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In this paper we prove the central limit theorem for Hotelling’s T2 sta-
tistic when the dimension of the random vectors is proportional to the sample
size.

1. Introduction and main results. Since the famous Marcenko and Pastur
law was found in [16], the theory of large sample covariance matrices has been fur-
ther developed. Among others, we mention Jonsson [14], Yin [24], Silverstein [18],
Watcher [22], Yin, Bai and Krishanaiah [25]. Lately, Johnstone [13] discovered the
law of the largest eigenvalue of the Wishart matrix, Bai and Silverstein [5] estab-
lished the central limit theorems (CLT) of linear spectral statistics and Bai, Miao
and Pan [3] derived CLT for functionals of the eigenvalues and eigenvectors. We
also refer to [9, 12, 21] for CLT on linear statistics of eigenvalues of other classes
of random matrices.

The sample covariance matrix is defined by

1 n
S=->(s; -9 -9,
e

where § = n—! Z’}lej and s; = (le,...,ij)T. Here {X;;}, i,j ="---, is
a double array of independent and identically distributed (i.i.d.) real r.v.’s with
EXiy1=0and EX %1 = 1. However, in the large random matrices theory (RMT)
the commonly used sample covariance matrix is

13 r_ 1 T
SZEZsJ-sj =—X:X,,
j=1
where X, = (s1,...,Sn).
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Note that S =S — §s7 and thus, by the rank inequality, there is no difference
when one is only concerned with the limiting empirical spectral distribution (ESD)
of the eigenvalues in large random matrices. Therefore, the limiting ESD of S is
Marcenko and Pastur’s law F,(x) (see [14] and [16]) when hm% = ¢ > 0 which
has a density function

pc(x)z{(()z’”x)_1 (b—x)x—a), a=<x=b,

, otherwise,

and has point mass 1 — ¢! at the origin if ¢ > 1, where a = (1 — \/c)? and b =
I+ «/5)2‘ The Stieljes transform m(z) of F.(x) satisfies the equation (see [20])

1
l—c—czm(z) =7’

(1.1) m(z) =
where the Stieljes transform for any function G (x) is defined by
1
mg(z):/TdG(k), z7eCt={zeC,v=3z>0)}.
-z

Observe that the spectra of n~1X, XT and n~!XTX,, are identical except for zero
eigenvalues. This leads to the equality

1—p/n

(1.2) mS(z) = — + gms(@

and therefore,

1 c

1. = —
(1.3) b4 m(z)+1+m(Z)’

where mg (z) and mﬁ (z) denote, respectively, the Stieljes transform of the ESD of
n*IX,,XZ and n*IX; X, and, correspondingly, m(z) is the limit of mg (2).

Sample covariance matrices are also of essential importance in multivariate sta-
tistical analysis because many test statistics involve their eigenvalues and/or eigen-
vectors. The typical example is T2 statistic which was proposed by Hotelling [10].
We refer to [1] and [15] for various uses of the 72 statistic.

The T2 statistic, which is the origin of multivariate linear hypothesis tests and
the associated confidence sets, is defined by

(1.4) T2 =nG—po) 876G — o).
whose distribution is invariant if each s; is replaced by » /2% j with X any non-
singular p by p matrix when ug = 0. If {s1,...,s,} is a sample from the p-

dimensional population N (g, X), then [T2 /(n — D][(n — p)/p] follows a non-
central F distribution and moreover, the F distribution is central if g = py. When
p is fixed, the limiting distribution of T2 for g = p is the x >-distribution even if
the parent distribution is not normal.
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In the recent three or four decades in many research areas, including signal
processing, network security, image processing, genetics, stock marketing and
other economic problems, people are interested in the case where p is quite large
or proportional to the sample size. Thus, it will be desirable if one can obtain the
asymptotic distribution of the famous Hotelling T2 statistic when the dimension of
the random vectors is proportional to the sample size. It is the aim of this work. In
addition, we would like to point out that some discussions about the two-sample
T? statistic under the assumption that the underlying r.v.’s are normal were pre-
sented in [2].

The main results are presented in the following theorems.

THEOREM 1. Suppose that:

(1) for each n X;; = ij,i,j =1,2,..., are i.id. real rv's with EX|] =

w, EX%1 =1 and EX?1 < 00.
2) p<n,cp=p/n—ce(0,1)asn— oo.
Then, when o = (i, ..., )7,

o
V2e,(T=cn)

where F. (x) denotes F.(x) by substituting c, for c.

2
(T —en(1 — cn)l) LN, 1),

n

REMARK 1. When X;; ~ N(0, 1), it is well known that (n — p)TZ/(np) fol-
lows F distribution with degrees of freedom p and n — p, respectively. As n — o0
and p/n — c, it follows from strong law of large numbers and CLT that

(n—p)T?/(np) — 1
V2/p+2/(n=p)

This is consistent with Theorem 1.

— N(O, 1).

REMARK 2. Since [x 'dF.(x)=(1 —c¢) ' and [x2dF.(x)=(1 —¢)3
which are derived through differentiating the following identity [the Stieljes trans-
form m(z) of Fe(x)],

—(z+ec—D+@+ec—1D)y1—dzc(z+c—1)72
2cz

’

[ pexrdx =
we actually prove that

v T? dF.,(x)\ b
\/an T dE ) (7 —Cn / — ) — N(,1).
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One typical application of Theorem 1 lies in making inference on the large-
dimensional mean vector of the multivariate model

Z;=Ts;+nu, Es; =0, j=1,...,n,

where I' is an m by p matrix, m < p. This model means that each Z; is a linear
transformation of some p-variate random vector s;. It can generate a rich collec-
tion of Z; from s; with the given covariance matrix X = I'T'T . Most important, it
includes the multivariate normal model.

We will prove Theorem 1 by establishing Theorem 2 which presents asymp-
totic distributions of random quadratic forms involving sample means and sample
covariance matrices.

For any analytic function f(-), define

f(S) =U"diag(f (A1), ..., FO)U,

where U7 diag(A, ..., A »)U denotes the spectral decomposition of the matrix S.

THEOREM 2. In addition to the assumption (1) of Theorem 1, suppose that
cn=p/n—c>0,EX1 =0, g(x) is a function with a continuous first derivative
in a neighborhood of ¢ and f(x) is analytic on an open region containing the
interval

(1.5) [Lo.1@ (1 = /o), (1+e)’].

Then,

_T -
(v [% - [0 dE, @] Ve - s@) > X1,
where Y ~ N (O, ZC(g’(c))z), which is independent of X, a Gaussian r.v. with
EX =0and

2 2
(1.6) va ) =>( [ Pwarw - ([ fwdrm))
REMARK 3. Letx, = (x,1, .. .,xnp)T e R?, ||x, || = 1 where || - || denotes the
Euclidean norm. Note that, when max; x,; — 0 (see [17], (1.16), or [19]),
(1.7) ﬁ[x,f F(S)xn — / f(x)dF,, (x)] Lox.

This suggests that S/ ||S|| can be viewed as a fixed unit vector X,, when dealing with
s £(8)s/|I5||? even if § is not independent of S.

Theorem 2 relies on Lemma 1 below which deals with the asymptotic joint
distribution of

-T _ —1=
Xn(z>=ﬁ[—s S—2h s

Hik

- mn(z)}, Y, = V(2GS — g(ca),
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1]

1 -oy? (1 +Ve)?

v

-Vo

F1G. 1. Contour C when ¢ < 1.

where m, (z) = [(x — )~ td F., (x). The stochastic process X, (z) is defined on a
contour C, given below. Let vg > 0 be arbitrary and set C,, = {u+ivg, u € [u;, u,1},
where u; is any negative number if the left endpoint of (1.5) is zero, otherwise u;
is any positive number smaller than the left endpoint of (1.5) and u, any number
larger than the right endpoint of (1.5). Then define

Ct={u;+iv:vel0,vl}UC,U{u, +iv:vel0,vo]}

and let C~ be the symmetric part of CT about the real axis. Thenset C =CT UC™.
See Figures 1 and 2 for a picture of the contour C when ¢ < 1 and ¢ > 1, respec-
tively.

Let A~1(z) = (S — zI)~!. Since it is difficult to control the spectral norm of
(S —zD~! or A~!(z) on the whole contour C, especially for v = 0, we further

A

u 0 (1 +\/E)z Uy

-Vo

F1G. 2. Contour C when ¢ > 1.
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define )A(” (z), a truncated version of X,,(z), as in [5]. Select a sequence of positive
numbers p, satisfying for some 8 € (0, 1),

(1.8) pnd0,  pp=nh
Let

C={{w+iv:ve[n—‘pn,vo]}, if u; > 0,
"l +iv:vel0, vol), ifu; <0,

and
C’, = {l,tr —+ iv:v € [n_llon’ UO]}

Write C;7 = C; UC, UC,. We can now define the truncated process for z = u +iv €
C by

X, (2), ifzeCHuc,,
nv—+p Pn — NV
“ X (zr1) + “5——Xu(2r2),
A 2pn 2pn
(1.9) Xn(2) = ifu=u,,vel-n"to,n"p,l,
nv—+p Pn — NV
2 Xn(zin) + = Xn(z12),
2pn 2pn
ifu=u>0,ve [_nilpna nilpn],

where z,1 = u, —i—in_l,on, 72 = Uy —in_l,on, i1 = ul—l—in_lpn, Zi0 = U —in_l,on
and C, denotes the symmetric part of C;I about the real axis. A picture of C;7 UC,;
is the rectangle in Figure 1 with the dash line removed. The advantage of X 2(2)
over X, (z) is that the spectral norm of A~!(z) involved in X n(z) may be well con-
trolled on the contour C. Indeed, loosely speaking, all eigenvalues of S are located
inside the interval (1.5) with a high probability. Therefore, the spectral norm of
A~!(z) corresponding to this case is bounded on C. If some eigenvalues run out-
side of the interval (1.5) then, at least, we will still have an upper bound np, ! for
the spectral norm of A~!(z) on C. But, the probability that some eigenvalues run
outside of the interval (1.5) is very small, which can offset np,; ! and even more.
This is crucial to establish tightness of X 7 (2) on the contour C. On the other hand,
such a truncation does not change the weak limit given in Theorem 2 because the
truncation has been made only at the intervals of the length 2, /n.

Note that X,(z) may be viewed as a random element in the metric space
C(C,R?) of continuous functions from C to R2. We are now in a position to state
Lemma 1.

LEMMA 1. Under the assumptions of Theorem 2, we have for z € C,

(Xn(2), Yp) 2> (X(2). V),
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where Y ~ N(0, 2c(g’ (€))?), which is independent of X (2), a Gaussian stochastic
process with mean zero and covariance function Cov(X (z1), X (z2)) equal to
2 _ 2m(z)m(z2)

(1.10)
cz122[(1 +m(z1))(1 + m(z2)) — cm(z1)m(z2)] c

REMARK 4. Also, note that X (z) is exactly the weak limit of the stochastic
process ﬁ(x,{ (S — zDYHYx, — mu(2)) when max; x,; — 0, whose covariance
function is

2(zom(z2) — z1m(z21))?
c?z2122(z1 — 22)(m(z1) — m(z2))

Cov(X(z1), X(22)) =
(see [3] and [17]).

We conclude this section by presenting the structure of this work. In Section 2,
we present a simulation study to identify when the asymptotic normality “kicks
in.” Then we turn to the proof. To transfer Lemma 1 to Theorem 2 we introduce a
new empirical distribution function

P
(1.11) FP(x) =) 1 1(x <x),

i=1
where t = (11, ..., 1,)] =Us/||5|| and U is the eigenvector matrix of S. It turns out
that F2S (x) and the ESD of S have the same limit, that is, F2S (x) alied F.(x). Thus,

by analyticity of f(x), §7 £(S)§/||5]|> in Theorem 2 is transferred to the Stieljes
transform of Fzs(x), §7 (S — zI)~'5/||s||%. Moreover, note that

=T A —1 -
S"A7'(2)s T 1
1.12 ——— =5 (S -z .
(1-12) T—sTAT(gs > G- s
Indeed, this is from the identity (see [20], (2.1))
TRp-1
B
1.13 TB+arr’)'=——
( ) r B+arr’) T ar™B-'r

where B and B + arr! are both invertible, r € R? and a € R. The stochastic

process X,(z) in Lemma 1 is then transferred to the stochastic process M, (z),
where

T a1, = Cnip(2)

M, (z) = n<sTA ! 25—7).

w(2) =+/n (2) RTRp———

The convergence of the stochastic process M, (z) is given in Sections 3 and 4. The
proofs of Theorems 1 and 2, Lemma 1 and Remark 4 are included in Section 5.
The last section picks up the truncation of the underlying r.v.’s and some useful
lemmas. At this point we would like to point out that both this paper and [5] deal
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with Stieljes transform of random variables of interest and use martingale method
to establish CLT. But the random variable of interest in this paper is a kind of
random quadratic forms while [5] is concerned with the trace of random matrices.

Throughout this paper, to save notation, 9T may denote different constants on
different occasions.

2. Simulation study. In this section, we provide a simulation study to inves-
tigate the performance of normal approximations in Theorem 1. We consider three
different populations, the standard normal distribution, the exponential distribution
with parameter 1 and the Poisson distribution with parameter 1. From each pop-
ulation we generate 5000 samples of order 100 x 200, 200 x 400 and 400 x 800
matrices, respectively, by routines in R. Each p x n matrix can be regarded as a
collection of n observations of p-dimensional vectors s, so we can calculate T2
for each matrix. Based on 5000 samples, we have 5000 observed 7> which give us
an estimator of the probability

P(%(% — (1 - cn)—l) < x)

by

2
-1y Vv r- d—c, —1> '
2000 < 2cn(1 —cn)_3< n - (1 =) §x>

In Figures 3—11, there are nine curves. In each figure the horizontal axis means
theoretical quantiles of the standard normal distribution and the vertical axis in-
dicates sample quantiles of the normalized Hotelling’s T2 statistics. Every curve
represents the quantile-quantile plot for each sampled matrix. From these pictures
we see that the quantiles of 72 get closer to the standard normal one as the sam-
ple size and the dimension increase. Actually, when p = 100 and n» = 200, normal
distributions already “kick in.”

3. Weak convergence of the finite-dimensional distributions. For z € C,j ,
let M,,(z) = M,gl)(z) + M,(,Z) (), where
M (z) = V/n(s" A (z)s — EST A7 (2)3)
and
Tl (2)
MP(z) = n(EsTA L5 — L)
W (@) =~/n (2) TFcomn @)

In this section the aim is to prove that for any positive integer » and complex
numbers ay, ..., a,,

.
daMP), Sz #0,

i=l
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Normal Theoretical Quantiles

F1G. 3. Q-0 plot for normal data when p = 100.

converges in distribution to a Gaussian r.v. and to derive the asymptotic covariance
function. Before proceeding, r.v.’s need to be truncated. However, we shall post-

normalized Hotelling's T Statistic Sample Quantiles

-2

Normal Theoretical Quantiles

FI1G. 4. Q-0 plot for normal data when p = 200.
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Normal Theoretical Quantiles

F1G. 5. Q-0 plot for normal data when p = 400.

Normal Theoretical Quantiles

FI1G. 6. Q-0 plot for exponential data when p = 100.
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normalized Hotelling's T Statistic Sample Quantiles

normalized Hotelling's T Statistic Sample Quantiles
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-2

T T T T T
-2 -1 0 1 2

Normal Theoretical Quantiles

F1G. 7. Q-0 plot for exponential data when p = 200.

T T T T T
-2 -1 0 1 2

Normal Theoretical Quantiles

F1G. 8.  O-0 plot for exponential data when p = 400.
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Normal Theoretical Quantiles

F1G. 9. Q-0 plot for Poisson data when p = 100.

Normal Theoretical Quantiles

F1G6. 10. Q-0 plot for Poisson data when p = 200.
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normalized Hotelling's T Statistic Sample Quantiles

-2
|

Normal Theoretical Quantiles

Fi1G. 11. Q-0 plot for Poisson data when p = 400.

pone the truncation of r.v.’s until the last section. As a consequence of Lemma 7,
we assume that the underlying r.v.’s satisfy

(B.1) Xl <en/n,  EX11=0, EXul=1,  E|Xul*<oo,

where ¢, is a positive sequence which converges to zero as n goes to infinity.

3.1. Outline of the argument. The underlying idea is to write M,El)(z) as a
sum of martingale difference sequences and to apply Lemma 3, CLT for martin-
gale. Define the o-field 7 = o (s, ...,s;) and let E;(-) = E(-|F;) and Eq(-) be
the unconditional expectation. We first simplify the martingale representation of

M (z) as 321 Yj(@) +op(1), where Y;(z) = —ZZm(z)Ej(ﬁszA]ﬂ(zﬁj) +
zm(z)s/nE j(aj(z)) and «(z) and S; are defined in the next subsection. Condi-
tion (ii) in Lemma 3 is relatively easy to verify. Subsequently, to identify the as-
ymptotic covariance function of M,Sl)(z), the following limits in probability need

to be determined:

1 n
(3.2) — D EjlEj(sj AT 2DS)E;G] AT (@2)s))],
j=1

(3.3) Y EjlE;(sAT 21)8)E (e (z2)],
j=1
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n

(3.4) nY Ej 1lEj(ej@))E;(aj(z))].

j=1
As for (3.2), note that
Ej1[Ej(s] A7 (21)8)E G AT (20)s)] = E; 5] A7 z2)) E (A7 (21)5))

and s; is an average value of all s,...,s, without s;. Intuitively, the prod-
uct of two conditional expectations in the right-hand side of the above formula
should be a multiple of %tr[E j (AJTl (z1))E; (A]T1 (z2))]. This turns out to be true.
For (3.4), a direct calculation indicates that £; _1[E;(c;(z1)) Ej(a;(z2))] involves
tr[E;j(D;(z1)E;j(D;(z2))] [D j(2) 1s defined in the next subsection]. Then our aim
is to transfer it to [E (sTA (22)E; (A (zl)s])]2 so that the limit of (3.2) may
be used. Essentially, we expect that (3. 2) and (3.4) could be reduced to something

like
1 Z” i —1
n h<J )
n“ n
j=1

for some function /(x). Finally, since the number of s; involved in (3.3) is odd

and s; is independent of §; we expect that (3.3) %o.

3.2. Notation and estimates. We first introduce some notation. Let
A;l(z) =(S— n_ls_,-sjr -z~
A @=6—n""sisl —n7ls;sT -2

S;j=8— n_ISj,

D;(x)=A7"(@)5;57A7 (@),

1
Bj(z) = Tt (l/n)s]TA]fl(z)sj’
Bl () = 1 <
: 1+(1/n)trAJ- (2)
bi(z) = :

1+ (1/n)EwAT (2)
vi(2) = ESTATI(Z)S‘ - ltrAT‘(z)
J nJ Jooop ’

() = “sTAT (2)s) — ~EwrAT!
S](Z)—;Sj j (Z)S]—; LA (2),
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1 1 1 7+ 5
@j(2) = —sj AT (5] AT (D)) — 5] A7 (),

1
Bii(2) = :
YT I+ /A @)
1
b12(2) =

14 (1/n)Etr A}, (2)

and

N e
§ij(2) = i Ay (2)si — CEwAp (2),

1
[ A @si = (1/mrAG Q).

. —
ytj(z) "

We next list some results to be used later. A direct calculation indicates that the
following equalities are true:

P
E(s{ As; —trA)(s{ Bs; — trB) = (EX], — |[EXT|> = 2) ) _ aiibii
i=1
(3.5) . -
+|EX7|"trAB" +trAB;
p
(3.6) E[(s{ As; —trA)s{ Br]= EX], ) _aj;e! Br,
i=1
where B = (b;;) pxp and A = (a;;) px p are deterministic complex matrices and r is
a deterministic vector. Here e; is the vector with the ith element being 1 and zero
otherwise. In what follows, to facilitate the analysis in the subsequent subsections,
we shall assume v = Jz > 0. Note that 8;(2), ,B;r(z), Bij(2), ,35 (2), b1(2), b12(2)
are bounded in absolute value by |z|/v [see [4], (3.4)]. From (1.13) we have

A7) - A;l(z) =A"')(Aj(2) - A(Z))A]ﬂ(z)

(3.7 |
= —EAj(Z),Bj(Z)»
where A‘,- (z) = A;l (z)s jsJTA;I (z). From Lemma 2.10 of [4], for any matrix B,
_ _ IBI|
(3.8) (A7) — AT ())B]| < —
where || - || denotes the spectral norm of a matrix. Moreover, Section 4 in [4] shows

that
(3.9) nFElwAT (@) - EvAT @QF = 0™, k=2
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One should also note that (3.9) is still true when Al_1 (z) is replaced by Al_zl (2)-

From now on, we calculate estimates. To simplify the statements, assume that
the spectral norms of nonrandom B, B;, A;, C involved in the equalities (3.10)—
(3.18) below are all bounded above by a constant. For £ > 2, it follows from
Lemma 4, (3.1) and (3.9) that

n*E|sTBs; —trB|F = 021,

(3.10)
ElgE @) =0
and that
n_kE|slTBe,-e]TCsl|k
(3.11) <Mn *[E|s| Be;e] Cs; — tr(Beje] C)|* + Ele] CBe;|"]

= 0(e2*n72).
We shall establish the estimates (3.12)—(3.14) below:
E|sTBs| |F = 0(n* /272Dt k>4,
(3.12)
Elei@f=0n 2™, k=2,
(3.13) E|sTBsy[F = 0(n* 2k, k>4,

and form >0, >1,0<r <2,

m o a4 ) ) )
(3.14) E 1_[ ;SlTAiSI 1_[ ;(S{BJ‘& —trBj)(S{Clsl)r = O(n 1/28’(1q 2)\/0)‘
i=1 =1

One should note that (3.12) and (3.13) also give the estimates for k = 2. For exam-
ple,

(3.15) E|sTBs|* < (E|sTBs; |H!2 = 0(1).
In addition, from (3.10) and (3.13) we also conclude that
Eln~'sTBs;sI Csy[* < ME|n~"! (s Bs; — tr B)s! Cs;|*
(3.16) +ME|s] Csy|*
= 0.
Consider (3.12) first. Note that for k > 4

n k

T T
E S;si| +E E Si,Siy
i=2

i1F#£i,i1>1,ip>1

m
Te, 1k
E|S] S1 < nTk|:E

]
(3.17)
= 0().
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Indeed, applying Lemma 2 twice gives

n k n k n k
E|Y slsi| <ME|> (sT'si — E(s]s)| +MM|>_EGs!s)
i=2 i=2 i=2
n k/2
< ﬁﬁ(z E(siTsl- — E(siTs,-))2>
i=2
n
+ zmz E|siTs,- - E(sl-Ts[)Ik + Mnk
i=2
p k/j2 p
< Mt +zmn[(2 E(X%, — 1)2> + Y ElX;, - 1|’<}
m=1 m=1
+ a2k
< Mn*,

while using Lemma 2 three times we obtain

k
EY ds[=tYE Y sl

i15ip,i1>1,ip>1 i1>1 ir>1,i1#in

k

k n

ZS%S[

i=3

fnkE

<M E\> " E[(s5s)*Gi—11|  +Mn* Y ElsTs; |
i=3 i=3
<M[nC/PXE|sTsy — EsTsy|</? + n?* 4+ n* T E|sT s3]

= 0(n*),
where G; = o (s2, ..., s;). It follows from (3.17) that for k > 4
(3.18)  EIsTBs; | = E|IsTBs,||* < E(IsT11IBI1I5: )" < ME|sT51F <o,

where || - || denotes the spectral norm of a matrix. This, together with Lemma 4,
ensures that for k > 4

Els'B§; | = E|s"B§;57 B*s; |/
< ME|s!Bs,;5/ B*s; — s/ B*Bs, [*/2 + ME[S/ B*Bs, |/
< A2 254 L oM EIsT BB, /2 + 9m
< Mpk/2=2 k=4,

which gives the first estimate in (3.12) as well as the order of E|o (2)|F.
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Second, consider (3.13). Lety = (v, ..., yp)T = Bs; and then, by Lemma 2
and (3.10), for k > 4,

p k/2 p
Elslylf < smE(Z |ym|2) +M > EXm | Elym|*

m=1 m=1

< ME|y*y|/? + E)Jtnk/z’zefl’4E|y*y|k/2

(3.19) <M + n*?2ek=H E|sTB*Bs, — tr(B*B)|*/?
k/2 k—2 _k—4
+ M2+ Mnk 26k
_ O(nk—28£—4)’

where we also use the fact that for k > 4

k)2
S lymlt < (Z|ym|2) .
m m

As for (3.14), if m = 0 and r = 0, then (3.14) directly follows from (3.10) and
the Holder inequality. If m > 1 and r = 0, then by induction on m we have

UL 1 5
l_[ —s; A;sy l_[ —(s;Bjs; —trBj)
i=1 " j=1"

E

1_[ —slTAisl—(slTAmsl —trA,,) l_[ —(slTBjsl —trBj)
i n n i

<E

m=t 71

1_[ —trA; l_[ —(S{Bjsl —tI’Bj)
i1 j=1"

— 0(n_1/28,(1q_2)vo).

Repeating the argument above gives

+ME

2
_ O(n—lgr(lzq—@vo)

L R 1 5

l_[ =S A;s| l_[ _(Sl BjSI —U'Bj)
i=1 " j=1"

[m = 0by (3.10) and m > 1 by induction]. Thus, for the case m > 1 and2 >r > 1,
by (3.12) we obtain

E

"] 71 i}
l_[ ;slTA,-sl l_[ ;(slTBjsl — trBj)(schlsl)r
i=1 j=1

(=

— O(n—1/28’(1q—2)v0).

E

2

ol T 1 T
I1 —si Aisi I1 —~(s1Bjsi —trB))

12
E|S{C1§1|2r>
i=1 j=1
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Whenm =0and 2 > r > 1, (3.14) can be obtained similarly. Thus, we have proved
(3.14).

3.3. The simplification of M,El)(z). To develop CLT for M,El)(z), we write it
as a sum of martingale difference sequences. When simplifying such a martingale
representation, a well-known trick is to use the fact that

(3.20) Ejlh(tr AT ()] =E;j[h(tr A7 ()],
where h(x) is some function. For example, when A(x) = 1/(1 + n—1x), (3.20)
becomes E ; (/3;?) = Ej_l(ﬂ;r).

Notice that E; (57 A7 (2)5)) = E;j 187 A7 (2)8). We then write

MO @) =Vn Y [E;6"AT (2)8) — Ej—1GTAT (2)9)]
j=1

=Vn Y [E;TAT )5 - 5TAT (2)3))
j=1

(321) —T A —1 = =T a-1 <
—Ej_l(S A (Z)S_SjAj (Z)Sj)]

=Vn Y [(Ej — Ej—D)(an1 + an2 + an3)),

j=1
where
an=G-5)"AT"@5  an=5 (A" —-A7' ),
a3 =5, A7 ()G —§)).

The above sum involving a,1 and a,» will be further simplified below.
First, splitting A~!(z) into the sum of A~!(z) — A;l(z) and A;l (z) and split-
ting S into the sum of s; and s;/n, by (3.7) we then have

(3.22) an| = ar(lll) + ar(lzl) + a,(f]) + a¥

nl >

where

1 1 .-

1 — 2 _
ar(u) — —n—3(sz~Aj I(Z)Sj)zﬂj(z), a,(ll) — —n—zszAj(z)sj,Bj(z)
and
1 1
3) T A—1 “) TaA—1,\=
a :ﬁSjAj (2)s), a,; :;sJ-Aj (2)s;.

Using (3.20) and
(3.23) Bj(2) = BY(2) — Bj (2B} (2)y,(2),
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we have

(Ej —E;-1)(a'))
= (B~ By 5 6TAT @520 | -
= (B~ Epon | @)
+ (B - Eon| Sy uao)] - g
where ¢, = (Ej — E;_1)-5(sT A7'(2)s)28;(2)B¥(2)y;(2). This, together with

(3.14), shows that
2

IZ(E —E;_(a))

_nZE|(E —E;_ (@D

j=1
4 2 L o7t o
=MEy1I" + Ely1(2)|” +ME @) 75 Al (2)s1)
=0m™'?),
which gives
IZ(E — E;-n(@) 2o,
By (3.10) it is a simple matter to verify that
IZ(E —E;-)(@) 0.
Appealing to (3.14) we have
2
Ej_ oyj(z)[ TAT (587 (2)| =0~
and
1 2
Ej-1) 5874 (88 (2)y; (B} )] =0n™!/?),
j=1
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which, together with (3.23), leads to

IZ(E —E;_(a)

j=1

:_ZE][ ,Btr(Z))TS]A (Z)§]:|+0p(1)
j=1

This ensures that

\/ﬁZ(Ej — E;_1)(an1)

j=1

n 1
(3.24) =) Ej (ﬁ}r(z)—ns,TA}I(z)éj) +op(l)
j=1

= —zm(z) Z E; ([ ; ;1(z)§j> +0,(1),
because, by (2.17) in [5], (3.9) and (3.12),
(3.25) E|(BF(2) +m(2)st A7 (0 * = o(1).
Second, splitting § into the sum of §; and s; /n further gives
s = —n—12§JTAJ- (2)s;Bj(z) — %gfzij (2)8; B (2)

()

and thus, as in treating a, |, we have

Vi) (Ej— Ej_1)(an)
j=1

—Z<E —Ej- 1>[(1—/3“<z>)75fA <Z>SJ}
j=1

1 & .
T~ Y (Ej —E;j-DI5]A; ()8, B ()] + 0, (1)
j=1

n

—(1+2zm(2)) ZE (\/_ i »I(Z)Sj)

+2m(2) Y VnEj(@;(@) +o,(1),

j=1
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where in the last step we also use the estimate
E|(BY(@) +zm(2)e;@)|* = E[E(|(BY(2) + zm(@))et; () [*lo (51, # )]
= E[187(2) + zm()I*E(la; ) Plo (si. i # )))]
=o(n™?),

which is from (2.17) in [5], (3.9) and (3.12).
Recalling Y;(z) = —ZZm(z)Ej(ﬁsjrA}I(z)Ej) + zm(2)/nEj(aj(2)), so far
we have proved

M ()= "Y;@) +op(1).
j:l

Consequently, for finite dimension convergence of M, ,21) (z), we need consider only
the sum

(3.26) doai Y Vi)=Y ai¥j(z).
i=1 j=1 j=1i=1

Next we verify condition (ii) of Lemma 3. Recalling D;(z) = A;l(z)E jEIT X
A;l (z), write

aj(z) = aﬁl) () + oc;.Z) (z) + a§3)(z),
where

3) Lor
ai (z2) = - };eh D;(z)e; Xnj Xij,

p
2 1
o @)= -3 e Dj@enl Xi 1 (1Xnj] <logn) — EX}; (1 Xy < logn)]
h=1

and

1 p
V() = - Y eiDj(2)enlX;; 1 (1Xnj| > logn) — EX;;1(|1Xpj| > logn)].

h=1
Lemma 5 and (3.18) show that E|a§3)(z)|4 = O(m™*). Lemma 2 and (3.18) give
E|oz§-2) (Z)|4 = O(n_4(log n)4) because

n n k
Y lefDj@enl* < | §TAT @enef AT (2)5;
h=1 h=1

(3.27) .
:(SjAj (Z)Aj (Z)Sj) s
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where kK = 2 or 4 and A;l(z) denotes the complex conjugate of A;l(z). We

conclude from (3.27) and EX{,1(|X11] > logn) — O that E|a§.”(z)|2 =o(n~?).
Therefore, we obtain

ZE ZalY (z,

ZalY (zi)
i=1

n 4 2 r
<4 Y EYarP e 1( Y () ze/4>
j=1h=1 i=1
m n 4 r . 4 n r 1 2
P Zla,-Yj)(z, taLE ga,-Y_,“(z,-) -0,
j=1h=2li= j=1 li=

where ¥ (2) = zm()V/nE; @ (). h = 1,2,3 and ¥{"(2) = —2zm(2) x
E; (f TA (2)5;). Here we also use E|Y|”(2)* = O(n_z) by (3.12). Thus,

the condmon (i) of Lemma 3 is satisfied. Hence, the next task is to find, for
71,22 € C\ R, the limit in probability of

n
(3.28) Y Eji1(Yi(21)Y}(z2)).
j=1
To this end, it is enough to find the limits in probability for (3.2), (3.3) and (3.4).

The limits of (3.2)—(3.4) and finally (3.28) will be determined in the subsequent
subsections.

3.4. The limit of (3.2). Our aim is to prove that

z122m(z)m(z2) < j — 1
- >

(3.2) = —— tr(E; A7 )Ej (AT 1))

j=1
(3.29)
+o,(1).

The strategy is to first replace S; by % Z;’?& ; 8i» then replace the resulting quadratic
forms in terms of s; by its corresponding trace and B;;(z2) by its corresponding
limit.

To this end, introduce A;l(z) and §; like A;l(z) and s;, respectively,

but A;l(z) and §; are now defined by si,...,8;-1,8;4,...,8, instead of
Si,.-+»8j—1,8j+1,...,Sy. Here {§j+1’ ...,8,} are 1.i.d. copies of s; and indepen-
dentof {s;, j =1, ..., n}. Therefore, (3.2) is equal to

—ZtrE(A @DSHE;GTAT (22)] = ZE[sTA @)AT (z1)3;].
Jj=1 ] 1
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Applying §; = % > i si and (1.13) further gives

T _ _ 1 & _ _ _
(330)  EjI57A7 @A )] =~ ; E;1Bij(z2)s] A (22)AT (2151,
i#]
The next aim is to replace B;;(z2) in the equality above by ﬁlt; (z2). To this end,
consider the case i > j first. By (3.14)

(331 E|E;[(Bij(z2) — B} (z2))s] A AT 21)5;]| = 0™ /).

Second, when i < j, break A;l(zl) into the sum of Ai_jl (z1) and A;l(zl) —
Al-_jl (z1), Sj into the sum ofsij and Sj — Sij, where A,-j(Zl) = Aj(zl) — n_ls,-sl-T
ands;; =s; —s;/n. Then, when i < j, with notation

1
1+ 1/msT AT @)si”

;@)=

we have

(3.32) Ej[(Bij(z2) — ﬂ,t; (22))SiTAl-_J-l(Z2)A;1(Z1)Sj] =cp1 + Cn2 + Cn3 + Cna,

where

cnt = Ej[(Bij(z2) — B (22))s] A (22)AT z1)5;5],
1
em = —Ej[(Bij(22) — B (22))s{ Ayj (AT (znsil,

1
eny = ——E;[(Bij(z2) — Bj(@2))s] Ayj (AT (20)sis{ A7 (0B (25 ]
and
1
ens = =~ E;[(Bij(22) = Bj 2)s A} (AT @0)sisi Ay eDB (@nsil-

It follows from (3.14) that E|c,;| < Mn~1/2, j =1,2,3,4. Thus, f;;(z2) in (3.30)
can be replaced by /35 (z2), as expected.
In what follows we use the notation oy, (1) to denote convergence to zero in Lj.

Moreover, note that E; [,35 (zz)siTAijl(Zz)Afl(Zl)Sj] =0 when i > j. This, to-
gether with (3.31) and (3.32), implies that

E;[8] A7 AT (2151

1 n
=~ Y EjIA s A @A D] + oL, (1)

(3.33) | 7
=~ Y EjIA s A @A D] + oL, (1)

i<j

=dy +dp +dupz + oL, (D),
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where
dp1 = zzE 8]} z2)s A @)AT @siB (@),
l<j
dny = — ZE (B} (z2)s] Aj;' z2)A;; (21)5;5]
l<]
and

dy3 = — 2ZE 615 z2)s! A7 A @sis! A 20)B,; (21551

i<j

Here, in the last step, we apply §; =s;/n +§;; first, then use (1.13) and finally

split A;l (z1) into two parts as before.
We claim that the terms d,,» and d,,3 are both negligible. To see this, we first
prove the following estimate:

2
(3.34) ‘ Y osT A @A @D5;| = o).

i<j

Indeed, the left-hand side of (3.34) may be expanded as
1 T A
(35— Y EGA A8, SA )AL GDS,)-
i1<j,ia<j
From (3.12), the term corresponding to i} = ip in (3.35) is bounded by
_ _ 1
) Z E|s ,lj(ZZ)AiI;(Zl)&'lﬂz = 0(;)
i1<j

To treat the case ij # i>, we need to further split Al._1 } (z2) as the sum of Al_lll2 j (z2)

andA”J(zg) Amlzj (z2), where A; ;,(z2) = A, j(z2) —n~ lsl2 . Moreover, both
11 j Y(z1) and 5 s;, j are also needed to be similarly split. To 51mphfy notation, define
1
Puini @ =177 /msLALL (s,
1
Bi i) = 1t (1/’1)5,7;A11112] s,
and
Aiyy ) () =A@ =it Sy =8y —

T Al A—l= =
Cirj = SizAizj (Z2)A[2j (Zl)§i2j-
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By (1.13), (3.12), (3.13) and (3.16) we have

1
SIE (s A (@)A1 (@808

:—|E(s HAL DAL DB, L (@DSH80)))

m
L AICIL WA C AR C N ]

1112] 2]
+—|E( TACL (@)siysh AL (22)Biinj(22)
n2 i1inj 2)5iy i) 1112] 2)Piyipj\L2

X A”,]Z](Zl)ﬁ (208is8irj) |

—iyiaj

<—<E|sTA L (2)A7} (@D)sinPE|G, i 1)Y?

i1iz] Siizj

2<E|sTA‘ (22)si,ShAL L (2)AL L (@)si P Elg, i 1H)?

i1in]j i1i2]j =i

= 0%,
T A— 1
_lE(S Alllzj (ZZ)slzslzﬂnQ] (Z2)A1112/ (ZZ)A“,ZJ (Zl)§11121 é‘lz])l

T 1
= _(E|S Alllzj

(@2)si,|*EIsL AL (@A (208, 1D ENG, )2

i1i2] =i

=0(m™'");

—|E<sTA @A @SS B, (DA

i1igj \*2) iy j iinj P iiy j (21)8;,75 8 )|

< —(E|STA11112J(ZZ)A11112J(ZI)SQ| ElsZ;Allllzj(Zl)§l112]| )1/4(E|§2]| )1/2
= 0(7’1_1/2);
) |E(STA,1,12] (22)SizsiT2 Birinj (ZZ)Ai_lilzj (z2)

1 -
X A; i, @0si 12_,1121(21),3 1(@0834,6i0 )

< —<E|sTA;,2, @2)si,SHAG L (22)A; L @Dsi | Elsh AL (208, 1H'*
x (E|ginj 1D = 0(n™®).

The above four estimates, together with the fact that

1 1 . .
( TAlllz_/(ZZ)Alllzj(Zl) X Slllzjé‘lZ]) O ll # 12’
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imply that all terms in (3.35) corresponding to i; # i are bounded in absolute
value by 9Mn—3/8, which ensures (3.34).

Consider the term d,» now. In view of (3.9) and (3.14) we may substi-
tute byz(zp) for ﬂg (z2) in the term d,; first and then apply (3.34) to conclude
that E|d,2| = o(1). As for the term d,3, it follows from (3.9) and (3.14) that
,Bg (z2), éij (z1) and siTA;j1 (Zz)A?jl (z1)si can be replaced by b12(z2), b1,(z1) and
% tr Al-_j1 (zz)A,-_jl (z1), respectively, where

1
1+ (1/mEtrAp 2)

[note: by, (z) = b12(z)]. Moreover, by an inequality similar to (3.8) we have

bi,(2) =

1
‘E j [s,-T A7 (2085~ (A (@A (20) — (A} (22) A} (zo))]

T A=l \a
Ejls; Aij (Zl)§ij|

Therefore, from (3.12) weré)btain
ds— _M@ [tr(Ajl(Zz)Ajl(Zl)) Y sTA7 (zl)sij] +o1,(1).
i<j
As in (3.34) we may prove that (even simpler) :
(3.36) EEZS;A;(ZI)SU 2=0(1),
i<j

which then implies that E|d,3| = o(1).
As for d,,1, we conclude from (3.9), (3.14) and (3.8) that
b12(22)b12(z1) _ _
dyy = =5 3 W Ej A (@A (2] + o, (1)
1<j
b12(z2)b12(z1) . _ _
== = DUE;AT @) Ej (A7 @) +or, (1).
Summarizing the above, we have thus proved that
E;G] A7 ))E; (A7 (z1)5))

j— 1
337 =L b lE (AT @) E; (AT @) + o1, (1)

n

=L omGE)mE) HE; AT @) E; AT @) + oL, (1),
n2 J J
using the fact that, by (2.17) in [5] and (3.8),

(3.38) b12(z) — —zm(2).
This implies (3.29).
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3.5. The limit of (3.3). Our goal is to show that

(3.39) (3.3) 225 0,

In view of (3.6) we have

n

EX3 p
(3.40) 3.3) = T“ Z Z [E;(D;(za)]ilEj(e] A7 (z1)5))].

We first prove that el-T A;I(Z1)§ j above may be replaced by E (eiT A;I(Z1)§_,-).
Using martingale decompositions as in (3.21) and the fact that el.T A;l(z)§ =
EJTA;I (z)e;, we obtain that

(ZZ)el 91] (z1)]
=[5] A} ' (z2)e; — EG] A} (22)e)]E;[6;(z1)]
(3.41)
+ EG] A (22)€) E;[6; (z1)]
=0;j(z2) x E;[0;;(z1)] + E(§§A;1(Z2)ei)Ej[9ij(Zl)],
where

0ij(z) =€ A7 ()8, — E(e] A7 (2)8)) = Y (Em — En—1)0ijm(2))
ma

and
Oijm(2) = ef A7 (2)8; — €] Aj ) (2)Sjum
_ 1 T A
= [—n—e jm(m)smsm Jm(z)ﬁmj (2)Sm

1 1
_—e A (Z)Smsm jm(z)ﬁmj(z)s]m+ —€; Ajm(Z)Sm]

As in (3.19), one can verify that
Eln~ 1TA L@smlf = 0m™), k=2or4,
(3.42)
Eln~'e] A7, (D)snl* = 0(n ™).

Thus, for k =2 or 4, via (3.12),

1 T ¢ -2 k 2
E| el AT, @sus,, AL, (@3jm| = 026 ?)
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and, via (3.10),
1 k o
E —eTA (Zl)SmS,Z;AJm(Z)Sm — O(I’l 2-3(k 2)/4)‘
These yield that E|e"!'m(z)|2 = 0(n™?), E|6ijm(2)|* = O(n"?%e,) and then
El6;j())*=0@m™h),

(3.43)
El0;j(2)]* = 0(n"ep).
Therefore,
p 2
|:EZ|[Ej(Dj(ZZ))]iiEj(Qij(Zl))|:|
i=1
P
<Y Ele/ A7 (2251 2E|sTA— (z2)€ E;(0;(z1))I?
i=1 i=1
P
(3.44) <M [EI6;; ()| E|6;; zD)|*1'/?
i=1

p
+MY IEG] AT e PE6; ()
i=1
= 0(&y).
Here, by (3.18)

L M o
D IEGTA; @) PE0(z2)* < — 3 IEGT AT 2)en)
i=1 i=1

) s s
< —EG/A; (A} @)5))

=

< —.
n

Thus, el.T A;l(zl)§ ;j involved in (3.40) may be replaced by E (eiT A;l(z 1)S;), as
expected.
In addition, by (3.18) and (A.2)

p
E ; LE;(D;(za)]ii E(e] AT (21)5))]

P
(3.45) <EY [E;j(A7' (255 A7 (2l E(e] A7 (21)3))]
i=1

<max|E(e] A 2DSDIEG] A} (22)A] ! 22)5)) — 0.
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It follows from (3.44) and (3.45) that

p
(3.46) EY IE;(D;)i Ejef AT 21)5))] — 0,
i=1

which then ensures (3.39).

3.6. The limit of (3.4). The goal in this section is to prove that

22323m2 (z1)m?(z2)

(3.4) =
(3.47)

12
" Z (J - D [tr(E; (AT N2 E; (A "N + o, (D).

j=1

First, (3.5) shows that (3.4) is equal to

EIXil*-3 ¢
ElXul” =3 ZZE D (21))ii E; (D (z2))ii

n j=li=l1

(3.48)
+= Ztr[E M;(z1))E;jD;(z2))].

] 1

To prove (3.47), the strategy is to substitute E; (§JT.A]T1(z)) for each §JT.A;1(z)
involved in E;(D;(z)) by a martingale method. As we shall see, the above first
term converges to zero in probability and the second term has a close connection
with (3.2).

Consider the second term of (3.48) first. Write

tr[E(D,-(zo)E«D,-(zz))]
(3.49) =E;[5;A7 (2DA; (225,57 A7 (22)A ' (21)5)]
=E,-[5J-A; @A (22887 AT @) Ej (AT @D)8)1+ fr,
where
fo=Ej[5TAT DA (22)5;57 A7 (22) (AT (21)5) — E; (AT (21)5))].
We claim that

(3.50) E|ful = o(1).
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To see this, let Eij =E(|s1,...,Si, Siflr--o S,,). Then, recalling the definitions
of A;] (z) and s; as before, we obtain a martingale decomposition

STAT @) (AT (20)5) — Ejj (AT 21)5)))
= Y (E;7A @A @81 - E¢_1),[5] A7 (22)A ' 2)5;))
i=j+1

= > (Ejj—Eu_1)))8A7 (22)A7 215, — 8T AT (22)A (z1)si)]

i=j+1
= fu1 + fn2,
where
_1 $ “T A —1 -1 a
Jn1=— Z (Eij _E(i_l)_/)[§jéj (12)A,'j (Zl)slﬂl](zl)]
i=j+1
and

1 2 o _ _ _
fn2=—- (E;j —Ei_y);)IsT A I(ZZ)Ai'I(Zl)SiSiTA,'-I(Zl)sijﬁij(zl)]-
n J (=1jJI2j 2 J J
i=j+1

Note that §; is independent of s; for i > j. Then applying (3.12) yields
M & o _ 1
ElfP =) 3 ESIAT A eosP = 0(+)
i=j+1
and
Elfial? < 2 Z EIS] A (2)A; Gosis] Ay 20517
n2 =2 8;A; \22)A;; (Z1)8i8; A;;i (Z1)8ij
i=j+1
n

om T — _ - _ 1/2
<> ZI(E|§,TAJ- ')A sl ElsTAS sl
i=j+

1
- O (_) ’
n
which ensures that

1
E’sJTAJfI(ZQ)(A;I(m)Ej — Ejj(Afl(Zl)gj))|2 = 0(;)
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So (3.50) follows from the above estimate and
EISTAT DA (225, = 0(1),

which may be obtained immediately by checking the argument of (3.18).
As in (3.50) we may also prove that

E|E;[$]A7 DA (z2)
x§;(5/ A (z2) — EjG] A7 22) E; (AT 20§ ]| = o(1).
Therefore, combining (3.49)—(3.51) with (3.37) we have
tr[Ej (D (21))E;(D;(22))]
= Ej[5] A7 @DAT (2205 E; ] A7 (22) Ej (AT (z21)5))]
+or,(1)
(3.52) =E;G] A @) E(AT (223 E;G] AT (22) Ej (AT (21)5))
+or,(1)

. 1 2
=Y — Eim® com )l B (AT @2 EjA; )P

(3.51)

+or, (D).
We now turn to the first term in (3.48) and claim that
1 & P i.p.
(3.53) ~ 22 EiDj@))iEjD;(z2))i — 0.
j=li=1
Indeed, it follows from (3.41) that

p
E ZEj(Dj(Zz))iiEj(Qij(m)@]TA;l(Zl)ei)

i=1
p
<> E|E;j(D;(2))ii E;j(0;(21))’]
i=1

p
+ Y E|E;(D;(22)i Ej0;j 1)) EG] AT z1)ei)l.

i=l

The second term above is not greater than

P
max| E (5 A (z1)e)| Y EIE; (D (22))ii Ej (0 (z)],

i=l
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which converges to zero by (3.44) and (A.2). Moreover, by (3.18) and (3.43)

p 2
(Z E|E,-<Dj<zz)),-iEj(9,-,-(m))%)

i=1
P 14
<> EID;))iil* Y El6;j D
i=1 i=1
p 2 p
5E(Zs,TA;l(zl)eiefA;l(ZI)éj) Y Elbijzl*
i=1 i=1

= 0(ep).

In addition, it follows from Lemma 6 and (3.46) that

14
Y E;j(Dj(z2))ii E(e] AT 21)5))E; G} AT (z1)e)
i=1

E

P
<max| E(e] Ay ()81 3 EIE;(D;(22))ii E; G A} 1)en)] — 0.
i=1
Consequently, the proof of (3.53) is complete. Thus, (3.47) follows from (3.52),
(3.53) and (3.48).

3.7. The limit of (3.28). Note that (see [5], (2.18))

i — 1
(E; (AT ) E; (Ajl(Z1)))[1 R A — mm(zgﬁffz (Zz))}

(3.54) »

= +In,
z122(1 +m,, (z1))(A +m, (22))

where E|l,| < M/n and m,, (z) is defined like m,, (z), but corresponding to m(z).
Obviously, m,, (z) = m(z). This implies that

i—1
(j )mz}zﬂm(m)m(zz) tr(Ej(A;I(Z2))Ej(A;1(Zl)))

_ 21z22(1 +m(z1))(1 + m(z2))
P
-1 +0L1(1),

which, together with (3.37) and (3.52), leads to
AU[E; (A7 (208 Ej BT AT 22))] + 2t(E;(D;(21)) E; (D (22)))

4(j — 1
_ (j )zlzzzm(ZI)m(Q) tr(E; (A;l(Zz))Ej (AJ_I(ZI)))

w(E; (A7 (22)E;(A7 (1))

n
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2 . _1 2.2.2.2 2
L2600 chem (z)m*(z2) [tr(E; (AT ) E; (AT @)

n
+ oL, (1)

L[ (Ej (AT (22) Ej (A (z)])?
pz

=—2+223(1 +m(1) (1 + m(z2))
+or, (D).

Further, we conclude from (3.54) that

1 n
p Y Ir(Ej (AT @) E AT @)
j=1

1
23251+ m(z))2(1 + m(22))?

X ! > - 2 1 2
n i =0 = Dp/n*(m(z)m(z2) /(1 +m(z)) (1 +m(z2)))))
+op,(1)
i.p. 1

T 220+ me))?( + mz)?

y /‘1 dx
0 (I —x(em(z)m(z2)/((1 4+ m(z))(1 +m(z2)))))?
1
2230+ m)) 1 +m@)) (1 +mz))(1+m(z2) — em(z)m(z2)]

It follows that

1 n
(328) = znzam@)m(z) - Y [4E; A7 @)S)E; ] A} (22))]
j=I1

+2t[E;j(D;j(z1)E;j(D;(z2))]]
(3.55)
+op(1)

i 2cz120m>(21)m*(22)
(1 +m(z)(A +m(z2)) — cm(z)m(z2)

4. Tightness of M,E” (z) and convergence of M,(,z) (z). First, we proceed to
prove the tightness of A;I,(,l)(z) for z € C, which is a truncated version of M, (z) as
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in (1.9). By (3.12) we have

m n 2 n m
Doaiy Yi@)| =Y EY aiYi(z)
=1 j=1 j=1li=I

which ensures that condition (i) of Theorem 12.3 in [6] is satisfied, as pointed out
in [5]. Here Y;(z) is defined in (3.26). Condition (ii) of Theorem 12.3 in [6] will
be verified if the following holds:

M (21) = My (22) P

(4.1) E PR <M forz;,z2e€CluUC,.
1 —X2

2

E <9I, vo = %,

In the sequel, since C, and C;; are symmetric, we shall prove the above inequality
on C;/ only. Throughout this section, all bounds including O(-) and o(-) expres-
sions hold uniformly for z € C;'.

In view of our truncation steps, (1.9a) and (1.9b) in [5] apply to our case as well,
that is, for any 71 > (1 4+ /¢)%, 0 < 12 < 1(0, 1)(c)(1 — \/c)? and any positive /

(4.2) PUSII=n) =0m™),  Pmin(S) <m)=o0(").

Note that when either z € C, or z € C; and u; < 0, ||AJT1 ()|l is bounded in n. But
this is not the case for z € C, or z € C; and u; > 0. In general, for z € C;, we have

4.3) IAT @I < M+ 07 (A 2 Ay or dmin(A)) < h).

Here, A; =S —s;s], hy € (1 +/0)%, u,) and hy € (ug, (1 = /0)?).
Note that A~!(z1) — A~ (z2) = (zo — z1) A~ (z1)A~ ! (22). As in Section 3.3,
we then write
M (z) — My (z0)
21 — 22

(4.4) = —Vn > (Ej— Ei_DE AT @A (205
j=1

—5/ AT DA (2251
Moreover, expanding the above difference we get
sSTA Y zDA N (z0)5 — §jTA;1 (Zl)A;1 (22)Sj = qn1 + qn2 + qn3,
where
gn1 = " —5)A™ @DAT ()5,
a2 =5} (A" @A (@2) = AT @DAT (22)3
and

a3 =51 AT 2DAT (22) G - §)).
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It follows from (1.8), (3.12), (4.3) and (4.2) that
2

n n
E ﬁ_Zl(Ej —Ej_1)qn3| < % Zl EIS] A7 @A (2o)s)
Jj= Jj=
<M+ Mn®p, *P(IA1] = Ry OF hinin(A1) < I)
<M,
where we use, on the event ([|A || > A, or Anin(A ;) < hy), by (3.1),
57 A7 DA (2281 < 157118 1A (zDAT z2)
< Mo ~2n2 < 9ﬁn4,0”_2.
For g2, expanding its difference term by term we have

1 6
qn2 =q,52) +"‘+Qr(12),

4.5)

where
m_ 1 < .
2 = 25j Bj(z1)Bj(z2)A;(z1)A(22)S],
1_ "N — —
qr(é) = —ESJT,Bj(Zl)Aj(Zl)AJ- I(ZQ)S]',
1_ —_ 7 -
Clr(laz) = —;sfﬂj (22)A; Y(z)Aj(22)3;,
@_ Lr - .
Gnr =35 Bi(21)B; 22)A; 1A (22)s;
and

1 = N —
a0y = —ﬁsfﬂj(m)A]’(Zl)AJ- '(22)s;.

1_ -
a3 = _ESJT',Bj (22)A; "zDAj(z2)s;.

We conclude from (3.14), (4.2), (4.3) and (4.5) that

n 2
VS E —E;i-DgSQ| <M+ 0B P(IS| > hy or hmin(A1) < hy) <M,

j=1

E

where we use, on the event (||S|| > &, or Apin (A1) < hy),

46) 1Bj@I=11—n"'s]AT @s;| < 1+n""v 7 s; > <DMv~"n
by (3.7). Similar argument shows that

" 2
VY (Ej—Ej gy =0,  j=2,...5

j=1

E
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@

Moreover, write g, = qn1 +gq,] + q,(fl), where

a5 = —zﬂ,- (2B (z)s] AT @DAT (228,

(2) —ﬂ,(Z1)STA AT (Zz)sJ
and

1 ~
an =- —zﬁj(zl)ﬂj(zz)SJTAfl(m)Aj(zz)éj.

The argument for q ) also works for q(j ) j =1,2,3, and thus,
n 2
E\Vn) (Ej—Ej_1)qu| =M
j=1
The proof of (4.1) is complete

Next, consider M, )(z) Bys=n IZ _1Si, (1.13) and an equality similar to
(A.3) we obtain

Y EBi()sT A7 (2)9)

1
=T A —1 =\
JnEG'A (z)s)_—\/ﬁi:1

_ S (sT AT (D)
_ﬁ;E(ﬁ,(Z)S, A7 (2)si)

1 n
+ -5 ; EBi()s] A7 (@)si)

b1(2)
E(tr AT (2) + b1 (2)tn1 + b1 (D)2,
f
where
tn = —vnE(B1(2)€1(2)s{ AT (2)81),
1 T p—1
thy = _ﬁE(ﬂl(Z)fl (2)s1 Ay (2)s1).
Again, using an equality similar to (A.3) further gives
=1+, =13 415,
where

1) = — Vb () E € (D)sT AT (251),
12 = Vubi () E(B1(DEX()sT AT (51)
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and
0y = — bljf)E(sl(z)s{A @)s1),
b
by = iﬁ)Ewl(z)sl @sTAT @)s1).

Note that |b(z)| <IN for z € C, (see [5], three lines below (3.6)). It follows
from (3.9), (3.10), (3.12), (4.2), (4.3) and (4.6) that

112 < Me, +Mn'0p 4 P(ISI = hy oF Amin (A1) < ) < My,

because I,Bi(Z)SZ(Z)STA_l(z)§~| < n>v™* on the event (||S|| > A, or Amin(A1) <
hp). This argument clearly apphes to t( ) as well and so |t,%)| < Me,. Notice that
LE[tr(AT' (2))] = E[e],A[ " (2)e,,]. This and (3.6) show that
bi()EX3
D ! 11 T
—_— E(e,A[ Al (2)s
1= O S b s o
biEX],(1/mE A (2) T
NG mX:IE(e A1 (2)81)

b1<z>EX%1%Etr<Ar‘ <z))‘ max /n| E (e, A7 (2)51)] +o(1)

+o0(1)

<M

=o(1),
where we make use of the facts that by (A.2), (4.2) and (4.3),

max /n| E (e, A7 (2)51)] = o(1), %Etr(AH(z)) =0(1)

and that by (A.7), (3.43), (4.2) and (4.3),
El(ef AT (2)en — E(eL AT (2)em)) (€L AT (2)51 — E(el AT (2)51)))
<M~ + Mo P (A1l = By o Amin(A1) k) = O ).
Note that n ' E(& (2)s! A7 (2)si) = Ey?(z) + n—ZE(trA* (z2) — EtrA; ! (2))?

and then applying (3.9), (3.10), (4.2) and (4.3) gives t'5) = 0 (n=1/2).
Summarizing the above we obtain

VIEG AT @8 = 2D ErAT (@) + o0,

Moreover, it is proven in [5], Section 4, that n(EtrA_l(z)/n — cpmp(2)) is
bounded for z € C,,. In addition, by (3.8), (4.2) and (4.3) we have

-1 -1
Y EvAT'@ _EvA”'@)|_ M

n n Jn
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It follows that n(E trAl_l(z) /n — cymy(z)) is bounded. This, together with the
boundedness of b1 (z), shows that

sup /1 (EgTA1 (2)5 — L”(Z)) 0.

zeCp I +cpmy(2)
5. Proofs of Lemma 1, Theorems 1 and 2.

PROOF OF LEMMA 1. To finish Lemma 1, §75 — ¢, needs to be written as
a sum of martingale difference sequence so that we can get a CLT for §7§ — ¢,
and, more importantly, obtain the asymptotic covariance between §'§ — ¢, and
sTAT!(2)s.

Thus, write

VnGE's—e)=vn Y (E;j— E;-)E"S)

j=1
n
=Jn) (Ej—Ej-1)G'5§—-5]s))
=1
(5.1) ’
" Stsj sis;
:ﬁZ(Ej—Ej_1)<2—+—2 )
=1 n n
\/_ZE (s sj) +o,(1),
because

2

bl )

From (3.12) we have

1 & 1
— 5 Y EIE s~ pP=0(5).
n i=1 n

j=1

| 2 /1 T 1y 1
A E‘EEJ(SJ-SJ) I(ﬁEj(sjsj)ze> 5821.:1E‘\/,E (s sj)
=0@m™),

which implies condition (ii) of Lemma 3. Look at condition (i) of Lemma 3 next.
It is easily seen that

_ B _ 1
Ej—l[Ej(S]TSj)]z = Ej(S,T)Ej(Sj) = > Slesk2'
ki<j.ka<j
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Furthermore, for the term corresponding to k; = k», we have

2
1 T T 2 1
= n_4kZ. Elsy sk, — E(s;,8,)° = 0<n—2>.
1<J

1 T T
E 7 E [sklskl — E(sklskl)]
ki<j

On the other hand, when k; # k>,

1
T
ﬁ Z Sk Ska

ky#ka

2
1
E = a Z E [s,{I skzs;] Sh, |

ki#ko,h1#hy

— 34 Y E(s{si,) = 0(%).

n ki#ky
It follows that

4 40 (-1 1
(5.2) Y—IZEj_l[Ej(éjT.sj)F:r—lzc(]n—)+op(1)i>4c/0 xdx =2c.

j=1 j=1

Therefore, by Lemma 3

(5.3) JiGT5 =) 2 N(O, 20).

We conclude from Sections 2 and 3 that M, (z) converges weakly to a Gaussian
process on C. Moreover, my(z) — m(z) uniformly on C by (4.2) in [5] and (1.2).
These, together with (1.12), (5.3), (3.26) and (5.1), give, for any constants a
and ao,

a1X,(2) + axv/n(g (111 — g(cn))

—a1(2)vn [éTAl (25 — —Cnmn(@) ]
5.4) 1+ c¢ym,(2)
+a2(2)vV/n (ISl = cn) +0,(1)
=Y 1j(2) +op(1),
j=1

where di(z) = a1 (1 + em(2))*/c, d2(z) = arg/(cy) — aym(z)/c and
2
NG
Here, the first 0, (1) denotes convergence in probability to zero in the C space and
in the first step we use the faAct that g(x) = g(cy) + g'(a)(x —cp) +o(lx —cyl) as

x — ¢p. Thus, tightness of X;,(z) is from that of M,,(z).
Since b1(z) - 1/(1 + cm(z)) and b1(z) — —zm(z) by (2.17) in [5], we have

(5.5) 1/(1 4 cm(2)) = —zm(2).

1j(2) =a1()Y;(2) + @) —=E;Gls)).
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Moreover, we assume for the moment that

" . . 2 . ] i 2cm(z)
(5.6) ;Ell[YJ(Z)WEJ(SjSJ)}—) TFon@R
It follows from (3.55), (5.2), (5.6) and (5.5) that
> Ejlli@nlj(z2)]
j=1
2cz1zom* (z1)m* (22)

=a1(z1)ai(z2) A +mz))(A +m(z2) — cm(z1)m(z2)

2
+ 2cax(z1)ax(z2) + a1 (21)52(22)%
2em(z2)

(1 4+ cm(z2))?
=af x (1.10) 4 a3 x 2¢(g'(€))* 4 0,(1).

+a1(z2)a2(z1) +0p(1)

Thus, Lemma 1 follows from the above argument, Lemma 3 and Cramér—Wold’s

device.
Now consider (5.6). Write

Ej 1\[E;(s] A7 (8)E;(]s))]

_ 1, - 1 1, -
= EjGE (A} @8) = 3 Ej (5T A ()88 ()
i<j
1 _ 1 1,
= 5 2 Ei(s] A @siBij (@) + 3 Ej (5 A (28 (2)),
i<j i<j
where we use §; = 1/n 3 ;;s; in the second step and §; =5§;;j + s;/n in the last
step. By (3.9), (3.12) and (3.10)

B[ 3B 6T A @8 (2 — b)) | = 0 72

i<j
which, together with (3.36), yields
1 1,
E%Z@@Aﬂmwmmqu
n i<j
On the other hand, appealing to (3.8), (3.9) and (3.10) ensures that

1 n'EwrA~l(2)
l+n-1EtcrA-1(z)

| i —
= Y Ei] A @sifij @) = / ; +or, (1).

i<j
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Therefore, we obtain

—ZE] 1E;j (s A7 H2)5)E; (s sj)]

j=1
—1 —1 n
nT EtrtA ' (z) 1 j—1
(5.7) l—i-n—lEtrA—l(z)njg1 n oL, (D
ip. cm(z)

2(1+em(2))
Next, by the Markov inequality and the Doob inequality

1 " E(max;(1/n v DA
P(max—Zv,-k Zg)f o1 Emax; (/I vik)
&

iLjon k<j

DJTnE((l/n)IZk<] vi))* o

=<

g4 n’
which implies
1 i.p.
max|— Z Vik Bl 0.
bJ nk<j
This and (3.6) ensure that
n
Y Ej-ilEja;(R)E;G]s))]
j=1
_EXd v
— NS IED;)ilE;(e]5))]
n j=li=l1
(5.8) <max| szk ZZ[E (A7 (228,57 AT Z2) i
k<j j=li=l1
max Zv,k ZE (STA (22)A; (Zz)S )
nk<] j=1
),

because (3.18) implies that n=' ¥_, E; (ng.A;1 (ZZ)A]T1 (22)§;) is uniformly in-
tegrable. Based on (5.8) and (5.7) we have (5.6). [

PROOF OF REMARK 4. By (1.3) we get

m(z1) —m(z2) _ m(z)m(z2)(1 +m(z1))(1 + m(z2))
(z1 — 22) (1 +m(z)(1 +m(22) — cm(z))m(z2)

5.9
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Then
2

cz122[(1 +m(z1))(1 +m(z2)) — cm(z1)m(z2)]
2(m(z1) — m(z2))
cz1z2(z1 — z2)m(z1)m(z2) (1 + m(z1))(1 + m(z2))
2(m(z1) — m(z2))
z122(z1 — 22)(1 + m(z1))*(1 + m(z2))?
2(m(z1) — m(z2))
cz122(z1 — z22)(1 + m(z1)) (1 + m(z2))

1 c
x [m(Zl)m(Zz) T (+mG)[ +m(12))}

_ 2(m(z1) —m(z2))

21221 — 2L+ m@E )21+ m(22))?

2

T i+ men( + m@)
_ 2(m(z1) —m(z2))

z122(z1 — 22) (1 + m(21))*(1 + m(22))?

. 2m(z1)m(z2)

C

’

where in the first step and the third step we use (5.9) and in the last step we use
(5.5). On the other hand, via (1.3) one can verify that

2(m(z1) — m(z2)) 2(zom(z2) — z1m(z1))?

222G — 20+ mGE)2(1 +mz2)? 2122021 — 22) (1) — m(z2)

which is exactly the covariance function in Lemma 2 of [3]. Therefore, Remark 4
holds. [

PROOF OF THEOREM 2. The idea from Lemma 1 to Theorem 2 is similar to
that in [5]. First, by the Cauchy formula we have

1
/ F@ G =~ ;ﬁ F@Ome @) d (@),

where the contour contains the support of G(x) on which f(x) is analytic. Then,
with probability one, we have

1
[ f0dGu0 ==+~ § roX.@de)
for all n large, where the complex integral is over C and

Gu(x) = /n(F5(x) — Fe, (x)).
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Further,
< M pn n Mo, as
o «/ﬁ(ur — Amax(S)) \/ﬁ(kmin(s) —uy)

where, with probability one, Amax (S) — (1 + ﬁ)z by [11] and Apin(S) — (1 —
\/E)Z by [23]. Second, note that for any constants a; and a;

0,

\ / f@(Xn(2) — X (2)) dz

(Rn(2), V) = ai ff(z))h(z) dz + wY,

is a continuous mapping. Therefore, the right-hand side above converges in distri-
bution by Lemma 1. Moreover, Remark 4 shows that (1.6) follows from (1.12) and
(1.15)in [3]. O

PROOF OF THEOREM 1. By taking f(x) = x~!and g(x) = x in Theorem 2
and noting that ¢, — ¢ as n — 0o, we can complete the proof. [J

APPENDIX

A.1. Some lemmas. We collect some results needed to prove Lemma 1.

LEMMA 2 (Burkholder [8]). Let {Y;} be a complex martingale difference se-
quence with respect to the increasing o -field {F;}. Then for k > 2

k k)2
S| sme(Seaiiso) +mE(Sm)

E

LEMMA 3 (Theorem 35.12 of Billingsley [7]). Suppose for each n, Y, 1, Yy 2,
..o, Ynr, is a real martingale difference sequence with respect to the increasing
o-field {F,, ;} having second moments. If as n — o0

'n

D Y EXE|Fnj-1) 5 o,
j=1

Tn
(i) Y EY; gy, =) = 0,
j:l

2

where o~ is a positive constant and € is an arbitrary positive number, then

n
3 Y, B N, 6.
j=1
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LEMMA 4 ([4], Lemma 2.7). LetY=(Yy,..., YP)T, where Y;’s are i.i.d. real
r.v.’s with mean 0 and variance 1. Let B = (b;;) px p, a deterministic complex ma-
trix. Then for any k > 2, we have

E|YTBY —tr B* <O (EY{ e BB*)X/2 1 90, E(Y) > tr(BB¥)*/2,

where B* denotes the complex conjugate transpose of B.

LEMMA 5. Let C = (c;j) pxp be a deterministic complex matrix with c;; =0
and Y =Yy, ..., Yp)T, defined in Lemma 4. Then for any k > 2,

(A.1) EIYTCY* < (E|Y1 %)% (tr CCH/2.
Lemma 5 directly follows from the argument of Lemma A.1 in [4].

LEMMA 6. Under the assumptions of Theorem 1, as n — oo,
(A.2) max /71| E(e] A[ ' (2)51)] — 0.
1

PROOF. We first prove that for i # j, sup; ; ﬁlE(eJTAfl (z)e;)| = 0. To this
end, write

l n
Ai(x) +2d=—- Z sms;,.
n
m=2
Multiplying by Al_1 (z) from the right on both sides of the above equality gives

B 1 & B
I+ zA; ‘(z)z; > SuShALL (@) Bm1 ().
m=2

Using
(A.3) Bm1(z) = b12(2) — Bm1(2)012(2)5m1(2)
we obtain
I+zA7'(2) = @ Y sushALL ()
(A.4) m=2
a b]i(Z) > SuSnAL1 (@) Bu1 (DEn1 (2).
m=2

It follows that for i # j

WnE@E€] AT (2)e)
A3 = bf/(,;) (Z E@]A, () - Z E(€]sus), ml(z)ﬁmmz)sml(z)el))

= blz(z)x/ﬁ(E(ejTAz_l (2)e;) — E(ej s250 A5 (2) a1 (2)E21 (2)€))).
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As in (3.10), by Lemma 4 and (3.9),
(A.6) Elen@f =0E** ™,  k>2.

Here and in what follows (in this lemma) O(s,zlk_4n_l) and other bounds are in-
dependent of i and j.
We conclude from (3.11) that

bin(@)VnE@El A5 (2)e;)
T
= ba( Vi BT AT @) + (145102245 erpa )

=bi()ViEE[ AT @e) + 0.

For the second term in (A.5), first, by a martingale method similar to (3.21) and
(3.11) we have, for ¢; = ¢; or e;,

Elel A5 (z1e; — E(el A (z1)ej)?
n 2
> (Em— Em—0ef (A3 20) — A, (20)e]

m=3

(A7) =E

< %m; Elst A 0ejel AL (zD)snl> = 0™ ).
This and (3.9) ensure that
‘ %E[eJTAﬂl (2)ei (trAS (2) — EtrA5(2))]
= '%E[(ejrAﬂl (e — Eel A (2)e) (tr A5 (2) — EtrAS (2))]

M _ _ _ _ 2
< 7(E|e]TA211 (e — EeT A5 ()€ *E|tr A5 (2) — Etr A5} @)Y
M

n
Second, appealing to (3.5) gives
E(e]s:s] A} (2)eiya1(2)
= E((s5A5] (@)eiel sy — el A5 (2)€)121(2)

EX% -3 _ _ 2 _
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It follows that
VnE(elsys] A5 (2)ei21(2))
= VnE(e] s8] A5 (2)ei21(2)
+ /nE [ejAgl‘ (2)e; %(trAz_ll (z) — EtrA}} (z)):|

=0mn?).

On the other hand, in view of (3.11) and (A.6) we obtain
VnE(€elsys] Ay (2)ei Bai (2)€5 (2)) = Ofen).

Therefore, by (A.3) we find

VIE (€] s8] A3} (2)Ba1 ()21 (2)ei)
= Vnbi()[E(e] 28] Aj ] (2)ei£21(2)) — E(e] 5287 A5 ()€1 Ba1 ()83 (2))]

= 0(&p).
Therefore, combining the above argument with (3.38), we have
(A.8) sup|vnE (el AT (2)e)| — 0.
i#]

Next, applying (A.3) two times gives
El AT zn)81)

1 n
=- > EEl A, 0)smBm (21))
m=2
bt —1
= %[—E(e?AQI (z1)82621(21))

+ E(e] Ay (2082801 (2D)EF (1))
Obviously, we conclude from (A.6), (3.11) and Holder’s inequality that

n—1

E(ef A3} 21)s2821 (2)ER <Z1))\ — 06,

while (3.6), (3.8) and (A.8) yield

n—1

max E(eiTAz_ll (Z1)52$21(Z1))’

EX3n—-1 &
EXin= D > Elel A5l (z1)e; (A5 (1)) 5]

j=1

= max
i

n2
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EX; m
< EXn laleE[e A7 e (AT (21) ] I+

J#

1
gsm‘EX%lE—trA;l(zl)
n

om
max |E(e] A7 (z)e))| + —
i#] n

= o(n_l/z).
Here we also use the estimate, via (A.7),
El(ef AT (z1)e; — E€f AT (zD)e) (A7 (21))j; — EA™' @1) )| = 0 ™).
Thus, the proof of (A.2) is complete. [

A.2. Truncation of the underlying random variables. To guarantee the re-
sults holding under the fourth moment, it is necessary to truncate and centralize the
underlying r.v.’s at an appropriate rate. As in [5], (1.8), one may select a positive
sequence &, so that

(A.9) en—0 and & *EXT1(1X11] = eai/n) — 0.

Set Xij = Xij I (1Xij| < ens/n) — EXij1(1Xij] < £44/n) and X, =X, — X, =
(Xij) with X, = (X;)). Let 0, = E|X11[2, Sy = (n62) "X, X7 and A~ (z) =
(S, — zI)~!. Moreover, introduce § = % Z?zl $;, where §; is the jth column of
the matrix (an)_l)A(n.

LEMMA 7. Assumethat X;j,i =1,...,p,j=1,...,narei.id with EX|1 =
0, E|X11|2 =1 and E|X11|4 < 00, for z EC,T, we have then

(A.10) JiETA ()5 — §TA 1 (2)8) & o,
where the convergence in probability holds uniformly for z € C,\ . Moreover,
(A.11) JnGTs —87%) 0.
PROOF. Write
Vi(ETAT ()5 — STAT1(2)8) = up1 + un2 + una,
where
ny = v/l —HTAT (28] unz = Va[§T (AT () — A7 (2))3]
and

un3 = /n[8TAT ()G - 9)].
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Consider u,,1 on the C, first. It is observed that
_ 3 _ _ \/ﬁ _ 3 _
1] < VulG—S)TNIA @IS < v—0||<s SOMIE
‘ Jn 1
VU

— 111811,
n

sinces —§=(1— L )s + 2 s with § = Z’}Zl S;/n and §; being the jth column

of X Moreover, it follows from (A.9) that

1—02 <2EX}I(1X11] = env/n) <260 'EXTI1(1X11| = env/n) = 0(e2n7Y),

(A.12)

which implies that

(A13)  Vn(l=1/0y) =/n(o; = D/lon(l+0)] =0~ '/?).
On the other hand,

E||§||2=E[Z

i=1

Z

1 K& m
=52 D EXj< EX11 (1X11] = env/n),

i=1j=I

which, via (A.9), gives that

(A.14) Sl 2 0.

In addition, ||5]|? is uniformly integrable because (3.17) remains true for k =2
without truncation by a careful check on its argument. This, together with (A.12)-
(A.14), ensures that u, | converges in probability to zero unlformly on C,.

Analyze up next. Since X, — o, 1X =1-o, 1)X +o, X,,, we have

< —_ Y _ n g N _
luna| < V/n|STINAT () — A 1<z>||||s||sv—f||sT||||A<z>—A<z>||||s||
0

1 o _ RPN s 1S
= I8TIISIX = o Xl 1+ lloy XX =0, X ]
0

1 < _ _ 1~
- ISTHISIECT = o D IXn HIXE 1+ oy X 11X |
0

+lloy  Xa (=0, DIXT I + oy X lloy XTI,
As before, ||s|| and ||s|| are uniformly integrable. Moreover, the spectral norms
IXT||//n and o, X, |/+/n both converge to (1 + /c)? with probability one

by [25]. In addition, ||X,{ I/ /nEX? 7, converges to (1 + /c )? with probability one.
From (A.9) we have

nEX3 <26 2EX}1(1X11] = en/n) = O(s2),
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which, together with (A.13), yields that u,> converges in probability to zero uni-
formly on C,.

Clearly, the argument for u,; works for u,3 as well. Moreover, note that
IA=1(z)|| is bounded for z € C;, u; < 0. As for z € Cj,u; > 0 or z € C,, by [25]
we have

lim min(u, — Amax(A), Amin(A) — u;) > 0, a.s.

n—oo

and

lim min(u, — Amax(A), Amin(A) —u7) >0,  as.

n—oo

Therefore, the above argument for u,;, j = 1,2, 3 for z € C, of course applies to
the cases (1) z € Cj, u; < 0; (2) z € Cy,u; > 0; (3) z € C,. Thus, (A.10) holds.

Finally, the above argument for (A.10) certainly works for (A.11). Thus, the
proof is complete. [J
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