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NECESSARY AND SUFFICIENT CONDITIONS FOR
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University of Reading, Rutgers University and Rutgers University

We give necessary and sufficient conditions for a pair of (generalized)
functions ρ1(r1) and ρ2(r1, r2), ri ∈ X, to be the density and pair correla-
tions of some point process in a topological space X, for example, R

d , Z
d

or a subset of these. This is an infinite-dimensional version of the classical
“truncated moment” problem. Standard techniques apply in the case in which
there can be only a bounded number of points in any compact subset of X.
Without this restriction we obtain, for compact X, strengthened conditions
which are necessary and sufficient for the existence of a process satisfying a
further requirement—the existence of a finite third order moment. We gener-
alize the latter conditions in two distinct ways when X is not compact.

1. Introduction. A point process is a probability measure on the family of all
locally finite configurations of points in some topological space X; for an overview
see [10]. Here we will often adopt the terminology of statistical mechanics, refer-
ring to the points as particles and to their expected densities and correlations as
correlation functions. In many applications, quantities of interest can be calcu-
lated from the first few correlation functions—often the first two—alone (see [14]
and below). Given the process in some explicit form, for example, as a Gibbs mea-
sure, one can in principle calculate these correlation functions, although in practice
this is often impossible. On the other hand, one may start with certain prescribed
correlation functions; these might arise as computable approximations to those of
some computationally intractable process as occurs in the study of equilibrium
fluids [14] or might express some partial information about an as yet unknown
process as in the study of heterogeneous materials. One would like to determine
whether or not these given functions are in fact the correlation functions of some
point process, that is, are they realizable?

This paper is a continuation of our previous work on the realizability problem
[4, 20] to which the reader may wish to refer but is independent and may be read
separately. In this Introduction we briefly summarize our approach to the problem
and then discuss a few applications in the physical and biological sciences. We
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summarize definitions and background in Section 2 and describe our new results
formally in the remainder of the paper.

It is often convenient to view the realizability problem as a truncated moment
problem. In that setting it is an instance of the general problem of finding a process
supported on some given subset of a linear space and having specified moments
up to some given order, that is, specified expectation values of all linear functions
and their products up to that order or equivalently of all polynomial functions of
that degree. (The problem is called “truncated” because not all moments are pre-
scribed.) To identify the realizability problem as a truncated moment problem we
use the interpretation of a configuration of points as a sum of Dirac point measures
and thus as a Radon measure on X. In this sense the set of all point configurations
becomes a subset of the linear space of all signed Radon measures and to specify
the correlation functions of the process up to some order n is then just to specify
moments, in the above sense, up to order n. This is an infinite-dimensional instance
of a classical mathematical problem [1, 18]. For the one-dimensional moment
problem there are many powerful and interesting results but for higher-dimensional
truncated problems there are fewer (see [9, 11, 18] and references therein). For the
infinite-dimensional truncated moment problem we are only aware of [35].

In this paper we derive several classes of conditions on correlation functions
which are necessary and/or sufficient for their realizability by a point process (or,
in some cases, by a point process with certain extra properties); for simplicity
we suppose that we wish to realize only two moments, that is, the first and sec-
ond correlation functions but the methods extend directly to the general case. The
conditions we consider are obtained via a standard general technique for moment
problems, that is, Riesz’ method [2]: one defines a linear functional on the space
of quadratic polynomial functions of configurations in such a way that its value
on any polynomial coincides with the expectation of the polynomial with respect
to any realizing measure (should one exist). If the polynomial in question is non-
negative on the set of point configurations then it is a necessary condition for re-
alizability that the value of the linear functional on the polynomial be nonnegative
as well. The linear functional is expressible in terms of the prescribed correlation
functions alone so that this gives rise to a necessary condition for realizability.
These necessary conditions are discussed in Section 3.1.

The challenge is to show that these conditions are in fact also sufficient or, if
they are not, to find an appropriate strengthening. There are two general classical
approaches to the construction of realizing measures, one based on dual cones
(see [18], Chapters I and V) and one on an extension theorem for nonnegative
functionals (see Riesz’s method in [2]). We follow the latter path: we first extend
the linear functional described above to an appropriate larger space of continuous
functions then prove that the extended functional can be realized by a measure.
The first step follows in great generality from the Riesz–Krein extension theorem,
cf. Theorem 3.6.
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If the set of particle configurations is compact then the second step can be es-
tablished by the well-known Riesz–Markov theorem; in Section 3.2 we use these
ideas to establish sufficiency of the conditions described above in this case. The
set of configurations is compact if the system has a local restriction on the number
of particles; such a restriction can arise naturally from an a priori restriction on the
total number of particles in the system (the result in this case was already proven
directly in [27] and [13]) or in a setting where the given correlation functions, by
vanishing on certain sets (as would be implied by a hard-core exclusion condition),
prohibit particles from being closer to each other than some given distance. Lattice
systems in which there can be no more than a given number of particles per site
are included in this case (see Section 3.2).

When it is not known that the support of the desired measure is compact, we
use a compact function, that is, a function with compact level sets to obtain an
analogue of the Riesz–Markov representation theorem from the Daniell theory of
integration. In our case we may use an appropriate power of a linear function as
the desired compact function. In general, however, the process obtained in this
way will not automatically realize the highest prescribed moment (cf. [18], Chap-
ter V.1); this is a feature of the truncated moment problem on noncompact spaces
(in our case we must even consider nonlocally compact spaces) which does not
arise if moments of all orders are prescribed because there is always a higher mo-
ment at hand to control the lower ones. This difficulty is not avoidable; in fact the
conditions derived from the positive polynomials are not in general sufficient in
the noncompact case (see [18] and Example 3.12 below). An alternative approach
for the locally compact case is given in [18].

In this paper we propose a new and quite natural approach for infinite-
dimensional moment problems. We modify the conditions in order that they be-
come sufficient but they then cease to be necessary; rather, they are necessary
and sufficient for the modified realizability problem in which one requires realiz-
ability of the first two correlation functions by a process which has a finite third
(local) moment. This, to our knowledge, is the first extension of the abstract char-
acterization of necessary and in some sense sufficient conditions for an infinite-
dimensional moment problem. The technique suggested should apply also to other
types of infinite-dimensional moment problems. A similar approach was exploited
recently in the finite-dimensional (locally compact) case based on the the dual cone
approach in [9]. We discuss this nonlocally compact case in Section 3.3, treating
first the case of particle systems in finite volume (X compact) and give two alter-
native results in the infinite volume (X locally compact).

In Section 3.4 we derive mild conditions under which the limit of realizable cor-
relation functions stays realizable. In Section 4 we show that correlation functions
with some symmetry, for example, translation invariance can, under mild extra as-
sumptions, be realized by a point process with the same symmetry. In Section 5 we
study a particular three-parameter subfamily of the full set of necessary conditions
derived earlier; we show that certain well-known realizability conditions may be
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obtained from those of this subfamily and that, in fact, they subsume all conditions
from the subfamily.

We now discuss briefly some applications of the realizability problem. As al-
ready mentioned, the problem has a long tradition in the theory of classical fluids
[14, 27, 28]. It arises there because an important ingredient of the theory is the
introduction of various approximation schemes, such as the Percus–Yevick and
hyper-netted chain approximations [14], for computing the first two correlation
functions of the positions of the fluid molecules. It is then of interest to determine
whether or not the resulting functions in fact correspond to any point process, that
is, are in some sense internally consistent. If they are, then they provide rigorous
bounds for properties of the system under consideration. The realizability problem
was extensively discussed in [8, 31, 32, 34] which consider the realization problem
in various contexts, including a conjecture related to the problem of the maximal
density of sphere packing in high dimensions [33].

The quantum mechanical variant of the realizability problem, known as repre-
sentability problem for reduced density matrices, is the basis of one approach to the
computation of the ground state energies of molecules [5–7, 23, 24] yielding rig-
orous lower bounds. Interest in this method is rising at present because improved
algorithms in semi-definite programming have led to an accuracy superior to that
of the traditional electronic structure method. These new methods are numerically
robust and reproduce further properties of the ground state; they are, however, at
present not competitive in terms of computation time [12]. In [13, 19], the authors
give sufficient conditions for representability for systems with a fixed finite num-
ber of particles, based on the dual cone approach mentioned above. (Reference
[27] gives corresponding classical results; see Remark 3.11(b) below.)

Applications of the problem of describing a point process from its low order
correlations also occur in biological contexts; for example, in spatial ecology [25]
and in the study of neural spikes [3, 16]. In this and other situations it is natural to
consider a closely related problem in which the correlation functions are specified
only on part of the domain X; for example, if X is a lattice then we might only
specify the nearest neighbor correlations. See [17] for a similar problem in error
correcting codes. This will not be considered here; see, however, [20], Section 7.

2. Definitions. We consider point processes in a locally compact space X

which has a countable base of the topology. X is then a complete separable metric
space under an appropriate metric dX [10], that is, it is a Polish space. We will
sometimes use the fact that such a metric exists for which closed balls of finite
radius are compact [15]. Measurability in X will for us always mean measurability
with respect to the Borel σ -algebra on X. We will write Cc(X) for the space of real-
valued continuous functions with compact support on X and Mc(X) for the space
of real-valued bounded measurable functions with compact support on X. The
specific examples that we have in mind for X include the Euclidean spaces R

d ,
manifolds (in particular the torus) and countable sets equipped with the discrete
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topology. In the following we refer for brevity to these countable sets as lattices;
the important special cases are Z

d and the discrete toruses. For the spaces R
d , Z

d

and the usual and the discrete toruses one has as additional structure: a natural
action of the group of translations and the (uniform) measure which is invariant
under this action.

Intuitively, a point process on X is a random distribution of points in X such
that, with probability one, any compact set contains only finitely many of these
points. To give a precise definition, recall that a Radon measure on X is a Borel
measure which is finite on compact sets and denote by N (X) the space of all
Radon measures η on X which take as values either a nonnegative integer (i.e.,
a member of N0 = {0,1, . . .}) or infinity. A measure η ∈ N (X) corresponds to a
point configuration via the representation

η(dr) = ∑
i∈I

δxi
(dr),(1)

where either I is finite or I = N := {1,2, . . .}; xi ∈ X for i ∈ I and if I = N the
sequence (xi )i∈I has no accumulation points in X; and δxi

is the unit mass (Dirac
measure) supported at xi . Note that in this formulation there can be several dis-
tinctly labeled points of the process at the same point of X. The correspondence
between η and (xi )i∈I is one-to-one modulo relabeling of the points. The require-
ment that η be a Radon measure corresponds to the condition that any compact set
contain only finitely many points of the process.

We equip N (X) with the vague topology which is the weakest topology in
which the mappings

η �→ 〈f,η〉 :=
∫
X

f (r)η(dr)(2)

are continuous for all f ∈ Cc(X). N (X) with this topology is a Polish space [10].
Then we define a point process to be a Borel probability measure μ on N (X). If
Nsupp is a measurable subset of N (X) μ(Nsupp) = 1, we will say that μ is a point
process on Nsupp.

When X is a lattice, N (X) can be identified with N
X
0 equipped with the product

topology; η ∈ N (X) is then identified with the function on X for which η(r) is
the number of particles at the site r. A special case is the so-called lattice gas in
which there can be at most one particle per site, that is, η(r) ∈ {0,1}. On the lattice,
of course, integrals in formulas like (2) become sums, the Dirac measure δx(dr)
becomes a Kronecker delta function, etc. We will not usually comment separately
on the lattice case, adopting notation as in (2) without further comment.

One advantage of defining point configurations as Radon measures is the ease
of then defining powers of these configurations. For η ∈ N (X), η⊗n denotes the
(symmetric Radon) product measure on Xn; note that from (1) we have

η⊗n(dr1, . . . , drn) = ∑
i1,i2,...,in

n∏
k=1

δxik
(drk).(3)
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Here we will use a notation parallel to (2): for fn :Xn → R measurable and non-
negative, or for fn ∈ Mc(X

n), we write

〈fn, η
⊗n〉 :=

∫
Xn

fn(r1, . . . , rn)η(dr1) · · ·η(drn)

(4)
= ∑

i1,i2,...,in

fn(xi1, . . . ,xin).

By convention, 〈f0, η
⊗0〉 = f0 for f0 ∈ R. We will occasionally use a similar no-

tation for functions: if f :X → R, then f ⊗n(r1, . . . , rn) = f (r1) · · ·f (rn).
We will also need the factorial nth power η�n of η, the symmetric Radon mea-

sure on Xn given by

η�n(dr1, . . . , drn) := ∑′

i1,i2,...,in

n∏
k=1

δxik
(drk),(5)

where
∑′ denotes a sum over distinct indices i1, i2, . . . , in, so that, in parallel

to (4),

〈fn, η
�n〉 =

∫
Xn

fn(r1, . . . , rn)η
�n(dr1, . . . , drn)

(6)
= ∑′

i1,i2,...,in

fn(xi1, . . . ,xin).

The term “factorial power” arises because, for any measurable subset A of X,

〈1⊗n
A , η�n〉 ≡ η�n(A × · · · × A) = η(A)

(
η(A) − 1

) · · · (η(A) − n + 1
)
.(7)

One may view N (X) as a subset (with the inherited topology) of the vector
space of all signed Radon measures on X, equipped again with the vague topology.
Motivated by this imbedding we call functions on N (X) of the form (2) linear,
since they are the restrictions to N (X) of linear functionals. More generally, we
define a polynomial on N (X) to be a function of the form

P(η) :=
n∑

m=0

〈fm,η�m〉,(8)

where f0 ∈ R and fm ∈ Mc(X
m), m = 1, . . . , n; without loss of generality we

will assume that fm is symmetric in its arguments when m ≥ 2. [We would obtain
the same set of polynomial functions if in (8) we replaced η�m by η⊗m.] We will
sometimes consider polynomials with continuous coefficients, that is, polynomials
for which fm ∈ Cc(X), m = 1, . . . , n.
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2.1. Correlation functions. It is often convenient to study point processes
through their correlation measures, also called factorial moment measures or cor-
relation functions. The nth correlation measure is the expectation of the nth facto-
rial power:

ρn(dr1, . . . , drn) := Eμ[η�n(dr1, . . . , drn)],(9)

that is, it is the symmetric measure ρn on Xn satisfying∫
Xn

fn(r1, . . . , rn)ρn(dr1, . . . , drn) =
∫

N (X)
〈fn, η

�n〉μ(dη)(10)

for all nonnegative measurable functions fn on Xn. One may also define the nth
moment measure of the process by replacing η�n by η⊗n in (9) and (10) but these
measures will not play a significant role in our discussion. The two sorts of moment
measures are easily related; for example, at first order they coincide, since η�1 =
η⊗1 = η and at second order we have∫

X×X
f2(r1, r2)ρ2(dr1, dr2) =

∫
N (X)

∫
X

∫
X

f2(r1, r2)η(dr1)η(dr2)μ(dη)

−
∫

N (X)

∫
X

f2(r, r)η(dr)μ(dη).

We will usually refer to the ρn as correlation functions since this is the standard
terminology in the physics literature. This usage is particularly appropriate on a
lattice or when the measures are absolutely continuous with respect to Lebesgue
measure, if we then gloss over the distinction between a measure and its density.
From a more general viewpoint the terminology can be justified considering ρn as
a generalized function in the sense of Schwartz. When X is a lattice, the process is
a lattice gas; cf. page 1257, if and only if ρ2(r, r) = 0 for each r ∈ X.

We say that the point process μ has finite local nth moments if for every compact
subset � of X,

Eμ[η(�)n] ≡ Eμ[〈1�,η〉n] ≡ Eμ[〈1⊗n
� ,η⊗n〉]

(11)
≡

∫
N (X)

η(�)nμ(dη) < ∞.

Obviously, the point process has then also finite local mth moments for all m ≤ n.
If (11) holds for � = X we say that μ has finite nth moment. It is easy to see that
(11) is equivalent to ρn(�

n) ≡ Eμ[〈1⊗n
� ,η�n〉] < ∞ [e.g., this follows by taking

χ = 1� in (19) below]; in other words, the correlation measures ρm are σ -finite
Radon measures for all m ≤ n if and only if (11) holds. When the process has
finite local nth moment one may extend (10) to all fm ∈ Mc(X

m) for m ≤ n. In
this paper we will assume, unless it is specifically stated otherwise, that the point
processes under consideration have finite local second moments.
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3. The realizability problem. In Section 2.1 we discussed how a point
process μ gives rise to correlation functions ρn. The realizability problem is a
sort of inverse problem.

DEFINITION 3.1. Given N ∈ N, symmetric Radon measures ρn on Xn for
n = 1, . . . ,N and a measurable subset Nsupp of N (X), we say that (ρn)n=1,...,N

is realizable on Nsupp if there exists a point process μ on Nsupp which for n =
1, . . . ,N has ρn as its nth correlation function.

Notice that, because the ρn in Definition 3.1 are assumed to be Radon measures,
the realizing measure μ must have finite local N th moments.

The aim of this paper is to develop necessary and sufficient conditions for real-
izability solely in terms of (ρn)n=1,...,N . We will describe these conditions in detail
for the case N = 2; the generalization to general N is straight forward. The case
N = ∞ was treated in [21, 22]; the problem with N finite involves certain addi-
tional difficulties, one of which is that the realizing measure is now generically
nonunique (see also Example 3.12 and Remark 3.13).

3.1. Necessary conditions. It is rather easy to give very general necessary con-
ditions for the realizability problem. Let P(η) be a quadratic polynomial on N (X),

P(η) = Pf0,f1,f2(η) := f0 + 〈f1, η〉 + 〈f2, η
�2〉.(12)

Let μ be a point process on a given Nsupp ⊂ N (X); according to (10) the expec-
tation Eμ[P ] can be computed in terms of the first two correlation functions of μ

as

Eμ[Pf0,f1,f2] = f0 +
∫
X

f1(r)ρ1(dr) +
∫
X2

f2(r1, r2)ρ2(dr1, dr2).(13)

On the other hand, if Pf0,f1,f2 is nonnegative on Nsupp, that is, if for all η =∑
i∈I δxi

∈ Nsupp,

f0 + ∑
i

f1(xi ) + ∑
i �=j

f2(xi ,xj ) ≥ 0,(14)

then necessarily Eμ[Pf0,f1,f2] ≥ 0. This leads immediately to the following theo-
rem.

THEOREM 3.2 (Necessary conditions). If the pair (ρ1, ρ2) is realizable by a
point process on Nsupp ⊂ N (X) then for any quadratic polynomial Pf0,f1,f2 which
is nonnegative on Nsupp,

f0 +
∫
X

f1(r)ρ1(dr) +
∫
X2

f2(r1, r2)ρ2(dr1, dr2) ≥ 0.(15)
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Theorem 3.2 gives uncountably many necessary conditions for realizability in-
dexed by the triples (f0, f1, f2). In Section 5 we will discuss how various standard
conditions for realizability are obtained from one class of such triples. Unfortu-
nately, the practical use of the theorem is limited because it is very difficult to
identify admissible triples which lead to new and useful necessary conditions.

3.2. Sufficient conditions: Hard core exclusion. The idea of a “hard core ex-
clusion,” which prevents the points of a process from being too close together, is a
common one in statistical physics. To be precise:

DEFINITION 3.3. Suppose that d is a metric for the topology of X and D > 0.
A symmetric measure ρ2 on X × X forces a hard core exclusion with diameter D

for the metric d if

ρ2
({(r1, r2) ∈ X × X | d(r1, r2) < D}) = 0.(16)

Condition (16) says that, with probability one, no two points of the process can
lie in a distance less than D from each other. It is clear that if ρ2 forces a hard core
exclusion with diameter D then any point process with second correlation function
ρ2 must be supported on

ND(X) :=
{
η ≡ ∑

i

δxi

∣∣ d(xi ,xj ) ≥ D for all i �= j

}
.

In this subsection we show that under this hard core hypothesis the necessary con-
dition of Section 3.1 for realizability on ND(X) is also sufficient.

THEOREM 3.4. Let (ρ1, ρ2) be Radon measures on X and X × X, respec-
tively, with ρ2 symmetric and suppose that ρ2 forces a hard core exclusion with
diameter D for a metric d . Then (ρ1, ρ2) is realizable on ND(X) if and only if
for any quadratic polynomial Pf0,f1,f2(η) which is nonnegative on ND(X), f0, f1
and f2 satisfy (15).

REMARK 3.5. (a) The hard core exclusion condition of Definition 3.3 de-
pends on the choice of metric d . Note, however, that if ρ2 satisfies (16) for some
metric (generating the topology of X) then (ρ1, ρ2) will be realizable on the do-
main ND(X) defined using that metric. In the following we will not stress the
dependence of ND(X) on the metric.

(b) If X is a lattice, then a point process realizing (ρ1, ρ2) is a lattice gas if and
only if there exists a metric d and a D > 0 such that ρ2 forces a hard core exclu-
sion with diameter D for the metric d . If ρ2 forces a hard core exclusion for some
d and D, then certainly ρ2(r, r) = 0 for all r; on the other hand, given a lattice
gas we may topologize X via the metric in which d(r1, r2) = 1 whenever r1 �= r2
and in this metric ρ2 forces an exclusion with diameter D = 1/2. Thus, for lattice
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gases, Theorem 3.4 gives necessary and sufficient conditions for realizability with
ND(X) just the set of lattice gas configurations. Of course, other hard core restric-
tions are possible; for example, on Z

d in the standard metric we may, in this way,
forbid simultaneous occupancy of two nearest neighbor sites.

(c) If X is a finite set and ρ2 forces an exclusion via ρ2(r, r) ≡ 0 then N (X)

is finite and the question of realizability is one of the feasibility of a (finite) linear
programming problem: to find (pη)η∈N (X) with pη ≥ 0 and, for r, r1, r2 ∈ X with
r1 �= r2,∑

η

pη = 1,
∑

η(r)=1

pη = ρ1(r) and
∑

η(r1)=η(r2)=1

pη = ρ2(r1, r2).

By the duality theorem of linear programming the problem is feasible if and only if
a certain dual minimization problem has nonnegative solution. But in fact the dual
problem involves the coefficients of what we have called a quadratic polynomial
in η, the constraints of the problem correspond to the positivity of this polynomial
and the quantity to be minimized is just the left-hand side of (15); that is, Theo-
rem 3.4 is equivalent in this case to the duality theorem. The realization problem
on a finite set can thus be studied numerically via standard linear programming
methods (see, e.g. [4]).

For convenience we collect here three standard results which will be used in
proving Theorem 3.4 and in Section 3.3. In stating the first two we will let V be a
vector space of real-valued functions on a set �. V is a vector lattice if for every
v ∈ V also |v| ∈ V (equivalently v+ ∈ V ). On V we may consider the natural
(pointwise) partial order; we say that a subspace V0 of V dominates V if for every
v ∈ V there exist v1, v2 ∈ V0 such that v1 ≤ v ≤ v2. Then [1, 22]:

THEOREM 3.6 (Riesz–Krein extension theorem). Suppose that V is a vector
space of functions as above and let V0 be a subspace that dominates V . Then any
nonnegative linear functional on V0 has at least one nonnegative linear extension
to all of V .

We note that the nonuniqueness of the extension given by this theorem is the
root of the nonuniqueness, mentioned above, of the realizing point process. The
next result is from the Daniell theory of integration [26, 30]:

THEOREM 3.7. Let V be a vector space of functions as above which is a
vector lattice and which contains the constant functions. Let L be a nonnegative
linear functional on V for which:

(D) If (vn)n∈N is a sequence of functions in V which decreases monotonically to
zero then limn→∞ L(vn) = 0.
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Then there exists one and only one measure ν on (�,
V ), where 
V is the σ -
algebra generated by V , such that for all v ∈ V ,

L(v) =
∫
�

v(ω)ν(dω).

Finally we give a well-known characterization of compact subsets of N (X)

which follows from [10], Corollary A.2.6.V and the observation in Section 2 that
X is metrizable with a metric for which all bounded sets have compact closure.

LEMMA 3.8. A set C ⊂ N (X) is compact if and only if C is closed and
supη∈C η(�) < ∞ for every compact subset � ⊂ X.

Our next result is the key step in the proof of Theorem 3.4.

PROPOSITION 3.9. Let Nsupp be a compact subset of N (X), let (ρ1, ρ2) be
Radon measures on X and X × X, respectively, with ρ2 symmetric and suppose
that any quadratic polynomial Pf0,f1,f2(η) which is nonnegative on Nsupp satis-
fies (15). Then (ρ1, ρ2) is realizable by a point process supported on Nsupp.

PROOF. Let V be the vector space of all continuous functions on Nsupp and
let V0 be the vector space of all quadratic polynomials Pf0,f1,f2 with continuous
coefficients; from the compactness of Nsupp it is clear that V0 dominates V . Let L

be the linear form on V0 defined by

L(Pf0,f1,f2) := f0 +
∫
X

f1(r)ρ1(dr) +
∫
X×X

f2(r1, r2)ρ2(dr1, dr2).

The hypothesis of the theorem is precisely that L is nonnegative so by the Riesz–
Krein extension theorem we can extend L to a nonnegative linear functional on all
of V . Since Nsupp is compact, the Riesz–Markov representation theorem implies
that there exists a probability measure μ on Nsupp—that is, a point process on
X—such that

L(F) =
∫

Nsupp

F(η)μ(dη)

for all F ∈ V . In particular, taking Fn(η) = 〈fn, η
�n〉 for n = 1,2, with fn ∈

Cc(X
n) and f2 symmetric, we obtain (10) for n = 1,2 for continuous f1, f2;

this suffices to imply that ρ1 and ρ2 are indeed the correlation functions of the
process μ. �

Note that the proof shows that it suffices for realizability that (15) holds for
polynomials with continuous coefficients.

PROOF OF THEOREM 3.4. If μ is a realization of ρ1, ρ2 then, as observed
above, it must be supported on ND(X), and by Theorem 3.2 must satisfy the given
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condition. As the set ND(X) is compact, by Lemma 3.8, the converse direction
follows from Proposition 3.9. �

Hard core exclusion is not the only natural possibility for a compact Nsupp. If
N is a natural number then the set of all configurations with exactly N particles,
or at most N particles,

N N(X) := {η ∈ N (X) | η(X) = N},
N ≤N(X) := {η ∈ N (X) | η(X) ≤ N},

is compact. We summarize the consequences in the following corollary.

COROLLARY 3.10. Let (ρ1, ρ2) be Radon measures on X and X ×X with ρ2
symmetric. Suppose that any quadratic polynomial Pf0,f1,f2(η) which is nonneg-
ative on N N(X) [resp., N ≤N(X)] satisfies (15). Then (ρ1, ρ2) is realizable by a
point process supported on N N(X) [resp., N ≤N(X)].

A similar result would hold for X a lattice and, for some k ≥ 0, Nsupp the set of
configurations with at most k particles at any site.

REMARK 3.11. (a) The essential property for the proof of Proposition 3.9 is
the compactness of Nsupp. Indeed, the result is false if Nsupp is replaced by N (X);
see Example 3.12 below.

(b) Corollary 3.10 was established by Percus in [28] and [27] using the tech-
nique of double dual cone. This technique should give an alternative approach to
prove sufficiency of the conditions but will require a careful identification of the
closure of the initial cone requiring considerations similar to those above. In [13]
and [19] a quantum mechanical version of Corollary 3.10 was worked out in the
framework of reduced density matrices and trace class operators. A characteriza-
tion of the closure of the cone was not considered.

(c) For any given (ρ1, ρ2) one could, of course, attempt to use Proposition 3.9
to establish realizability on some suitably chosen compact subset Nsupp ⊂ N (X).
For translation invariant (ρ1, ρ2) in R

d , for example, one might require that for
� ⊂ X with volume |�|, η(�) ≤ A(1 + |�|k) for suitably chosen A and k. We
do not, however, know of an example in which such an approach succeeds. What
is significant about processes with hard cores is that the hard core constraint is
of physical interest, is expressible in terms of the given datum ρ2 and forces any
realization to be on a compact set of configurations.

3.3. Sufficient conditions without a hard core. We now consider the case of
general (ρ1, ρ2) in which we have no a priori reason, such as a hard core constraint,
to expect a realizing process to be supported on a compact set of configurations. In
this case the necessary conditions of Theorem 3.2 are in general not sufficient, as
shown by the following example.
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EXAMPLE 3.12. Let X = R
d and consider the pair of correlation functions

ρ1(r) ≡ 0, ρ2(r1, r2) ≡ 1. This is certainly not realizable, since if it were realized
by some process μ then for any measurable set �, Eμ[η(�)] = ∫

� ρ1(dr) = 0 and
hence, η(�) = 0 with probability one so that the second correlation function of μ

would have to vanish. But consider the point process

με(dη) := (1 − ε2)δ0(dη) + ε2π1/ε(dη),(17)

where ε ∈ (0,1], πz denotes the Poisson measure on R
d with density z and δ0

is the measure concentrated on η = 0. The corresponding correlation functions
ρε

1(r) = ε and ρε
2(r1, r2) = 1 converge as ε → 0 to the given (ρ1, ρ2), from which

it follows easily that the latter fulfills the necessary condition of Theorem 3.2.

In the following subsections we give sufficient conditions for realizability in the
general case. Lemma 3.8 and Proposition 3.9 indicate that difficulties in doing so
will be associated with the local occurrence of an unbounded number of particles.
The key idea is to control this by requiring not only realization of ρ1 and ρ2 but
also the existence in some form of a finite third moment (a moment of order 2 + ε

would suffice). Such a requirement can be motivated by reconsidering the proof of
Theorem 3.4, omitting the hard core hypothesis and trying to prove existence of
a process supported on N (X). Defining V to include only functions of quadratic
growth in η and using Theorem 3.7 rather than the Riesz–Markov theorem, one
may establish the existence of a process μ realizing ρ1 but not necessarily ρ2. The
situation in this section (see, e.g., Theorem 3.14) is similar: by controlling a third
moment we can realize the first two correlation functions. The condition can also
be motivated by considering Example 3.12; no similar example can be constructed
in which the third moments of the processes με are uniformly bounded.

REMARK 3.13. (a) Even if X is a lattice one will still need to control some
higher moment if there is no bound on the number of particles per site.

(b) In the case in which all correlation functions are prescribed, that is, when
N = ∞ in the sense of Definition 3.1, the need to control an “extra” moment does
not arise. See [21, 22].

Since the essential difficulties are local they will occur even for compact X; we
will first discuss this case where certain technical difficulties are absent. Through-
out this section we will define the function H

χ
n on N (X), where χ is a strictly

positive bounded continuous function on X and n ≥ 0, by

Hχ
n (η) := 〈χ⊗n, η�n〉 = ∑′

i1,...,in

χ(xi1) · · ·χ(xin)(18)

with
∑′ as in (5). Note that since all summands in (18) are nonnegative the sum

always is well defined, though it may be infinite. For � ⊂ X we write H�
n := H 1�

n
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and we abbreviate HX
n as Hn. In (18) we have defined H

χ
n using the factorial

power η�n but one could equivalently work with η⊗n; this follows from the fact
that for each n ≥ 0 there exists a constant bn > 0 such that for all η ∈ N (X),

1
2〈χ,η〉n − bn ≤ Hχ

n (η) ≤ 〈χ,η〉n ≡ 〈χ⊗n, η⊗n〉.(19)

To verify (19) we note that as all summands in (18) are nonnegative the upper
bound is immediate. On the other hand, the difference of 〈χ,η〉n − H

χ
n (η) can

be bounded by a linear combination of 〈χ,η〉m for m < n and each of these can
be estimated above by c〈χ,η〉n + c′ for c > 0 arbitrary small. As mentioned just
below (11), the inequalities (19) implies that μ has finite local nth moments is
equivalent to Eμ[H�

n ] < ∞ for all compact �, so that μ has finite nth moment if
and only if Eμ[Hn] < ∞.

We will say that μ has finite nth χ -moment if Eμ[Hχ
n ] < ∞; in particular, μ

then has support on the set of all configurations η with 〈χ,η〉 < ∞. By (19) and
the positivity of χ , finite nth χ -moment implies finite local nth moments. Clearly
the converse will not hold for general χ but we will show in Lemma 3.16 be-
low that a measure with finite local nth moments has finite nth χ -moment for an
appropriately chosen χ .

3.3.1. Compact X. Suppose that X is compact. In the next theorem we give
a condition which is both necessary and sufficient for (ρ1, ρ2) to be realizable by
a process with a finite third moment. As a corollary we obtain a sufficient con-
dition for realizability of (ρ1, ρ2). The conditions that we will give involve cubic
polynomials of a special form that we will call restricted. These have the form

Qf0,f1,f2,f3(η) = f0 + 〈f1, η〉 + 〈f2, η
�2〉 + f3H3(η),(20)

where f0, f3 ∈ R, f1 ∈ Cc(X) and f2 ∈ Cc(X
2) with f2 symmetric.

THEOREM 3.14. Let X be compact. Then symmetric Radon measures ρ1 and
ρ2 on X and X × X are realizable by a point process with a finite third moment if
and only if there exists a constant R > 0 such that any restricted cubic polynomial
Qf0,f1,f2,f3 which is nonnegative on N (X) satisfies

f0 +
∫
X

f1(x)ρ1(dx) +
∫
X×X

f2(x,y)ρ2(dx, dy) + f3R ≥ 0.(21)

We now have:

COROLLARY 3.15. If the condition of Theorem 3.14 holds then the pair
(ρ1, ρ2) is realizable.

PROOF OF THEOREM 3.14. Let V be the vector space of all continuous func-
tions F on N (X) such that |F | ≤ C(1 + H3) for some constant C > 0 and let V0
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be the subspace of V consisting of all restricted cubic polynomials. For any R ≥ 0
we may define a linear functional LR on V0 by

LR(Qf0,f1,f2,f3) := f0 +
∫
X

f1(r)ρ1(dr)

+
∫
X×X

f2(r1, r2)ρ2(dr1, dr2) + f3R.

Then we must show that ρ1, ρ2 is realizable by a measure with a finite third mo-
ment if and only if LR is nonnegative for some R > 0.

The condition is clearly necessary since if μ is such a realizing measure and
Qf0,f1,f2,f3 ≥ 0 then

Lμ(H3)(Qf0,f1,f2,f3) =
∫

Qf0,f1,f2,f3(η)μ(dη) ≥ 0.(22)

Suppose conversely then that R is such that LR is nonnegative on V0. It is easily
seen that V0 dominates V , so that, by Theorem 3.6, LR has a nonnegative exten-
sion, which we will also call LR , to all of V . It remains to show that this extended
linear form is actually given by a measure.

Let W be the subspace of V consisting of those functions F ∈ V such that
|F | ≤ C(1 + H2) for some C > 0. W is a lattice which generates the σ -algebra
corresponding to the vague topology because it contains all functions of the form
〈f, ·〉 with f continuous. We wish to apply Theorem 3.7 to LR on W and so
must verify that LR satisfies (D). Let (Fn)n∈N be a monotonically decreasing se-
quence in W which converges pointwise to 0 and let ε > 0 be given. The sets
Kn := {η ∈ N (X) | Fn(η) ≥ ε[1 + H3(η)]} are closed because Fn and H3 are con-
tinuous. Moreover, Kn is compact because, since Fn ∈ W , Kn is for some C > 0
a subset of {η ∈ N (X) | C[1 + H2(η)] ≥ ε[(1 + H3(η)]}, and the latter set is com-
pact by Lemma 3.8 since η(X) is bounded on it. Because the Fn decrease to zero
pointwise,

⋂
n Kn = ∅, so there must exist an N ∈ N with Kn = ∅ for n ≥ N , that

is, with Fn ≤ ε(1 + H3) for all n ≥ N . This, with the positivity of LR , implies that
for n ≥ N ,

LR(Fn) ≤ LR(Qε,0,0,ε) = ε(1 + R).

As ε was arbitrary, (D) holds and, therefore, Theorem 3.7 implies that there exists
a probability measure μ on N (X) such that for F ∈ W ,

LR(F) =
∫

N (X)
F (η)μ(dη).

In particular, for all f0 ∈ R and continuous functions f1 and f2 on X and X × X,

f0 +
∫
X

f1(x)ρ1(dx) +
∫
X×X

f2(x,y)ρ2(dx, dy)

=
∫

N (X)
Pf0,f1,f2(η)μ(dη),
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which implies that μ realizes (ρ1, ρ2).
Finally, if for n ∈ N we define H

(n)
3 (η) = min{H3(η), n} then H

(n)
3 ∈ W and

so
∫

H
(n)
3 (η) dμ(η) = LR(H

(n)
3 ). But by the positivity of LR on V , LR(H

(n)
3 ) ≤

LR(H3) = LR(Q0,0,0,1) = R and so the monotone convergence theorem implies
that

∫
H3 dμ ≤ R, that is, μ has finite third moment. �

3.3.2. Noncompact X. For the case in which X is not compact we give, in
Theorems 3.17 and 3.20, two distinct sufficient conditions for realizability which
generalize Theorem 3.14 in two different ways. In this section we will finally as-
sume that the metric dX is such that bounded sets have compact closure; cf. the
beginning of Section 2. With some fixed x0 ∈ X define �N = {x ∈ X | dX(x,x0) ≤
N}. Throughout this section we let χ be a strictly positive continuous function
on X. One should think of χ as a function which vanishes at infinity; for example,
if X = R

d we might take χ(x) = (1 + |x|2)−k for some k > 0.

LEMMA 3.16. A point process μ on X has finite local nth moments if and
only if there exists a positive continuous χ such that μ has finite nth χ -moment.

PROOF. If μ has finite nth χ -moment then, using the continuity and positivity
of χ , it follows immediately that μ has finite local nth moments. Suppose con-
versely that μ has finite local nth moments. Let χk be a nonnegative function on X

with compact support satisfying 1�k
≤ χk ≤ 1X; then

∫
N (X)〈χk, η〉nμ(dη) < ∞

for all k. Define

χ(x) :=
∞∑

k=1

ckχk(x) with ck := 2−k

1 + n

√∫ 〈χk, ξ〉nμ(dξ)
.

Then ∫
N (X)

Hχ
n (η)μ(dη) ≤

∫
N (X)

〈χ,η〉nμ(dη)

=
∞∑

k1,k2,...,kn=1

n∏
i=1

cki

∫
N (X)

n∏
i=1

〈χki
, η〉μ(dη)

≤
( ∞∑

k=1

ck
n

√∫
N (X)

〈χk, η〉nμ(dη)

)n

≤ 1,

where we have used Hölder’s inequality. �

The sufficiency criteria of the next theorem are stated in terms of χ -restricted
cubic polynomials,

Q
χ
f0,f1,f2,f3

(η) = f0 + 〈f1, η〉 + 〈f2, η
�2〉 + f3H

χ
3 (η),(23)

where f0, . . . , f3 are as in (20).
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THEOREM 3.17. Symmetric Radon measures ρ1 and ρ2 on X and X × X are
realizable by a point process with finite local third moments if and only if there
exists a constant R > 0 and a positive function χ such that any χ -restricted cubic
polynomial Q

χ
f0,f1,f2,f3

which is nonnegative on N (X) satisfies

f0 +
∫
X

f1(x)ρ1(dx) +
∫
X×X

f2(x,y)ρ2(dx, dy) + f3R ≥ 0.(24)

PROOF. According to Lemma 3.16 it suffices to show that ρ1 and ρ2 are re-
alizable by a point process with finite third χ -moment if and only if the condition
is satisfied. The proof of this is very similar to that of Theorem 3.14, with H2 and
H3 replaced by H

χ
2 and H

χ
3 throughout, so we content ourselves here with com-

menting on the technical modifications necessitated by the noncompact character
of X.

One source of difficulties is that H
χ
n is not a continuous function on N (X). This

means that if the vector space used in the proof was to be defined in parallel to the
V of the earlier proof then it would not contain all χ -restricted polynomials. The
problem may be avoided by replacing V throughout by V χ := V

χ
0 + V

χ
1 , where

V
χ
0 is the space of all χ -restricted cubic polynomials (which plays the same role

as did V0 earlier) and V
χ
1 , defined in parallel to the earlier V , is the vector space of

all continuous functions F on N (X) such that |F | ≤ C(1+H
χ
3 ) for some constant

C > 0.
The set Kn is replaced by K

χ
n = {η ∈ N (X) | Fn(η) ≥ ε[(1 + H

χ
3 (η)]}; the

argument that Kn was closed used the continuity of H
χ
3 but lower semi-continuity

suffices and we establish this in the next lemma. K
χ
n is for some C > 0 a subset of

{η ∈ N (X) | C[1 + H
χ
2 (η)] ≥ ε[1 + H

χ
3 (η)]} and this set is precompact by Lem-

ma 3.8, since H
χ
1 is bounded on it and for any compact � ⊂ X there is a constant

c� with 1� ≤ c�χ . The sequence H
(n)
3 used in the last step of the proof is replaced

by any sequence of bounded continuous functions increasing to H
χ
3 ; the existence

of such a sequence follows from the lower semicontinuity of H
χ
3 . �

LEMMA 3.18. For any n > 0 the function H
χ
n is lower semi-continuous.

PROOF. We must show that sets of the form S := {η ∈ N (X) | H
χ
n (η) ≤ C}

are closed. Let (ηk) be a sequence in S converging vaguely to η ∈ N (X) and let
(χm) be an increasing sequence of nonnegative continuous functions with com-
pact support on X such that χm ↗ χ . By the vague convergence 〈χ⊗n

m ,η�n
k 〉 →

〈χ⊗n
m ,η�n〉 as k ↗ ∞, for any fixed m, and by the monotone convergence of

χm also 〈χ⊗n
m ,η�n〉 ↗ H

χ
n (η) as m ↗ ∞. Since 〈χ⊗n

m ,η�n
k 〉 ≤ H

χ
n (η) ≤ C, also

H
χ
n (η) ≤ C, and so S is closed. �

REMARK 3.19. By taking χ(x) ≡ 1 in Theorem 3.17 we see that in fact The-
orem 3.14 holds even when X is not compact. For typical problems, however, this
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result is not very interesting since a realizing measure with finite third moment
would be impossible if, for example, 〈η(X)〉 = ∫

X ρ1(dx) were infinite, as would
be true for any nonzero translation invariant ρ1 in R

d .

We now give the second sufficient condition.

THEOREM 3.20. Let X = R
d . Then symmetric Radon measures ρ1 and ρ2 on

X and X × X are realizable by a point process with finite local third moments if
and only if the condition of Theorem 3.14 holds in every �N , N ∈ N.

PROOF. The necessity of the condition follows as in the proof of Theo-
rem 3.14. Suppose conversely that the condition of Theorem 3.14 holds in every
�N so that for each N there exists a measure μN on N (�N) which realizes
(ρ1, ρ2) in �N . If N ≥ n then μN defines in the obvious way a marginal mea-
sure μn

N on N (
◦
�n), where

◦
�n denotes the interior of �n; all the measures μn

N ,

N ≥ n, have the same one- and two-point correlation functions ρ1 and ρ2 on
◦
�n.

Since

cn := 〈η(
◦
�n)〉μn

N
=

∫
◦
�n

ρ1(dx)(25)

is independent of N , Markov’s inequality implies that these measures satisfy
μn

N [(Kn(M)] ≥ 1 − cn/M , where Kn(M) = {η | η(
◦
�n) ≤ M}. Since Kn(M) is

compact by Lemma 3.8, the sequence of measures (μn
N)N≥n is tight and any sub-

sequence of this sequence itself contains a convergent subsequence. We may thus
obtain recursively sequences (Nn,k)k∈N such that (Nn+1,k) is a subsequence of
(Nn,k) and such that (μn

Nn,k
)k∈N converges weakly to a measure μn on N (

◦
�n).

The measure μn realizes (ρ1, ρ2) on
◦
�n. The μn are compatible, in the sense that

μn is the marginal of μn+1 on N (
◦
�n), because the projections from N (

◦
�n+1)

onto N (
◦
�n) are continuous since

◦
�n is open. Thus a realizing measure on N (X)

exists by Kolmogorov’s projective limit theorem. �

REMARK 3.21. In checking the sufficient conditions for realizability given
in Theorems 3.4, 3.14, 3.17 and 3.20 it may be advantageous to choose the co-
efficients of the quadratic polynomials (12) from a class of functions other than
Cc(X

m). Suppose then that we can verify the conditions (13) when the coeffi-
cients fm are chosen from Fm, a subspace of Cc(X

m) [with F0 ≡ Cc(X
0) ≡ R].

By straightforward modifications of the proofs of Theorems 3.4, 3.14 and 3.17 one
sees that this will suffice for realizability if Fm identifies measures on Xm, that is,
if whenever Radon measures ν and ν′ satisfy

∫
Xm fm(r)ν(dr) = ∫

Xm fm(r)ν′(dr)
for all fm ∈ Fm, necessarily ν = ν′. For an analogously modified version of
Theorem 3.20 slightly more is needed: for each N the functions from Fm with
supp Fm ⊂ �N must identify measures on �N

m. These conditions are fulfilled
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if Fm forms an algebra which separates points. For example, if X is a manifold
without boundary then one may take Fm to be C∞

c (Xm), the space of infinitely
differentiable functions with compact support.

3.4. Stability of realizability under limits. The sufficient conditions obtained
above can be used to derive general results about realizing measures. In this sub-
section we discuss sufficient conditions for the limit of a sequence of realizable
correlation functions to be itself realizable. Each of the Theorems 3.4, 3.14, 3.17
and 3.20 will give rise to a different variant. Recall that (ρ

(n)
1 , ρ

(n)
2 ) converges in

the vague topology to (ρ1, ρ2) if for any f1 ∈ Cc(X) and f2 ∈ Cc(X × X),∫
X

f1(r)ρ
(n)
1 (dr) →

∫
X

f1(r)ρ1(dr)(26)

and ∫
X2

f2(r1, r2)ρ
(n)
2 (dr1, r2) →

∫
X

f2(r1, r2)ρ2(dr1, dr2).(27)

For the hard core case we have to require a uniform exclusion diameter.

PROPOSITION 3.22. Let (ρ
(n)
1 , ρ

(n)
2 ) be a sequence of realizable pairs of sym-

metric Radon measures which converges in the vague topology to (ρ1, ρ2) and for
which there exists a D > 0 such that ρ

(n)
2 ({(r1, r2) | d(r1, r2) < D}) = 0 for all n.

Then (ρ1, ρ2) is also realizable.

PROOF. If Pf0,f1,f2 is a nonnegative quadratic polynomial on ND(X) then the
hypotheses imply that

f0 +
∫
X

f1(x)ρ
(n)
1 (dx) +

∫
X×X

f2(x,y)ρ
(n)
2 (dx, dy) ≥ 0(28)

for all n. Taking the n → ∞ limit then gives (15). By the portmanteau theorem,
the limiting correlation functions force also a hard core exclusion. �

For lattice gases this implies a very natural result:

COROLLARY 3.23. Let X be a lattice and let (ρ
(n)
1 , ρ

(n)
2 ) be a sequence of re-

alizable pairs with ρ
(n)
2 (r, r) = 0 for all n and r. If (ρ

(n)
1 , ρ

(n)
2 ) converges pointwise

to (ρ1, ρ2), then (ρ1, ρ2) is realizable.

From Theorem 3.14 we have the following.

PROPOSITION 3.24. Let X be compact and let (ρ
(n)
1 , ρ

(n)
2 ) be a sequence of

realizable pairs of symmetric Radon measures which converges in the vague topol-
ogy to (ρ1, ρ2) and is such that the condition of Theorem 3.14 holds for (ρ

(n)
1 , ρ

(n)
2 )

for some Rn ≥ 0 with lim infn→∞ Rn < ∞. Then (ρ1, ρ2) is also realizable.
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The proof is similar to the proof of the next theorem, which arises from Theo-
rem 3.17.

PROPOSITION 3.25. Let (ρ
(n)
1 , ρ

(n)
2 ) be a sequence of realizable pairs of sym-

metric Radon measures which converges in the vague topology to (ρ1, ρ2) and is
such that the condition of Theorem 3.17 holds for (ρ

(n)
1 , ρ

(n)
2 ) for some fixed χ and

Rn ≥ 0 with lim infn→∞ Rn < ∞. Then (ρ1, ρ2) is also realizable.

PROOF. We will show that (ρ1, ρ2) fulfills the sufficiency condition of The-
orem 3.17. Without loss of generality we may replace (ρ

(n)
1 , ρ

(n)
2 ) by a subse-

quence such that Rn converges to a finite limit R. If Q
χ
f0,f1,f2,f3

is a nonnegative
χ -restricted polynomial then the hypotheses imply that

f0 +
∫
X

f1(x)ρ
(n)
1 (dx) +

∫
X×X

f2(x,y)ρ
(n)
2 (dx, dy) + f3Rn ≥ 0(29)

for all n. Taking the n → ∞ limit then gives (24). �

It is easy to see that the conditions of Proposition 3.25 may be replaced by the
requirement that the pairs (ρ

(n)
1 , ρ

(n)
2 ) can be realized by processes μn in such a

way that lim infn→∞
∫

N (X) H
χ
3 (η)μn(dη) < ∞.

There is an analogous consequence of Theorem 3.20 whose statement we omit.

4. Realizability for stationary processes. In this section we use a variant of
the previous results to consider the question of whether correlation functions hav-
ing some symmetry can be realized by a point process having the same symmetry.
Throughout this section we take G to be a topological group acting transitively on
X in such a way that the action, considered as a map G × X → X, is continuous.
The group action can then be extended to an action on the Radon measures on X

and hence, on N (X) and thus finally to an action on point processes; the latter is
continuous and linear. We call a point process stationary if it is invariant under
this action. A stationary point process has stationary correlation functions, that is,
these functions are also invariant under the action of the group. Here we address
the converse question of whether or not stationary correlation functions can be
realized by stationary point processes.

For simplicity we will consider only the possibilities that G be Abelian or com-
pact, or a semi-direct product of an Abelian and a compact group.

Typical cases are X = R
d , Z

d , etc. As described earlier, there is then a natural
action of the translation group on X. In this context for a stationary point process
there necessarily exists a real number ρ such that ρ1(dr) = ρ dI r, where dI r de-
notes the invariant measure on X: Lebesgue measure on R

d and the torus and
counting measure on Z

d and the discrete torus. In general, however, it may not
be true that ρ2 has a density with respect to the Lebesgue measure on X2; for ex-
ample, consider on R the point process defined by μ(dη) := ∫ 1

0 δη̄y (dη) dy, where
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η̄y(dr) := ∑
x∈Z δy+x(dr). However, one can show that there must exist a Radon

measure g2 on X = R
d such that for any f2 ∈ Cc(X

2),∫
X

∫
X

f2(r1, r2)ρ2(dr1, dr2) =
∫
X

∫
X

f2(r, r + r̄)ρ2g2(d r̄) dI r.(30)

The form in which we have written the right-hand side of (30), isolating a factor of
ρ2 in the two-point function, is natural in certain applications (see, e.g., [4, 20]).

We first consider the case in which G is Abelian. To be concrete we will fix
a strictly positive bounded continuous function χ on X and work in the spirit
of Theorem 3.17, considering processes with finite third χ -moments but similar
results could be given in the spirit of Theorem 3.20. The key idea is to work with
processes satisfying a bound on the third χ -moment which is uniform under the
group action. More precisely, denoting by gχ the transformed function χ(g·), we
require a bound for H

gχ
3 uniform in g. Proposition 4.1 establishes the existence of

a stationary process given the existence of one process satisfying such a uniform
bound and Theorem 4.3 gives sufficient conditions, solely in terms of the given
moments, for the realizability by a process satisfying such a bound.

PROPOSITION 4.1. Let G be Abelian and let (ρ1, ρ2) be stationary corre-
lation functions realizable by a process μ satisfying supg∈G EμH

gχ
3 ≤ R. Then

(ρ1, ρ2) can be realized by a stationary point process.

PROOF. Let KR denote the set of all point processes μ which realize (ρ1, ρ2)

and satisfy supg∈G EμH
gχ
3 ≤ R; KR is nonempty by hypothesis. The action of G

on point processes leaves KR invariant. In Lemma 4.2 we prove that KR is convex
and compact. Then by the Markov–Kakutani fixed point theorem (see, e.g., [29],
Theorem V.20) there exists a μ ∈ KR which is invariant with respect to the action
of G. �

LEMMA 4.2. The set KR introduced in the proof of Proposition 4.1 is convex
and compact in the weak topology.

PROOF. The convexity of KR is obvious. To show that KR is compact in the
weak topology, we first show that it is tight and hence precompact. From Lem-
ma 3.8 it follows easily that SN := {η ∈ N (X) | 〈η,χ〉 ≤ N} is compact and if
μ ∈ KR then from EμH

χ
3 ≤ R and (19) it follows via Markov’s inequality that for

ε > 0 there is a choice of N , depending only on ε and R, such that μ(SN) > 1 − ε,
verifying tightness.

It remains to prove that KR is closed. Let μn be a sequence in KR which con-
verges weakly to a point process μ. Approximating H

gχ
3 by an increasing se-

quence of bounded continuous functions and using the convergence of the se-
quence μn on such functions and the monotone convergence theorem for μ, we
find that

∫
N (X) H

gχ
3 (η)μ(dη) ≤ R. It remains to show that μn converges also on
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every quadratic polynomial P = Pf0,f1,f2 with f1 ∈ Cc(X) and f2 ∈ Cc(X
2), which

guarantees that μ has the correct first and second correlation functions. But by (19),
|P(η)| ≤ A+B〈χ,η〉2 for some A,B ≥ 0 and so for M ≥ 2A, |P(η)| ≥ M implies
|P(η)| ≤ 2B〈χ,η〉2 and so for any ν ∈ KR ,∫

P≥M
|P(η)|ν(dη) ≤ 2B

∫
〈χ,η〉2≥M/2B

〈χ,η〉2ν(dη)

≤ (2B)3/2

M1/2

∫
X
〈χ,η〉3ν(dη)(31)

≤ (2B)3/2

M1/2 2(b3 + R),

where we have used (19) again. But if P (M)(η) := sign[P(η)]min{|P(η)|,M} then
for any fixed M ,∫

X
P (M)(η)μn(dη) −→

∫
X

P (M)(η)μ(dη) as n → ∞
and with (31) the proof is complete. �

Our sufficient condition for the existence of a process, analogous to Theo-
rem 3.17, involves polynomials of the form

Q
χ
f0,f1,f2,(f3,1,g1),...,(f3,n,gn)(η)

(32)

= f0 + 〈f1, η〉 + 〈f2, η
�2〉 +

n∑
i=1

f3,iH
giχ
3 (η),

where χ is as above, f0 and f3,1, . . . , f3,n are real numbers, f1 and f2 are con-
tinuous symmetric functions with compact support on X and X × X, respectively,
and g1, . . . , gn ∈ G. The term

∑n
i=1 f3,iH

giχ
3 in (32) controls moments involving

H
gχ
3 and also makes the set of all the Qχ into a vector space.

THEOREM 4.3. Let G be Abelian and let ρ1 and ρ2 be symmetric G-
stationary Radon measures on X and X × X, respectively. Then ρ1 and ρ2 are
realizable by a stationary point process μ with supg∈G

∫
H

gχ
3 (η)μ(dη) < ∞ if

and only if there is a constant R > 0 such that if Q
χ
f0,f1,f2,(f3,1,g1),...,(f3,n,gn) is

nonnegative on N (X) then

f0 +
∫
X

f1(x)ρ1(dx) +
∫
X×X

f2(x,y)ρ2(dx, dy) +
n∑

i=1

f3,iR ≥ 0.(33)

PROOF. The proof is completely parallel to the proofs of Theorems 3.14
and 3.17 and we mention only a few details. Let V be the vector space of all func-
tions which have the form F + ∑n

i=1 αiH
giχ
3 , where F is a continuous function
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on N (X) satisfying |F | ≤ C(1 + H
χ
3 ) for some constant C > 0, α1, . . . , αn ∈ R

and g1, . . . , gn ∈ G. Let V0 be the subspace of V consisting of all polynomials
Q

χ
f0,f1,f2,(f3,1,g1),...,(f3,n,gn). For any R ≥ 0 we define a linear functional LR on V0

by

LR

(
Qf0,f1,f2,(f3,1,g1),...,(f3,n,gn)

)
:= f0 +

∫
X

f1(r)ρ1(dr) +
∫
X×X

f2(r1, r2)ρ2(dr1, dr2) +
n∑

i=1

f3,iR

and show that ρ1, ρ2 is realizable by a process μ with supg∈G

∫
H

gχ
3 (η)μ(dη) <

∞ if and only if LR is nonnegative for some R > 0. The condition is clearly nec-
essary. Conversely, if R is such that LR is nonnegative on V0, we may extend LR

to V using Theorem 3.6. To show that this extended linear form is given by a mea-
sure we let W be the subspace of V consisting of all continuous functions F ∈ V

such that |F | ≤ C(1 + H
χ
2 ) for some C > 0 and apply Theorem 3.7 to LR on W .

The verification that LR satisfies (D) on W is the same as the corresponding veri-
fication for Theorem 3.17 and we conclude that there exists a probability measure
μ on N (X) such that for F ∈ W ,

LR(F) =
∫

N (X)
F (η)μ(dη).

As W includes all Qf0,f1,f2 the measure μ realizes (ρ1, ρ2). Finally, for n ∈ N and
g ∈ G the lower semi-continuous function H

gχ
3 can be approximated from below

by an increasing sequence of continuous bounded functions H
gχ
3,k . By the positivity

of LR on V ,
∫

H
gχ
3,k dμ = LR(H

gχ
3,k ) ≤ LR(H

gχ
3 ) = LR(Q0,0,0,(1,g)) = R and so

the monotone convergence theorem implies that
∫

H
gχ
3 dμ ≤ R. The result follows

from Proposition 4.1. �

Next we consider the case of compact groups.

PROPOSITION 4.4. Let G be a compact and let ρ1 and ρ2 be symmetric G-
stationary Radon measures on X and X × X. Then ρ1 and ρ2 are realizable by a
stationary point process μ if and only if they are realizable.

PROOF. Let μ be a realizing point process for ρ1 and ρ2. Denote by ν the
Haar measure on G and by gμ the point process transformed via the action of g.
Then define μ̃ := ∫

G(gμ)ν(dg) in the sense that∫
F(gη)μ̃(dη) :=

∫
G

F(gη)μ(dη)ν(dg) for all F ∈ L1(N (X),μ),

μ̃ is a stationary realizing point process. �

Finally, we may easily combine the previous two cases and, in particular, cover
the important special case of the Euclidean group acting on R

n.
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PROPOSITION 4.5. Let G be the semi-direct product N � H of an Abelian
group N and a compact topological group H and let ρ1 and ρ2 be symmetric
G-stationary Radon measures on X and X × X. Then ρ1 and ρ2 are realizable
by a stationary point process μ with supg∈G

∫
H

gχ
3 (η)μ(dη) < ∞ if and only if

there exists a constant R > 0 such that if Q
χ
f0,f1,f2,(f3,1,g1),...,(f3,n,gn), gi ∈ N , is

nonnegative on N (X) then

f0 +
∫
X

f1(x)ρ1(dx) +
∫
X×X

f2(x,y)ρ2(dx, dy) +
n∑

i=1

f3,iR ≥ 0.(34)

PROOF. Applying Theorem 4.3 to the action of N we obtain an N -stationary
point process. Using the construction in Proposition 4.4 we arrive at point process
also stationary under the action of H and hence, stationary for the action of G. The
particular structure of the multiplication in the semi-direct product does not play
any role. �

As a closing remark, we note that in this section we have concentrated on exten-
sions of the results of Section 3.3.2 to stationary processes but that corresponding
extensions for the results in Sections 3.2 and 3.3.1 can be obtained similarly and in
fact more easily. The next proposition gives extensions of Theorems 3.4 and 3.14.

PROPOSITION 4.6. Let G be as in Proposition 4.5 and let ρ1 and ρ2 be sym-
metric G-stationary Radon measures on X and X × X. Then:

(a) If ρ2 forces a hard core exclusion for a metric d and the action of G leaves
d invariant, then ρ1 and ρ2 are realizable by a stationary point process μ if and
only if they are realizable by a point process.

(b) If X is compact, then ρ1 and ρ2 are realizable by a stationary point process
μ with finite third moment if and only if they are realizable by a point process with
finite third moment.

PROOF. In each case one first verifies the result for G Abelian and then ex-
tends to the semi-direct product case as in the proof of Proposition 4.5. When G

is Abelian the proof of (a) follows the proof of Proposition 4.1 but now instead
of KR we consider the set K of all measures realizing (ρ1, ρ2). K is obviously
convex; to show that K is compact we note that since ND(X) is compact so is the
set of all probability measures on ND(X) [26], of which K is a subset. Moreover,
K is closed since, because quadratic polynomials on ND(X) are bounded and
continuous, weak limit points of K give the same expectation values of quadratic
polynomials as do points in K and thus also realize (ρ1, ρ2). Part (b) follows from
Proposition 4.1 itself by taking χ = 1 there and using the fact that then gχ = χ

for all g ∈ G. �
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5. Classes of necessary conditions. If X is finite then, as indicated in Re-
mark 3.5(c), the necessary and sufficient conditions of Theorem 3.4 give rise to a
finite linear programming problem. In this section we allow X to be infinite and
consider the problem of isolating useful necessary conditions from among the un-
countably infinite class of Theorem 3.2. In the latter case, as in the former, the
conditions arising from distinct functions may be related; in particular, some of
them may imply others. For practical purposes it would be desirable to identify a
class of functions, as small as possible, such that the conditions arising from this
class imply all the conditions but for this presumably very hard problem we have
no solution at the moment. In this section we will, however, for a certain uncount-
able subclass of the full class of conditions of Theorem 3.2, identify a handful
of conditions which imply those of the whole subclass so that one may check all
conditions arising from the subclass by checking the few selected conditions.

Suppose that we are given a pair (ρ1, ρ2) of correlation functions and wish
to use Theorem 3.2 to show that this pair is not realizable on some Nsupp. If ρ2
forces a hard core exclusion with diameter D or if we impose a bound on the
number of particles as in Corollary 3.10, then we would take Nsupp to be ND(X),
N ≤N(X) or N N(X), but otherwise we have a priori no better choice than to take
Nsupp = N (X). The general strategy that we suggest, and will illustrate by an
example, is to introduce a family of polynomials on N (X) depending on some
finite set of parameters and then to determine a finite subset of this family such
that satisfying the necessary conditions for polynomials in the subset guarantees
satisfaction for all polynomials in the original family.

We work out this strategy in a particular case obtaining in the process several
standard necessary conditions which have appeared in the literature (see [20] for
a detailed exposition and references). We choose a fixed nonzero f ∈ Mc(X) and
consider the family of all polynomials of the form

P (a,b,c)(η) := a〈f,η〉2 + b〈f,η〉 + c.(35)

Note that in the notation of (12), P (a,b,c) = Pf0,f1,f2 , with

f2(r1, r2) = af (r1)f (r2), f1(r) = bf (r) + af 2(r), f0 = c.

Let F := {〈f,η〉 | η ∈ Nsupp} ⊂ R be the range of 〈f, ·〉 and let � be the convex
cone of all (a, b, c) ∈ R

3 such that p(x) := ax2 + bx + c ≥ 0 for all x ∈ F . The
necessary condition then is that the linear function L = Lρ1,ρ2 defined by

L(a, b, c) = a

∫
X2

f (r1)f (r2)ρ2(dr1, dr2)

(36)
+

∫
X

(
bf (r) + af 2(r)

)
ρ1(dr) + c,

should be nonnegative on �.
Before continuing we give a (nonexhaustive) discussion of possible structure

of F , excluding the uninteresting case f = 0, in order to give some feeling for
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how this structure can affect the necessary conditions. If Nsupp = ND(X) then
F is bounded above and below, for example, by ±MD sup |f |, where MD is the
maximum number of disjoint balls of diameter D which can be placed so that
their centers lie in the support of f . Similar bounds hold if Nsupp is N ≤N(X)

or N N(X). Otherwise F is unbounded and is bounded below (by 0) if and only if
f ≥ 0 and above (again by 0) if and only if f ≤ 0. If f takes only a finite number of
values then F will consist of certain linear combinations, with integer coefficients,
of these values and F may then be discrete or may be dense in R; in the simplest
case, when f = 1� for some � ⊂ X, F is just a set of nonnegative integers. If
Nsupp = N (X), f is nonnegative and the range of f contains some interval (0, δ),
then F = R+, or if the range of f contains some interval (−δ, δ), then F = R.

We make two more preliminary remarks. First, if a realizing measure μ exists
then E(f ) := Eμ〈f, ·〉 and V (f ) := Varμ(〈f, ·〉) may be calculated from ρ1 and
ρ2 as

E(f ) =
∫
X

f (r)ρ1(dr),

V (f ) =
∫
X2

f (r1)f (r2)ρ2(dr1, dr2)

+
∫
X

f (r)2ρ1(dr) −
(∫

X
f (r)ρ1(dr)

)2

,

so that

L(a, b, c) = aV (f ) + p[E(f )].(37)

Second, due to the homogeneity in (a, b, c) of the problem it suffices to consider
conditions arising from polynomials with either a = 0 or a = ±1.

Case 1. a = 1. In this case, (37) implies that the constraint on ρ1, ρ2 will be
of the form V (f ) ≥ −p[E(f )]; by taking p(x) = [x − E(f )]2 we recover the
obvious requirement that V (f ) ≥ 0. The condition that V (f ) ≥ 0 for all f ∈ Cc(X)

is equivalent to the so-called variance condition; cf., for example, [20]. If E(f ) ∈
F then p[E(f )] ≥ 0 whenever p ∈ � so that (37) implies that for no choice of b

and c can L(1, b, c) ≥ 0 impose further restrictions on ρ1, ρ2. Otherwise, E(f ) ∈
(x−, x+) for some maximal open interval (x−, x+) disjoint from F ; then the choice
p0(x) = (x − x−)(x − x+) implies the constraint

V (f ) ≥ (
x+ − E(f )

)(
E(f ) − x−

)
(38)

for x− := sup{x ∈ F | x ≤ E(f )}, x+ := inf{x ∈ F | x ≥ E(f )}.
An easy computation shows that any monic quadratic polynomial p with p(x−),
p(x+) ≥ 0 satisfies p[E(f )] ≥ p0[E(F)], so that (38) includes all restrictions aris-
ing in Case 1 [note that as written the constraint (38) includes the case E(f ) ∈ F ].
If f = 1� for � ⊂ X then F = N0 and (38) was found by Yamada [36]. Whether
for other choices of f one obtains additional restrictions is unknown.
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In the case x−, x+ ∈ F , x− < x+ the choice of x−, x+ in (38) corresponds to an
extremal ray in the cone �. The cone can be defined as intersection

⋂
y∈F Hy with

Hy := {(a, b, c) ∈ R
3 | ay2 + by + c ≥ 0}. Hence, to each pair x1 ≤ x2 ∈ F there

corresponds a ray {(a, b, c) ∈ R
3 | ax2

1 +bx1 + c = 0 and ax2
2 +bx2 + c = 0}. This

ray will be in the cone and hence, an extremal ray only if (x1, x2)∩F = ∅. Hence,
the choice of x−, x+ in (38) corresponds to a particular extremal ray of �.

Case 2. a = −1. In this case, p(x) can be nonnegative on F only if F is bounded
and reasoning as in the previous case shows that the constraint obtained from
p(x) = (supF − x)(x − infF),

V (f ) ≤ [supF − E(f )][E(f ) − infF ](39)

implies all others.
Case 3. a = 0. We assume b �= 0 since a constant polynomial conveys no re-

striction; then we may take b = ±1 and thus consider p(x) = ±(x − x0). Such a
linear function can be nonnegative on F only if either (i) F is bounded below, in
which case the constraint from p(x) = x − infF implies all others, or (ii) F is
bounded above, in which case a similar conclusion holds for p(x) = supF − x.
If f is nonnegative then infF = 0 and the condition in (i), E(f ) ≥ 0, just asserts
the positivity of the measure ρ1. Case (ii), namely, E(f ) ≤ supF , can occur if ρ2
enforces a hard core exclusion or if we impose an a priori bound on the number of
particles as in Corollary 3.10. A simple interpretation can be given when X is com-
pact and f = 1X; then supF is the maximum number M of points which can be
contained in X under the hard core or a priori condition and the condition imposed
on ρ1 by the constraint E(1X) = ∫

X ρ1(dx) ≤ M is that the expected number of
points be less than this maximum. If we further assume that X is a torus with
Lebesgue measure ν and that ρ1(dx) ≡ ρν(dx) is invariant under translations then
this condition is ρ ≤ M/ν(X). We can then see that no constraint arising from
another choice of f in Case 3 gives further restrictions on ρ1, ρ2; indeed, since
picking an η ∈ Nsupp(X) with η(X) = M (which one does not matter) we find
from ρ ≤ M/ν(X) that for any f

E(f ) = ρ

∫
X

f (x)ν(dx) = ρ

∫
X

1

M

∑
y∈η

f (y + x)dν(x) ≤ supF,(40)

because
∑

y∈η f (y + x) ≤ supF .

Acknowledgments. We are grateful to J. K. Percus for fruitful discussions and
providing us with references and unpublished material. We would like to thank
V. Bach, G. Moreano and M. Esguerra for pointing out references in quantum
chemistry and two anonymous referees for helpful comments. We would like to
thank IHES, Paris for their hospitality. T. Kuna would like to thank A.v.H. for
support and Yu. G. Kondratiev for discussion and references.



1280 T. KUNA, J. L. LEBOWITZ AND E. R. SPEER

REFERENCES
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[18] KREĬN, M. G. and NUDEL’MAN, A. A. (1977). The Markov Moment Problem and Extremal

Problems. Translations of Mathematical Monographs 50. Amer. Math. Soc., Providence,
RI. Translated from the Russian by D. Louvish. MR0458081

[19] KUMMER, H. (1967). n-representability problem for reduced density matrices. J. Math. Phys.
8 2063–2081. MR0239827

[20] KUNA, T., LEBOWITZ, J. L. and SPEER, E. R. (2007). Realizability of point processes. J. Stat.
Phys. 129 417–439. MR2351408

[21] LENARD, A. (1975). States of classical statistical mechanical systems of infinitely many parti-
cles. I. Arch. Ration. Mech. Anal. 59 219–239. MR0391830

[22] LENARD, A. (1975). States of classical statistical mechanical systems of infinitely many parti-
cles. II. Characterization of correlation measures. Arch. Ration. Mech. Anal. 59 241–256.
MR0391831

http://www.ams.org/mathscinet-getitem?mr=0167806
http://www.ams.org/mathscinet-getitem?mr=0184042
http://www.ams.org/mathscinet-getitem?mr=2249631
http://www.ams.org/mathscinet-getitem?mr=0155637
http://www.ams.org/mathscinet-getitem?mr=1757452
http://www.ams.org/mathscinet-getitem?mr=1955149
http://www.ams.org/mathscinet-getitem?mr=2464189
http://www.ams.org/mathscinet-getitem?mr=1950431
http://www.ams.org/mathscinet-getitem?mr=0693807
http://www.ams.org/mathscinet-getitem?mr=2296564
http://www.ams.org/mathscinet-getitem?mr=0170658
http://www.ams.org/mathscinet-getitem?mr=0125557
http://www.ams.org/mathscinet-getitem?mr=2220364
http://www.ams.org/mathscinet-getitem?mr=0458081
http://www.ams.org/mathscinet-getitem?mr=0239827
http://www.ams.org/mathscinet-getitem?mr=2351408
http://www.ams.org/mathscinet-getitem?mr=0391830
http://www.ams.org/mathscinet-getitem?mr=0391831


CONDITIONS FOR REALIZABILITY 1281

[23] LÖDWIN, P.-O. (1955). Quantum theory of many-particle systems. I. Physical interpretations
by means of density matrices, natural spin-orbitals, and convergence problems in the
method of configurational interaction. Phys. Rev. (2) 97 1474–1489. MR0069061

[24] MAYER, J. E. (1955). Electron correlation. Phys. Rev. 100 1579–1586.
[25] MURRELL, D. J., DIECKMANN, U. and LAW, R. (2004). On moment closure for population

dynamics in continuous space. J. Theoret. Biol. 229 421–432.
[26] PARTHASARATHY, K. R. (1967). Probability Measures on Metric Spaces. Probability and

Mathematical Statistics 3. Academic Press, New York. MR0226684
[27] PERCUS, J. K. (1964). Kinematic restrictions on the pair density-prototype. Unpublished lec-

ture notes, Courant Institute of Mathematical Sciences.
[28] PERCUS, J. K. (1964). The pair distribution function in classical statistical mechanics. In The

Equilibrium Theory of Classical Fluids (J. K. Percus, ed.). Benjamin, New York.
[29] REED, M. and SIMON, B. (1972). Methods of Modern Mathematical Physics. I. Functional

Analysis. Academic Press, New York. MR0493419
[30] ROYDEN, H. L. (1988). Real Analysis, 3rd ed. Macmillan Co., New York.
[31] STILLINGER, F. H. and TORQUATO, S. (2004). Pair correlation function realizability: Lattice

model implications. J. Phys. Chem. B 108 19589.
[32] STILLINGER, F. H. and TORQUATO, S. (2005). Realizability issues for iso-g(2) processes.

Mol. Phys. 103 2943–2949.
[33] TORQUATO, S. and STILLINGER, F. H. (2006). New conjectural lower bounds on the optimal

density of sphere packings. Experiment. Math. 15 307–331. MR2264469
[34] TORQUATO, S. and STILLINGER, F. H. (2003). Local density fluctuations, hyperuniformity,

and order metrics. Phys. Rev. E (3) 68 041113, 25. MR2060843
[35] US, G. F. (1974). A truncated symmetric generalized power moment problem. Ukrain. Mat. Z.

26 348–358, 429. MR0348550
[36] YAMADA, M. (1961). Geometrical study of the pair distribution function in the many-body

problem. Progr. Theoret. Phys. 25 579–594. MR0127288

T. KUNA

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF READING

WHITEKNIGHTS, P.O. BOX 220
READING RG6 6AX
UNITED KINGDOM

E-MAIL: t.kuna@reading.ac.uk

J. L. LEBOWITZ

E. R. SPEER

DEPARTMENT OF MATHEMATICS

RUTGERS UNIVERSITY

NEW BRUNSWICK, NEW JERSEY 08903
USA
E-MAIL: lebowitz@math.rutgers.edu

speer@math.rutgers.edu

http://www.ams.org/mathscinet-getitem?mr=0069061
http://www.ams.org/mathscinet-getitem?mr=0226684
http://www.ams.org/mathscinet-getitem?mr=0493419
http://www.ams.org/mathscinet-getitem?mr=2264469
http://www.ams.org/mathscinet-getitem?mr=2060843
http://www.ams.org/mathscinet-getitem?mr=0348550
http://www.ams.org/mathscinet-getitem?mr=0127288
mailto:t.kuna@reading.ac.uk
mailto:lebowitz@math.rutgers.edu
mailto:speer@math.rutgers.edu

	Introduction
	Definitions
	Correlation functions

	The realizability problem
	Necessary conditions
	Sufficient conditions: Hard core exclusion
	Sufficient conditions without a hard core
	Compact X
	Noncompact X

	Stability of realizability under limits

	Realizability for stationary processes
	Classes of necessary conditions
	Acknowledgments
	References
	Author's Addresses

