaping
methods and show that midpoint tau-leaping is the more accurate of the two under
our scaling. In Section 4, we perform a weak error analysis of the different methods
and again conclude that the midpoint method is more accurate. In Section 5, we
present numerical examples demonstrating our results.

2. Assumptions on the model.

2.1. Scalings of the model and the algorithms. As discussed in the Introduc-
tion, tau-leaping methods will only be of use if the time-discretization parameter
h satisfies h

∑
k λk(Z(t)) � 1 while (

∑
k λk(Z(t)))−1 � 1, where Z(t) is the state

of the system at time t . There are a number of ways for the second condition to
hold and a modeling choice must be made. We make the following natural assump-
tions:

(i) The initial abundance of each species scales with V for some V � 1.

(ii) Each rate constant satisfies cV
k = O(V 1−νs

k ·
1), where 
1 = [1,1, . . . ,1]T . In

particular, cV
k = dk/V 1−νs

k ·
1 for some dk > 0.

We will denote by XV the normalized process defined as the vector of abundances
divided by V , and will denote by λV

k the intensity function defined to be mass
action kinetics with rate constants cV

k . This scaling is the so called “classical scal-
ing” and arises naturally by thinking of V as the volume of the vessel in which
the reactions are taking place multiplied by Avogadro’s number [14]. In this case,
XV gives the concentration of each species in moles per unit volume. To under-
stand the scaling for the rate constants, consider the case of a reaction requiring as
input two constituent molecules: S1 and S2. Perhaps S1 +S2 → S3. It is reasonable
to assume that the probability that a particular pair of S1 and S2 molecules meet,
and react, in a small time interval is inversely proportional to the volume of the ves-
sel. This same type of logic holds for the cases in which more than two molecules
are needed for a reaction to take place (i.e., the probability that three particular
molecules meet and react is inversely proportional to the volume squared). For the
case that only one molecule is needed for a reaction to take place, it is reasonable
to assume that the probability of such a reaction taking place in the next small
interval of time for a particular molecule should not scale with the volume. See
also [19], Chapter 6.

Models that satisfy assumptions (i) and (ii) above have an important property
that we will detail here and make use of later. Let x(t) denote the solution to the
deterministic initial value problem

ẋ(t) = F(x(t))
def= ∑

k

dkx(t)ν
s
k νk, x(0) = x0 ∈ R

d≥0,(2.1)
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where dk is defined in assumption (ii) above, and where for any two vectors uv def=
u

v1
1 · · ·uvd

d and we adopt the convention that 00 = 1. That is, x(t) is the solution to
the corresponding deterministically modeled chemical reaction system with mass
action kinetics. It was shown in [14, 15] that for any ε > 0 and any T > 0, if
XV (0) = x(0) = x0, then

lim
V →∞P

{
sup

t∈[0,T ]
|XV (t) − x(t)| ≥ ε

}
→ 0.(2.2)

Denoting λk as deterministic mass action kinetics with rate constant dk , it is
an exercise to check that for any reaction, that is, zeroth order, first order, second
order, etc., and any x ∈ R

d≥0

λV
k (V x) = V λk(x) + ζV

k (x),

where ζV
k is uniformly bounded in V and is nonzero only if the reaction requires

more than one molecule of a particular species as an input. For example, for the
second order reaction S1 + S2 → S3 we have

λV
k (V x) = dk

V
(V x1)(V x2) = V dkx1x2 = V λk(x),

whereas for the second order reaction 2S1 → S3 we have

λV
k (V x) = dk

V
V x1(V x1 − 1) = V dkx

2
1 − dkx1 = V λk(x) + ζV

k (x)

with ζV
k (x) = −dkx1. The term ζV

k will have a true V dependence if three or more
molecules of a particular species are required as input. We now state the definition

AV
k (x)

def= 1
V

λV
k (V x), and note that for all x ∈ R

d≥0

AV
k (x) = λk(x) + 1

V
ζV
k (x)(2.3)

and AV
k (x) ≡ 0 if x /∈ R

d≥0. Manipulating the definition of AV
k shows that for all

x ∈ R
d

λV
k (V x) = V AV

k (x).(2.4)

REMARK. The assumption of mass action kinetics is not critical to the analy-
sis carried out in this paper. Instead, what is critical to this particular analysis is that
our kinetics satisfies the scaling (2.4) for AV

k satisfying (2.3) with λk sufficiently
smooth.

We now choose a discretization parameter for the approximate methods that is
dependent upon the assumptions of the model set out above. We let

hV def= 1/V β,(2.5)
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where 0 < β < 1. We note that this scaling satisfies the necessary requirements
detailed above as

(∑
k

λV
k (V x)

)−1

= O(V −1) � 1,

V −β

(∑
k

λV
k (V x)

)
= O(V 1−β) � 1.

With this choice of time-step, we let ZV and Z V denote the processes gener-
ated by Euler and midpoint tau-leaping, respectively, normalized by V . We can
now state more clearly what the analysis of this paper will entail. We will consider
the case of V � 0 by letting V → ∞ and consider the relationship of the normal-
ized approximate processes ZV and Z V to the original process XV , normalized
similarly. Note that all three processes converge to the solution of (2.1). We will
perform both weak and strong error analyses. In the strong error analysis, we will
consider L1 convergence as opposed to the more standard (at least for systems
driven by Brownian motions) L2 convergence. The reason for this is simple: the
Itô isometry makes working with the L2-norm easier in the Brownian motion case,
whereas Poisson processes lend themselves naturally to analysis in the L1-norm.

We remark that it is clear that the choice of scaling laid out in this section and
assumed throughout the paper will not explicitly cover all cases of interest. For
example, one may choose to use approximation methods when (i) the abundances
of only a strict subset of the constituent species are in an O(V ) scaling regime,
or (ii) it is the rate constants themselves that are O(V ) while the abundances are
O(1), or (iii) there is a mixture of the previous two cases with potentially more
than two natural scales in the system. Our analysis will not be directly applicable to
such cases. However, the purpose of this analysis is not to handle every conceivable
case. Instead, our purpose is to try and give a more accurate picture of how different
tau-leaping methods approximate the exact solution, both strongly and weakly, in
at least one plausible setting and we believe that the analysis detailed in this paper
achieves this aim. Further, we believe that error analyses conducted under different
modeling assumptions can be carried out in similar fashion.

2.2. Redefining the kinetics. Before proceeding to the analysis, we allow our-
selves one change to the model detailed in the previous section. As we will be
considering approximation methods in which changes to the state of the system
are determined by Poisson random variables (which can produce arbitrarily large
values), there will always be a positive probability that solutions will leave a region
in which the scaling detailed above is valid. Multiple options are available to han-
dle such a situation. One option would be to define a stopping time for when the
process leaves a predetermined region in which the scaling regime is valid and then
only perform the analysis up to that stopping time. Another option, and the one we
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choose, is to simply modify the kinetics by multiplying by a cutoff function that
makes the intensity functions zero outside such a region. This has the added ben-
efit of guaranteeing the existence of all moments of the processes involved. Note
that without this truncation or some other additional assumption guaranteeing the
existence of the necessary moments, some of the moment estimates that follow
may fail; however, the convergence in probability and convergence in distribution
results in Theorems 3.10 and 3.17 would still be valid.

Let γ ≥ 0 be C∞ with compact support �γ ⊂ R
d
>0, with γ (x) = 1 for all x ∈

Br(x(t)) for some r > 0, where x(t) satisfies (2.1). Now, we redefine our intensity
functions by setting

λV
k (x) = γ (x/V )cV

k

d∏
�=1

x�!
(x� − νs

k�)!
for x ∈ R

d,(2.6)

where cV
k still satisfies the scaling detailed in the previous section. It is easy to

check that the redefined kinetics still satisfies λV
k (V x) = V AV

k (x), where now
AV

k (x) has also been redefined by multiplication by γ (x). Further, the redefined
λV

k is identical to the previous function on the domain of interest to us. That is, they
only differ if the process leaves the scaling regime of interest. For the remainder
of the paper, we assume our intensity functions are given by (2.6). Finally, we note
that for each k we have the existence of an Lk > 0 such that

sup
x∈Rd ,|α|<∞

|DαAV
k (x)| ≤ Lk.(2.7)

3. Strong error analysis for Euler and midpoint tau-leaping. Throughout
this section, we assume a time discretization 0 = t0 < t1 < · · · < tN = T with
tn − tn−1 = hV = V −β for some 0 < β < 1. In Section 3.1 we give some necessary
technical results. In Section 3.2 we give bounds for supt≤T E|XV (t) − ZV (t)| and
supt≤T E|XV (t) − Z V (t)| in terms of V , where XV (t),ZV (t) and Z V (t) are the
normalized processes and satisfy the representations

XV (t) = XV (0) + 1

V

∑
k

Yk

(
V

∫ t

0
AV

k (XV (s)) ds

)
νk,(3.1)

ZV (t) = XV (0) + 1

V

∑
k

Yk

(
V

∫ t

0
AV

k

(
ZV ◦ η(s)

)
ds

)
νk,(3.2)

Z V (t) = XV (0) + 1

V

∑
k

Yk

(
V

∫ t

0
AV

k ◦ ρV ◦ Z V ◦ η(s) ds

)
νk,(3.3)

where

ρV (z)
def= z + 1

2
V −β

∑
k

AV
k (z)νk
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and η(s) = tn for s ∈ [tn, tn+1). In Sections 3.3 and 3.4, we use different couplings
of the processes than those above to provide the exact asymptotics of the error
processes XV − ZV and XV − Z V .

3.1. Preliminaries. We present some technical, preliminary concepts that will
be used ubiquitously throughout the section. For a more thorough reference of the
material presented here, see [6], Chapter 6. We begin by defining the following
filtrations that are generated by the Poisson processes Yk :

Fũ
def= σ {Yk(sk) : sk ≤ uk},

F i
u

def= σ {Yk(r), Yi(s) :k �= i, s ≤ u, r ∈ [0,∞)},
where ũ is a multi-index and u is a scalar.

LEMMA 3.1. Suppose that X(t) satisfies (1.2) with nonnegative intensity
functions λk . For t ≥ 0 and a choice of k,

τk(t) =
∫ t

0
λk(X(s)) ds(3.4)

is an {F k
u}-stopping time.

PROOF. For u ≥ 0, let α(u) satisfy
∫ α(u)

0
λk(X(s)) ds = u,

where we take α(u) = ∞ if
∫ ∞

0 λk(X(s)) ds < u. Then α(u) is adapted to F k
u and

{τk(t) ≤ u} = {t ≤ α(u)} ∈ F k
u . �

Therefore, if the processes X(t) and Z(t) satisfy (1.2) with nonnegative inten-
sity functions λk,1 and λk,2, respectively, then for t, s ≥ 0 and a choice of k,

E

∣∣∣∣Yk

(∫ t

0
λk,1(X(r)) dr

)
− Yk

(∫ s

0
λk,2(Z(r)) dr

)∣∣∣∣
(3.5)

= E

∣∣∣∣
∫ t

0
λk,1(X(r)) dr −

∫ s

0
λk,2(Z(r)) dr

∣∣∣∣,
because (i) both the maximum and minimum of two stopping times are stopping
times, and (ii) Yk is monotone.

Similarly to above, one can show that τ(t)
def= (τ1(t), τ2(t), . . .), where τk(t) is

as in (3.4), is a multi-parameter {Fũ}-stopping time. We now define the filtration

Gt
def= Fτ(t)
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and note that by the conditions of Section 2.2 the centered process

Ỹk

(∫ t

0
λk(X(s)) ds

)
def= Yk

(∫ t

0
λk(X(s)) ds

)
−

∫ t

0
λk(X(s)) ds(3.6)

is a square integrable martingale, with respect to Gt , with quadratic variation
Yk(

∫ t
0 λk(X(s)) ds). This fact will be used repeatedly throughout the paper.

3.2. Bounds on the strong error. The following theorems give bounds on the
errors supt≤T E|XV (t) − ZV (t)| and supt≤T E|XV (t) − Z V (t)|.

THEOREM 3.2. Let XV (t) and ZV (t) satisfy (3.1) and (3.2), respectively, for
t ≤ T . Then there exists a constant C = C(T ) > 0 such that

sup
t≤T

E|XV (t) − ZV (t)| ≤ CV −β = ChV .

PROOF. For t ∈ [0, T ], define E(t)
def= E|XV (t) − ZV (t)|. Using (3.5) and

(2.7),

E(t) ≤
(∑

k

|νk|Lk

)
E

∫ t

0
|XV (s) − ZV ◦ η(s)|ds

≤
(∑

k

|νk|Lk

)∫ t

0
E(s) ds +

(∑
k

|νk|Lk

)
E

∫ t

0
|ZV (s) − ZV ◦ η(s)|ds.

The second term on the right above can be bounded similarly,

E

∫ t

0
|ZV (s) − ZV ◦ η(s)|ds ≤

(∑
k

|νk|Lk

)
tV −β,

and the result holds via Gronwall’s inequality. �

THEOREM 3.3. Let XV (t) and Z V (t) satisfy (3.1) and (3.3), respectively, for
t ≤ T . Then there exists a constant C = C(T ) > 0 such that

sup
t≤T

E|XV (t) − Z V (t)| ≤ CV −κ(β) where κ(β) = min
{

1 + β

2
,2β

}
.

Before proving Theorem 3.3, we present some preliminary material. Let

FV (x)
def= ∑

k AV
k (x)νk and define

UV,1(s)
def= Z V (s)−ρV ◦ Z V ◦η(s) = Z V (s)− Z V ◦η(s)− 1

2V −βFV (
Z V ◦η(s)

)
and

ŨV,1(s)
def= (

s − η(s) − 1
2V −β)

FV (
Z V ◦ η(s)

)
.
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Then

UV,1(s) − ŨV,1(s)

= Z̃ V (s) − Z̃ V ◦ η(s)(3.7)

+ (
s − η(s)

)(
FV (

ρV ◦ Z V ◦ η(s)
) − FV (

Z V ◦ η(s)
))

,

where Z̃ V (t)
def= Z V (t) − ∫ t

0 FV (ρV ◦ Z V ◦ η(s)) ds is a martingale.

LEMMA 3.4. For all 0 < β < 1, there exists a C > 0 such that

sup
s≤∞

E|UV,1(s) − ŨV,1(s)| ≤ CV −κ(β).

PROOF. Clearly, the third term on the right-hand side of (3.7) is O(V −2β)

uniformly in s. Thus,

E|UV,1(s) − ŨV,1(s)| ≤ E|Z̃ V (s) − Z̃ V ◦ η(s)| + c1V
−2β

≤
(

1

V

∑
k

|νk|2E

∫ s

η(s)
AV

k

(
ρV ◦ Z V ◦ η(r)

)
dr

)1/2

+ c1V
−2β

≤ c2V
−(1+β)/2 + c1V

−2β

for constants c1 and c2 which do not depend upon s. �

LEMMA 3.5. For all 0 < β < 1 and 0 < t , and for α ∈ {2,3,4, . . .}
lim

V →∞V αβ sup
s≤t

E[|UV,1(s) − ŨV,1(s)|α] = 0.

PROOF. The third term on the right-hand side of (3.7) is O(V −2β), so

E|UV,1(s) − ŨV,1(s)|2 ≤ C
(
E|Z̃ V (s) − Z̃ V ◦ η(s)|2 + V −4β)

≤ C

V

∑
k

|νk|2E

∫ s

η(s)
AV

k

(
ρV ◦ Z V ◦ η(r)

)
dr + CV −4β

= O
(
V −((1+β)∧4β))

showing the α = 2 case.
It is simple to show that V αβ sups≤t E[|UV,1(s) − ŨV,1(s)|α] is uniformly

bounded in V for any α ∈ Z≥0. The α = 2 case then gives the necessary bounds
for the arbitrary α case. �
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Note that by Lemmas 3.4 and 3.5

AV
k (Z V (s)) − AV

k

(
ρV ◦ Z V ◦ η(s)

)
= ∇AV

k

(
ρV ◦ Z V ◦ η(s)

) · UV,1(s) + O(V −2β)(3.8)

= ∇AV
k

(
ρV ◦ Z V ◦ η(s)

) · ŨV,1(s) + O
(
V −κ(β)).

We finally note that for any bounded function g and any n ≥ 0
∫ tn+1

tn

g(η(s))ŨV,1(s) ds = 0

and so for any t > 0
∫ t

0
g(η(s))ŨV,1(s) ds

= 1

8

((
2t − 2η(t) − V −β)2 − V −2β)

g(η(t))FV (
Z V ◦ η(t)

)
(3.9)

= O(V −2β).

PROOF OF THEOREM 3.3. For t ≤ T define E(t)
def= E|XV (t) − Z V (t)|. Let-

ting ci denote constants

E(t) ≤ ∑
k

|νk|E
∣∣∣∣
∫ t

0
AV

k (XV (s)) ds −
∫ t

0
AV

k ◦ ρV (
Z V ◦ η(s)

)
ds

∣∣∣∣

≤ c1

∫ t

0
E(s) ds + ∑

k

|νk|E
∣∣∣∣
∫ t

0
AV

k (Z V (s)) − AV
k ◦ ρV (

Z V ◦ η(s)
)
ds

∣∣∣∣

≤ c1

∫ t

0
E(s) ds + c2V

−κ(β),

where the final inequality used both (3.8) and (3.9). The result now follows from
Gronwall’s inequality. �

3.3. Exact asymptotics for Euler tau-leaping. Throughout this section and
the next, all convergences are understood to hold on bounded intervals. More
explicitly, we write XV → X if limV →∞ P {supt≤T |XV (t) − X(t)| > ε} = 0
for all ε > 0 and T > 0. Because of the simplifying assumptions made on the
kinetics in Section 2.2, it is not difficult to show that XV → X also implies
limV →∞ E supt≤T |XV (t) − X(t)| = 0. In light of this, when we write XV =
ZV + O(V −p) for some p > 0 in this section and the next we mean that for any
T > 0 there exists a C(T ) such that

lim
V →∞V p

E sup
t≤T

|XV (t) − ZV (t)| ≤ C(T ).
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Finally, recall that FV (x) = ∑
k AV

k (x)νk and note that the function F(x) and the
deterministic process x(s) used in the characterization of the error processes are
defined via (2.1).

Theorem 3.2 suggests that XV − ZV scales like V −β . In this section, we make
this precise by characterizing the limiting behavior of V β(XV − ZV ), as V → ∞.
To get the exact asymptotics for the Euler tau-leap method, we will use the follow-
ing coupling of the processes involved:

XV (t) = XV (0)

+ 1

V

∑
k

[
Yk,1

(
V

∫ t

0
AV

k (XV (s)) ∧ AV
k

(
ZV ◦ η(s)

)
ds

)

(3.10)

+ Yk,2

(
V

∫ t

0
AV

k (XV (s))

− AV
k (XV (s)) ∧ AV

k

(
ZV ◦ η(s)

)
ds

)]
νk,

ZV (t) = XV (0)

+ 1

V

∑
k

[
Yk,1

(
V

∫ t

0
AV

k (XV (s)) ∧ AV
k

(
ZV ◦ η(s)

)
ds

)

(3.11)

+ Yk,3

(
V

∫ t

0
AV

k

(
ZV ◦ η(s)

)

− AV
k (XV (s)) ∧ AV

k

(
ZV ◦ η(s)

)
ds

)]
νk.

It is important to note that the distributions of XV and ZV defined via (3.10) and
(3.11) are the same as those for the processes defined via (3.1) and (3.2).

The following lemma is easy to prove using Doob’s inequality.

LEMMA 3.6. For XV and ZV given by (3.10) and (3.11), XV − ZV → 0.

Combining Lemma 3.6 and (2.2) shows that ZV − x → 0, where x is the solu-
tion to the associated ODE. Similarly, ZV ◦ η − x → 0. These facts will be used
throughout this section.

Centering the Poisson processes, we have

XV (t) − ZV (t) = MV (t) +
∫ t

0
FV (XV (s)) − FV (

ZV ◦ η(s)
)
ds

= MV (t) +
∫ t

0
FV (XV (s)) − FV (ZV (s)) ds(3.12)

+
∫ t

0
FV (ZV (s)) − FV (

ZV ◦ η(s)
)
ds,
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where MV is a martingale.
To obtain the desired results, we must understand the behavior of the first and

third terms on the right-hand side of (3.12). We begin by considering the third
term. We begin by defining UV,2 and ŨV,2 by

UV,2(s)
def= ZV (s) − ZV ◦ η(s), ŨV,2(s)

def= (
s − η(s)

)
FV (

ZV ◦ η(s)
)
.

Then,

UV,2(s) − ŨV,2(s) = Z̃V (s) − Z̃V ◦ η(s),

where Z̃V (t)
def= ZV (t) − ∫ t

0 FV (ZV ◦ η(s)) ds is a martingale. Thus,

FV (ZV (s)) − FV (
ZV ◦ η(s)

)
= DFV (

ZV ◦ η(s)
)
UV,2(s) + O(V −2β)

(3.13)
= DFV (

ZV ◦ η(s)
)
ŨV,2(s) + DFV (

ZV ◦ η(s)
)(

UV,2(s) − ŨV,2(s)
)

+ O(V −2β).

LEMMA 3.7. For all 0 < β < 1, 0 < t , and α ∈ {2,3,4, . . .}
lim

V →∞V αβ sup
s≤t

E[|UV,2(s) − ŨV,2(s)|α] = 0.

PROOF. The proof is similar to that of Lemma 3.5. �

We may now characterize the limiting behavior of the third term of (3.12).

LEMMA 3.8. For 0 < β < 1 and any t > 0,

V β
∫ t

0
FV (ZV (s)) − FV (

ZV ◦ η(s)
)
ds → 1

2

∫ t

0
DF(x(s))F (x(s)) ds.

PROOF. By (3.13) and Lemma 3.7

V β
∫ t

0
FV (ZV (s)) − FV (

ZV ◦ η(s)
)
ds

= V β
∫ t

0
DFV (

ZV ◦ η(s)
)
FV (

ZV ◦ η(s)
)(

s − η(s)
)
ds + εV

1 (t),

where εV
1 → 0 as V → ∞. By Lemma 3.6 convergence results similar to (2.2)

hold for the process ZV ◦ η, and because
∫ η(s)+V −β

η(s) (r − η(s)) dr = 1
2V −2β , the

lemma holds as stated. �

Turning now to MV , we observe that the quadratic covariation is

[MV ]t = 1

V 2

∑
k

(
NV

k,2(t) + NV
k,3(t)

)
νkν

T
k ,
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where

NV
k,2(t)

def= Yk

(
V

∫ t

0
AV

k (XV (s)) − AV
k (XV (s)) ∧ AV

k

(
ZV ◦ η(s)

))
,

NV
k,3(t)

def= Yk

(
V

∫ t

0
AV

k

(
ZV ◦ η(s)

) − AV
k (XV (s)) ∧ AV

k

(
ZV ◦ η(s)

))
,

which as V → ∞ is asymptotic to
1

V

∑
k

∫ t

0

∣∣AV
k (XV (s)) − AV

k

(
ZV ◦ η(s)

)∣∣ds νkν
T
k .(3.14)

We have the following lemma.

LEMMA 3.9. For 0 < β < 1, V βMV → 0, as V → ∞.

PROOF. Multiplying (3.12) by V α , we see that V α(XV − ZV ) → 0 pro-
vided α < β (so that the third term on the right goes to zero) and provided
V αMV → 0. By the martingale central limit theorem, the latter convergence holds
provided V 2α[MV ] → 0 (see Lemma A.2 in the Appendix). Let α0 = sup{α :α ≤
β,V 2α[MV ] → 0}. Since α0 < 1, we have that 2α0 − 1 < α0 ≤ β , which implies
by the definition of α0 that V 2α0−1(XV − ZV ) → 0. Therefore,

V 2α0[MV ]t
≈ ∑

k

∫ t

0
V 2α0−1∣∣AV

k (XV (s)) − AV
k

(
ZV ◦ η(s)

)∣∣ds νkν
T
k

≈ ∑
k

∫ t

0
V 2α0−1∣∣∇AV

k

(
ZV ◦ η(s)

) · (
ZV (s) − ZV ◦ η(s)

)∣∣ds νkν
T
k

≈ ∑
k

∫ t

0
V 2α0−1∣∣∇AV

k

(
ZV ◦ η(s)

) · FV (
ZV ◦ η(s)

)∣∣(s − η(s)
)
ds νkν

T
k ,

where in the second approximation we used that V 2α0−1(XV − ZV ) → 0, in the
third approximation we substituted ŨV,2(s) for UV,2(s), and by f ≈ g we mean
f − g → 0 as V → ∞. The last expression goes to zero whenever 2α0 − 1 < β ,
hence the convergence holds. �

We now have the following theorem characterizing the behavior of V β(XV −
ZV ).

THEOREM 3.10. For XV and ZV given by (3.10) and (3.11) and for 0 < β <

1, V β(XV − ZV ) → E , where E is the solution to

E (t) =
∫ t

0
DF(x(s))E (s) ds

(3.15)

+ 1

2

∫ t

0
DF(x(s))F (x(s)) ds, E (0) = 0.
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PROOF. Multiply (3.12) by V β and observe that

V β
∫ t

0
FV (XV (s)) − FV (ZV (s)) ds ≈

∫ t

0
DFV (ZV (s))V β(

XV (s) − ZV (s)
)
ds.

The theorem now follows directly from Lemmas 3.8 and 3.9. �

3.4. Exact asymptotics for midpoint tau-leaping. Throughout this section, the
Hessian matrix associated with a real valued function g will be denoted by Hg.
Also, for any vector U , we will denote by UT HFV (x)U the vector whose ith
component is UT HFV

i U , and similarly for F .
The goal of this section is to characterize the limiting behavior of

V κ(β)(XV (t) − Z V (t)
)
,

where

κ(β) = min{2β, (1 + β)/2} =
{

2β, β < 1/3,
(1 + β)/2, β ≥ 1/3.

To get the exact asymptotics for the midpoint method, we will use the following
representation of the processes involved:

XV (t) = XV (0)

+ 1

V

∑
k

[
Yk,1

(
V

∫ t

0
AV

k (XV (s)) ∧ AV
k

(
ρV ◦ Z V ◦ η(s)

)
ds

)

(3.16)

+ Yk,2

(
V

∫ t

0
AV

k (XV (s))

− AV
k (XV (s)) ∧ AV

k

(
ρV ◦ Z V ◦ η(s)

)
ds

)]
νk,

Z V (t) = XV (0)

+ 1

V

∑
k

[
Yk,1

(
V

∫ t

0
AV

k (XV (s)) ∧ AV
k

(
ρV ◦ Z V ◦ η(s)

)
ds

)

(3.17)

+ Yk,3

(
V

∫ t

0
AV

k

(
ρV ◦ Z V ◦ η(s)

)

− AV
k (XV (s)) ∧ AV

k

(
ρV ◦ Z V ◦ η(s)

)
ds

)]
νk.

The following is similar to Lemma 3.6.

LEMMA 3.11. For XV and Z V given by (3.16) and (3.17), XV − Z V → 0.

Combining Lemma 3.11 and (2.2) shows that Z V − x → 0, where x is the
solution to the associated ODE. Similarly Z V ◦ η − x → 0. These facts will be
used throughout this section.
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Centering the Poisson processes, we have

XV (t) − Z V (t) = MV (t) +
∫ t

0
FV (XV (s)) − FV (

ρV ◦ Z V ◦ η(s)
)
ds

= MV (t) +
∫ t

0
FV (XV (s)) − FV (Z V (s)) ds(3.18)

+
∫ t

0
FV (Z V (s)) − FV (

ρV ◦ Z V ◦ η(s)
)
ds,

where MV is a martingale.
As before, we must understand the behavior of the first and third terms on the

right-hand side of (3.18). We begin by considering the third term. Proceeding as in
the previous sections, we define UV,3 and ŨV,3 as

UV,3(s)
def= Z V (s)−ρV ◦ Z V ◦η(s) = Z V (s)− Z V ◦η(s)− 1

2V −βFV (
Z V ◦η(s)

)
and

ŨV,3(s)
def= (

s − η(s) − 1
2V −β)

FV (
Z V ◦ η(s)

)
.

Then

UV,3(s) − ŨV,3(s)

= Z̃ V (s) − Z̃ V ◦ η(s)(3.19)

+ (
s − η(s)

)(
FV (

ρV ◦ Z V ◦ η(s)
) − FV (

Z V ◦ η(s)
))

,

where Z̃ V (t)
def= Z V (t) − ∫ t

0 FV (ρV ◦ Z V ◦ η(s)) ds is a martingale. Then

FV (Z V (s)) − FV (
ρV ◦ Z V ◦ η(s)

)
= DFV (

ρV ◦ Z V ◦ η(s)
)
UV,3(s)

+ 1
2UV,3(s)T HFV (

ρV ◦ Z V ◦ η(s)
)
UV,3(s) + O(V −3β)

(3.20)
= DFV (

ρV ◦ Z V ◦ η(s)
)
ŨV,3(s)

+ 1
2UV,3(s)T HFV (

ρV ◦ Z V ◦ η(s)
)
UV,3(s)

+ DFV (
ρV ◦ Z V ◦ η(s)

)(
UV,3(s) − ŨV,3(s)

) + O(V −3β).

LEMMA 3.12. For all 0 < β < 1, 0 < t , and α ∈ {2,3,4, . . .}
lim

V →∞V αβ sup
s≤t

E[|UV,3(s) − ŨV,3(s)|α] = 0.

PROOF. The proof is similar to Lemma 3.5. �
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Let

κ1(β) = min{2β,β + 1/2} =
{

2β, β < 1/2,
β + 1/2, β ≥ 1/2.

Note that κ1(β) ≥ κ(β) for all β ≥ 0.

LEMMA 3.13. For 0 < β < 1
2 and each t > 0,

V 2β
∫ t

0
DFV (

ρV ◦ Z V ◦ η(s)
)(

UV,3(s) − ŨV,3(s)
)
ds

(3.21)

→ 1

4

∫ t

0
DF(x(s))2F(x(s)) ds,

for β = 1
2

V

∫ t

0
DFV (

ρV ◦ Z V ◦ η(s)
)(

UV,3(s) − ŨV,3(s)
)
ds

(3.22)

⇒ M1(t) + 1

4

∫ t

0
DF(x(s))2F(x(s)) ds,

and for 1
2 < β < 1,

V β+1/2
∫ t

0
DFV (

ρV ◦ Z V ◦ η(s)
)(

UV,3(s) − ŨV,3(s)
)
ds ⇒ M1(t),(3.23)

where M1 is a mean zero Gaussian process with independent increments and
quadratic covariation

[M1]t = 1

3

∫ t

0

∑
k

Ak(x(s))DF(x(s))νkν
T
k DF(x(s))T ds.(3.24)

PROOF. By Lemma A.1 in the Appendix,

MV
1 (t)

def=
∫ t

0
DFV (

ρV ◦ Z V ◦ η(s)
)(

Z̃ V (s) − Z̃ V ◦ η(s)
)
ds

+ DFV (
ρV ◦ Z V ◦ η(t)

)(
Z̃ V (t) − Z̃ V ◦ η(t)

)(
η(t) + V −β − t

)
is a martingale and its quadratic covariation matrix is

∫ t

0

(
η(s) + V −β − s

)2
DFV (

ρV ◦ Z V ◦ η(s)
)
d[Z̃ V ]sDFV (

ρV ◦ Z V ◦ η(s)
)T

.

Noting that
∫ η(s)+V −β

η(s) (η(r) + V −β − r)2 dr = 1
3V −3β , it follows that

V 2β+1[MV
1 ]t → 1

3

∫ t

0

∑
k

Ak(x(s))DF(x(s))νkν
T
k DF(x(s))T ds,
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so by the martingale central limit theorem V β+1/2MV
1 converges in distribution to

a mean zero Gaussian process with independent increments and quadratic variation
(3.24).

Since V 1/2(Z̃ V − Z̃ V ◦ η) → 0, the integral on the left-hand side of (3.21),
(3.22) and (3.23) can be replaced by

MV
1 (t) +

∫ t

0
DFV (

ρV ◦ Z V ◦ η(s)
)(

s − η(s)
)

(3.25)
× (

FV (
ρV ◦ Z V ◦ η(s)

) − FV (
Z V ◦ η(s)

))
ds

without changing the limits. The second term in (3.25) multiplied by V 2β con-
verges to 1

4

∫ t
0 DF(x(s))2F(x(s)) ds on bounded time intervals and the three limits

follow. �

LEMMA 3.14. For 0 < β < 1,

V 2β 1

2

∫ t

0
UV,3(s)T HFV (

ρV ◦ Z V ◦ η(s)
)
UV,3(s) ds

→ 1

24

∫ t

0
F(x(s))T HF(x(s))F (x(s)) ds.

PROOF. By Lemma 3.12, we can replace UV,3by ŨV,3. Observing that∫ η(s)+V −β

η(s) (s − η(s) − 1
2V −β)2 ds = 1

12V −3β ,

V 2β 1

2

∫ t

0

(
s − η(s) − 1

2
V −β

)2

FV (
Z V ◦ η(s)

)T
HFV (

ρV ◦ Z V ◦ η(s)
)

× FV (
Z V ◦ η(s)

)
ds

converges as claimed. �

We may now characterize the behavior of the third term of (3.18).

LEMMA 3.15. Let

RV (t) =
∫ t

0

(
s − η(s) − 1

2
V −β

)
DFV (

ρV ◦ Z V ◦ η(s)
)
FV (

Z ◦ η(s)
)
ds.

Then for 0 < β < 1
2 ,

V 2β

(∫ t

0

(
FV (Z V (s)) − FV (

ρV ◦ Z V ◦ η(s)
))

ds − RV (t)

)

→ 1

4

∫ t

0
DF(x(s))2F(x(s)) ds + 1

24

∫ t

0
F(x(s))T HF(x(s))F (x(s)) ds,



2246 D. F. ANDERSON, A. GANGULY AND T. G. KURTZ

for β = 1
2 ,

V

(∫ t

0

(
FV (Z V (s)) − FV (

ρV ◦ Z V ◦ η(s)
))

ds − RV (t)

)

⇒ M1(t) + 1

4

∫ t

0
DF(x(s))2F(x(s)) ds

+ 1

24

∫ t

0
F(x(s))T HF(x(s))F (x(s)) ds

and for 1
2 < β < 1,

V β+1/2
∫ t

0

(
FV (Z V (s)) − FV (

ρV ◦ Z V ◦ η(s)
))

ds ⇒ M1(t).

REMARK. Note that V 2βRV is uniformly bounded, RV ◦ η ≡ 0, and

RV (t) = 1
2

[(
t − η(t)

)2 − (
t − η(t)

)
V −β]

DFV (
ρV ◦ Z V ◦ η(t)

)
FV (

Z ◦ η(t)
)
.

PROOF OF LEMMA 3.15. The lemma follows from (3.20), the previous lem-
mas, and by noting that

∫ t
0 DFV (ρV ◦ Z V ◦ η(s))ŨV,3(s) ds = RV (t). �

We now turn to MV and observe that

[MV ]t = 1

V 2

∑
k

(
NV

k,2(t) + NV
k,3(t)

)
νkν

T
k ,

where

NV
k,2(t)

def= Yk

(
V

∫ t

0
AV

k (XV (s)) − AV
k (XV (s)) ∧ AV

k

(
ρV ◦ Z V ◦ η(s)

)
ds

)
,

NV
k,3(t)

def= Yk

(
V

∫ t

0
AV

k

(
ρV ◦ Z V ◦ η(s)

)

− AV
k (XV (s)) ∧ AV

k

(
ρV ◦ Z V ◦ η(s)

)
ds

)
,

which as V → ∞ is asymptotic to

1

V

∑
k

∫ t

0

∣∣AV
k (XV (s)) − AV

k

(
ρV ◦ Z V ◦ η(s)

)∣∣ds νkν
T
k .

Consequently, we have the following.

LEMMA 3.16. For 0 < β < 1, V (1+β)/2MV ⇒ M where M is a mean-zero
Gaussian process with independent increments and quadratic covariation

[M]t = ∑
k

1

4

∫ t

0
|∇Ak(x(s)) · F(x(s))|ds νkν

T
k .
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PROOF. Multiplying (3.18) by V α , we see that V α(XV − Z V ) → 0 provided
α < κ1(β) (so that the third term on the right goes to zero) and provided V αMV →
0. By the martingale central limit theorem, the latter convergence holds provided
V 2α[MV ] → 0. Let α0 = sup{α :α ≤ (β + 1)/2,V 2α[MV ] → 0}. We make two
observations. First, because α0 < 1, we have that 2α0 − 1 < α0. Second, because
α0 ≤ (β + 1)/2, we have that 2α0 − 1 ≤ β , and, in particular, 2α0 − 1 < κ1(β) for
all β ∈ (0,1). Combining these observations with the definition of α0 shows that
V 2(2α0−1)[MV ]t → 0 and hence V 2α0−1(XV − Z V ) → 0. We now have

V 2α0[MV ]t ≈ ∑
k

∫ t

0
V 2α0−1∣∣Ak(X

V (s)) − Ak

(
ρV ◦ Z V ◦ η(s)

)∣∣ds νkν
T
k

≈ ∑
k

∫ t

0
V 2α0−1

∣∣∣∣s − η(s) − 1

2
V −β

∣∣∣∣
× ∣∣∇Ak

(
ρV ◦ Z V ◦ η(s)

) · FV (
Z V ◦ η(s)

)∣∣ds νkν
T
k ,

where in the second line we used that V 2α0−1(XV −ZV ) → 0, and then substituted
ŨV,3(s) for UV,3(s). Since the last expression would go to zero if 2α0 −1 were less
than β , we see that 2α0 − 1 = β , that is, α0 = (β + 1)/2. Furthermore, observing

that
∫ η(s)+V −β

η(s) |s − η(s) − 1
2V −β |ds = 1

4V −2β , we see that

V β+1[MV ]t = V 2α0[MV ]t → ∑
k

1

4

∫ t

0
|∇Ak(x(s)) · F(x(s))|ds νkν

T
k ,

and the lemma follows by the martingale central limit theorem. �

Collecting the results, we have the following theorem.

THEOREM 3.17. Let

H(t) = 1

6

∫ t

0
DF(x(s))2F(x(s)) ds + 1

24

∫ t

0
F(x(s))T HF(x(s))F (x(s)) ds.

For 0 < β < 1
3 , V 2β(XV − Z V − RV ) → E1, where E1 is the solution of

E1(t) =
∫ t

0
DF(x(s))E1(s) ds + H(t), E1(0) = 0.(3.26)

For β = 1
3 , V 2β(XV − Z V − RV ) ⇒ E2, where E2 is the solution of

E2(t) = M(t) +
∫ t

0
DF(x(s))E2(s) ds + H(t), E2(0) = 0.(3.27)

For 1
3 < β < 1, V (1+β)/2(XV − Z V ) ⇒ E3, where E3 is the solution of

E3(t) = M(t) +
∫ t

0
DF(x(s))E3(s) ds, E3(0) = 0.(3.28)
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PROOF. For β ≤ 1
3 , RV is O(V −2β). Subtract RV from both sides of (3.18)

and observe that∫ t

0
FV (XV (s)) − FV (Z V (s)) ds

≈
∫ t

0
DFV (Z V (s))

(
XV (s) − Z V (s) − RV (s)

)
ds

+
∫ t

0
DFV (Z V (s))RV (s) ds.

Since

V 2β
∫ t

0
DFV (Z V (s))RV (s) ds → − 1

12

∫ t

0
DF(x(s))2F(x(s)) ds,

the first two parts follow from Lemmas 3.15 and 3.16.
For β > 1

3 , (1 + β)/2 < 2β ∧ κ1(β), so V (1+β)/2RV → 0 and

V (1+β)/2
∫ t

0
FV (Z V (s)) − FV (

ρV ◦ Z V ◦ η(s)
)
ds → 0,

and the third part follows by Lemma 3.16. �

4. Weak error analysis. As in previous sections, we assume the existence of
a time discretization 0 = t0 < t1 < · · · < tN = T with tn − tn−1 = V −β for some
0 < β < 1. We also recall that η(s) = tn for tn ≤ s < tn+1 for each n ≤ N − 1.

Let XV be a Markov process with generator

(AV f )(x) = ∑
k

V AV
k (x)

(
f (x + νk/V ) − f (x)

)
.(4.1)

Defining the operator

(BV
z f )(x) = ∑

k

V AV
k (z)

(
f (x + νk/V ) − f (x)

)
,(4.2)

we suppose that ZV and Z V are processes that satisfy

Ef (Z(t)) = Ef
(
Z ◦ η(t)

) + E

∫ t

η(t)

(
BZ◦η(t)f

)
(Z(s)) ds(4.3)

and

Ef (Z(t)) = Ef
(

Z ◦ η(t)
) + E

∫ t

η(t)

(
BρV ◦Z◦η(t)f

)
(Z(s)) ds(4.4)

for all t > 0, respectively.
We begin with the weak error analysis of Euler tau-leaping, which is immediate

in light of Theorem 3.10.



ERROR ANALYSIS OF TAU-LEAP METHODS 2249

THEOREM 4.1. Let XV (t) be a Markov process with generator (4.1) and let
ZV (t) be a process that satisfies (4.3) for the operator (4.2). Then, for any contin-
uously differentiable function f and any t ≤ T ,

lim
V →∞V β(

Ef (XV (t)) − Ef (ZV (t))
) = E (t) · ∇f (x(t)),

where E (t) satisfies (3.15).

PROOF. Without loss of generality, we may assume that XV (t) and ZV (t)

satisfy (3.10) and (3.11), respectively. The proof now follows immediately from a
combination of Taylor’s theorem and Theorem 3.10. �

REMARK. Because the convergence in Theorem 4.1 is to a constant indepen-
dent of the step-size of the method, we see that Richardson extrapolation tech-
niques can be carried out. However, we have not given bounds on the next order
correction, and so cannot say how much more accurate such techniques would be.

We now consider the weak error analysis of the midpoint method.

THEOREM 4.2. Let XV (t) be a Markov process with generator (4.1) and let
Z V (t) be a process that satisfies (4.4) for the operator (4.2). Then, for any two
times continuously differentiable function f with compact support, there exists a
constant C = C(f,T ) > 0 such that

V 2β |Ef (XV (T )) − Ef (Z V (T ))| ≤ C.

Before proving Theorem 4.2, some preliminary material is needed. Let L
V def=

{y :y = x/V,x ∈ Z
d}, and for x ∈ L

V and a given function f , let

v(t, x) = Exf (XV (t)),(4.5)

where Ex represents the expectation conditioned upon XV (0) = x. Standard re-
sults give that v(t, x) satisfies the following initial value problem (see, e.g., [7],
Proposition 1.5)

∂tv(t, x) = AV v(t, x)

= ∑
k

V AV
k (x)

(
v(t, x + νk/V ) − v(t, x)

)
,(4.6)

v(0, x) = f (x), x ∈ L
V .

The above equation can be viewed as a linear system by letting x enumerate over
L

V and treating v(t, x) = vx(t) as functions in time only. It can even be viewed as
finite dimensional because of the conditions on the intensity functions AV

k . That
is, recall that AV

k (x) = 0 for all x outside the bounded set �γ (see Section 2.2);
thus, for any such x /∈ �γ , v(t, x) = vx(t) ≡ f (x), for all t > 0.
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For concreteness, we now let M denote the number of reactions for the system
under consideration. For k, � ∈ [1, . . . ,M] and x ∈ L

V , let

Dk(t, x) = V
(
v(t, x + νk/V ) − v(t, x)

)
,(4.7)

Dk�(t, x) = V
(
Dk(t, x + ν�/V ) − Dk(t, x)

)
(4.8)

represent approximations to the first and second spatial derivatives of v(t, x), re-
spectively. For notational ease, we have chosen not to explicitly note the V depen-
dence of the functions v(t, x), Dk(t, x) or Dk�(t, x).

The following lemma, which should be viewed as giving regularity conditions
for v(t, x) in the x variable, is instrumental in the proof of Theorem 4.2. The proof
is delayed until the end of the section.

LEMMA 4.3. Let v(t, x), Dk(t, x) and Dk�(t, x) be given by (4.5), (4.7) and
(4.8), respectively, and let T > 0. There exists K1 > 0 and K2 > 0 that do not
depend upon V such that

sup
t≤T

sup
k≤M

sup
x∈LV

|Dk(t, x)| ≤ K1,(4.9)

sup
t≤T

sup
k,�≤M

sup
x∈LV

|Dk�(t, x)| ≤ K2.(4.10)

We will also need the following lemma, which gives regularity conditions for
Dk(t, x) in the t variable, and whose proof is also delayed.

LEMMA 4.4. Let Dk(t, x) be given by (4.7). There exists a K > 0 that does
not depend upon V such that

sup
t≤T

sup
k≤M

sup
x∈LV

|Dk(t + h,x) − Dk(t, x)| ≤ Kh

for all h > 0.

PROOF OF THEOREM 4.2. Define the function u(t, x) : [0, T ] × L
V → R by

u(t, x)
def= Exf

(
XV (T − t)

)
,(4.11)

and for any w(t, x) : R × L
V → R we define the operator L by

Lw(t, x)
def= ∂tw(t, x) + AV w(t, x)

= ∂tw(t, x) + ∑
k

V AV
k (x)

(
w(t, x + νk/V ) − w(t, x)

)
.

Note that u(t, x) = v(T − t, x), where v(t, x) is given by (4.5), and so by (4.6)
Lu(t, x) = 0 for t ∈ [0, T ] and x ∈ L

V . We also define the operator

Lzw(t, x)
def= ∂tw(t, x) + BV

z w(t, x)

= ∂tw(t, x) + ∑
k

V AV
k (z)

(
w(t, x + νk/V ) − w(t, x)

)
,
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so that by virtue of equation (4.4), for t ≤ T and any differentiable (in t) function
w(t, x)

Ew(t, Z V (t)) = Ew
(
η(t), Z V ◦ η(t)

)
(4.12)

+
∫ t

η(t)
ELρV ◦Z V ◦η(t)w(s, Z V (s)) ds.

Recalling (4.11), we see that

Eu(T , Z V (T )) = Ef (Z V (T )),

Eu(T ,XV (T )) = Eu(0,XV (0)) = Ef (XV (T )).

Therefore by (4.12), and using that XV (0) = Z V (0),

Ef (Z V (T )) − Ef (XV (T ))

= Eu(T , Z V (T )) − Eu(0, Z V (0))

=
N−1∑
n=0

Eu(tn+1, Z V (tn+1)) − Eu(tn, Z V (tn))

=
N−1∑
n=0

E

∫ tn+1

tn

LρV ◦Z V (tn)u(s, Z V (s)) ds.

Because Lu(t, x) ≡ 0 for t ≤ T and x ∈ L
V

E

∫ tn+1

tn

LρV ◦Z V (tn)u(s, Z V (s)) ds

= E

∫ tn+1

tn

LρV ◦Z V (tn)u(s, Z V (s)) − Lu(s, Z V (s)) ds

= ∑
k

E

∫ tn+1

tn

V
[
AV

k

(
ρV ◦ Z V (tn)

) − AV
k (Z V (s))

]
(4.13)

× (
u
(
s, Z V (s) + νk/V

) − u(s, Z V (s))
)
ds

= ∑
k

E

∫ tn+1

tn

[
AV

k

(
ρV ◦ Z V (tn)

) − AV
k (Z V (s))

]
Dk

(
T − s, Z V (s)

)
ds.

Thus, it is sufficient to prove that each of the integrals in (4.13) are O(V −3β). By
Lemma 4.4, each integral term in (4.13) can be replaced by

IV
k (tn)

def= E

∫ tn+1

tn

[
AV

k

(
ρV ◦ Z V (tn)

) − AV
k (Z V (s))

]
(4.14)

× Dk

(
T − tn, Z V (s)

)
ds.

The remainder of the proof consists of proving that IV
k (tn) = O(V −3β).
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Letting gV
n (x)

def= [AV
k (ρV ◦ Z V (tn))−AV

k (x)]Dk(T − tn, x) and applying (4.4)
to the integrand in (4.14) yields

IV
k (tn) = E

∫ tn+1

tn

[
AV

k

(
ρV ◦ Z V (tn)

) − AV
k (Z V (tn))

]
Dk

(
T − tn, Z V (tn)

)
ds

+ ∑
j

E

∫ tn+1

tn

∫ s

tn

V AV
j

(
ρV ◦ Z V (tn)

)

× (
gV

n

(
Z V (r) + νj/V

) − gV (Z V (r))
)
dr ds.

We have

AV
k

(
ρV ◦ Z V (tn)

) = AV
k (Z V (tn))

+ ∇AV
k (Z V (tn)) · 1

2
V −β

∑
j

AV
j (Z V (tn))νj

+ O(V −2β).

Thus,

IV
k (tn) = ∑

j

1

2
V −β

E

∫ tn+1

tn

∇AV
k (Z V (tn)) · νjA

V
j (Z V (tn))

(4.15)
× Dk

(
T − tn, Z V (tn)

)
ds + O(V −3β)

+ ∑
j

E

∫ tn+1

tn

∫ s

tn

V AV
j

(
ρV ◦ Z V (tn)

)

(4.16)
× (

gV
n

(
Z V (r) + νj/V

) − gV (Z V (r))
)
dr ds.

After some manipulation, the expected value term of (4.16) becomes

E

∫ tn+1

tn

∫ s

tn

V AV
j

(
ρV ◦ Z V (tn)

)[
AV

k (Z V (r)) − AV
k

(
Z V (r) + νj/V

)]

× Dk

(
T − tn, Z V (r) + νj/V

)
dr ds

+ E

∫ tn+1

tn

∫ s

tn

AV
j

(
ρV ◦ Z V (tn)

)[
AV

k

(
ρV ◦ Z V (tn)

) − AV
k (Z V (r))

]

× Dkj

(
T − tn, Z V (r)

)
dr ds.

By Lemma 4.3 the last term above is O(V −3β). Taylor’s theorem and the fact that
AV

j (ρV ◦ Z V (tn)) = AV
j (Z V (tn)+ O(V −β) then shows us that the expected value
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term of (4.16) is equal to

−E

∫ tn+1

tn

∫ s

tn

AV
j (Z V (tn))∇AV

k (Z V (r))

× νjDk

(
T − tn, Z V (r) + νj/V

)
dr ds + O(V −3β)

(4.17)

= −E

∫ tn+1

tn

∫ s

tn

AV
j (Z V (tn))∇AV

k (Z V (r)) · νjDk

(
T − tn, Z V (r)

)
dr ds

+ O(V −3β),

where the second equality stems from an application of Lemma 4.3.
By Lemma 4.3, the function φ(x) = AV

j (Z V (tn))∇AV
k (x) · νjDk(T − tn, x)

satisfies sup� |φ(x +ν�/V )−φ(x)| = O(V −1). Therefore, applying (4.4) to (4.17)
shows that (4.17) is equal to

−E

∫ tn+1

tn

∫ s

tn

AV
j (Z V (tn))∇AV

k (Z V (tn)) · νjDk

(
T − tn, Z V (tn)

)
dr ds

+ O(V −3β).

Noting that the sum over j of the above is the negative of (4.15) plus an O(V −3β)

correction concludes the proof. �

Theorem 4.2 can be strengthened in the case of β < 1/3.

THEOREM 4.5. Let XV (t) be a process with generator (4.1) and let Z V (t)

be a process that satisfies (4.4) for the operator (4.2). Suppose also that β < 1/3.
Then, for any continuously differentiable function f ,

lim
V →∞V 2β(

Ef (XV (T )) − Ef (Z V (T ))
) = E1(T ) · ∇f (x(T )),

where E1(t) satisfies (3.26).

PROOF. Noting that RV (T ) ≡ 0, this is an immediate consequence of Theo-
rem 3.17. �

REMARK. In Theorem 4.1, we provided an explicit asymptotic value for the
scaled error of Euler tau-leaping in terms of a solution to a differential equation for
all scales, 0 < β < 1, of the leap step. However, Theorem 4.5 gives a similar result
for the midpoint method only in the case 0 < β < 1/3. For the case 1/3 ≤ β < 1,
Theorem 4.2 only shows that the error is asymptotically bounded by a constant.
The reason for the discrepancy in results is because in Section 3 we were able
to show that the dominant component of the pathwise error for Euler tau-leaping
for all β ∈ (0,1) and for midpoint tau-leaping for β ∈ (0,1/3) was a term that
converged to a deterministic process. However, in the case β ≥ 1/3 for midpoint
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tau-leaping, the dominant term of the error is a nonzero Gaussian process. We note
that this random error process should not be viewed as “extra fluctuations,” as they
are present in the other cases. In these other cases, they are just dominated by the
error that arises from the deterministic “drift” or “bias” of the error process. We
leave the exact characterization of the weak error of the midpoint method in the
case β ≥ 1/3 as an open problem.

We now present the delayed proofs of Lemmas 4.3 and 4.4.

PROOF OF LEMMA 4.3. Let C1 > 0 be such that

sup
x∈LV

sup
k

|Dk(0, x)| = sup
x∈LV

sup
k

∣∣V (
f (x + νk/V ) − f (x)

)∣∣ ≤ C1.

Using (4.6), a tedious reordering of terms shows that Dk(t, x) satisfies

∂tDk(t, x) = ∑
j

AV
j (x)V [Dk(t, x + νj/V ) − Dk(t, x)]

(4.18)
+ ∑

j

(
AV

j (x + νk/V ) − AV
j (x)

)
V Dj(t, x + νk/V ).

Similarly to viewing v(t, x) = vx(t) as a finite-dimensional linear system, (4.18)
can be viewed as a linear system for the variables Dk(t, x) = D{k,x}(t), for
k ∈ [1, . . . ,M] and x ∈ L

V . Because AV
j (x) ≡ 0 for all x /∈ �γ , we see that

∂tDk(t, x) ≡ 0 for all x such that x /∈ �γ and x + νj/V /∈ �γ for all j ∈
[1, . . . ,M]. Therefore, the system (4.18) can be viewed as finite dimensional also.

Let �1 = [1, . . . ,M] × L
V . We enumerate the system (4.18) over b ∈ �1. That

is, for b = {k, x} ∈ �1 we let Db(t) = Dk(t, x) = Db1(t, b2). After some ordering
of the set �1, we let R

�1 denote the set of (infinite) vectors, v, whose bth compo-
nent is vb ∈ R, and then denote D(t) ∈ R

�1 as the vector whose bth component is
Db(t). Next, for each b = {k, x} ∈ �1, we let

Sb
def= ∑

j

AV
j (b2) = ∑

j

AV
j (x)

and let rb,Rb ∈ R
�1 satisfy

Rb · v = ∑
j

AV
j (b2)v{b1,b2+νj /V },

rb · v = ∑
j

(
AV

j (b2 + νb1/V ) − AV
j (b2)

)
V v{j,b2+νb1/V }

for all v ∈ R
�1 . It is readily seen that for any b both Rb and rb have at most M

nonzero components. Also, by the regularity conditions on the functions AV
j ’s, the

absolute value of the nonzero terms of rb are uniformly bounded above by some K ,
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which is independent of V . Finally, note that Rb · 1 = Sb. Combining the previous
few sentences shows that for any vector v ∈ R

�1 , we have the two inequalities

|Rb · v| =
∣∣∣∣
∑
j

AV
j (b2)v{b1,b2+νj /V }

∣∣∣∣ ≤ Sb‖v‖∞,(4.19)

|rb · v| ≤ KM‖v‖∞,(4.20)

where ‖v‖∞ def= supb∈�1
|vb|. We now write (4.18) as

D′
b(t) = −V SbDb(t) + V Rb · D(t) + rb · D(t),

and so for each b ∈ �1

d

dt
Db(t)

2 = −2V SbDb(t)
2 + 2V Db(t)Rb · D(t) + 2Db(t)rb · D(t).(4.21)

Only a finite number of the terms Db(t) are changing in time and so there is a b1

and a t1 ∈ (0, T ] for which |Db1(t)| = ‖D(t)‖∞ for t ∈ [0, t1]. By (4.19), we have
that for this b1 and any t ∈ [0, t1]

∫ t

0
Db1(s)Rb1 · D(s)ds ≤

∫ t

0
Sb1 |Db1(s)|‖D(s)‖∞ ds =

∫ t

0
Sb1Db1(s)

2 ds,

which, after integrating (4.21), yields

‖D(t)‖2∞ = Db1(t)
2 ≤ Db1(0)2 + 2

∫ t

0
Db1(s)rb1 · D(s)ds

≤ ‖D(0)‖2∞ + 2KM

∫ t

0
‖D(s)‖2∞ ds,

where the final inequality makes use of (4.20). An application of Gronwall’s in-
equality now gives us that for t ∈ [0, t1]

‖D(t)‖2∞ ≤ ‖D(0)‖2∞e2KMt .

To complete the proof, continue this process for i ≥ 2 by choosing the bi for which
|Dbi (t)| is maximal on the time interval ti − ti−1. We must have limi→∞ ti =
T because (i) there are a finite number of time varying Db(t)’s and (ii) each
Db(t) is differentiable. After taking square roots, we find supt≤T ‖D(t)‖∞ ≤
‖D(0)‖∞eKMT ≤ C1e

KMT , which is equivalent to (4.9).
We now turn our attention to showing (4.10), which we show in a similar man-

ner. There is a C2 > 0 such that for all x ∈ L
V and k, � ∈ [1, . . . ,M],

|Dk�(0, x)| = V 2|f (x + ν�/V + νk/V ) − f (x + ν�/V ) − f (x + νk/V ) + f (x)|
≤ C2.
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Another tedious reordering of terms, which makes use of (4.18), shows that
Dk�(t, x) satisfies

∂tDk�(t, x)

= ∑
j

AV
j (x)V [Dk�(t, x + νj/V ) − Dk�(t, x)]

+ ∑
j

(
AV

j (x + ν�/V ) − AV
j (x)

)
V Dkj (t, x + ν�/V )

+ ∑
j

(
AV

j (x + νk/V ) − AV
j (x)

)
V Dj�(t, x + νk/V ) + gk�(t, x),

where

gk�(t, x)
def= ∑

j

V 2[AV
j (x + ν�/V + νk/V )

− AV
j (x + ν�/V ) − AV

j (x + νk/V ) + AV
j (x)]

× Dj(t, x + ν�/V + νk/V ).

By (i) the fact that the second derivative of AV
j is uniformly (in j and x) bounded

and (ii) the bound (4.9), the absolute value of the last term is uniformly (in t ≤ T ,
x, k and �) bounded by some C3 > 0.

As we did for both v(t, x) and Dk(t, x), we change perspective by viewing
the above as a linear system with state space {k, �, x} ∈ [1, . . . ,M]× [1, . . . ,M]×
L

V = �2, where we again put an ordering on �2 and consider R
�2 defined similarly

to R
�1 . Also similarly to before, we note that only a finite number of the Dk,�(t, x)

are changing in time. For b = {k, �, x} ∈ �2, we see that Db(t) satisfies

D′
b(t) = −SbV Db(t) + V Rb · D(t) + rb · D(t) + gb(t),(4.22)

where Db(t),D(t), Sb, Rb and rb are defined similarly as before and where we
retain the necessary inequalities: for v ∈ R

�2 ,

|Rb · v| =
∣∣∣∣
∑
j

AV
j (b3)v{b1,b2,b3+νj /V }

∣∣∣∣ ≤ Sb‖v‖∞,

(4.23)
|rb · v| ≤ 2KM‖v‖∞.

The rest of the proof is similar to the proof that the Dk(t, x) are uniformly bounded.
There is a b1 ∈ �2 and a t1 ∈ (0, T ] for which |Db1(t)| = ‖D(t)‖∞ for all t ∈
[0, t1]. Taking the derivative of Db1(t)2 while using (4.22), integrating, and using
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the bounds (4.23), we have that for this b1 and any t ∈ [0, t1],

Db1(t)
2 = Db1(0)2 + 2

∫ t

0
gb1(s)Db1(s) ds − 2

∫ t

0
Sb1V Db1(s)

2 ds

+ 2
∫ t

0
V Rb1 · D(s)Db1(s) ds + 2

∫ t

0
rb1 · D(s)Db1(s) ds

≤ Db(0)2 + 2C3t + (4KM + 2C3)

∫ t

0
‖D(s)‖2∞ ds,

where we used the inequality x ≤ 1 + x2 on the term Db1(s) in the first integral
above. Therefore, for t ≤ t1

‖D(t)‖2∞ ≤ ‖D(0)‖2∞ + 2C3t + (4KM + 2C3)

∫ t

0
‖D(s)‖2∞ ds.

We continue now by choosing a b2 ∈ �2 such that |Db2(t)| = ‖D(t)‖∞ for all
t ∈ [t1, t2), with t1 < t2 ≤ T . By similar arguments as above, we have that for
t ∈ [t1, t2],

‖D(t)‖2 ≤ ‖D(t1)‖2∞ + 2C3(t − t1) + (4KM + 2C3)

∫ t

t1

‖D(s)‖2∞ ds

≤ ‖h(0)‖2∞ + 2C3t + (4KM + 2C3)

∫ t

0
‖h(s)‖2∞ ds.

Continuing in this manner shows that the above inequality holds for all t ∈ [0, T ]
and so a Gronwall inequality gives us that for all t ≤ T ,

‖D(t)‖2∞ ≤
(
‖D(0)‖2∞ + 2C3

4KM + 2C3

)
e(4KM+2C3)T ,

which, after taking square roots, is equivalent to (4.10). �

PROOF OF LEMMA 4.4. By (4.18), we have that for any k ∈ [1, . . . ,M] and
x ∈ L

V ,

Dk(t, x) = Dk(0, x) + ∑
j

AV
j (x)

∫ t

0
Dkj (s, x) ds

+ ∑
j

(
AV

j (x + νk/V ) − AV
j (x)

)
V

∫ t

0
Dj(s, x + νk/v) ds.

The proof is now immediate in light of Lemma 4.3. �
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5. Examples.

EXAMPLE 5.1. Consider the case of an irreversible isomerization of one
molecule into another. We denote by A the molecule undergoing the isomeriza-
tion and B the target molecule. We assume that the rate constant associated with
this reaction is 1. The pictorial representation for this system is simply

A
1→ B.

Letting X(t) denote the number of A molecules at time t ≥ 0, X(t) satisfies

X(t) = X(0) − Y

(∫ t

0
X(s) ds

)
.

Supposing that we start with V = 10,000 molecules, we approximate the distri-
bution of X(1) using 200,000 sample paths constructed using the Gillespie algo-
rithm, which produces statistically exact sample paths, Euler tau-leaping with a
step-size of 1/20 and midpoint tau-leaping with a step-size of 1/20. Note that in
this case 1/20 = 1/V 0.325, and so β = 0.325. The computational results are pre-
sented in Figure 1, which demonstrate the stronger convergence rate of midpoint
tau-leaping as compared to Euler tau-leaping.

It is simple to show that X(1) is a binomial(n,p) random variable with pa-
rameters n = 10,000 and p = 1/e. Therefore, EX(1) = 10,000/e ≈ 3678.8. The

FIG. 1. Relative frequency of X(1) from 200,000 sample paths constructed using (i) Gillespie’s al-
gorithm, blue line ∇ marker, (ii) Euler tau-leaping, green line, © marker, and (iii) midpoint tau-leap-
ing, red line, ∗ marker. The approximated distribution generated via midpoint tau-leaping is clearly
closer to the exact distribution than that of Euler tau-leaping.
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estimated means produced from the 200,000 sample paths of Euler tau-leaping
and midpoint tau-leaping were 3585.4 and 3681.4, respectively. Solving for E (t)

of (3.15) for this example yields E (t) = (1/2)e−t t . Theorem 4.1 therefore esti-
mates that Euler tau-leaping should produce a mean (1/2)e−110,0001−0.325 ≈ 92.2
smaller than the actual mean, which is in agreement with 3678.8 − 3585.4 = 93.4.
Solving for E1(t) of (3.26) for this example yields E1(t) = (1/6)te−t . Theo-
rem 4.5 therefore estimates that midpoint tau-leaping should produce a mean
(1/6)e−110,0001−2∗0.325 = 4.62 smaller than the actual mean, which is in agree-
ment with 3678.8 − 3681.4 = −2.6.

EXAMPLE 5.2. We now consider a simple Lotka–Volterra predator–prey
model. Letting A and B represent the prey and predators, respectively, in a given
environment we suppose (i) prey reproduce at a certain rate, (ii) interactions be-
tween predators and prey benefit the predator while hurting the prey, and (iii)
predators die at a certain rate. One possible model for this system is

A
2→ 2A, A + B

0.002→ 2B, B
2→ ∅,

where a choice of rate constants has been made. Letting X(t) ∈ Z
2≥0 be such that

X1(t) and X2(t) represent the numbers of prey and predators at time t > 0, respec-
tively, X(t) satisfies

X(t) = X(0) + Y1

(∫ t

0
2X1(s) ds

)[
1
0

]

+ Y2

(∫ t

0
0.002X1(s)X2(s) ds

)[−1
1

]
(5.1)

+ Y3

(∫ t

0
2X2(s) ds

)[
0

−1

]
.

We take X(0) = [1,000,1,000]T , and so V = 1,000 for our model. Lotka–Volterra
models are famous for producing periodic solutions; this behavior is demonstrated
in Figure 2.

We approximate the distribution of X2(10) using 30,000 sample paths con-
structed using the Gillespie algorithm, Euler tau-leaping with a step-size of 1/20
and midpoint tau-leaping with a step-size of 1/20. Note that in this case 1/20 =
1/V 0.434, and so β = 0.434. The computational results are presented in Figure 3,
which again demonstrate the stronger convergence rate of midpoint tau-leaping as
compared to Euler tau-leaping.

APPENDIX

LEMMA A.1. Let M be a {Ft }-martingale, R be bounded and {Ft }-adapted,
and let h > 0. Then for η(t) ≡ [t/h]h,

M̂(t) =
∫ t

0
R◦η(s)

(
M(s)−M ◦η(s)

)
ds+R◦η(t)

(
M(t)−M ◦η(t)

)(
η(t)+h− t

)
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FIG. 2. Oscillations in a predator–prey model. In the left image we see the numbers of predators
versus the number of prey for a single realization of the system (5.1). In the right image we see the
time-series of the numbers of predators and prey for a single realization of (5.1).

is an {Ft }-martingale and

[M̂]t =
∫ t

0

(
R ◦ η(r)

)2(
η(r) + h − r

)2
d[M]r .(A.1)

FIG. 3. Relative frequency of X2(10) from 30,000 sample paths constructed using (i) Gillespie’s al-
gorithm, blue line ∇ marker, (ii) Euler tau-leaping, green line, © marker, and (iii) midpoint tau-leap-
ing, red line, ∗ marker. The approximated distribution generated via midpoint tau-leaping is clearly
closer to the exact distribution than that of Euler tau-leaping.
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If M is R
d -valued and R is M

m×d -valued, then the quadratic covariation matrix
is

[M̂]t =
∫ t

0

(
η(r) + h − r

)2
R ◦ η(r) d[M]rRT ◦ η(r).

PROOF. For t < T − h,

E[M̂(T )|Ft ] = E

[∫ T

0
R ◦ η(s)

(
M(s) − M ◦ η(s)

)
ds

∣∣Ft

]

= E

[∫ η(t)+h

0
R ◦ η(s)

(
M(s) − M ◦ η(s)

)
ds

∣∣Ft

]

=
∫ t

0
R ◦ η(s)

(
M(s) − M ◦ η(s)

)
ds

+ R ◦ η(t)
(
M(t) − M ◦ η(t)

)(
η(t) + h − t

)
.

The case of T − h ≤ t < T is similar. [M̂] is just the quadratic variation of the
second term on the right, and noting that M̂ is continuous at t = kh for all k =
0,1,2 . . . , (A.1) follows. �

For completeness, we include a statement of the martingale central limit theo-
rem (see [6] for more details).

LEMMA A.2. Let {Mn} be a sequence of R
d -valued martingales with

Mn(0) = 0. Suppose

lim
n→∞E

[
sup
s≤t

|Mn(s) − Mn(s−)|
]
= 0

and

[Mi
n,M

j
n ]t → ci,j (t)

for all t > 0 where C = ((ci,j )) is deterministic and continuous. Then Mn ⇒ M ,
where M is Gaussian with independent increments and E[M(t)M(t)T ] = C(t).
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