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NUMERICAL SIMULATION OF BSDES WITH DRIVERS OF
QUADRATIC GROWTH

BY ADRIEN RICHOU

Université Rennes 1

This article deals with the numerical resolution of Markovian backward
stochastic differential equations (BSDEs) with drivers of quadratic growth
with respect to z and bounded terminal conditions. We first show some bound
estimates on the process Z and we specify the Zhang’s path regularity the-
orem. Then we give a new time discretization scheme with a nonuniform
time net for such BSDEs and we obtain an explicit convergence rate for this
scheme.

1. Introduction. Since the early nineties, there has been an increasing inter-
est for backward stochastic differential equations (BSDEs). These equations have
a wide range of applications in stochastic control, in finance or in partial differen-
tial equation theory. A particular class of BSDE has been studied for a few years:
BSDEs with drivers of quadratic growth with respect to the variable z. This class
arises, for example, in the context of utility optimization problems with exponen-
tial utility functions or alternatively in questions related to risk minimization for
the entropic risk measure (see, e.g., [13]). Many papers deal with existence and
uniqueness of solution for such BSDEs; we refer the reader to [17, 18] when the
terminal condition is bounded and [3, 4, 9] for the unbounded case. Our concern
is rather related to the simulation of BSDEs and more precisely time discretization
of BSDEs coupled with a forward stochastic differential equation (SDE). Actually,
the design of efficient algorithms which are able to solve BSDEs in any reasonable
dimension has been intensely studied since the first work of Chevance [6] (see,
e.g., [1, 11, 19]). But in all these works, the driver of the BSDE is a Lipschitz
function with respect to z and this assumption plays a key role in their proofs.
In a recent paper, Cheridito and Stadje [5] studied approximation of BSDEs by
backward stochastic difference equations which are based on random walks in-
stead of Brownian motions. They obtain a convergence result when the driver has
a subquadratic growth with respect to z and they give an example where this ap-
proximation does not converge when the driver has a quadratic growth. To the best
of our knowledge, the only work where the time approximation of a BSDE with
a quadratic growth with respect to z is studied is the one of Imkeller and Reis
[14]. Notice that, when the driver has a specific form (roughly speaking, the driver
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is a sum of a quadratic term z �→ C|z|2 and a function that has a linear growth
with respect to z), it is possible to get around the problem by using an exponential
transformation method (see [15]) or by using results on fully coupled forward–
backward differential equations (see [7]).

To explain the ideas of this paper, let us introduce (X,Y,Z) the solution to the
forward–backward system

Xt = x +
∫ t

0
b(s,Xs) ds +

∫ t

0
σ(s) dWs,

Yt = g(XT ) +
∫ T

t
f (s,Xs,Ys,Zs) ds −

∫ T

t
Zs dWs,

where g is bounded, f is locally Lipschitz and has a quadratic growth with respect
to z. A well-known result is that when g is a Lipschitz function with Lipschitz
constant Kg , then the process Z is bounded by C(Kg + 1) (see Theorem 3.1). So,
in this case, the driver of the BSDE is a Lipschitz function with respect to z and
we are able to use standard results about discretization of BSDEs. Because of the
above observation, this paper will focus on the case that the terminal function g

is not Lipschitz. To obtain our main results, we will assume that g is an α-Hölder
function but it is also possible to adapt our methods when g is not α-Hölder; for
example, Remark 4.13 deals with the case of an indicator function of a smooth
domain. Let us notice that the time approximation of BSDEs with an irregular
terminal function has already been studied by Gobet and Makhlouf [12] when the
generator is a Lipschitz function with respect to z.

In light of previous observation, a simple idea is to do an approximation of
(Y,Z) by the solution (YN,ZN) to the BSDE

YN
t = gN(XT ) +

∫ T

t
f (s,Xs,Y

N
s ,ZN

s ) ds −
∫ T

t
ZN

s dWs,

where gN is a Lipschitz approximation of g. Thanks to bounded mean oscillation
martingale (BMO martingale in the sequel) tools, we have an error estimate for this
approximation (see, e.g., [2, 14] or Proposition 4.2). For example, if g is α-Hölder,
we are able to obtain the error bound CK

−α/(1−α)
gN (see Proposition 4.11). More-

over, we can have an error estimate for the time discretization of the approximated
BSDE thanks to any numerical scheme for BSDEs with Lipschitz driver. But this

error estimate depends on KgN
; roughly speaking, this error is Ce

CK2
gN n−1 with

n the number of discretization times. The exponential term results from the use of
Gronwall’s inequality. Finally, when g is α-Hölder and KgN

= N , the global error
bound is

C

(
1

Nα/(1−α)
+ eCN2

n

)
.(1)

So, when N increases, n−1 will have to become small very quickly and the speed of
convergence turns out to be bad; if we take N = (C

ε
logn)1/2 with 0 < ε < 1, then
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the global error bound becomes Cε(logn)−α/(2(1−α)). The same drawback appears
in the work of Imkeller and Reis [14]. Indeed, their idea is to do an approximation
of (Y,Z) by the solution (YN,ZN) to the truncated BSDE

YN
t = g(XT ) +

∫ T

t
f (s,Xs,Y

N
s , hN(ZN

s )) ds −
∫ T

t
ZN

s dWs,

where hN : R1×d → R1×d is a smooth modification of the projection on the open
Euclidean ball of radius N about 0. Thanks to several statements concerning the
path regularity and stochastic smoothness of the solution processes, the authors
show that for any β ≥ 1, the approximation error is lower than CβN−β . So they
obtain the global error bound

Cβ

(
1

Nβ
+ eCN2

n

)
(2)

and, consequently, the speed of convergence also turns out to be bad; if we
take N = (C

ε
logn)1/2 with 0 < ε < 1, then the global error bound becomes

Cβ,ε(logn)−β/2.
Another idea is to use an estimate of Z that does not depend on Kg . So we

extend a result of [8] which shows

|Zt | ≤ M1 + M2

(T − t)1/2 , 0 ≤ t < T .(3)

Let us notice that this type of estimation is well known in the case of drivers with
linear growth as a consequence of the Bismut–Elworthy formula (see, e.g., [10]).
But in our case, we do not need to suppose that σ is invertible. Then, thanks to
this estimation, we know that when t < T , f (t, ·, ·, ·) is a Lipschitz function with
respect to z and the Lipschitz constant depends on t . So we are able to modify
the classical uniform time net to obtain a convergence speed for a modified time
discretization scheme for our BSDE; the idea is to put more discretization points
near the final time T than near 0. Roughly speaking, our discretization grid is equal
to

tk := T

(
1 −

(
ε

T

)k/n)
, 0 ≤ k ≤ n,

with ε a parameter. But due to technical reasons we need to apply this modified
time discretization scheme to the approximated BSDE

Y
N,ε
t = gN(XT ) +

∫ T

t
f ε(s,Xs,Y

N,ε
s ,ZN,ε

s ) ds −
∫ T

t
ZN,ε

s dWs

with

f ε(s, x, y, z) := 1s≤T −εf (s, x, y, z) + 1s>T −εf (s, x, y,0).

Thanks to the estimate (3), we obtain a speed convergence for the time discretiza-
tion scheme of this approximated BSDE (see Theorem 4.9). Moreover, BMO tools
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give us again an estimate of the approximation error (see Proposition 4.2). Finally,
if we suppose that g is α-Hölder, we prove that we can choose properly N and ε

to obtain the global error estimate Cn−2α/((2−α)(2+K)−2+2α) (see Theorem 4.14)
where K > 0 depends on constant M2 defined in equation (3) and constants related
to f . Let us notice that such a speed of convergence where constants related to f ,
g, b and σ appear in the power of n is unusual. Even if we have an error far better
than (1) or (2), this result is not very interesting in practice because the speed of
convergence strongly depends on K . But, when b is bounded, we prove that we
can take M2 as small as we want in (3). Finally, we obtain a global error estimate
lower than Cηn

−(α−η) for all η > 0 (see Theorem 4.17).
To conclude, it could be interesting to do some comparisons between our work

and the article of Gobet and Makhlouf [12]. We already explain that this paper
studies the time approximation of Lipschitz BSDEs with irregular terminal func-
tions. These authors show that the error of approximation is lower than Cηn

−α

when g is an α-Hölder function and the discretization grid is uniform. So, our bet-
ter speed of convergence is very close to their result. Nevertheless, they also show
that it is possible to obtain the classical speed of convergence, that is to say Cn−1,
when we use the nonuniform grid given by

tk := T − T

(
1 − k

n

)1/β

, 0 ≤ k ≤ n,

with β < α. It is interesting to notice that we both use nonuniform time discretiza-
tion points but their grid is different than our grid; the accumulation speed of dis-
cretization points near the terminal time T is not the same; it is faster in our case.

The paper is organized as follows. In the introductory Section 2 we recall some
of the well-known results concerning SDEs and BSDEs. In Section 3 we establish
some estimates concerning the process Z; we show a first uniform bound for Z,
then a time dependent bound and finally we specify the classical path regularity
theorem. In Section 4 we define a modified time discretization scheme for BSDEs
with a nonuniform time net and we obtain an explicit error bound.

2. Preliminaries.

2.1. Notation. Throughout this paper, (Wt)t≥0 will denote a d-dimensional
Brownian motion, defined on a probability space (�, F ,P). For t ≥ 0, let Ft de-
note the σ -algebra σ(Ws;0 ≤ s ≤ t), augmented with the P-null sets of F . The
Euclidean norm on Rd will be denoted by | · |. The operator norm induced by | · |
on the space of linear operator is also denoted by | · |. For p ≥ 2, m ∈ N, we denote
further:

(1) S p(Rm) or S p when no confusion is possible, the space of all adapted pro-
cesses (Yt )t∈[0,T ] with values in Rm normed by

‖Y‖S p = E
[(

sup
t∈[0,T ]

|Yt |
)p]1/p;
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S ∞(Rm) or S ∞, the space of bounded measurable processes;
(2) Mp(Rm) or Mp , the space of all progressively measurable processes

(Zt )t∈[0,T ] with values in Rm normed by

‖Z‖Mp = E

[(∫ T

0
|Zs |2 ds

)p/2]1/p

.

In the following we keep the same notation C for all finite, nonnegative constants
that appear in our computations; they may depend on known parameters deriving
from assumptions and on T but not on any of the approximation and discretization
parameters. In the same spirit, we keep the same notation η for all finite, positive
constants that we can take as small as we want independently of the approximation
and discretization parameters.

2.2. Some results on BMO martingales. In our work, the space of BMO mar-
tingales play a key role for the a priori estimates needed in our analysis of BSDEs.
We refer the reader to [16] for the theory of BMO martingales and we just recall
the properties that we will use in the sequel. Let �t = ∫ t

0 φs dWs , t ∈ [0, T ], be a
real square integrable martingale with respect to the Brownian filtration. Then �

is a BMO martingale if

‖�‖BMO = sup
τ∈[0,T ]

E[〈�〉T − 〈�〉τ |Fτ ]1/2 = sup
τ∈[0,T ]

E

[∫ T

τ
φ2

s ds
∣∣Fτ

]1/2

< +∞,

where the supremum is taken over all stopping times in [0, T ]; 〈�〉 denotes the
quadratic variation of �. In our case, the very important feature of BMO martin-
gales is the following lemma.

LEMMA 2.1. Let � be a BMO martingale. Then we have:

(1) The stochastic exponential

E (�)t = Et = exp
(∫ t

0
φs dWs − 1

2

∫ t

0
|φs |2 ds

)
, 0 ≤ t ≤ T ,

is a uniformly integrable martingale.
(2) Thanks to the reverse Hölder inequality, there exists p > 1 such that ET ∈

Lp . The maximal p with this property can be expressed in terms of the BMO norm
of �.

(3) ∀n ∈ N∗, E[(∫ T
0 |φs |2 ds)n] ≤ n!‖�‖2n

BMO.

2.3. The backward–forward system. Given functions b, σ , g and f , for x ∈ Rd

we will deal with the solution (X,Y,Z) to the following system of (decoupled)
backward–forward stochastic differential equations: for t ∈ [0, T ],

Xt = x +
∫ t

0
b(s,Xs) ds +

∫ t

0
σ(s) dWs,(4)

Yt = g(XT ) +
∫ T

t
f (s,Xs,Ys,Zs) ds −

∫ T

t
Zs dWs.(5)
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For the functions that appear in the above system of equations we give some gen-
eral assumptions.

(HX0). b : [0, T ] × Rd → Rd , σ : [0, T ] → Rd×d are measurable functions.
There exist four positive constants Mb, Kb, Mσ and Kσ such that ∀t, t ′ ∈ [0, T ],
∀x, x′ ∈ Rd ,

|b(t, x)| ≤ Mb(1 + |x|),
|b(t, x) − b(t ′, x′)| ≤ Kb(|x − x′| + |t − t ′|1/2),

|σ(t)| ≤ Mσ,

|σ(t) − σ(t ′)| ≤ Kσ |t − t ′|.

(HY0). f : [0, T ] × Rd × R × R1×d → R, g : Rd → R are measurable func-
tions. There exist five positive constants Mf , Kf,x , Kf,y , Kf,z and Mg such that
∀t ∈ [0, T ], ∀x, x′ ∈ Rd , ∀y, y′ ∈ R, ∀z, z′ ∈ R1×d ,

|f (t, x, y, z)| ≤ Mf (1 + |y| + |z|2),
|f (t, x, y, z) − f (t, x′, y′, z′)| ≤ Kf,x |x − x′| + Kf,y |y − y′|

+ (
Kf,z + Lf,z(|z| + |z′|))|z − z′|,

|g(x)| ≤ Mg.

We next recall some results on BSDEs with quadratic growth. For their original
version and their proof we refer to [2, 17] and [14].

THEOREM 2.2. Under (HX0), (HY0), the system (4)–(5) has a unique solu-
tion (X,Y,Z) ∈ S 2 × S ∞ × M2. The martingale Z ∗ W belongs to the space of
BMO martingales and ‖Z ∗ W‖BMO only depends on T , Mg and Mf . Moreover,
there exists r > 1 such that E (Z ∗ W) ∈ Lr .

3. Some useful estimates of Z.

3.1. A first bound for Z.

THEOREM 3.1. Suppose that (HX0), (HY0) hold and that g is Lipschitz with
Lipschitz constant Kg . Then, there exists a version of Z such that, ∀t ∈ [0, T ],

|Zt | ≤ e(2Kb+Kf,y)T Mσ (Kg + T Kf,x).

PROOF. First, we suppose that b, g and f are differentiable with respect to x,
y and z. Then (X,Y,Z) is differentiable with respect to x and (∇X,∇Y,∇Z) is
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the solution of

∇Xt = Id +
∫ t

0
∇b(s,Xs)∇Xs ds,(6)

∇Yt = ∇g(XT )∇XT −
∫ T

t
∇Zs dWs

+
∫ T

t
∇xf (s,Xs,Ys,Zs)∇Xs + ∇yf (s,Xs,Ys,Zs)∇Ys ds(7)

+
∫ T

t
∇zf (s,Xs,Ys,Zs)∇Zs ds,

where ∇Xt = (∂Xi
t /∂xj )1≤i,j≤d , ∇Yt = t(∂Yt/∂xj )1≤j≤d ∈ R1×d , ∇Zt = (∂Zi

t /

∂xj )1≤i,j≤d and
∫ T
t ∇Zs dWs means

∑
1≤i≤d

∫ T

t
(∇Zs)

i dWi
s

with (∇Z)i denoting the ith line of the d × d matrix process ∇Z. Thanks to usual
transformations on the BSDE we obtain

e
∫ t

0 ∇yf (s,Xs,Ys,Zs) ds∇Yt

= e
∫ T

0 ∇yf (s,Xs,Ys,Zs) ds∇g(XT )∇XT

−
∫ T

t
e

∫ s
0 ∇yf (u,Xu,Yu,Zu)du∇Zs dW̃s

+
∫ T

t
e

∫ s
0 ∇yf (u,Xu,Yu,Zu)du∇xf (s,Xs,Ys,Zs)∇Xs ds

with dW̃s = dWs − ∇zf (s,Xs,Ys,Zs) ds. We have∥∥∥∥
∫ ·

0
∇zf (s,Xs,Ys,Zs) dWs

∥∥∥∥
2

BMO

= sup
τ∈[0,T ]

E

[∫ T

τ
|∇zf (s,Xs,Ys,Zs)|2 ds

∣∣Fτ

]

≤ C

(
1 + sup

τ∈[0,T ]
E

[∫ T

τ
|Zs |2 ds

∣∣Fτ

])

= C(1 + ‖Z ∗ W‖2
BMO).

Since Z ∗ W belongs to the space of BMO martingales,∥∥∥∥
∫ ·

0
∇zf (s,Xs,Ys,Zs) dWs

∥∥∥∥
BMO

< +∞.
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Lemma 2.1 gives us that E (
∫ ·

0 ∇zf (s,Xs,Ys,Zs) dWs)t is a uniformly integrable
martingale so we are able to apply Girsanov’s theorem: there exists a probability
Q under which (W̃ )t∈[0,T ] is a Brownian motion. Then,

e
∫ t

0 ∇yf (s,Xs,Ys,Zs) ds∇Yt

= EQ

[
e

∫ T
0 ∇yf (s,Xs,Ys,Zs) ds∇g(XT )∇XT

+
∫ T

t
e

∫ s
0 ∇yf (u,Xu,Yu,Zu)du∇xf (s,Xs,Ys,Zs)∇Xs ds

∣∣Ft

]

and

|∇Yt | ≤ e(Kb+Kf,y)T (Kg + T Kf,x),(8)

because |∇Xt | ≤ eKbT . Moreover, thanks to the Malliavin calculus, it is classical
to show that a version of (Zt )t∈[0,T ] is given by (∇Yt (∇Xt)

−1σ(t))t∈[0,T ]. So we
obtain

|Zt | ≤ eKbT Mσ |∇Yt | ≤ e(2Kb+Kf,y)T Mσ (Kg + T Kf,x) a.s.,

because |∇X−1
t | ≤ eKbT .

When b, g and f are not differentiable, we can also prove the result by a stan-
dard approximation and stability results for BSDEs with linear growth. �

REMARK 3.2. Thanks to Theorem 3.1, the generator f becomes a Lipschitz
function with respect to z, so we are able to use standard results about time dis-
cretization of BSDEs. In this case, we obtain that the error of approximation is
lower than Cn−1 with n the number of discretization times (see, e.g., [1, 11]).
Let us notice that, in all studies about discretization of BSDEs, we do not care
about the constant in the error bound; we only consider the asymptotic speed of
convergence. But, with a practical point of view, the constant could play an impor-
tant role, particularly for small n. In our case, the generator f may be viewed as
Lipschitz in z with a Lipschitz constant Ce(2Kb+Kf,y)T . So, if we apply the stan-
dard result, the generic constant in the rate of convergence will be in the order of

CeCe
2(2Kb+Kf,y )T

. This is, of course, not desirable because it blows up when Kb,
Kf,y or T increase. We think that it could be interesting to see if we are able to
observe such a phenomena with numerical simulation.

3.2. A time dependent estimate of Z. We will introduce two alternative as-
sumptions.

(HX1). b is differentiable with respect to x and σ is differentiable with respect
to t . There exists λ ∈ R+ such that ∀η ∈ Rd

|tησ(s)[tσ(s)t∇b(s, x) − tσ ′(s)]η| ≤ λ|tησ(s)|2.(9)
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(HX1′). σ is invertible and ∀t ∈ [0, T ], |σ(t)−1| ≤ Mσ−1 .

Example. Assumption (HX1) is verified when, ∀s ∈ [0, T ], ∇b(s, ·) commutes
with σ(s) and ∃A : [0, T ] → Rd×d bounded such that σ ′(t) = σ(t)A(t).

THEOREM 3.3. Suppose that (HX0), (HY0) hold and that (HX1) or (HX1′)
holds. Moreover, suppose that g is lower (or upper) semi-continuous. Then there
exists a version of Z and there exist two constants C,C′ ∈ R+ that depend only in
T , Mg , Mf , Kf,x , Kf,y , Kf,z and Lf,z such that, ∀t ∈ [0, T [,

|Zt | ≤ C + C′(T − t)−1/2.

PROOF. In a first time, we will suppose that (HX1) holds and that f , g are
differentiable with respect to x, y and z. Then (Y,Z) is differentiable with respect
to x and (∇Y,∇Z) is the solution of the BSDE

∇Yt = ∇g(XT )∇XT −
∫ T

t
∇Zs dWs

+
∫ T

t
∇xf (s,Xs,Ys,Zs)∇Xs + ∇yf (s,Xs,Ys,Zs)∇Ys ds

+
∫ T

t
∇zf (s,Xs,Ys,Zs)∇Zs ds.

Thanks to usual transformations we obtain

e
∫ t

0 ∇yf (s,Xs,Ys,Zs) ds∇Yt

+
∫ t

0
e

∫ s
0 ∇yf (u,Xu,Yu,Zu)du∇xf (s,Xs,Ys,Zs)∇Xs ds

= e
∫ T

0 ∇yf (s,Xs,Ys,Zs) ds∇g(XT )∇XT

+
∫ T

0
e

∫ s
0 ∇yf (u,Xu,Yu,Zu)du∇xf (s,Xs,Ys,Zs)∇Xs ds

−
∫ T

t
e

∫ s
0 ∇yf (u,Xu,Yu,Zu)du∇Zs dW̃s

with dW̃s = dWs − ∇zf (s,Xs,Ys,Zs) ds. We can rewrite it as

Ft = FT −
∫ T

t
e

∫ s
0 ∇yf (u,Xu,Yu,Zu)du∇Zs dW̃s(10)

with

Ft := e
∫ t

0 ∇yf (s,Xs,Ys,Zs) ds∇Yt

+
∫ t

0
e

∫ s
0 ∇yf (u,Xu,Yu,Zu)du∇xf (s,Xs,Ys,Zs)∇Xs ds.
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Z ∗ W belongs to the space of BMO martingales so we are able to apply
Girsanov’s theorem: there exists a probability Q under which (W̃ )t∈[0,T ] is a
Brownian motion. Thanks to the Malliavin calculus, it is possible to show that
(∇Yt(∇Xt)

−1σ(t))t∈[0,T ] is a version of Z. Now we define

αt :=
∫ t

0
e

∫ s
0 ∇yf (u,Xu,Yu,Zu)du∇xf (s,Xs,Ys,Zs)∇Xs ds (∇Xt)

−1σ(t),

Z̃t := Ft(∇Xt)
−1σ(t) = e

∫ t
0 ∇yf (s,Xs,Ys,Zs) dsZt + αt a.s.,

F̃t := eλtFt (∇Xt)
−1.

Since d∇Xt = ∇b(t,Xt)∇Xt dt , then d(∇Xt)
−1 = −(∇Xt)

−1∇b(t,Xt) dt and
thanks to Itô’s formula,

dZ̃t = dFt(∇Xt)
−1σ(t) − Ft(∇Xt)

−1∇b(t,Xt)σ (t) dt + Ft(∇Xt)
−1σ ′(t) dt

and

d(eλt Z̃t ) = F̃t

(
λId − ∇b(t,Xt)

)
σ(t) dt + F̃tσ

′(t) dt + eλt dFt (∇Xt)
−1σ(t).

Finally,

d|eλt Z̃t |2 = 2
[
λ|F̃tσ (t)|2 − F̃tσ (t)[tσ(t)t∇b(t,Xt) − tσ ′(t)]tF̃t

]
dt

+ d〈M〉t + dM∗
t

with Mt := ∫ t
0 eλs dFs(∇Xs)

−1σ(s) and M∗
t a Q-martingale. Thanks to the as-

sumption (HX1) we are able to conclude that |eλt Z̃t |2 is a Q-submartingale.
Hence,

EQ

[∫ T

t
e2λs |Z̃s |2 ds

∣∣Ft

]

≥ e2λt |Z̃t |2(T − t)

≥ e2λt
∣∣e∫ t

0 ∇yf (s,Xs,Ys,Zs) dsZt + αt

∣∣2(T − t) a.s.,

which implies

|Zt |2(T − t) = e−2λt e−2
∫ t

0 ∇yf (s,Xs,Ys,Zs) dse2λt

× ∣∣e∫ t
0 ∇yf (s,Xs,Ys,Zs) dsZt + αt − αt

∣∣2(T − t)

≤ C
(
e2λt

∣∣e∫ t
0 ∇yf (s,Xs,Ys,Zs) dsZt + αt

∣∣2 + 1
)
(T − t)

≤ C

(
EQ

[∫ T

t
e2λs |Z̃s |2 ds

∣∣Ft

]
+ (T − t)

)
a.s.
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with C a constant that only depends on T , Kb, Mσ , Kf,x , Kf,y and λ. Moreover,
we have, a.s.,

EQ

[∫ T

t
e2λs |Z̃s |2 ds

∣∣Ft

]
≤ CEQ

[∫ T

t
|Zs |2 + |αs |2 ds

∣∣Ft

]

≤ C
(‖Z‖2

BMO(Q) + (T − t)
)
.

But ‖Z‖BMO(Q) does not depend on Kg because (Y,Z) is a solution of the follow-
ing quadratic BSDE:

Yt = g(XT ) +
∫ T

t

(
f (s,Xs,Ys,Zs) − Zs∇zf (s,Xs,Ys,Zs)

)
ds

(11)

−
∫ T

t
Zs dW̃s.

Finally, |Zt | ≤ C(1 + (T − t)−1/2) a.s.
When σ is invertible, the inequality (9) is verified with λ := Mσ−1(MσKb +

Kσ). Since this λ does not depend on ∇b and σ ′, we can prove the result when
b(t, ·) and σ are not differentiable by a standard approximation and stability results
for BSDEs with linear growth. So, we are allowed to replace assumption (HX1)
by (HX1′).

When f is not differentiable and g is only Lipschitz, we can prove the result
by a standard approximation and stability results for linear BSDEs. But we notice
that our estimation on Z does not depend on Kg . This allows us to weaken the
hypothesis on g further; when g is only lower or upper semi-continuous the result
stays true. The proof is the same as the proof of Proposition 4.3 in [8]. �

REMARK 3.4. The previous proof gives us a more precise estimation for a
version of Z when f is differentiable with respect to z :∀t ∈ [0, T ],

|Zt | ≤ C + C′EQ

[∫ T

t
|Zs |2 ds

∣∣Ft

]1/2

(T − t)−1/2.

REMARK 3.5. When assumption (HX1) or (HX1′) is not verified, the pro-
cess Z may blow up before T . Zhang gives an example of such a phenomenon in
dimension 1; we refer the reader to Example 1 in [20].

3.3. Zhang’s path regularity theorem. Let 0 = t0 < t1 < · · · < tn = T be any
given partition of [0, T ] and denote δn the mesh size of this partition. We define a
set of random variables

Z̄ti = 1

ti+1 − ti
E

[∫ ti+1

ti

Zs ds
∣∣Fti

]
∀i ∈ {0, . . . , n − 1}.

Then we are able to give a more detailed version at Theorem 3.4.3 in [21].
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THEOREM 3.6. Suppose that (HX0), (HY0) hold and g is a Lipschitz function
with Lipschitz constant Kg . Then we have

n−1∑
i=0

E

[∫ ti+1

ti

|Zt − Z̄ti |2 dt

]
≤ C(1 + K2

g)δn,

where C is a positive constant independent of δn and Kg .

PROOF. We will follow the proof of Theorem 5.6 in [14]; we just need to
specify how the estimate depends on Kg . First, it is not difficult to show that Z̄ti is
the best Fti -measurable approximation of Z in M2([ti , ti+1]), that is,

E

[∫ ti+1

ti

|Zt − Z̄ti |2 dt

]
= inf

Zi∈L2(�,Fti
)
E

[∫ ti+1

ti

|Zt − Zi |2 dt

]
.

In particular,

E

[∫ ti+1

ti

|Zt − Z̄ti |2 dt

]
≤ E

[∫ ti+1

ti

|Zt − Zti |2 dt

]
.

In the same spirit as previous proofs, we suppose in a first time that b, g and f are
differentiable with respect to x, y and z. So,

Zt − Zti = ∇Yt (∇Xt)
−1σ(t) − ∇Yti (∇Xti )

−1σ(ti) = I1 + I2 + I3 a.s.,

with I1 = ∇Yt (∇Xt)
−1(σ (t) − σ(ti)), I2 = ∇Yt ((∇Xt)

−1 − (∇Xti )
−1)σ (ti) and

I3 = ∇(Yt − Yti )(∇Xti )
−1σ(ti). First, thanks to the estimation (8) we have

|I1|2 ≤ |∇Yt |2e2KbT K2
σ |ti+1 − ti |2 ≤ C(1 + K2

g)δ2
n.

We obtain the same estimation for |I2| because

|(∇Xt)
−1 − (∇Xti )

−1| ≤
∣∣∣∣
∫ t

ti

(∇Xs)
−1∇b(s,Xs) ds

∣∣∣∣ ≤ Kbe
KbT |t − ti |.

Last, |I3| ≤ MσeKbT |∇Yt − ∇Yti |. So,

n−1∑
i=0

E

[∫ ti+1

ti

|I3|2 dt

]
≤ Cδn

n−1∑
i=0

E
[
ess sup

t∈[ti ,ti+1]
|∇Yt − ∇Yti |2

]
.

By using the BSDE (7), (HY0), the estimate on ∇Xs and the estimate (8), we have

|∇Yt − ∇Yti |2 ≤ C

(∫ t

ti

(
C(1 + Kg) + |∇zf (s,Xs,Ys,Zs)||∇Zs |)ds

)2

+ C

(∫ t

ti

∇Zs dWs

)2

.
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The inequalities of Hölder and Burkholder–Davis–Gundy give us

n−1∑
i=0

E
[
ess sup

t∈[ti ,ti+1]
|∇Yt − ∇Yti |2

]

≤ C(1 + K2
g) + C

n−1∑
i=0

E

(∫ ti+1

ti

|∇zf (s,Xs,Ys,Zs)||∇Zs |ds

)2

+ CE

(∫ ti+1

ti

|∇Zs |2 ds

)

≤ C(1 + K2
g)

+ CE

[(∫ T

0
|∇zf (s,Xs,Ys,Zs)||∇Zs |ds

)2

+
∫ T

0
|∇Zs |2 ds

]

≤ C(1 + K2
g)

+ CE

[(∫ T

0
(1 + |Zs |2) ds

)(∫ T

0
|∇Zs |2 ds

)
+

∫ T

0
|∇Zs |2 ds

]

≤ C(1 + K2
g)

+ C

(
1 + E

[(∫ T

0
|Zs |2 ds

)p]1/p)
E

[(∫ T

0
|∇Zs |2 ds

)q]1/q

for all p > 1 and q > 1 such that 1/p + 1/q = 1. But, (∇Y,∇Z) is the solution
of BSDE (7) so, from Corollary 9 in [2], there exists q that only depends on ‖Z ∗
W‖BMO such that

E

[(∫ T

0
|∇Zs |2 ds

)q]1/q

≤ C(1 + K2
g).

Moreover, we can apply Lemma 2.1 to obtain the estimate

E

[(∫ T

0
|Zs |2 ds

)p]1/p

≤ C‖Z‖2
BMO ≤ C.

Finally,

n−1∑
i=0

E

[∫ ti+1

ti

|I3|2 dt

]
≤ C(1 + K2

g)δn

and
n−1∑
i=0

E

[∫ ti+1

ti

|Zt − Z̄ti |2 dt

]
≤

n−1∑
i=0

E

[∫ ti+1

ti

(|I1|2 + |I2|2 + |I3|2) dt

]

≤ C(1 + K2
g)δn. �
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4. Convergence of a modified time discretization scheme for the BSDE.

4.1. An approximation of the quadratic BSDE. In a first time we will approx-
imate our quadratic BSDE (5) by another one. We set ε ∈ ]0, T [ and N ∈ N. Let
(Y

N,ε
t ,Z

N,ε
t ) be the solution of the BSDE

Y
N,ε
t = gN(XT ) +

∫ T

t
f ε(s,Xs,Y

N,ε
s ,ZN,ε

s ) ds −
∫ T

t
ZN,ε

s dWs(12)

with

f ε(s, x, y, z) := 1s≤T −εf (s, x, y, z) + 1s>T −εf (s, x, y,0)

and gN a Lipschitz approximation of g with Lipschitz constant N . f ε verifies
assumption (HY0) with the same constants as f . Since gN is a Lipschitz function,
ZN,ε has a bounded version and the BSDE (12) is a BSDE with a linear growth.
Moreover, we can apply Theorem 3.3 to obtain the following proposition.

PROPOSITION 4.1. Let us assume that (HX0), (HY0) and (HX1) or (HX1′)
hold. There exists a version of ZN,ε and there exist three constants Mz,1,Mz,2,
Mz,3 ∈ R+ that do not depend on N and ε such that, ∀s ∈ [0, T ],

|ZN,ε
s | ≤

(
Mz,1 + Mz,2

(T − s)1/2

)
∧ (

Mz,3(N + 1)
)
.

Thanks to BMO tools we have a stability result for quadratic BSDEs (see [2]
and [14]).

PROPOSITION 4.2. Let us assume that (HX0) and (HY0) hold. There exists a
constant C that does not depend on N and ε such that

E
[

sup
t∈[0,T ]

|YN,ε
t − Yt |2

]
+ E

[∫ T

0
|ZN,ε

t − Zt |2 dt

]
≤ C

(
e1(N) + e2(N, ε)

)

with

e1(N) := E[|gN(XT ) − g(XT )|2q]1/q,

e2(N, ε) := E

[(∫ T

T −ε
|f (t,Xt , Y

N,ε
t ,Z

N,ε
t ) − f (t,Xt , Y

N,ε
t ,0)|dt

)2q]1/q

and q defined in Theorem 2.2.

REMARK 4.3. The authors of [14] obtain this result with q2 instead of q .
Nevertheless, we are able to obtain the good result by applying the estimates of [2].
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Then, in a second time, we will approximate our modified backward–forward
system by a discrete-time one. We will slightly modify the classical discretization
by using a nonequidistant net with 2n+ 1 discretization times. We define the n+ 1
first discretization times on [0, T − ε] by

tk = T

(
1 −

(
ε

T

)k/n)
and we use an equidistant net on [T − ε, T ] for the last n discretization times

tk = T −
(

2n − k

n

)
ε, n ≤ k ≤ 2n.

We denote the time step by (hk := tk+1 − tk)0≤k≤2n−1. We consider (Xn
tk
)0≤k≤2n

the classical Euler scheme for X given by

Xn
0 = x,

(13)
Xn

tk+1
= Xn

tk
+ hkb(tk,X

n
tk
) + σ(tk)(Wtk+1 − Wtk)

for 0 ≤ k ≤ 2n − 1. We denote ρs : R1×d → R1×d the projection on the ball

B

(
0,Mz,1 + Mz,2

(T − s)1/2

)

with Mz,1 and Mz,2 given by Proposition 4.1. Finally, we denote (YN,ε,n,ZN,ε,n)

our time approximation of (YN,ε,ZN,ε). This couple is obtained by a slight mod-
ification of the classical dynamic programming equation

Y
N,ε,n
t2n

= gN(Xn
t2n

),

Z
N,ε,n
tk

= ρtk+1

(
1

hk

Etk [YN,ε,n
tk+1

(Wtk+1 − Wtk)]
)
,(14)

Y
N,ε,n
tk

= Etk [YN,ε,n
tk+1

] + hkEtk [f ε(tk,X
n
tk
, Y

N,ε,n
tk+1

,Z
N,ε,n
tk

)],(15)

where 0 ≤ k ≤ 2n − 1 and Etk stand for the conditional expectation given Ftk .
Let us notice that the classical dynamic programming equation does not use a
projection in (14); it is the only difference with our time approximation (see, e.g.,
[11] for the classical case). This projection comes directly from the estimate of Z

in Proposition 4.1. The aim of our work is to study the error of discretization

e(N, ε,n) := sup
0≤k≤2n

E[|YN,ε,n
tk

− Ytk |2] +
2n−1∑
k=0

E

[∫ tk+1

tk

|ZN,ε,n
tk

− Zt |2 dt

]
.

It is easy to see that

e(N, ε,n) ≤ C
(
e1(N) + e2(N, ε) + e3(N, ε, n)

)
with e1(N) and e2(N, ε) defined in Proposition 4.2 and

e3(N, ε, n) := sup
0≤k≤2n

E[|YN,ε,n
tk

− Y
N,ε
tk

|2] +
2n−1∑
k=0

E

[∫ tk+1

tk

|ZN,ε,n
tk

− Z
N,ε
t |2 dt

]
.
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4.2. Study of the time approximation error e3(N, ε, n). We need an extra as-
sumption.

(HY1). There exists a positive constant Kf,t such that ∀t, t ′ ∈ [0, T ], ∀x ∈ Rd ,
∀y ∈ R, ∀z ∈ R1×d ,

|f (t, x, y, z) − f (t ′, x, y, z)| ≤ Kf,t |t − t ′|1/2.

Moreover, we set ε = T n−a and N = nb, with a, b ∈ R+,∗ two parameters. Before
giving our error estimates, we recall two technical lemmas that we will prove in
Appendices A and B.

LEMMA 4.4. For all constant M > 0 there exists a constant C that depends
only on T , M and a, such that

2n−1∏
i=0

(1 + Mhi) ≤ C ∀n ∈ N∗.

LEMMA 4.5. For all constants M1 > 0 and M2 > 0 there exists a constant C

that depends only on T , M1, M2 and a, such that

n−1∏
i=0

(
1 + M1hi + M2

hi

T − ti+1

)
≤ CnaM2 .

First, we give a convergence result for the Euler scheme.

PROPOSITION 4.6. Assume (HX0) holds. Then there exists a constant C that
does not depend on n, such that

sup
0≤k≤2n

E[|Xtk − Xn
tk
|2] ≤ C

lnn

n
.

PROOF. We just have to copy the classical proof to obtain, thanks to Lem-
ma 4.4,

sup
0≤k≤2n

E[|Xtk − Xn
tk
|2] ≤ C sup

0≤i≤2n−1
hi = Ch0.

But

h0 = T (1 − n−a/n) ≤ C
lnn

n
,

because (1 − n−a/n) ∼ aT lnn
n

when n → +∞, so the proof is complete. �

Now, let us treat the BSDE approximation. In a first time we will study the time
approximation error on [T − ε, T ].
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PROPOSITION 4.7. Assume that (HX0), (HY0) and (HY1) hold. Then there
exists a constant C that does not depend on n and such that

sup
n≤k≤2n

E[|YN,ε,n
tk

− Y
N,ε
tk

|2] +
2n−1∑
k=n

E

[∫ tk+1

tk

|ZN,ε,n
tk

− Z
N,ε
t |2 dt

]
≤ C lnn

n1−2b
.

PROOF. The BSDE (12) has a linear growth with respect to z on [T − ε, T ] so
we are allowed to apply classical results which give us that

sup
n≤k≤2n

E[|YN,ε,n
tk

− Y
N,ε
tk

|2] +
2n−1∑
k=n

E

[∫ tk+1

tk

|ZN,ε,n
tk

− Z
N,ε
t |2 dt

]

≤ C

(
E[|gN(XT ) − gN(Xn

T )|2] + ε

n

)

by using the fact that gN is N -Lipschitz and by applying Proposition 4.6. �

REMARK 4.8.

(1) When a ≥ 1 − 2b, then ε = T n−a = o(n2b−1 lnn). We do not need to have
a discretization grid on [T − ε, T ]; n + 2 points of discretization are sufficient on
[0, T ].

(2) When a < 1 − 2b, then it is possible to take only �nc� discretization points
on [T − ε, T ] with a + c = 1 − 2b. In this case the error bound becomes

sup
n≤k≤2n

E[|YN,ε,n
tk

− Y
N,ε
tk

|2] +
2n−1∑
k=n

E

[∫ tk+1

tk

|ZN,ε,n
tk

− Z
N,ε
t |2 dt

]

≤ C

(
lnn

n1−2b
+ 1

na+c

)

and the Proposition 4.7 stays true.

Now, let us see what happens on [0, T − ε].

THEOREM 4.9. Assume that (HX0), (HY0), (HY1) and (HX1) or (HX1′)
hold. Then for all η > 0, there exists a constant C that does not depend on N ,
ε and n, such that

sup
0≤k≤2n

E[|YN,ε,n
tk

− Y
N,ε
tk

|2] +
2n−1∑
k=0

E

[∫ tk+1

tk

|ZN,ε,n
tk

− Z
N,ε
t |2 dt

]
≤ C

n1−2b−Ka

with K = 4(1 + η)L2
f,zM

2
z,2.
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PROOF. First, we will study the error on Y . From (12) and (15) we get

Y
N,ε
tk

− Y
N,ε,n
tk

= Etk [YN,ε
tk+1

− Y
N,ε,n
tk+1

]

+ Etk

∫ tk+1

tk

(
f (s,Xs,Y

N,ε
s ,ZN,ε

s ) − f (tk,X
n
tk
, Y

N,ε,n
tk+1

,Z
N,ε,n
tk

)
)
ds.

We introduce a parameter γk > 0 that will be chosen later. Thanks to Proposi-
tion 4.1 and assumption (HY0), f is Lipschitz on [tk, tk+1] with a Lipschitz con-

stant Kk := K1 + K2

(T −tk+1)
1/2 where K2 = 2Lf,zMz,2. A combination of Young’s

inequality (a + b)2 ≤ (1 + γkhk)a
2 + (1 + 1

γkhk
)b2 and properties of f gives

E|YN,ε
tk

− Y
N,ε,n
tk

|2

≤ (1 + γkhk)E|Etk [YN,ε
tk+1

− Y
N,ε,n
tk+1

]|2

+ (1 + η)1/3K2
k

(
hk + 1

γk

)
E

∫ tk+1

tk

|ZN,ε
s − Z

N,ε,n
tk

|2 ds(16)

+ C

(
hk + 1

γk

)(
h2

k +
∫ tk+1

tk

E|Xs − Xn
tk
|2 ds

)

+ C

(
hk + 1

γk

)(∫ tk+1

tk

E|YN,ε
s − Y

N,ε,n
tk+1

|2 ds

)
.

We define

Z̃
N,ε,n
tk

:= 1

hk

Etk [YN,ε,n
tk+1

(Wtk+1 − Wtk)].

So, Z
N,ε,n
tk

= ρtk+1(Z̃
N,ε,n
tk

). Moreover, Proposition 4.1 implies that ZN,ε
s =

ρtk+1(Z
N,ε
s ) and, since ρtk+1 is 1-Lipschitz, we have

|ZN,ε
s − Z

N,ε,n
tk

|2 = |ρtk+1(Z
N,ε
s ) − ρtk+1(Z̃

N,ε,n
tk

)|2 ≤ |ZN,ε
s − Z̃

N,ε,n
tk

|2.(17)

As in Theorem 3.6, we define Z̄
N,ε
tk

by

hkZ̄
N,ε
tk

:= Etk

∫ tk+1

tk

ZN,ε
s ds

= Etk

((
Y

N,ε
tk+1

+
∫ tk+1

tk

f (s,Xs,Y
N,ε
s ,ZN,ε

s ) ds

)
t(Wtk+1 − Wtk)

)
.

Clearly,

E

∫ tk+1

tk

|ZN,ε
s − Z̃

N,ε,n
tk

|2 ds

(18)

= E

∫ tk+1

tk

|ZN,ε
s − Z̄

N,ε
tk

|2 ds + hkE|Z̄N,ε
tk

− Z̃
N,ε,n
tk

|2.
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The Cauchy–Schwarz inequality yields∣∣Etk

(
(Y

N,ε
tk+1

− Y
N,ε,n
tk+1

)t(Wtk+1 − Wtk)
)∣∣2

≤ hk{Etk (|YN,ε
tk+1

− Y
N,ε,n
tk+1

|2) − |Etk (Y
N,ε
tk+1

− Y
N,ε,n
tk+1

)|2}
and consequently

hkE|Z̄N,ε
tk

− Z̃
N,ε,n
tk

|2

≤ (1 + η)1/3E[Etk (|YN,ε
tk+1

− Y
N,ε,n
tk+1

|2) − |Etk (Y
N,ε
tk+1

− Y
N,ε,n
tk+1

)|2](19)

+ ChkE

∫ tk+1

tk

|f (s,Xs,Y
N,ε
s ,ZN,ε

s )|2 ds.

Plugging (18) and (19) into (16), we get

E|YN,ε
tk

− Y
N,ε,n
tk

|2

≤ (1 + γkhk)E|Etk [YN,ε
tk+1

− Y
N,ε,n
tk+1

]|2

+ (1 + η)K2
k

(
hk + 1

γk

)
E

∫ tk+1

tk

|ZN,ε
s − Z̄

N,ε
tk

|2 ds

+ C

(
hk + 1

γk

)(
h2

k +
∫ tk+1

tk

E|Xs − Xn
tk
|2 ds

+
∫ tk+1

tk

E|YN,ε
s − Y

N,ε,n
tk+1

|2 ds

)

+ (1 + η)2/3K2
k

(
hk + 1

γk

)
E[Etk (|YN,ε

tk+1
− Y

N,ε,n
tk+1

|2)

− |Etk (Y
N,ε
tk+1

− Y
N,ε,n
tk+1

)|2]

+ CK2
k

(
hk + 1

γk

)
hkE

∫ tk+1

tk

|f (s,Xs,Y
N,ε
s ,ZN,ε

s )|2 ds.

Now write

E|YN,ε
s − Y

N,ε,n
tk+1

|2 ≤ 2E|YN,ε
s − Y

N,ε
tk+1

|2 + 2E|YN,ε
tk+1

− Y
N,ε,n
tk+1

|2,(20)

E|Xs − Xn
tk
|2 ≤ 2E|Xs − Xtk |2 + 2E|Xtk − Xn

tk
|2(21)

and we obtain

E|YN,ε
tk

− Y
N,ε,n
tk

|2

≤ (1 + γkhk)E|Etk [YN,ε
tk+1

− Y
N,ε,n
tk+1

]|2

+ (1 + η)K2
k

(
hk + 1

γk

)
E

∫ tk+1

tk

|ZN,ε
s − Z̄

N,ε
tk

|2 ds
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+ C

(
hk + 1

γk

)(
h2

k +
∫ tk+1

tk

E|Xs − Xtk |2 ds + hkE|Xtk − Xn
tk
|2

)

+ C

(
hk + 1

γk

)(∫ tk+1

tk

E|YN,ε
s − Y

N,ε
tk+1

|2 ds + hkE|YN,ε
tk+1

− Y
N,ε,n
tk+1

|2
)

+ (1 + η)2/3K2
k

(
hk + 1

γk

)
E[Etk (|YN,ε

tk+1
− Y

N,ε,n
tk+1

|2)

− |Etk (Y
N,ε
tk+1

− Y
N,ε,n
tk+1

)|2]

+ CK2
k

(
hk + 1

γk

)
hkE

∫ tk+1

tk

|f (s,Xs,Y
N,ε
s ,ZN,ε

s )|2 ds.

Taking γk = (1 + η)2/3K2
k and for hk small enough, it gives

E|YN,ε
tk

− Y
N,ε,n
tk

|2

≤ (
1 + Chk + (1 + η)2/3K2

k hk

)
E|YN,ε

tk+1
− Y

N,ε,n
tk+1

|2 + Ch2
k

+ Chk max
0≤k≤n

E|Xtk − Xn
tk
|2

+ CE

∫ tk+1

tk

|ZN,ε
s − Z̄

N,ε
tk

|2 ds + C

∫ tk+1

tk

E|Xs − Xtk |2 ds

+ C

∫ tk+1

tk

E|YN,ε
s − Y

N,ε
tk+1

|2 ds + ChkE

∫ tk+1

tk

f (s,Xs,Y
N,ε
s ,ZN,ε

s )2 ds,

because K2
k hk ≤ C(h0 + hk(T − tk+1)

−1) ≤ C lnn
n

. The Gronwall’s lemma gives
us

E|YN,ε
tk

− Y
N,ε,n
tk

|2

≤ C

n−1∑
j=0

[j−1∏
i=0

(
1 + Chi + (1 + η)2/3K2

i hi

)]

×
[
h2

j + hj max
0≤l≤n

E|Xtl − Xn
tl
|2

+ E

∫ tj+1

tj

(|ZN,ε
s − Z̄

N,ε
tj

|2 + |Xs − Xtj |2 + |YN,ε
s − Y

N,ε
tj+1

|2) ds

+ hjE

∫ tj+1

tj

|f (s,Xs,Y
N,ε
s ,ZN,ε

s )|2 ds

]

+
[

n−1∏
i=0

(
1 + Chi + (1 + η)2/3K2

i hi

)]
E|YN,ε

tn − Y
N,ε,n
tn |2.



NUMERICAL SIMULATION OF QUADRATIC BSDES 1953

Then, we apply Lemma 4.5.

E|YN,ε
tk

− Y
N,ε,n
tk

|2

≤ Cn(1+η)(K2)2a

×
[
h0 + max

0≤l≤n
E|Xtl − Xn

tl
|2

+
n∑

j=0

E

(∫ tj+1

tj

|ZN,ε
s − Z̄

N,ε
tj

|2 + |Xs − Xtj |2 + |YN,ε
s − Y

N,ε
tj+1

|2 ds

)

+ h0E

∫ tn

0
|f (s,Xs,Y

N,ε
s ,ZN,ε

s )|2 ds + E|YN,ε
tn − Y

N,ε,n
tn |2

]
.

A classical estimation gives us E[|Xs − Xtj |2] ≤ |s − tj |. Moreover, since ZN,ε

is bounded,

E

∫ tn

0
|f (s,Xs,Y

N,ε
s ,ZN,ε

s )|2 ds

≤ CT (1 + |YN,ε|∞) + CE

[∫ tn

0
|ZN,ε

s |4 ds

]

≤ CT (1 + |YN,ε|∞) + Cn2bE

[∫ T

0
|ZN,ε

s |2 ds

]
.

But we have an a priori estimate for E[∫ T
0 |ZN,ε

s |2 ds] that does not depend on N

and ε. So

E

∫ tn

0
|f (s,Xs,Y

N,ε
s ,ZN,ε

s )|2 ds ≤ Cn2b.(22)

With the same type of argument we also have

E|YN,ε
s − Y

N,ε
tj+1

|2 ≤ Chjn
2b.(23)

If we add Zhang’s path regularity Theorem 3.6, Propositions 4.6 and 4.7, we finally
obtain

E|YN,ε
tk

− Y
N,ε,n
tk

|2 ≤ Cn(1+η)(K2)2a n2b lnn

n
= C

lnn

n1−2b−(1+η)(K2)2a
.(24)

Now, let us deal with the error on Z. First of all, (17) gives us

n−1∑
k=0

E

[∫ tk+1

tk

|ZN,ε,n
tk

− Z
N,ε
t |2 dt

]
≤

n−1∑
k=0

E

[∫ tk+1

tk

|Z̃N,ε,n
tk

− Z
N,ε
t |2 dt

]
.
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For 0 ≤ k ≤ n − 1, we can use (18) and (19) to obtain

E

[∫ tk+1

tk

|Z̃N,ε,n
tk

− Z
N,ε
t |2 dt

]

≤ E

[∫ tk+1

tk

|Z̄N,ε
tk

− Z
N,ε
t |2 dt

]

+ (1 + η)2/3E[Etk (|YN,ε
tk+1

− Y
N,ε,n
tk+1

|2) − |Etk (Y
N,ε
tk+1

− Y
N,ε,n
tk+1

)|2]

+ ChkE

[∫ tk+1

tk

|f (s,Xs,Y
N,ε
s ,ZN,ε

s )|2 ds

]
.

Inequality (22) and estimates for Z give us

n−1∑
k=0

E

[∫ tk+1

tk

|ZN,ε,n
tk

− Z
N,ε
t |2 dt

]

≤
n−1∑
k=0

E

[∫ tk+1

tk

|Z̄N,ε
tk

− Z
N,ε
t |2 dt

]

+ (1 + η)2/3
n−1∑
k=0

E[Etk (|YN,ε
tk+1

− Y
N,ε,n
tk+1

|2) − |Etk (Y
N,ε
tk+1

− Y
N,ε,n
tk+1

)|2]

+ Ch0E

[∫ T

0
|f (s,Xs,Y

N,ε
s ,ZN,ε

s )|2 ds

]
(25)

≤
n−1∑
k=0

E

[∫ tk+1

tk

|Z̄N,ε
tk

− Z
N,ε
t |2 dt

]

+ (1 + η)2/3
n−1∑
k=0

E[Etk (|YN,ε
tk

− Y
N,ε,n
tk

|2) − |Etk (Y
N,ε
tk+1

− Y
N,ε,n
tk+1

)|2]

+ CE[|YN,ε
tn − Y

N,ε,n
tn |2] + Ch0n

2b

with an index change in the penultimate line. Then, by using (16) we get

(1 + η)2/3E[Etk (|YN,ε
tk

− Y
N,ε,n
tk

|2) − |Etk (Y
N,ε
tk+1

− Y
N,ε,n
tk+1

)|2]
≤ CγkhkE|Etk [YN,ε

tk+1
− Y

N,ε,n
tk+1

]|2
(26)

+ (1 + η)K2
k

(
hk + 1

γk

)
E

∫ tk+1

tk

|ZN,ε
s − Z

N,ε,n
tk

|2 ds

+ C

(
hk + 1

γk

)
hk

(
hk + sup

s∈[tk,tk+1]
E[|Xs − Xn

tk
|2 + |YN,ε

s − Y
N,ε,n
tk+1

|2]
)
.
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Thanks to (20), (21), (23) and a classical estimation on E[|Xs − Xtk |2] we have

sup
s∈[tk,tk+1]

E[|Xs − Xn
tk
|2 + |YN,ε

s − Y
N,ε,n
tk+1

|2]

≤ C(hkn
2b + E[|YN,ε

tk+1
− Y

N,ε,n
tk+1

|2]).
Let us set γk = 3(1 + η)K2

k . We recall that hkK
2
k ≤ C lnn

n
→ 0 when n → 0. So,

for n big enough, (26) becomes

(1 + η)2/3E[Etk (|YN,ε
tk

− Y
N,ε,n
tk

|2) − |Etk (Y
N,ε
tk+1

− Y
N,ε,n
tk+1

)|2]

≤ C lnn

n
E[|YN,ε

tk+1
− Y

N,ε,n
tk+1

|2] + 1

2
E

∫ tk+1

tk

|ZN,ε
s − Z

N,ε,n
tk

|2 ds

+ Ch0hkn
2b.

If we inject this last estimate in (25) and we use Theorem 3.6, we obtain

1

2

n−1∑
k=0

E

[∫ tk+1

tk

|ZN,ε,n
tk

− Z
N,ε
t |2 dt

]

≤ Ch0n
2b + C lnn sup

0≤k≤n−1
E[|YN,ε

tk+1
− Y

N,ε,n
tk+1

|2].

By using (24) and Proposition 4.7, we finally have

sup
0≤k≤2n

E[|YN,ε,n
tk

− Y
N,ε
tk

|2] +
2n−1∑
k=0

E

[∫ tk+1

tk

|ZN,ε,n
tk

− Z
N,ε
t |2 dt

]

≤ C
(lnn)2

n1−2b−Ka

with K = 4(1 + η)L2
f,zM

2
z,2. Since this estimate is true for every η > 0, we have

proved the result. �

4.3. Study of the global error e(N, ε,n). Let us study errors e1(N) and
e2(N, ε).

PROPOSITION 4.10. Let us assume that (HX0) and (HY0) hold. There exists
a constant C > 0 such that

e2(N, ε) ≤ C

n2a−4b
.

PROOF. We just have to notice that

|f (t,Xt , Y
N,ε
t ,Z

N,ε
t ) − f (t,Xt , Y

N,ε
t ,0)| ≤ C|ZN,ε

t |2
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and |ZN,ε
t | is bounded by Cnb. �

For gN we use the classical Lipschitz approximation

gN(x) = inf{g(u) + N |x − u||u ∈ Rd}.
PROPOSITION 4.11. We assume that (HX0) holds and g is α-Hölder. Then,

there exists a constant C such that

e1(N) ≤ C

n2bα/(1−α)
.

PROOF. gN is a N -Lipschitz function and gN → g when N → +∞ uniformly
on Rd . More precisely, we have

|g − gN |∞ ≤ C

Nα/(1−α)
. �

REMARK 4.12. For some explicit examples, it is possible to have a better
convergence speed. For example, let us take g(x) = (|x|α1x≥0) ∧ C and assume
that σ is invertible. Then, we can use the fact that this function is not Lipschitz
only in 0 and obtain

e1(N) ≤ C

n2αb/(1−α)
P

(
XT ∈ [

0,N−1/(1−α)])1/q ≤ C

n(b/(1−α))(2α+1/q)
.

REMARK 4.13. It is also possible to obtain convergence speed when g is
not α-Hölder. For example, we assume that σ is invertible and we set g(x) =∏d

i=1 1xi>0(x). Then

e1(N) ≤ C

[
d∑

i=1

P
(
(XT )i ∈ [0,1/N ])

]1/q

≤ C

N1/q
= C

nb/q
.

Now we are able to gather all these errors.

THEOREM 4.14. We assume that (HX0), (HY0), (HY1) and (HX1) or (HX1′)
hold. We assume also that g is α-Hölder. Then for all η > 0, there exists a constant
C > 0 that does not depend on n such that

e(n) := e(N, ε,n) ≤ C

n2α/((2−α)(2+K)−2+2α)

with K = 4(1 + η)L2
f,zM

2
z,2.

PROOF. Thanks to Theorem 4.9, Propositions 4.10 and 4.11 we have

e(n) ≤ C

n1−2b−Ka
+ C

n2a−4b
+ C

n2αb/(1−α)
.
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Then we only need to set a := 1+2b
2+K

and b := 1−α
(2−α)(2+K)−2+2α

to obtain the result.
�

COROLLARY 4.15. We assume that assumptions of Theorem 4.14 hold. More-
over, we assume that f has a sub-quadratic growth with respect to z; there exists
0 < β < 1 such that, for all t ∈ [0, T ], x ∈ Rd , y ∈ R, z, z′ ∈ R1×d ,

|f (t, x, y, z) − f (t, x, y, z′)| ≤ (
Kf,z + Lf,z(|z|β + |z′|β)

)|z − z′|.
Then we are allowed to take K as small as we want. So, for all η > 0, there exists
a constant C > 0 that does not depend on n such that

e(n) ≤ C

nα−η
.

REMARK 4.16. We are able to specify Remark 4.8 in our case, when a = 1+2b
2+K

and b = 1−α
(2−α)(2+K)−2+2α

.

(1) When K ≤ 2−3α
2−α

, that is to say, when α < 2/3 and K is sufficiently small,
then we do not need to have a discretization grid on [T − ε, T ].

(2) When K > 2−3α
2−α

, then it is possible to take only �nc� discretization points
on [T − ε, T ] with

c = 1 + 3α − 4

(2 − α)(2 + K) − 2 + 2α
.

Theorem 4.14 is not interesting in practice because the speed of convergence
depends strongly on K . But we see that the global error becomes e(n) ≤ C

nα−η

when we are allowed to choose K as small as we want. Under extra assumption
we can show that we are allowed to take the constant Mz,2 as small as we want.

(HX2). b is bounded on [0, T ] × Rd by a constant Mb.

THEOREM 4.17. We assume that (HX0), (HY0), (HY1), (HX2) and (HX1)
or (HX1′) hold. We assume also that g is α-Hölder. Then for all η > 0, there exists
a constant C > 0 that does not depend on n such that

e(n) ≤ C

nα−η
.

REMARK 4.18. With the assumptions of the previous theorem, it is also pos-
sible to have an estimate of the global error for examples given in Remarks 4.12
and 4.13. When g(x) = (|x|α1x≥0) ∧ C, we have

e(n) ≤ C

nα+(1−α)/(1+2q)−η
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and when g(x) = ∏d
i=1 1xi>0(x), we have

e(n) ≤ C

n1/(1+2q)−η
.

PROOF OF THEOREM 4.17. First, we suppose that f is differentiable with
respect to z. Thanks to Remark 3.4 we see that it is sufficient to show that

EQN,ε
[∫ T

t
|ZN,ε

s |2 ds
∣∣Ft

]

is small uniformly in ω, N and ε when t is close to T . We will obtain an estima-
tion for this quantity by applying the same computation as [2] for the BMO norm
estimate of Z, page 831. Thus, we have

EQN,ε
[∫ T

t
|ZN,ε

s |2 ds
∣∣Ft

]
≤ EQN,ε [|ϕ(Y

N,ε
T ) − ϕ(Y

N,ε
t )||Ft ] + C(T − t)

with ϕ(x) = (e2c(x+m) − 2c(x + m) − 1)/(2c2), m = |Y |∞ and c that depends on
constants in assumption (HY0) but does not depend on ∇zf . Let us notice that
m, c and so ϕ do not depend on N and ε. Since Y is bounded, ϕ is a Lipschitz
function, so

EQN,ε
[∫ T

t
|ZN,ε

s |2 ds
∣∣Ft

]
≤ CEQN,ε [|YN,ε

T − Y
N,ε
t ||Ft ] + C(T − t).

We denote by (YN,ε,t,x,ZN,ε,t,x) the solution of BSDE (12) when X
t,x
t = x. As

usual, we set Xt,x
s = x and ZN,ε,t,x

s = 0 for s ≤ t and we define uN,ε(t, x) :=
Y

N,ε,t,x
t . Then we give a proposition that we will prove in Appendix C.

PROPOSITION 4.19. We assume that (HX0), (HY0), (HY1), (HX2) and
(HX1) or (HX1′) hold. We assume also that g is uniformly continuous on Rd .
Then uN,ε is uniformly continuous on [0, T ] × Rd and there exists ω a concave
modulus of continuity for all functions in {uN,ε|N ∈ N, ε > 0}, that is, ω does not
depend on N and ε.

Then

EQN,ε [|YN,ε
T − Y

N,ε
t ||Ft ]

= EQN,ε [|uN,ε(T ,XT ) − uN,ε(t,Xt)||Ft ]
≤ EQN,ε [

1| ∫ T
t σ (s) dW̃s |≤ν

|uN,ε(T ,XT ) − uN,ε(t,Xt)|
+ 2|YN,ε|∞1| ∫ T

t σ (s) dW̃s |>ν
|Ft

]
≤ EQN,ε [

ω
(|T − t | + 1| ∫ T

t σ (s) dW̃s |≤ν
|XT − Xt |)

+ 2|YN,ε|∞1| ∫ T
t σ (s) dW̃s |>ν

|Ft

]
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with dW̃s = dWs − ∇zf
ε(s,Xs,Y

N,ε
s ,ZN,ε

s ) ds. But,

1| ∫ T
t σ (s) dW̃s |≤ν

|XT − Xt |

= 1| ∫ T
t σ (s) dW̃s |≤ν

∣∣∣∣
∫ T

t
b(s,Xs) ds

+
∫ T

t
∇zf

ε(s,Xs,Y
N,ε
s ,ZN,ε

s ) ds +
∫ T

t
σ (s) dW̃s

∣∣∣∣
≤ Mb(T − t) + ν + C

∫ T

t
(1 + |ZN,ε

s |) ds

≤ C(T − t) + ν + C(T − t)1/2
(∫ T

t
|ZN,ε

s |2 ds

)1/2

.

Since ω is concave, we have by Jensen’s inequality

EQN,ε [
ω

(|T − t | + 1| ∫ T
t σ (s) dW̃s |≤ν

|XT − Xt |)|Ft

]

≤ ω

(
C|T − t | + ν + C(T − t)1/2EQN,ε

[(∫ T

t
|ZN,ε

s |2 ds

)1/2∣∣∣Ft

])

≤ ω

(
C|T − t | + ν + C(T − t)1/2EQN,ε

[∫ T

t
|ZN,ε

s |2 ds
∣∣Ft

]1/2)

≤ ω
(
C|T − t | + ν + C(T − t)1/2‖ZN,ε‖BMO(Q)

)
.

But, ‖ZN,ε‖BMO(Q) only depends on constants in assumption (HY0), so it is
bounded uniformly in N and ε. Moreover, | ∫ T

t σ (s) dW̃s | is independent of Ft

so we have by the Markov inequality

EQN,ε [
1| ∫ T

t σ (s) dW̃s |>ν
|Ft

] = QN,ε

(∣∣∣∣
∫ T

t
σ (s) dW̃s

∣∣∣∣ > ν

)

≤ C(T − t)1/2

ν
.

Finally, we have

EQN,ε [|YN,ε
T − Y

N,ε
t ||Ft ] ≤ ω(C|T − t |1/2 + ν) + C

(T − t)1/2

ν

≤ ω(C|T − t |1/2 + |T − t |1/4) + C|T − t |1/4

by setting ν = |T − t |1/4 and EQN,ε [|YN,ε
T −Y

N,ε
t ||Ft ] → 0 uniformly in ω, N and

ε when t → T . When f is not differentiable with respect to z but is only locally
Lipschitz, then we can prove the result by a standard approximation. �
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APPENDIX A: PROOF OF LEMMA 4.4

We have
2n−1∏
i=0

(1 + Mhi) =
(

n−1∏
i=0

(1 + Mhi)

)(2n−1∏
i=n

(1 + Mhi)

)
.

First,
2n−1∏
i=n

(1 + Mhi) ≤
(

1 + M
T

n

)n

≤ C.

Moreover, for 0 ≤ i ≤ n − 1,

hi = ti+1 − ti = T n−ai/n(
1 − e−(a lnn)/n) ≤ T n−ai/na

lnn

n

thanks to the convexity of the exponential function. So
n−1∏
i=0

(1 + Mhi) ≤
n−1∏
i=0

(
1 + MT an−ai/n lnn

n

)

= exp

(
n−1∑
i=0

ln
(

1 + MT an−ai/n lnn

n

))

≤ exp

(
n−1∑
i=0

MT a(n−a/n)i
lnn

n

)

≤ exp
(
MT a

lnn

n

(
1 − (1/na)

1 − (1/n(a/n))

))

≤ exp
(
MT a

lnn

n

na/n

na/n − 1

)
.

But,

lnn

n

na/n

na/n − 1
∼ lnn

n

1

(a lnn)/n
∼ 1

a
,

when n → +∞. Thus, we have shown the result.

APPENDIX B: PROOF OF LEMMA 4.5

Thanks to Lemma 4.4, we have∏n−1
i=0 (1 + M1hi + M2hi/(T − ti+1))∏n−1

i=0 (1 + M2hi/(T − ti+1))
=

n−1∏
i=0

(
1 + M1

1 + M2hi/(T − ti+1)
hi

)

≤
n−1∏
i=0

(1 + M1hi) ≤ C.
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So we just have to show that
n−1∏
i=0

(
1 + M2

hi

T − ti+1

)
≤ CnaM2 .

But

1 + M2
hi

T − ti+1
= 1 + M2(n

a/n − 1).

So
n−1∏
i=0

(
1 + M2

hi

T − ti+1

)
= (

1 + M2(n
a/n − 1)

)n

= exp
(
n ln

(
1 + aM2

lnn

n
+ O

(
ln2 n

n2

)))

= exp
(
aM2 lnn + O

(
ln2 n

n

))
∼ naM2,

when n → +∞. Thus, we have shown the result.

APPENDIX C: PROOF OF PROPOSITION 4.19

We will prove this proposition as the authors of [9] do for their Proposition 4.2.
In this proof we omit the superscript N,ε for u, Y and Z to be more readable.
Let x0, x

′
0 ∈ Rd and t0, t

′
0 ∈ [0, T ]. By an argument of symmetry we are allowed to

suppose that t0 ≤ t ′0. We have

|u(t0, x0) − u(t ′0, x′
0)| ≤ |u(t0, x0) − u(t0, x

′
0)| + |u(t0, x

′
0) − u(t ′0, x′

0)|.
Let us begin with the first term. We will use a classical argument of linearization:

Y
t0,x0
t − Y

t0,x
′
0

t = gN(X
t0,x0
T ) − gN(X

t0,x
′
0

T )

+
∫ T

t
αs(X

t0,x0
s − X

t0,x
′
0

s ) + βs(Y
t0,x0
s − Y

t0,x
′
0

s ) ds

−
∫ T

t
(Zt0,x0

s − Z
t0,x

′
0

s ) dW̃s

with

αs := f ε(s,X
t0,x0
s , Y

t0,x
′
0

s ,Z
t0,x

′
0

s ) − f ε(s,X
t0,x

′
0

s , Y
t0,x

′
0

s ,Z
t0,x

′
0

s )

X
t0,x0
s − X

t0,x
′
0

s

,

if X
t0,x0
s − X

t0,x
′
0

s �= 0 and αs = 0 elsewhere,

βs := f ε(s,X
t0,x0
s , Y

t0,x0
s ,Z

t0,x
′
0

s ) − f ε(s,X
t0,x0
s , Y

t0,x
′
0

s ,Z
t0,x

′
0

s )

Y
t0,x0
s − Y

t0,x
′
0

s

,
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if X
t0,x0
s − X

t0,x
′
0

s �= 0 and βs = 0 elsewhere,

γs := f ε(s,X
t0,x0
s , Y

t0,x0
s ,Z

t0,x0
s ) − f ε(s,X

t0,x0
s , Y

t0,x0
s ,Z

t0,x
′
0

s )

|Zt0,x0
s − Z

t0,x
′
0

s |2

× t(Zt0,x0
s − Z

t0,x
′
0

s ),

if Z
t0,x0
s − Z

t0,x
′
0

s �= 0 and γs = 0 elsewhere and dW̃s := dWs − γs ds. By a BMO
argument, there exists a probability Q under which W̃ is a Brownian motion. Then
we apply a classical transformation to obtain

EQ[e
∫ t
t0

βs ds
(Y

t0,x0
t − Y

t0,x
′
0

t )]
= EQ

[
e

∫ T
t0

βs ds(
gN(X

t0,x0
T ) − gN(X

t0,x
′
0

T )
)

+
∫ T

t0

αse
∫ s
t0

βu du
(Xt0,x0

s − X
t0,x

′
0

s ) ds

]

and

|u(t0, x0) − u(t0, x
′
0)|

≤ C

(
EQ[ω(|Xt0,x0

T − X
t0,x

′
0

T |)] +
∫ T

t0

EQ[|Xt0,x0
s − X

t0,x
′
0

s |]ds

)

with ω a modulus of continuity of g that is also a modulus of continuity for gN . We
are allowed to suppose that ω is concave; indeed, there exist two positive constants
a and b such that ω(x) ≤ ax +b, then the concave hull of x �→ ω(x)∨ (1x≥1(ax +
b)) is also a modulus of continuity of g. So Jensen’s inequality gives us

|u(t0, x0) − u(t0, x
′
0)|

≤ C

(
ω(EQ[|Xt0,x0

T − X
t0,x

′
0

T |]) +
∫ T

t0

EQ[|Xt0,x0
s − X

t0,x
′
0

s |]ds

)
.

By using the fact that b is bounded we can prove the following proposition exactly
as authors of [9] do for their Proposition 4.7.

PROPOSITION C.1. ∃C > 0 that does not depend on N and ε such that ∀t, t ′ ∈
[0, T ], ∀x, x ′ ∈ Rd , ∀s ∈ [0, T ],

EQ[|Xt,x
s − Xt ′,x′

s |] ≤ C(|x − x′| + |t − t ′|1/2).

Then,

|u(t0, x0) − u(t0, x
′
0)| ≤ C

(
ω(|x0 − x′

0|) + |x0 − x′
0|

)
.
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Now we will study the second term,

|u(t0, x
′
0) − u(t ′0, x′

0)| = |Y t0,x
′
0

t0
− Y

t ′0,x′
0

t ′0
|

≤ |Y t0,x
′
0

t0
− Y

t ′0,x′
0

t0
| + |Y t ′0,x′

0
t0

− Y
t ′0,x′

0
t ′0

|.
First,

|Y t ′0,x′
0

t0
− Y

t ′0,x′
0

t ′0
| ≤

∣∣∣∣
∫ t ′0

t0

f (s, x′
0, Y

t ′0,x′
0

s ,0) ds

∣∣∣∣ ≤ C|t0 − t ′0|.
Moreover, as for the first term we have

EQ[e
∫ t
t0

βs ds
(Y

t0,x
′
0

t − Y
t ′0,x′

0
t )]

= EQ

[
e

∫ T
t0

βs ds(
gN(X

t0,x
′
0

T ) − gN(X
t ′0,x′

0
T )

)

+
∫ T

t0

αse
∫ s
t0

βu du
(X

t0,x
′
0

s − X
t ′0,x′

0
s ) ds

]

and

|Y t0,x
′
0

t0
− Y

t ′0,x′
0

t ′0
| ≤ C

(
ω(|t0 − t ′0|1/2) + |t0 − t ′0|1/2)

.

Finally,

|u(t0, x
′
0) − u(t ′0, x′

0)| ≤ C
(
ω(|t0 − t ′0|1/2) + |t0 − t ′0|1/2)

and

|u(t0, x0) − u(t ′0, x′
0)|

≤ C
(
ω(|x0 − x′

0|) + ω(|t0 − t ′0|1/2) + |x0 − x′
0| + |t0 − t ′0|1/2)

.

So u is uniformly continuous on [0, T ] × Rd and this function has a modulus of
continuity that does not depend on N and ε. Moreover, we are allowed to suppose
that this modulus of continuity is concave.
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