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BOUNDS ON THE SPEED AND ON REGENERATION TIMES FOR
CERTAIN PROCESSES ON REGULAR TREES

BY ANDREA COLLEVECCHIO1 AND TOM SCHMITZ2

Università Ca’ Foscari and Max Planck Institute for Mathematics in the Sciences

We develop a technique that provides a lower bound on the speed of tran-
sient random walk in a random environment on regular trees. A refinement
of this technique yields upper bounds on the first regeneration level and re-
generation time. In particular, a lower and upper bound on the covariance
in the annealed invariance principle follows. We emphasize the fact that our
methods are general and also apply in the case of once-reinforced random
walk. Durrett, Kesten and Limic [Probab. Theory Related Fields. 122 (2002)
567–592] prove an upper bound of the form b/(b + δ) for the speed on the
b-ary tree, where δ is the reinforcement parameter. For δ > 1 we provide a
lower bound of the form γ 2b/(b + δ), where γ is the survival probability of
an associated branching process.

1. Introduction. Random processes with long memory have gained consid-
erable attention in the recent past. Two emblematic examples of such processes
are random walks in a random environment and reinforced processes. Although
considerable progress has been achieved, there are many basic questions that re-
main open. We refer to the overviews by Sznitman [24] and Zeitouni [26, 27] for
random walk in a random environment on Z

d , and by Pemantle [20] for reinforced
processes on Z

d and on trees.
For the latter topic, we also refer the reader to Davis [9]. In this article we look

at certain transient processes on regular trees, more precisely at random walk in a
random environment and at once-reinforced random walk. An important question
is to obtain an explicit expression for the speed (if at all it exists), or at least to
get good estimates. This is in general a hard question, even for Markov chains as
the biased random walk on a general tree, that is, a graph without cycles. For this
model there is in general no explicit expression for the speed, and often only an
upper bound is at hand. It is, in general, hard to find a lower bound, and we refer to
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Chen [4] for several examples. We also point out random walks on general graphs
(Virág [25]) where basically no lower bound on the speed is available.

For random walk in a random environment, the speed is explicitly known only
in one-dimensional models. On Z

d, d ≥ 2, not much is known about the speed,
and even worse, if d ≥ 3, it is still open if a law of large numbers with constant
speed holds (see [24, 26, 27]). On regular trees, however, a law of large numbers
holds (see [14]) and transience implies that the speed is positive. This follows from
Theorem 1.1 in Aidékon [1] that treats the more general setting of Galton–Watson
trees. In Proposition 1.1 in [3], Aidékon introduced a simple lower bound for the
speed on Galton–Watson trees. One of our goals is to find a different bound on the
speed for random walks in a random environment on regular trees. Our approach
looks more general, and we apply it to another class of processes with long mem-
ory: once edge-reinforced random walk. Moreover, we provide examples where
our bound works better than the one introduced by Aidékon (see the example fol-
lowing Theorem 2.12). For an analysis of the recurrent regime of random walks in
random environment on regular trees, we refer the reader to Hu and Shi [15, 16].

Once edge-reinforced random walk on regular trees is transient and has positive
speed (see Theorems 1 and 2 in Durrett, Kesten and Limic [13]). They propose
an upper bound on the speed, but no lower bound that is always positive is at
hand. With similar techniques to those in the setting of random walk in random
environment, we derive a lower bound.

In order to provide a lower bound on the speed, it is instrumental to find a lower
bound for the escape probability from the root, as well as an upper bound for the
expected number of returns to the root. Both of these bounds are obtained with
the help of an auxiliary branching process that already appeared in Collevecchio
[6]. In particular the escape probability is bounded from below by the survival
probability of the branching process (see Propositions 2.6 and 2.15). For once-
reinforced random walk, the branching process can be constructed in such a way
that its survival probability is always positive, whereas for random walk in random
environment we need additional assumptions.

By a refinement of our methods, we are, moreover, able to derive a common ex-
plicit upper bound on all the moments of a first regeneration time τ1. These bounds
are general and hold for random walk in a random environment as well as for once
edge-reinforced random walk (see Theorem 3.7). In words, this first regeneration
time is the first time the height of the walk reaches a new maximum and from
then on never backtracks below this maximum. Regeneration times enjoy a wide-
spread use in different settings, and we refer for instance to Lyons, Pemantle and
Peres [18] for biased random walk on a Galton–Watson tree, to Durrett, Kesten
and Limic [13] for once-reinforced random walk on a regular tree and to Sznitman
[24] for random walk in a random environment on Z

d .
The main step is to derive an explicit upper exponential tail on the first regen-

eration level �1, defined as �1 = |Xτ1 |, where | · | denotes the height of a vertex
(see Theorem 3.5). We inspire ourselves from Collevecchio [7], where a similar
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technique was introduced, although in the setting of the vertex-reinforced jump
process. Let us mention that a detailed analysis of the tail behavior of the first
regeneration time is presented in Propositions 2.1 and 2.2 in Aidékon [2], reveal-
ing an exponential and a subexponential regime on regular trees. We emphasize
that we obtain explicit upper bounds on all moments of the first regeneration time
under certain assumptions, in contrast to [2], where only the finiteness of the mo-
ments follows. In particular, these bounds on the first regeneration level, respec-
tively, regeneration time, imply a lower and an upper bound on the covariance of
the Brownian motion that appears as the limiting object in an annealed invariance
principle (see Theorem 3.8 and Proposition 3.9).

This article is organized as follows. In Section 2, we provide a lower bound on
the speed for random walk in a random environment and for once edge-reinforced
random walk, and in Section 3 we derive moment bounds on the first regeneration
time that are completely general and hold for random walk in a random environ-
ment and for once edge-reinforced random walk.

2. On the speed. Let us start by introducing some notation. Consider the b-
ary regular tree Gb with root ρ. We assume that the root ρ has a parent ←−ρ . Hence
each vertex in the tree is connected to b + 1 vertices, except for ←−ρ , that is only
connected to ρ. For any vertex ν, denote by |ν| its distance to the root, that is, the
number of edges on the unique self-avoiding path connecting ν and ρ. Level i is the
set of vertices ν such that |ν| = i, with the exception that |←−ρ | = −1. For ν �= ←−ρ ,
define ←−ν , called the parent of ν, to be the unique vertex at level |ν| − 1 connected
to ν. We say that ν is a child of ←−ν . We say that a vertex ν0 is a descendant of
the vertex ν if the latter lies on the unique self-avoiding path connecting ν0 to ρ,
and ν0 �= ν. In this case, ν is said to be an ancestor of ν0. For any vertex μ, let
�μ be the subtree of Gb consisting of μ, its descendants and the edges connecting
them, that is, the b-ary subtree rooted at μ. Let

←−
�μ be the smallest subtree of Gb

containing �μ and the vertex ←−μ .

2.1. Random walk in random environment. Let us define the random environ-
ment. To each vertex ν, different from ←−ρ , we assign a b-dimensional random
vector with positive entries

Aν
def= (A(1)

ν ,A(2)
ν , . . . ,A(b)

ν

)
.

We assume that these vectors are i.i.d. under the measure P. Moreover, following
Lyons and Pemantle [17], we assume that the coordinates are identically distrib-
uted. The random environment ω is defined by ω(←−ρ ,ρ) = 1 and for any vertex
ν �= ←−ρ ,

ω
(
ν,−→ν (i))= A

(i)
ν

1 +∑j A
(j)
ν

; ω(ν,←−ν ) = 1

1 +∑j A
(j)
ν

.(2.1)
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For a vertex ν we define the Markov chain {Xn,n ≥ 0} started at ν by

Pν,ω(X0 = ν) = 1,

Pν,ω(Xn+1 = μ1|Xn = μ0) = ω(μ0,μ1),

for any pair of neighbors μ0,μ1. We introduce further the annealed measure as the
semi-direct product Pν = P × Pν,ω. We write Pω and P for Pρ,ω, respectively, Pρ .

We also write A and A = (A(1), . . . ,A(b)) for a generic copy of A
(i)
ν ,1 ≤ i ≤ b,

respectively, for a generic copy of Aν = (A
(1)
ν , . . . ,A

(b)
ν ). We introduce the hitting

times of a vertex ν, respectively, of a level i

T (ν)
def= inf{k ≥ 0 :Xk = ν} and Ti

def= inf{k ≥ 0 : |Xk| = i}.(2.2)

We further introduce the respective return times

D
def= inf{n ≥ 1 :Xn = ←−

X0}, D(ν)
def= inf{n ≥ 1 :Xn−1 = ν,Xn = ←−ν },(2.3)

and the annealed return probability

β
def= P(D < ∞).(2.4)

For any graph G, denote with Vert(G) the set of vertices of G. To each ordered
pair of neighbors ν,μ ∈ Vert(Gb) assign a collection of independent exponentials
hk(ν,μ), k ≥ 0, each with mean one. We assume that all these collections are inde-
pendent. Using these exponentials, we now provide a construction of random walk
in random environment on an arbitrary subtree (see [22] for a similar construction
for reinforced processes).

DEFINITION 2.1 (Extension YC ). Fix a subtree C of Gb. The extension YC

of X on the subtree C is defined as follows. Fix a starting point η in C , that is,
Y C

0 = η. We define YC iteratively in the following way. Let s1(ν) be the first time
YC reaches some vertex ν. Define N C

ν to be the set of neighbors of ν in C . The first
jump after s1(ν) is toward the neighbor μ ∈ N C

ν for which the following minimum,

min
η∈N C

ν

h1(ν, η)

ω(ν, η)
,(2.5)

is a.s. attained. The probability that the minimum in (2.5) is achieved by the vertex
μ is ω(ν,μ)/

∑
η∈N C

ν
ω(ν, η). We define sk(ν), k ≥ 2, inductively via

sk
def= inf{n > sk−1 :Y C

n = ν}
and

jk(ν,μ)
def= 1 + number of times YC jumped from ν to

its neighbor μ by time sk.
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The first jump after sk is toward the neighbor μ for which the following minimum,

min
η∈N C

ν

hjk
(ν, η)

ω(ν, η)
,(2.6)

is a.s. attained. Due to the memoryless property, the probability that the minimum
in (2.6) is achieved by the vertex μ is still ω(ν,μ)/

∑
η∈N C

ν
ω(ν, η).

With a slight abuse of notation, we denote the quenched and annealed law of
the extension YC again by P·,ω, respectively, P·

REMARK 2.2. The extension processes will play a crucial role in our proofs.
They are coupled to the original process X in the following sense. The behavior
of YC is determined by the same exponentials used to generate the jumps of X.
The process YC and the process X, only observed when it visits C , coincide up
to the random time the latter process leaves forever this subgraph. Suppose C is
finite. The utility of the extension process stands, as we will see later, in the fact
that the process YC visits, a.s., infinitely many times every vertex of this subgraph,
while X, which we assumed to be transient, does not. Fix a vertex ν ∈ Vert(C). The
behavior of Y C when it jumps from ν for the ith time, with i ≥ 1, would coincide
with that of X, if the latter reaches ν at least i times. For a rigorous definition of
restriction process see [5] or [10]. Extension processes were used in [7] to prove
the strong law of large numbers for vertex jump-reinforced processes.

A child ν(j) of ν is called a first child if it is a.s. the minimizer of

min
1≤i≤b

h1(ν, ν(i))

ω(ν, ν(i))
a.s.(2.7)

Let us now turn to the lower bound on the speed. Lyons and Pemantle [17] (see
also Menshikov and Petritis [19]) established the following recurrence-transience
dichotomy:

X is transient if inf
0≤t≤1

E[At ] >
1

b
, and recurrent otherwise.(2.8)

Our standing assumption is that the walk is transient. Gross [14] proves a strong
law of large numbers

v
def= lim

n→∞
|Xn|
n

≥ 0, P-a.s.(2.9)

The natural question to ask now is in which cases v is positive. This question was
answered recently in Aidékon [1] in the more general setting of Galton–Watson
trees. In particular, if A is bounded, it turns out that v is always positive (see
Theorem 1.1 in [1]). We will now derive a lower bound on the speed v. This should
be compared with the bound provided in Proposition 1.1 of [3], that is,

v ≥ 1 − E[1/(
∑

i A
(i))]

1 + E[1/(
∑

i A
(i))] ,(2.10)
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which holds also for RWRE defined on Galton–Watson trees, with no leaves, un-
der additional assumptions. Our approach is quite different from the one used by
Aidékon and can be applied also to other processes, such as once reinforced ran-
dom walks (see Section 2.2). Moreover, the lower bound we propose seems to work
better than the one given in (2.10) when there is a strong dependence between the
A(i)’s (see the example following Theorem 2.12). For n ≥ 1, we define

L(ν,n)
def=

n∑
j=0

1{Xj=ν} and L(ν)
def=

∞∑
j=0

1{Xj=ν},(2.11)

the number of visits to ν by time n, respectively, the total number of visits. Here is
the main result of this subsection.

PROPOSITION 2.3. Recall β in (2.4). Under transience, it holds that

v ≥ 1 − β

E[L(ρ)] > 0, P-a.s.(2.12)

Before proving Proposition 2.3, we provide first a lemma. Let

�k = ∑
ν : |ν|=k

1{T (ν)<∞}(2.13)

be the number of vertices visited at level k. We have

LEMMA 2.4. Assume transience, that is, β < 1. Then �k is stochastically
dominated by a geometric random variable with parameter 1 − β .

PROOF. One vertex at level k is visited for sure. Call this vertex σ1. Notice
that, after T (σ1), a necessary condition to visit a further vertex at level k is that the
walk returns to the parent of σ1. To obtain an upper bound for �k , we adopt the
following strategy. If the walk returns to the parent of σ1, we consider the extension
Y (σ1) of X to the subtree obtained by cutting the subtree �σ1 . This ensures that the
second visit at level k will be at a new vertex σ2, different from σ1. We repeat
this procedure iteratively, and it clearly yields an upper bound on the number of
vertices σi visited at level k. Each time a new vertex σi is visited, there is a chance
of escape to infinity with annealed probability 1 − β > 0, because of stationarity.
Since all subtrees �σi

are disjoint, the trials of escape are independent. It follows
that �k is dominated by a geometric with parameter 1 − β . This ends the proof.

�

PROOF OF PROPOSITION 2.3. Notice that

lim
n→∞

Tn

n
= 1/v, P-a.s.(2.14)
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Label the vertices at level k by νk,1, νk,2, . . . , νk,bk . We have that for n ≥ 1,

E[Tn] ≤ 1 + E[L(←−ρ )] +
n−1∑
k=0

bk∑
j=1

E
[
L(νk,j )1{T (νk,j )<∞}

]
.(2.15)

Fix a vertex ν, and define L̃(ν) to be the total time spent in the vertex ν by the
extension of X to

←−
�ν started at ν. Then L(ν) ≤ L̃(ν), and the law of L̃(ν) under

Pν is equal to the law of L(ρ) under P. Moreover, the random variables L̃(ν) and
1{T (ν)<∞} are independent under the annealed measure. We use independence, and
then stationarity, and obtain that the sum on the right-hand side of (2.15) is smaller
than

n−1∑
k=0

bk∑
j=1

E[L̃(νk,j )]P[T (νk,j ) < ∞] = E[L(ρ)]
n−1∑
k=0

E[�k]
(2.16)

≤ E[L(ρ)] n

1 − β
,

where in the last step we used Lemma 2.4. Using (2.15) and (2.16), and by Fatou’s
lemma, we obtain that P-a.s.,

lim
n→∞Tn/n ≤ lim inf

n→∞ E[Tn/n]≤E[L(ρ)](1 − β)−1.(2.17)

The claim of the proposition follows now from (2.14). �

Our main task is now to derive upper bounds on β and on the expectation of
L(ρ).

2.1.1. Estimates on the return probability β . In the last section, we provided a
lower bound in terms of the annealed return probability β . In this section, we will
derive an upper bound on β in terms of the extinction probability α of a certain
branching process, in the spirit of Collevecchio [6]. This allows us to obtain an
explicit lower bound on the speed.

Let us start by constructing the branching process.

DEFINITION 2.5 (Color scheme). Fix an integer ψ ≥ 1, and denote with
Y(ν,μ) the extension of X to the unique ray connecting the vertices μ and ν.
We introduce the following color scheme. A vertex ν at level ψ is colored if and
only if the Y(←−ρ , ν), started at ρ, hits ν before ←−ρ . A vertex ν at level kψ, k ≥ 2,
is colored if and only if:

• its ancestor at level (k − 1)ψ , say μ, is colored, and
• Y(←−μ ,ν), started at μ, hits ν before ←−μ .

All the other vertices are uncolored, and only vertices that are at a level kψ , k ≥ 1,
can be colored.
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Under the annealed measure, the number of colored vertices form a homoge-
neous branching process, since the offspring is each time determined by disjoint
parts of the environment. We denote this branching process with Zψ . We formulate
the following:

PROPOSITION 2.6. Denote with αψ the extinction probability of Zψ . Then
β ≤ αψ . If, moreover,

sup
n≥1

bn
E

[(
n+1∑
r=1

r−1∏
j=1

A−1
j

)−1]
> 1,(2.18)

then there is an integer ψ ≥ 1 such that αψ < 1.

REMARK 2.7. The condition in (2.18) is quite natural. In fact the expectation
in the left-hand side measures the drift of the process on fixed paths joining the
root to a vertex at level n. This quantity is multiplied by the number of possible
paths and becomes a measure of the drift. If this quantity is large enough, we can
estimate the annealed probability of never visiting the parent of the root, when the
process is started at the root.

PROOF OF PROPOSITION 2.6. Let us show that β ≤ αψ in the case αψ < 1
(otherwise there is nothing to prove). Assume that Zψ survives. Choose vertices μ

and ν as in Definition 2.5. By Remark 2.2, the processes Y(←−μ ,ν) and X coincide,
from the time the latter hits μ until its last visit to the path connecting ←−μ to ν. It
follows that, if X hits ν before μ, then so does Y(←−μ ,ν). If the branching process
survives, then there exists at least one colored vertex at each level kψ, k ≥ 1. It
means that each level kψ, k ≥ 1 is hit before visiting to the parent of the root.
Hence {Zψ survives} ⊆ {D = ∞}, and β ≤ αψ follows. We choose a vertex μ,
and then a vertex ν at level |μ|+ψ . Then the extension Y(←−μ ,ν), started at μ, hits
ν before ←−μ with (annealed) probability

E

[(ψ+1∑
r=1

r−1∏
j=1

A−1
j

)−1]
,(2.19)

where Aj ,1 ≤ j ≤ ψ , is an enumeration of the variables A along the ray connect-
ing μ to ν. To prove this, we just need to use the fact that under the quenched
probability the process is a birth-death process and then apply a standard result,
which can be found in [12], page 296. Hence, by virtue of (2.18), we can choose
ψ that

bψ
E

[(ψ+1∑
r=1

r−1∏
j=1

A−1
j

)−1]
> 1.(2.20)
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Notice that the left-hand side of the last display is the expected offspring of the
branching process Zψ , so that we can choose ψ s.t. Zψ is supercritical. This fin-
ishes the proof of the proposition. �

PROPOSITION 2.8. If E[log(bA)] > 0, then αψ < 1.

PROOF. We prove that E[log(bA)] > 0 implies

lim inf
n→∞ E

[
bn

(
n+1∑
r=1

r−1∏
j=1

A−1
j

)−1]
= ∞,(2.21)

which implies (2.18). To prove (2.21), in virtue of Fatou’s lemma, it is enough to
prove that

lim sup
n→∞

b−n
n+1∑
r=1

r−1∏
j=1

A−1
j = 0, P-a.s.(2.22)

To see this, rewrite the left-hand side of (2.22) as

n+1∑
r=1

br−n−1
r−1∏
j=1

(bAj )
−1.(2.23)

The strong law of large numbers shows that for large r ,

r∏
j=1

(bAj )
−1 ≤ exp

(
−1

2
rE[log(bA)]

)
, P-a.s.(2.24)

Using this, it is standard to show that the expression in (2.23) tends to zero. The
claim (2.22) now follows, and the proof is finished. �

DEFINITION 2.9. We denote with p := {pk, k ∈ {0,1, . . . , bψ }} the offspring
distribution of the branching process Zψ . The mean offspring is

mψ
def=

bψ∑
k=0

kpk.(2.25)

Proposition 2.8 implies that if E[A−1] ≤ b and P(A−1 = b) < 1, then there is
ψ ≥ 1 such that mψ > 1.

2.1.2. An explicit upper bound on the expectation of L(ρ). Our standing as-
sumption in the remaining subsections is that

we can find ψ ≥ 1 such that αψ < 1,(2.26)
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where we recall αψ in Proposition 2.6. For p ≥ 1, n ≥ 1, we introduce the function

θ(p,n)
def=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
cpbE

[(
1 + 1∑b

i=1 A(i)

)p]
np−1 E[A−p]n − 1

E[A−p] − 1
, if n ≥ 2,

cpE

[(
1 + 1∑b

i=1 A(i)

)p]
, if n = 1,

(2.27)

where the right-hand side is infinite if E[A−p] = ∞, and the constants cp are
introduced in Lemma A.1 in the Appendix. We have the following:

PROPOSITION 2.10. If E[A−p−ε] < ∞ for some p ≥ 1 and some ε > 0, then
for all n ≥ 1, θ(p + ε, n) < ∞, and

E[L(ρ)p] ≤ θ(p + ε,1)1/q

+
∞∑

n=2

θ(p + ε, n)1/qα
bn−2/q ′
ψ(2.28)

×
(

b∑
i=1

(−1)i−1
(

b

i

)
α

bn−2(i−1)
ψ

)1/q ′

,

where q = 1 + ε/p, and q ′ = 1 + p/ε is the dual of q .

Before proving Proposition 2.10, we formulate an auxiliary result. We first in-
troduce some notation. Fix n ≥ 2. Choose b distinct vertices νi,1 ≤ i ≤ b, at
level n, with different ancestors at level one. More precisely, we choose νi with
ancestor −→ρi at level one, and call this set of vertices An. We label the vertices
on the ray connecting −→ρi to νi by σ

(i)
j ,1 ≤ j ≤ n, with σ

(i)
1 = −→ρi and σ

(i)
n = νi .

Denote with �n the subtree composed by the root ρ, its parent ←−ρ , the vertices
σ

(i)
j ,1 ≤ j ≤ n,1 ≤ i ≤ b, and the edges connecting them. For n = 1, �1 is simply

the subtree composed by the root and its children, with the edges connecting them
and A1 is the set of children of the root. We denote with Y the extension of X to �n,

and we introduce T̃An = inf{n ≥ 0 :Yn ∈ An}, and T̃ (ρ)
def= inf{n ≥ 1 :Yn = ρ}. We

further define

L̃(ρ, T̃An)
def=

∞∑
i=0

1{Yi=ρ,i<T̃An }.

Recall θ(p,n) in (2.27). We have the following:

PROPOSITION 2.11. If E[A−p] < ∞ for some p ≥ 1, then

E[L̃(ρ, T̃An)
p] ≤ θ(p,n) < ∞.(2.29)
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PROOF. Fix n ≥ 2. To escape from the root, the walk Y has to jump to one of
the children of the root, and then hit the set An before returning to the root. Hence

qω
def= Pω

(
T̃An < T̃ (ρ)

)= b∑
i=1

ω
(
ρ,ρ(i))pi,ω,(2.30)

where

pi,ω =
(

n∑
j=1

j−1∏
k=1

ω(σ
(i)
k , σ

(i)
k−1)

ω(σ
(i)
k , σ

(i)
k+1)

)−1

.

It follows that under the quenched measure, L̃(ρ, T̃An) is a geometric variable with
parameter qω. Hence, with the help of Lemma A.1 in the Appendix, we find that

E[L̃(ρ, T̃An)
p] ≤ cpE[q−p

ω ].(2.31)

It follows from (2.30), and by independence, that

E[q−p
ω ] ≤ E

[(
min

i
pi,ω

)−p(
1 − ω(ρ,←−ρ )

)−p
]

(2.32)
= E

[(
min

i
pi,ω

)−p]
E
[(

1 − ω(ρ,←−ρ )
)−p]

.

We use that

E

[(
min

i
pi,ω

)−p]= E

[
max

i
p

−p
i,ω

]
≤ E[�ip

−p
i,ω ] = bE[p−p

1,ω],(2.33)

and we find by (2.30), by Jensen’s inequality and by independence that

E[p−p
1,ω] ≤ np−1

n∑
j=1

E[A−p]j−1 = np−1 E[A−p]n − 1

E[A−p] − 1
.(2.34)

Now observe that

E
[(

1 − ω(ρ,←−ρ )
)−p]= E

[(
1 + 1∑

i A
(i)

)p]
,(2.35)

and by collecting the results from (2.31) to (2.35), the claim of the proposition
follows for n ≥ 2. For n = 1, a similar (and simpler) argument shows the claim.
This finishes the proof of the proposition. �

PROOF OF PROPOSITION 2.10. In the course of this proof, we denote with
Y(ν) the extension of X to

←−
�ν , and let

D(ν) def= inf
{
n ≥ 1 :Y (ν)

n = ←−ν } and C(ν)
def= {D(ν) = ∞}.(2.36)
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Suppose that |ν| ≥ 1 and C(ν) holds. Then if the process visits ν it will never
return to ←−ν , and in particular it will not increase the local time spent at the root ρ.
Define

d = inf{k ≥ 1 : there are b distinct vertices ν1, . . . , νb

at level k with different ancestors at level 1 s.t.(2.37)

C(νi) holds for all 1 ≤ i ≤ b}.
Notice that d < ∞, a.s. On {d = n}, we choose b distinct vertices ν1, . . . , νb at
level n with different ancestors at level 1 s.t. C(νi) holds for all 1 ≤ i ≤ b, and
in the notation used in Proposition 2.11, we denote this set of vertices with An.
Notice that

L(ρ)1{d=n} ≤ L̃(ρ, T̃An)1{d=n}.(2.38)

With the help of (2.38), we infer that for q, q ′ as in the proposition

E[L(ρ)p] ≤
∞∑

n=1

E[L̃(ρ, T̃An)
p, d = n]

(2.39)

≤
∞∑

n=1

E[L̃(ρ, T̃An)
pq]1/qP[d = n]1/q ′

,

where in the last inequality we used Hölder’s inequality. Let us now estimate
P(d = n). The events C(ν)|ν|=n are determined by disjoint parts of the environ-
ment, and are thus independent and identically distributed under the annealed mea-
sure. Fix n ≥ 2. At level n− 1, there are b families of bn−2 vertices, each that have
different ancestors at level one. If {d = n} holds, then the event C(·)c holds for
all bn−2 vertices in at least one of these families of vertices at level n − 1. With
P(C(·)) = 1 − β , it follows that

P(d = n) ≤ 1 − (1 − P(Cc)b
n−2)b = 1 − (1 − βbn−2

)b,

and with Proposition 2.6, it follows that

P(d = n) ≤ 1 − (1 − αbn−2

ψ )b = αbn−2

ψ

b∑
i=1

(−1)i−1
(

b

i

)
α

bn−2(i−1)
ψ .(2.40)

Together with the trivial bound P(d = 1) ≤ 1, this finishes the proof of the propo-
sition. �

2.1.3. An explicit lower bound on the speed and an example. Recall αψ in
Proposition 2.6. The Propositions 2.3, 2.6 and 2.10 (applied with p = ε = 1) imply
the following:
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THEOREM 2.12. Assume (2.26), and that E[A−2] < ∞. Then it holds P-a.s.
that

v ≥ 1 − αψ

E[L(ρ)]
≥ 1 − αψ

θ(2,1)1/2 +∑∞
n=2 θ(2, n)1/2α

bn−2/2
ψ (

∑b
i=1(−1)i−1

(b
i

)
α

bn−2(i−1)
ψ )1/2

> 0.

An example. Let us now provide an explicit example on the regular binary tree
(i.e., b = 2). We choose A(1) = A(2), and we write A for a copy of A1, respec-
tively, A2. We consider the following cases:

P[A = a] = a, P[A = 1 − a] = 1 − a,

where a ∈ (0.5,1). We have

E[log(2A)] = a log(2a) + (1 − a) log
(
2(1 − a)

)
.

The right-hand side equals 0 for a = 1/2, and its derivative is log(a/(1−a)) which
is positive for a ∈ (0.5,1). Hence

E[log(2A)] > 0 for a ∈ (0.5,1).

In virtue of Proposition 2.8 we have αψ < 1, for some ψ ∈ N, implying that the
lower bound given in Theorem 2.12 is positive. In Table 1 we summarize the results
obtained for the cases a = 0.8,0.9. In each of these cases, we simulated 50,000
RWRE on the binary tree and estimated αψ , which we plugged in the lower bound
given in Theorem 2.12.

On the other hand, E[1/(A(1) + A(2))] = E[1/(2A(1))] = 1. Hence the lower
bound for the speed, given in Proposition 1.1 in the Introduction of [3],

1 − E[1/(A(1) + A(2))]
1 + E[1/(A(1) + A(2))] ,

equals 0 and gives no information in this case.

TABLE 1
Lower bound for the speed of some RWRE

a ψ αψ v≥

0.8 5 0.8826681 0.00009
0.9 5 0.7354767 0.00016
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2.2. Once edge-reinforced random walk. Durrett, Kesten and Limic [13]
prove transience and provide a law of large numbers with positive speed for once
edge-reinforced random walk on a regular tree. However their methods do not give
a lower bound for the speed that is always positive. Collevecchio [6] proves tran-
sience for this process defined on supercritical Galton–Watson trees. The same was
proved, independently and with different methods by Dai [8]. In this section, we
provide a lower bound on the speed by using a refinement of the methods from [6].

Let us first define the process. Fix δ > 0, and denote with {ν,μ} the edge con-
necting the neighboring vertices ν and μ. Once δ-edge-reinforced random walk
[ORRW(δ) or simply ORRW] X = {Xk, k ≥ 0} is a discrete-time process on the
regular b-ary tree Gb, and is defined as follows. Each edge has initial weight
one, that is, W({ν,μ},0) = 1, with the exception of the edge {←−ρ ,ρ}, which has
weight δ, that is, W({←−ρ ,ρ},0) = δ. This exception helps to simplify our exposi-
tion. This initial weight configuration is called initially fair. For n ≥ 1, we update
the weight W of the edges according to the following rule:

W({ν,μ}, n) =
{

δ, if {Xk−1,Xk} = {ν,μ} for some 1 ≤ k ≤ n,
1, otherwise.

(2.41)

ORRW starts from ρ, that is, X0 = ρ, and we define inductively Fn = σ(X0,X1,
. . . ,Xn), and the transition probabilities

P(Xn+1 = μ|Fn) = W({Xn,μ}, n)∑
ν : ν∼Xn

W({Xn, ν}, n)
,(2.42)

if μ is a neighbor of Xn, and zero otherwise. The canonical law of this process
is denoted with P. Later on, we will also use the following initial weights, where
not only the edge {←−ρ ,ρ} has weight δ, but a connected collection of edges con-
taining the edge {←−ρ ,ρ}, that is, if some edge has weight δ, then each edge on the
path connecting this edge to the root has weight δ. We denote with W the set of
such initial weight configurations. Of course, W contains the initially fair weights
that we denote from now on with w0. For w ∈ W let w({ν,μ}) be the weight
that w assigns to the edge {ν,μ}. For any weight configuration w ∈ W, define
Ww({ν,μ},0) = w({ν,μ}), and for n ≥ 1,

Ww({ν,μ}, n) =
{

δ, if {Xk−1,Xk} = {ν,μ} for some 1 ≤ k ≤ n,
w({ν,μ}), otherwise.

The transition probabilities are defined similarly as in (2.42), with W(·, n) replaced
by Ww(·, n). The canonical law of ORRW started at ρ, and in the initial weight
configuration w ∈ W is denoted with Pw (clearly P = Pw0). Recall the exponential
random variables hk(·, ·), k ≥ 1, with mean one, used in Definition 2.1, and fix a
subtree C of Gb.

DEFINITION 2.13 (Extension YC on the subtree C ). The extension YC of X on
the subtree C is defined as follows. Fix a starting point η in C , that is, Y C

0 = η and
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an initial weight configuration w ∈ W. We define YC iteratively in the following
way. Let s1(ν) be the first time YC reaches some vertex ν. Define N C

ν to be the set
of neighbors of ν in C . The first jump after s1(ν) is toward the neighbor μ ∈ N C

ν

for which the following minimum,

min
μ∈N C

ν

h1(ν,μ)

Ww({ν,μ}, s1(ν))
,(2.43)

is a.s. attained. We define sk(ν), k ≥ 2, inductively via

sk(ν)
def= inf{n > sk−1 :Y C

n = ν}
and

jk(ν,μ)
def= 1 + number of times YC jumped from ν to

its neighbor μ by time sk.

The first jump after sk(ν) is toward the neighbor μ for which the following mini-
mum,

min
μ∈N C

ν

hjk
(ν,μ)

Ww({ν,μ}, s1(ν))
,(2.44)

is a.s. attained. For any vertex ν, enumerate its children with ν(j), with j ∈
{1,2, . . . , b}. A child ν(j) of ν is called a first child if it is a.s. the minimizer of

min
1≤i≤b

h1(ν, ν(i))

Ww({ν, ν(i)},1)
a.s.(2.45)

The comments in Remark 2.2 also apply here. We now introduce a similar color
scheme as in Definition 2.5.

DEFINITION 2.14. Fix an integer ψ ≥ 1, and denote with Y(←−μ ,ν), for a
descendant ν of μ, the extension of ORRW on the ray connecting ←−μ to ν, started
at μ, in the following initial weight configuration. The edge {←−μ ,μ} has weight δ,
and all the other edges in the path connecting μ to ν have initial weight 1. A vertex
ν at level ψ is colored if and only if Y(←−ρ , ν) hits ν before ←−ρ . A vertex ν at level
kψ, k ≥ 2, is colored if and only if:

• its ancestor at level (k − 1)ψ , say μ, is colored, and
• Y(←−μ ,ν) hits ν before ←−μ .

All the other vertices are uncolored, and only vertices that are at a level kψ , k ≥ 1,
can be colored.
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This color scheme constitutes again a homogeneous branching process, with
extinction probability αψ . Notice that for every b ≥ 2, and every δ > 0, we can
always find an integer ψ ≥ 1 such that

bψ
ψ∏

j=1

j

j + δ
> 1.(2.46)

We define D in the same way as in (2.3), and also βw = Pw(D = ∞), and we write
β = βw0 . Recall W below (2.42). We have the following:

PROPOSITION 2.15. If ψ is such that (2.46) holds, then αψ < 1. If δ > 1, then
for every w ∈ W, it holds that βw ≤ αψ .

PROOF. The probability that Y(←−ρ , ν), started at ρ, in the initially fair weight
configuration w0, hits level ψ before it hits ←−ρ is equal to (see Lemma 1 in [6])

ψ∏
j=1

j

j + δ
.(2.47)

Hence the mean of the offspring distribution of the colored process is equal to
bψ∏ψ

j=1
j

j+δ
, which is larger than one by our choice of ψ . This shows that αψ < 1.

Now choose an initial weight configuration w ∈ W. If δ > 1, we can couple the
extension Y(←−ρ , ν), started at ρ, in the initially fair weight configuration w0, to
the extension Ỹ(←−ρ , ν), started at ρ, in the weight configuration w ∈ W, in such
a way that |Ỹ| ≥ |Y|. To do this, we choose a family of independent variables
(E

↑
n ,E

↓
n )n≥1, with i.i.d. exponential entries with mean 1. At each time point n, the

vector (E
↑
n ,E

↓
n ) is attached both to the positions Yn and Ỹn, with E

↑
n attached to

the edge connecting Yn and Ỹn to the vertex ν at level |Yn| + 1, respectively, ν̃ at
level |Ỹn| + 1, and E

↓
n attached to the edge connecting Yn and Ỹn to the vertex μ

at level |Yn| − 1, respectively, μ̃ at level |Ỹn| − 1. The jump of Y at time n + 1 is
to the vertex ν or μ for which the minimum

min
{

E
↑
n

Ww0({Yn, ν}, n)
,

E
↓
n

Ww0({Yn,μ}, n)

}
(2.48)

is a.s. attained, and similarly for Ỹ, where we replace the weights Ww0 by Ww , and
the vertices ν, μ by ν̃, μ̃. Notice that in this way the extensions Y and Ỹ have the
same distribution as in Definition 2.13. Let

r = inf{n ≥ 1 : |Yn| �= |Ỹn|}
be the first splitting time, and for ease of notation, let e0, e1 be the two edges
incident to Yr−1 = Ỹr−1, where e1 connects Yr−1 to its child on the path, and e0

connects Yr−1 to its parent
←−
Y r−1. Clearly Ww(e0, r − 1) = Ww0(e0, r − 1) = δ,
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since the edge e0 is crossed by both processes. Also, by construction, Ww(e, r −
1) ≥ Ww0(e, r −1) for any edge e lying on the path connecting ←−ρ to ν. If we would
have Ww(e1, r − 1) = Ww0(e1, r − 1), then, by the construction of the coupling in
(2.48), Yr = Ỹr , a contradiction. Hence Ww(e1, r −1) = δ and Ww0(e1, r −1) = 1.
It follows again from (2.48) that the only way Y and Ỹ can split is that |Ỹr | =
|Yr | + 2. Define

s = inf{n > r : |Yn| = |Ỹn|}.
For any edge e lying on the path connecting ←−ρ to ν, we have that Ww(e, s) ≥
Ww0(e, s), and we can reiterate the previous argument to prove that |Ỹ| ≥ |Y|.
Consider the coloring process, defined in the same way as above (2.46), but on
the weight configuration w. It follows that, if the coloring process associated to Y
survives, then as |Ỹ| ≥ |Y|, the coloring process associated to Ỹ survives. But on
this last event, D = ∞. Hence βw = Pw(D < ∞) ≤ αψ . �

The random variable L(·) is defined in the same way as in (2.11). We have the
following:

PROPOSITION 2.16. If δ > 1, under Pw0 , the random variable L(ρ) is sto-
chastically dominated by a geometric variable with parameter (1 −αψ)b/(b + δ).

PROOF. Recall that X starts from ρ in the initially fair weight configura-
tion w0. With probability b/(b+δ) the first jump will be toward one of the children
of ρ. Then, started at this child of ρ, with probability 1 − β , the process will never
return to ρ. Whenever it returns to ρ, it starts on some random weight configu-
ration w ∈ W, depending on the past of the path. Under Pw , the probability that
ORRW jumps to one of the children of ρ is greater than b/(b + δ). To see this, re-
call that the edge {←−ρ ,ρ} has weight δ, and we change all the weights on the edges
connecting ρ to its children to one. Since δ > 1, this decreases the probability to
jump to level one, and we obtain the lower bound for this probability. Under Pw ,
ORRW, started at a child ν of ρ, has probability larger than 1−βw of never return-
ing to ρ, where w is the weight configuration induced by w on

←−
�ν . With the help

of Proposition 2.15, we find that, for any w ∈ W, the escape probability from ρ is
at least (1 − αψ)b/(b + δ), and it follows that the number of returns to ρ is sto-
chastically dominated by a geometric variable with parameter (1 − αψ)b/(b + δ).

�

We recall from [13] that a law of large numbers with positive speed holds, that
is, P-a.s., v = limn→∞ |Xn|/n > 0. Further, it is shown that v ≤ b/(b + δ), but no
lower bound is available. We are now ready to provide a lower bound for the speed
that is always positive.
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TABLE 2
Lower bound for the speed of some ORRW

b δ ψ αψ v≥

2 2 9 0.7858936 0.02292078
2 2.1 10 0.7860250 0.02289265
2 2.5 10 0.8697370 0.008484225
7 7 6 0.6798824 0.05123764

THEOREM 2.17. If δ > 1, choose ψ ≥ 1 such that (2.46) holds. Then the
speed v satisfies

v ≥ 1 − β

E[L(ρ)] ≥ (1 − αψ)2 b

b + δ
> 0.(2.49)

REMARK 2.18. Notice that in the case of δ < b we can compare |X| with a
simple random walk on the nonnegative integers with drift equal to (b − δ)/(b +
δ) > 0. It follows that for δ < b we have v ≥ (b − δ)/(b + δ). In this case, we find
that the lower bound in (2.49) is larger than (b − δ)/(b + δ) if and only if αψ <

1 − √
1 − δ/b. The challenging case is δ ≥ b, which is covered by Theorem 2.17.

In Table 2 we summarize our simulation results for ORRW on regular trees, with
b = 2 and b = 7, with δ = 2,2.1,2.5,7.

PROOF OF THEOREM 2.17. Define the random variable �k in the same way
as in (2.13). Observe that the same result as Lemma 2.4 in the previous section
holds, with exactly the same proof. By straightforward modifications, we further
see that Proposition 2.3 holds in the setting of once edge-reinforced random walk.
The first inequality follows. The second and third inequalities then follow directly
from Propositions 2.16 and 2.15. �

Next we show monotonicity of the lower bound on the speed in (2.49).

PROPOSITION 2.19. Choose δ2 > δ1 ≥ 1. Then for every ψ ≥ 1, αψ(δ1) ≤
αψ(δ2), and in particular the lower bound in (2.49) is decreasing in δ for δ > 1.

PROOF. Denote with Y(1) and Y(2) the extensions on rays [←−ρ ,∞) corre-
sponding to ORRW(δ1), respectively, ORRW(δ2), started at ρ, in the initially
fair weight configuration w

(δ1)
0 , respectively, w

(δ2)
0 . Using the same coupling as

in (2.48), we can show that |Y(1)| ≥ |Y(2)|. To see this, call r to be the first time
the two processes split, and let e0 and e1 be as in the proof of Proposition 2.15.
Next we show that none of the processes traversed edge e1 by time r − 1. In fact,
as the two processes coincide up to time r − 1, if one of them traversed e1, also the
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other did. On the other hand, both of them traversed e0 by time r − 1, in order to
reach Y

(1)
r−1 = Y

(2)
r−1. Hence P(|Y (1)

r | = |Y (1)
r−1| + 1) = 1/2 = P(|Y (2)

r | = |Y (2)
r−1| + 1).

By construction of the coupling, this would imply that Y
(1)
r = Y

(2)
r , which contra-

dicts the definition of r . As none of the processes traversed edge e1 by time r − 1,
while both traversed e0, using the fact δ2 > δ1 we infer that |Y (1)

r | > |Y (2)
r |. Denote

with t the first time, after r , when the two processes meet, and let r1 be the first time
after t , when the two processes split again. As |Y (1)

k | ≥ |Y (2)
k | for all k ≤ r1 − 1,

we have that there is no edge reinforced by Y
(2)
k which has not been reinforced by

Y
(1)
k , k ≤ r1 − 1. This, together with the fact that δ1 > δ2 > 1, and the construction

of the coupling, implies that P(|Y (1)
r1 | = |Y (1)

r1−1| + 1) ≥ P(|Y (2)
r1 | = |Y (2)

r1−1| + 1). By

construction of the coupling, we have that |Y (1)
r1 | > |Y (2)

r1 |. By reiterating this argu-
ment, we get |Y(1)| ≥ |Y(2)|. This implies that for every ψ , αψ(δ1) ≤ αψ(δ2), and
it follows that the lower bound in (2.49) is decreasing in δ. �

3. Moment bounds on the first regeneration time. In addition to providing
an explicit lower bound on the speed, our methods can be extended to give an
explicit upper bound on the tail of a certain regeneration level. We present a unified
approach that applies both for random walk in a random environment and once
edge-reinforced random walk. Hence, in what follows, X denotes either one of
these processes. We start by defining the regeneration times.

DEFINITION 3.1. We define the first regeneration level as follows:

�1
def= inf{k ≥ 1 :D(XTk

) = ∞},
and iteratively

�n
def= inf{k > �n−1 :D(XTk

) = ∞},
where D(·) is defined in (2.3) and we use the convention inf ∅ = ∞. The regener-
ation times are defined as τn = T�n, n ≥ 1, on the event {�n < ∞}.

In other words, a regeneration time occurs when the walk hits a level for the
first time and then never backtracks to the previous level. Clearly, these are not
stopping times. It is easy to see that under transience, it holds that for all n ≥ 1,
τn < ∞, P-a.s. It is also known that in the setting of random walks in random
environment, the first regeneration level �1 has exponential moments under the
conditioned measure P(·|D = ∞). This is, for instance, proved in Lemma 4.2 in
[11] for biased random walks on Galton–Watson trees, and can be directly adapted
to our setting. For once edge-reinforced random walk with δ > 1, we know that
�1 has all moments finite under P(·|D = ∞), see Lemma 7 in [13] (this statement
is actually proved for certain cut levels, but notice that our regeneration level is
smaller than the cut level in [13]).



1092 A. COLLEVECCHIO AND T. SCHMITZ

We now present a unified approach that applies to both settings and that provides
explicit estimates for the tail of �1 and for the moments of τ1.

3.1. The tail of the first regeneration level. We assume that we can choose
ψ such that (2.26) is fulfilled for random walk in a random environment, respec-
tively, once edge-reinforced random walk. Recall that for ORRW(δ), this is always
possible [see (2.46) and Proposition 2.15].

We will find explicit exponential tails on �1. These tail estimates on �1 are ob-
tained by refining the color scheme from Definitions 2.5, respectively, 2.14.

DEFINITION 3.2. Recall the definition of first child from (2.7) and (2.45).
Recall also that for any pair of vertices μ1 and μ2, we denote by Y(μ1,μ2) the
extension of the process X on the unique shortest path connecting the two vertices.
Let ν be a vertex at level kψ, k ≥ 1, and fix a positive integer ζ . Let �ν = �ν(ζ )

be the set of vertices μ in �ν which are first children and whose distance from ν is
a multiple of ζψ . We proceed with the following labelling of vertices. A vertex μ,
descendent of ν and at a level multiple of ζψ , is good if:

• its ancestor in �ν which is at level multiple of (k − 1)ζψ , say μ0, is good, and
• Y(←−μ0,μ), started at μ0, hits μ before ←−μ0.

We label ν as good. Let �ν be the set of vertices μ in �ν such that:

• μ is good (in particular |μ| - |ν| is a multiple of ψ), and
• all ancestors of μ in �ν do not belong to �ν .

Further define B(ν) = {�ν is infinite}, and B0 = B(ρ),Bi = B(XTψζi
), i ≥ 1.

In other words, �ν is the set of colored vertices in �ν minus the colored vertices
that are elements of subtrees generated by vertices μ that are first children and
|μ|− |ν| = kζψ, k ≥ 1. In a first step, we introduce an auxiliary branching process
and use it to derive an explicit lower bound on the probability of B0 (see Lem-
ma 3.3). In a second step, in Lemma 3.4, we then show that the events Bi are
independent. In [7], Section 3, the counterpart of these lemma for vertex-reinforced
jump processes are stated and proved in a similar way.

For any pair of distributions f1 and f2, denote by f1 ∗f2 the distribution of∑V
k=1 Mk , where:

• V has distribution f1, and
• {Mk,k ∈ N} is a sequence of i.i.d. random variables, independent of V , each

with distribution f2.

Recall the definition of p for random walk in random environment from Defini-
tion 2.9, and use the same definition for once-edge reinforced random walk. We set
p(1) := p, and define, by recursion, p(j) := p(j−1) ∗p for j ≥ 2. The distribution
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p(j) describes the number of elements, at time j , in a population which evolves
like a branching process generated by one ancestor and with offspring distribu-
tion p. Let q0 = p0 + p1, and for k ∈ {1, . . . , bψ − 1}, set qk = pk+1. Set q to be
the distribution which assigns to i ∈ {0, . . . , bψ − 1} probability qi . For j ≥ 2, let
q(j) := p(j−1) ∗q. Denote by q

(j)
i the weight that the distribution q(j) assigns to

i ∈ {0, . . . , (bψ − 1)b(j−1)ψ }. The mean of q(j) is m
j−1
ψ (mψ − 1). From now on,

ζ denotes the smallest positive integer such that

m
ζ−1
ψ (mψ − 1) > 1.(3.1)

(This is possible since we chose ψ such that mψ > 1.) Define γ to be the smallest
positive solution of the equation

x =
ϑ∑

k=0

xkq
(ζ )
k where ϑ = b(ζ−1)ψ(bψ − 1).(3.2)

LEMMA 3.3. Assume (3.1). We have that for i ≥ 0, P(Bi) = P(B0) ≥ 1 −
γ > 0.

PROOF. Fix i and notice that by stationarity, P(Bi) = P(B0). From the defi-
nition of �ρ , it follows that the offspring distribution of colored vertices at level
ζψ in �ρ is obtained as follows. The number of vertices at level (ζ − 1)ψ has
law p(ζ−1). Each vertex at level ζψ has a number of colored offspring distributed
as p = p(1). If from each of these offspring we delete the first child, the number
of the remaining colored offspring is distributed as q. Hence the offspring distri-
bution modeling �ν is given by q(ζ ) = p(ζ−1) ∗q. Then, from the basic theory of
branching processes we know that the extinction probability equals the smallest
positive solution of equation (3.2). In virtue of (3.1) we have that γ < 1. �

LEMMA 3.4. The events Bi , i ≥ 1, are independent under P.

PROOF. Choose integers 0 < i1 < i2 < · · · < ik . It is enough to prove that

P

(
k⋂

j=1

Bij

)
=

k∏
j=1

P(Bij ).(3.3)

We proceed by backward recursion. We use the notation introduced in Defin-
ition 2.1. The set B(ν) belongs to the sigma-algebra generated by {hi(η,μ) :
η ∈ Vert(�ν),μ ∈ Vert(

←−
�ν) and i ≥ 1}. Notice that each XTi

, i ≥ 1, is a first child.
Hence the set

⋂k−1
j=1 Bij ∩ {XTψζik

= ν} belongs to {hi(η,μ) : either η /∈ Vert(�ν)

or μ /∈ Vert(
←−
�ν)}. As the two events belong to disjoint collections of independent
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exponential variables, they are independent. We have

P

(
k⋂

j=1

Bij

)
=∑

ν

P

(
Bik ∩

k−1⋂
j=1

Bij ∩ {XTψζik
= ν}

)

=∑
ν

P(B(ν))P

(
k−1⋂
j=1

Bij ∩ {XTψζik
= ν}

)
.

From stationarity, it follows that P(B(ν)) = P(B0), and from the independence of
B(ν) and {XTiψζ

= ν}, we infer that for an arbitrary vertex ν, and each i ≥ 1,

P(B(ν)) = P(Bi).(3.4)

Now the right-hand side of (3.1) equals

P(B0)
∑
ν

P

(
k−1⋂
j=1

Bij ∩ {XTψζik
= ν}

)
= P(Bik )P

(
k−1⋂
j=1

Bij

)
.(3.5)

Equation (3.3) follows now by iteration. �

THEOREM 3.5. Assume (2.26). For n ≥ 1, we have that

P(�1 ≥ nψζ) ≤ γ n−1,(3.6)

where γ is defined in (3.2).

PROOF. Notice that on the event Bi , the colored process survives in the subtree
�XTiψζ

. It follows that Bi ⊆ {level iψζ is a regeneration level}. Hence

{�1 ≥ nψζ } ⊆
n−1⋂
i=1

Bc
i ,

and the theorem now follows from the Lemmas 3.3 and 3.4. �

3.2. Moment bounds for the first regeneration time. Recall the first regenera-
tion time in Definition 3.1, and define

� = ∑
ν∈Gb

1{T (ν)≤τ1}

to be the number of distinct vertices visited by time τ1. We denote with M(n,q)

the nth moment of a geometric variable with parameter q . We have the follow-
ing explicit bound on the moments of �, which implies an explicit bound on the
moments of τ1 (see Theorem 3.7 below).
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PROPOSITION 3.6. Assume (2.26). For p ≥ 1, it holds that

E[�p] ≤ 1 + γ −1(1 − γ 1/(2ψζ))−1(
M
(
p,1 − γ 1/(2ψζ))− 1

)
(3.7)

× M1/2(2p,1 − β).

PROOF. Recall �k = ∑ν : |ν|=k 1{T (ν)<∞}, k ≥ −1, which is the number of
vertices visited at level k, and observe that

� = 1 +
∞∑

n=1

∑
ν

1{T (ν)≤Tn}1{�1=n} ≤
∞∑

n=1

∑
ν : |ν|<n

1{T (ν)<∞}1{�1=n}

(3.8)

=
∞∑

n=1

n−1∑
k=−1

�k1{�1=n}.

We use Jensen’s inequality, and obtain that

E[�p] =
∞∑

n=1

E

[(
n−1∑

k=−1

�k

)p

1{�1=n}
]

(3.9)
(Jensen)≤

∞∑
n=1

(n + 1)p−1
n−1∑

k=−1

E
[
�

p
k 1{�1=n}

]
.

First notice that Lemma 2.4, proved for random walk in a random environment,
holds also for once edge-reinforced random walk with the same proof. We first
use Cauchy–Schwarz’s inequality, and then Lemma 2.4 together with Lemma A.1
from the Appendix to obtain that the right-hand side of the last display is smaller
than

∞∑
n=1

(n + 1)p−1
n−1∑

k=−1

E[�2p
k ]1/2P(�1 = n)1/2

(3.10)

≤ M1/2(2p,1 − β)

∞∑
n=1

(n + 1)pP(�1 ≥ n)1/2.

Finally, with Theorem 3.5, we obtain that
∞∑

n=1

(n + 1)pP(�1 ≥ n)1/2

≤ γ −1
∞∑

n=2

npγ (n−1)/(2ψζ)(3.11)

= γ −1(1 − γ 1/(2ψζ))−1(
M
(
p,1 − γ 1/(2ψζ))− 1

)
.

Claim (3.7) now follows by collecting the results in (3.9) to (3.11). �
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We are now ready to state the main result of this subsection.

THEOREM 3.7. Assume (2.26) and that E[A−p−ε] < ∞ for some p ≥ 1 and
ε > 0. It holds that

E[τp
1 ] ≤ π2

6
E[L(ρ)p+ε]1/qE

[
�2(p−1)q ′]1/(2q ′)E[�4q ′ ]1/(2q ′) < ∞,(3.12)

where q = 1 + ε/p, and q ′ = 1 + p/ε is the dual of q .

PROOF. Label with σi the ith vertex that is visited by the process X. By
Jensen’s inequality, we find

E[τp
1 ] = E

[(
�∑

i=1

L(σi)

)p]
≤ E

[
�p−1

�∑
i=1

L(σi)
p

]
(3.13)

=
∞∑
i=1

E
[
�p−1L(σi)

p1{�≥i}
]
.

By Hölder’s inequality, and by stationarity, the right-hand side of the last display
is smaller than

E[L(ρ)p+ε]1/qE
[
�2(p−1)q ′]1/(2q ′)

∞∑
i=1

P(� ≥ i)1/(2q ′).(3.14)

By Chebychev’s inequality, we find that
∞∑
i=1

P(� ≥ i)1/(2q ′) ≤
∞∑
i=1

i−2E[�4q ′ ]1/(2q ′) = π2

6
E[�4q ′ ]1/(2q ′).(3.15)

Putting (3.13), (3.14) and (3.15) together, we obtain the claim. �

3.3. An invariance principle and bounds on the covariance. For ORRW, an
invariance principle is known (see Theorem 3 in Durrett, Kesten and Limic [13]).
For RWRE, an annealed invariance principle easily follows from the results of
Aidékon [2]. We further refer to Peres and Zeitouni [21] for a quenched invariance
principle for biased random walks on Galton–Watson trees. Define

Bn· = 1√
n

(∣∣X[·n]
∣∣− [·n]v), βn

t = Bn
t + (nt − [nt])(Bn

t+1 − Bn
t ), n ≥ 1,

that is, β is the polygonal interpolation of k/n → Bn
k/n, k ≥ 0. We endow the space

C(R+,R) of continuous functions with the topology of uniform convergence on
compacts, and with its Borel σ -algebra.

PROPOSITION 3.8. The C(R+,R)-valued random variable βn· converge un-
der P in law to a Brownian motion B· with covariance

K = E[(�1 − vτ1)
2|D = ∞]E[τ1|D = ∞]−1.
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PROOF. For ORRW, we refer to Theorem 3 in [13]. For RWRE, observe that
the second moment of τ1, and thus of �1, is finite, as follows from Propositions 2.1
and 2.2 in Aidékon [2]. Since P[D = ∞] = 1 − β > 0, also E[�2

1|D = ∞] ≤
E[τ 2

1 |D = ∞] < ∞. Further it is well known that

(τi+1 − τi, �i+1 − �i)i≥1 is an i.i.d. sequence under P and

for i ≥ 1 (τi+1 − τi, �i+1 − �i)(3.16)

has same law under P as (τ1, �1) under P(·|D = ∞)

(see [14]) (see also [18] for a similar statement for biased random walks on Galton–
Watson trees). With the help of this i.i.d. structure, the proof of the invariance
principle is now quite standard (see, e.g., Theorem 3 in Durrett, Kesten and Limic
[13] and also Theorem 3.3 in Shen [23]). �

With the help of Theorems 3.5 and 3.7, we obtain explicit bounds on the covari-
ance K via the following proposition. For RWRE (resp., ORRW) denote with w

the right-hand side in inequality (2.12) [resp., (2.49)], so that v ≥ w. Let a be the
smallest even integer larger or equal to [3/w] + 1. As w ≤ 1, we have a ≥ 4.

PROPOSITION 3.9. In the case of RWRE, we assume that (2.26) holds and
that E[A−2−ε] < ∞ for some ε > 0. In the case of ORRW we choose ψ satisfying
(2.46). Then we have the following common upper bound on the covariance K :

K ≤ (1 − αψ)−1(E[�2
1] + E[τ 2

1 ]) for RWRE and ORRW,(3.17)

and the following lower bound:

K ≥ b(1 − αψ)E[τ1]−1
E[ω(ρ,−→ρ1)a/2]E

× [ω(−→ρ1 , ρ)a/2−1(1 − ω(−→ρ1 , ρ)
)]

for RWRE,
(3.18)

K ≥ (1 − αψ)E[τ1]−1
(

b

b + δ

)2( δ

b + δ

)a/2−1

×
(

δ

b − 1 + 2δ

)a/2−1

for ORRW.

PROOF. We start with the upper bound. We use the trivial bound (d − b)2 ≤
d2 + b2, d, b ≥ 0, and v ≤ 1 to obtain that

K ≤ E[�2
1|D = ∞] + E[τ 2

1 |D = ∞] ≤ (1 − β)−1(E[�2
1] + E[τ 2

1 ]).(3.19)

The upper bound (3.17) follows from Proposition 2.6. Let us now turn to the lower
bound (3.18) for random walk in random environment. We use the following ap-
proach:

E[(�1 − vτ1)
2|D = ∞] ≥ E

[
(�1 − vτ1)

21{vτ1≥�1+1}|D = ∞]
(3.20)

≥ P[vτ1 ≥ �1 + 1|D = ∞],
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where the last inequality comes from the fact that on the event {vτ1 ≥ �1 + 1} we
have (�1 − vτ1)

2 ≥ 1. Hence

K ≥ P(vτ1 ≥ �1 + 1|D = ∞)E[τ1|D = ∞]−1

(3.21)
≥ P(vτ1 ≥ �1 + 1,D = ∞)E[τ1]−1.

Next we find a suitable subset of {vτ1 ≥ �1 + 1} whose probability is easy to com-
pute. Consider the event

C
def=
{
T2 = a,D(XT2) = ∞,

b⋃
i=1

{
Xj ∈ {ρ,−→ρi },∀j ≤ T2 − 1

}}
.

If this event holds, then the walk, started at the root ρ, visits level two first at time
a and, after this time, never goes back to level 1. Moreover before time T2, the
process X visits only the vertices ρ and −→ρi for some i, and hence it does not return
to ←−ρ . As a ≥ 4, it jumps at least once from −→ρ1 to ρ, so that level one cannot be a
cut level and �1 = 2. As a ≥ [3/w] + 1 ≥ [3/v] + 1, we have

C ⊂ {�1 = 2, τ1 ≥ [3/v] + 1,D = ∞}.
On the event {�1 = 2, τ1 ≥ [3/v] + 1} we have that vτ1 ≥ 3, hence vτ1 − �1 ≥ 1.
In other words,

C ⊂ {vτ1 ≥ �1 + 1,D = ∞}.(3.22)

We first focus on the RWRE case. Let us now compute the probability of the
event C. The Markov property implies that

Pω(C) =
b∑

i=1

ω(ρ,−→ρi )
a/2ω(−→ρi , ρ)a/2−1(1 − ω(−→ρi , ρ)

)
Eω[PXT2 ,ω(D = ∞)].

The random variables ω(ρ,−→ρi ), ω(−→ρi , ρ)(1−ω(−→ρi , ρ)) and Eω[PXT2 ,ω(D = ∞)]
are independent, since they are measurable w.r.t. disjoint parts of the environment.
We use, in addition, stationarity to find that

P(C) = bE[ω(ρ,−→ρ1)a/2]E[ω(−→ρ1 , ρ)a/2−1(1 − ω(−→ρ1 , ρ)
)]

E[PXT2 ,ω(D = ∞)].
Again, by independence and stationarity,

E[PXT2 ,ω(D = ∞)] =∑
ν

E[Pν,ω(D = ∞),XT2 = ν]

=∑
ν

Pν(D = ∞)P(XT2 = ν)

= P(D = ∞) = 1 − β.
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It follows that

P(vτ1 − �1 ≥ 1,D = ∞)

≥ P(C) = bE[ω(ρ,−→ρ1)a/2]E[ω(−→ρ1 , ρ)a/2−1(1 − ω(−→ρ1 , ρ)
)]

(3.23)

× (1 − β).

The lower bound (3.18) for RWRE now follows from (3.21), (3.23) and Proposi-
tion 2.6. Let us now turn to the proof of the lower bound (3.18) for ORRW. We
follow the same strategy as above, and we see that (3.21) and (3.22) hold. It re-
mains to compute the probability of the event C

P(C) = (1 − β)

(
b

b + δ

)2( δ

b + δ

)a/2−1( δ

b − 1 + 2δ

)a/2−1

.

By proceeding as in (3.23) and above, and with the help of Proposition 2.15, the
proof of (3.18) is complete. �

APPENDIX

LEMMA A.1. Let M(n,q) denote the nth moment of a geometric random
variable with parameter q . Then for n ≥ 1, M(n,q) ≤ cnq

−n, for some constant
cn that only depends on n.

PROOF. We define g(q,n)
def= ∑∞

k=1 kn(1 − q)k−1, and notice that M(n,q) =∑∞
k=1 knq(1 − q)k−1 = qg(q,n). Since 0 < q < 1, it is enough to show that there

are coefficients a
(n)· such that

g(q,n) =
∑n

i=1 a
(n)
i qn−i

qn+1 =
n∑

i=1

a
(n)
i q−i−1.(A.1)

We prove (A.1) by induction. As g(q,1) = 1/q2, (A.1) holds for n = 1. Suppose
now (A.1) holds for n − 1. We have

g(q,n) − g(q,n − 1) =
∞∑

k=1

kn−1(k − 1)(1 − q)k−1

= (1 − q)
d

d(1 − q)

∞∑
k=1

kn−1(1 − q)k−1(A.2)

= (1 − q)
d

d(1 − q)
g(q,n − 1),

where d
dx

denotes the derivative with respect x. By the induction hypothesis,

d

d(1 − q)
g(q,n − 1) =

n−1∑
i=1

(i + 1)a
(n−1)
i q−i−2,(A.3)
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and hence, using (A.1) to (A.3),

g(q,n) = na
(n−1)
n−1 q−n−1 +

n−1∑
i=2

i
(
a

(n−1)
i−1 − a

(n−1)
i

)
q−i−1 − a

(n−1)
1 q−2.(A.4)

This shows (A.1), and the proof is finished. �
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