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ON THE RATES OF CONVERGENCE OF SIMULATION-BASED
OPTIMIZATION ALGORITHMS FOR OPTIMAL STOPPING

PROBLEMS

BY DENIS BELOMESTNY1

Weierstrass Institute

In this paper, we study simulation-based optimization algorithms for
solving discrete time optimal stopping problems. Using large deviation the-
ory for the increments of empirical processes, we derive optimal convergence
rates for the value function estimate and show that they cannot be improved
in general. The rates derived provide a guide to the choice of the number of
simulated paths needed in optimization step, which is crucial for the good per-
formance of any simulation-based optimization algorithm. Finally, we present
a numerical example of solving optimal stopping problem arising in finance
that illustrates our theoretical findings.

1. Introduction. Let us consider a discrete time optimal stopping problem of
the form:

V ∗ = sup
1≤τ≤K

E[Zτ ],(1.1)

where τ is a stopping time taking values in the set {1, . . . ,K} and (Zk)k≥0 is a
Markov chain. In most cases, the expectation in (1.1) cannot be computed in a
closed form and we have to approximate it numerically in order to find V ∗. In
this paper, we study a simulation-based approach to the optimal stopping prob-
lem (1.1). The basic idea is simple—for any τ from a feasible subset of the set of
all stopping times valued in {1, . . . ,K}, a random sample from Zτ of the size M

is generated and the expected value function is approximated by the correspond-
ing sample average function. The resulting sample average optimization problem
is then solved and a suboptimal policy τM is obtained. By sampling from ZτM

and averaging once again, we get a low biased approximation for V ∗ denoted by
VM,N, where N is the size of the second sample. The idea of using sample av-
erage approximations for solving the optimal stopping problem (1.1) is a natural
one and was successfully used by practioneers over the years. Such an approach
is, for example, popular in the context of a Bermudan option pricing problem in
finance [see, e.g., Glasserman (2003), Section 8.2]. The main issues we are going
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to study in this work are how fast VM,N converge to V ∗ as M,N → ∞ and what
the optimal relation between M and N is that minimizes the computational costs.
To the best of our knowledge, these problems are new and have not been studied
before.

To get more insight on what kind of convergence rates one can expect, let us
start with the general stochastic programming problem:

h∗ := min
θ∈�

EP[h(θ, ξ)],(1.2)

where � is a subset of R
m, ξ is a R

d valued random variable on the probability
space (�, F ,P) and h : Rm × R

d → R. Draw an i.i.d. sample ξ (1), . . . , ξ (M) from
the distribution of ξ and define

hM := min
θ∈�

[
1

M

M∑
m=1

h
(
θ, ξ (m))].

It is well known [see, e.g., Shapiro (1993)] that under very mild conditions it holds
hM − h∗ = OP(M−1/2). In their pioneering work, Shapiro and Homem-de-Mello
(2000) showed that in the case of discrete random variable ξ and a convex func-
tion h, the convergence of hM to h∗ can be much faster than M−1/2, making
simulation-based approach particularly efficient in this situation. Turn now back
to the problem (1.1). Since the random variable τ takes only discrete values, one
can ask whether the simulation-based methods in the case of discrete time optimal
stopping problem (1.1) can be as efficient as in the case of (1.2) with discrete r.v. ξ .
In this work, we give an affirmative answer to this question by deriving the optimal
rates of convergence for the conditional mean of VM,N given a sample of size M ,
and showing that these rates are, under some mild conditions, faster than M−1/2.
This fact has an important practical implication since it indicates that M , the num-
ber of simulated paths used in the optimization step, can be taken much smaller
than N, the number of paths used to compute the final estimate VM,N, leading to
a significant reduction of computational costs in the optimization step.

The paper is organized as follows. In Section 2, some notation are introduced
and the optimal stopping problem is rigorously stated. In Section 3, main results
are formulated and discussed. Some applications are presented in Section 4. Proofs
of the main results are collected in Section 5. Section 6 contains the proofs of
some lemmas needed for the proof of the main results. Finally, in Section 7 several
exponential inequalities for the increments of empirical processes are presented.

2. Main setup. Let us consider a Markov chain X = (Xk)k≥0 defined on a
filtered probability space (�, F , (Fk)k≥0,Px) and taking values in a measurable
space (E, B), where for simplicity we assume that E = R

d for some d ≥ 1 and
B = B(Rd) is the Borel σ -algebra on R

d . It is assumed that the chain X starts
at x under Px for some x ∈ E. We also assume that the mapping x �→ Px(A)
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is measurable for each A ∈ F . Fix some natural number K > 0. Given a set of
measurable functions Gk :E �→ R, k = 1, . . . ,K, satisfying

Ex

[
sup

1≤k≤K

|Gk(Xk)|
]
< ∞

for all x ∈ E, consider the optimal stopping problems:

V ∗
k (x) := sup

k≤τ≤K

Ek,x[Gτ(Xτ )], k = 1, . . . ,K,(2.1)

where for any x ∈ E, the expectation in (2.1) is taken w.r.t. the measure Pk,x such
that Xk = x under Pk,x and the supremum is taken over all stopping times τ with
respect to (Fn)n≥0. Introduce the stopping region S∗ = S ∗

1 × · · · × S ∗
K with S ∗

K =
E by definition and

S ∗
k := {x ∈ E :V ∗

k (x) ≤ Gk(x)}, k = 1, . . . ,K − 1.

Introduce also the first entry times τ ∗
k into S∗ by setting

τ ∗
k := τk(S∗) := min{k ≤ l ≤ K :Xl ∈ Sl}.

It is well known [see, e.g., Peskir and Shiryaev (2006)] that the value functions
V ∗

k (x) satisfy the so called Wald–Bellman equations

V ∗
k (x) = max{Gk(x),Ek,x[V ∗

k+1(Xk+1)]}, k = 1, . . . ,K − 1,(2.2)

with V ∗
K(x) ≡ GK(x) by definition. The Wald–Bellman equations (2.2) imply that

the sets S ∗
k can be also defined as

S ∗
k = {x ∈ E : Ek,x[V ∗

k+1(Xk+1)] ≤ Gk(x)}, k = 1, . . . ,K − 1.(2.3)

Moreover, the stopping times τ ∗
k are optimal in (2.1), that is,

V ∗
k (x) = Ek,x[Gτ∗

k
(Xτ∗

k
)], k = 1, . . . ,K.

Let (X
(m)
k )k=0,...,K,m = 1, . . . ,M, be M independent Markov chains with

the same distribution as X all starting from the point x ∈ E. We can think of
(X

(1)
k , . . . ,X

(M)
k ), k = 0, . . . ,K, as a new process defined on the product proba-

bility space equipped with the product measure P⊗M
x . Let B be a collection of sets

from the product σ -algebra

BK := B ⊗ · · · ⊗ B︸ ︷︷ ︸
K

that contains all sets S ∈ BK of the form S = S1 × · · · × SK−1 × E with Sk ∈
B, k = 1, . . . ,K − 1. Here, we take into account the fact that the stopping set SK

coincides with E. Let S be a subset of B. Define

SM := arg sup
S∈S

{
1

M

M∑
m=1

G
τ

(m)
1 (S)

(
X

(m)

τ
(m)
1 (S)

)}
.(2.4)
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The stopping rule

τM := τ1(SM) = min{1 ≤ k ≤ K :Xk ∈ SM,k}
is generally suboptimal and therefore the corresponding Monte Carlo estimate

VM,N := 1

N

N∑
n=1

G
τ

(n)
M

(
X̃

(n)

τ
(n)
M

)
(2.5)

with

τ
(n)
M := min

{
1 ≤ k ≤ K : X̃(n)

k ∈ SM,k

}
, n = 1, . . . ,N,

based on a new, independent of (X(1), . . . ,X(M)) set of trajectories(
X̃

(n)
0 , . . . , X̃

(n)
K

)
, n = 1, . . . ,N,

is low biased, that is, it fulfills

VM := Ex

[
VM,N |X(1), . . . ,X(M)] ≤ sup

S∈S

Ex

[
Gτ1(S)

(
Xτ1(S)

)] ≤ V ∗(2.6)

with V ∗ = Ex[Gτ∗
1 (S)(Xτ∗

1 (S))]. If the collection S is rich enough, then

sup
S∈S

Ex

[
Gτ1(S)

(
Xτ1(S)

)] ≈ Ex

[
Gτ1

(S∗)(Xτ1(S∗)
)]

and VM,N can serve as a good approximation for V ∗ for large enough M and N.

In the next section, we will derive some probabilistic bounds for the difference
V ∗ − VM and show that these bounds are best possible.

3. Main results. First, we introduce the notion of δ-entropy that plays an im-
portant role in the theory of empirical processes. By means of the δ-entropy, the
complexity of the class S will be measured.

DEFINITION 3.1. Let δ > 0 be a given number and dX(·, ·) be a pseudedis-
tance between two elements of B defined as

dX(G1 × · · · × GK,G′
1 × · · · × G′

K) =
K∑

k=1

Px

(
Xk ∈ Gk
G′

k

)
,(3.1)

where {Gk} and {G′
k} are subsets of E. Define N(δ,S, dX) be the smallest value n

for which there exist pairs of sets

(GL
j,1 × · · · × GL

j,K,GU
j,1 × · · · × GU

j,K), j = 1, . . . , n,

such that dX(GL
j,1 × · · · × GL

j,K,GU
j,1 × · · · × GU

j,K) ≤ δ for all j = 1, . . . , n, and
for any G ∈ S there exists j (G) ∈ {1, . . . , n} for which

GL
j(G),k ⊆ Gk ⊆ GU

j(G),k, k = 1, . . . ,K.

Then the value H(δ,S, d) := log[N(δ,S, dX)] is called the δ-entropy with brack-
eting of S for the pseudedistance dX .
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In the sequel, we assume that the δ-entropy with bracketing of the class S is
polynomial in 1/δ. This condition restricts the complexity of the class S.

ASSUMPTION. We assume that the family of stopping regions S is such that

H(δ,S, dX) ≤ Aδ−ρ(3.2)

for some constant A > 0, any 0 < δ < 1 and some ρ > 0.

The next example shows how to construct a class S with the δ-entropy satisfy-
ing (3.2).

EXAMPLE 3.2. Let S = Sγ , where Sγ is a class of subsets of

K︷ ︸︸ ︷
R

d × · · · × R
d

with boundaries of Hölder smoothness γ > 0 defined as follows. For given γ > 0
and d ≥ 2, consider the functions b(x1, . . . , xd−1) : Rd−1 → R having continuous
partial derivatives of order l, where l is the maximal integer that is strictly less
than γ . For such functions b, we denote the Taylor polynomial of order l at a point
x ∈ R

d−1 by πb,x . For a given H > 0, let �(γ,H) be the class of functions b such
that

|b(y) − πb,x(y)| ≤ H‖x − y‖γ , x, y ∈ R
d−1,

where ‖y‖ stands for the Euclidean norm of y ∈ R
d−1. Any function b from

�(γ,H) determines a set

Sb := {(x1, . . . , xd) ∈ R
d : 0 ≤ xd ≤ b(x1, . . . , xd−1)}.

Define the class

Sγ := {Sb1 × · · · × SbK−1 × E :b1, . . . , bK−1 ∈ �(γ,H)}.(3.3)

It can be shown [see, Dudley (1999), Section 8.2] that the class Sγ fulfills

H(δ,Sγ , dX) ≤ Aδ−(K−1)(d−1)/γ

for some A > 0 and all δ > 0 small enough.

Now we are in the position to formulate our main result that provides exponen-
tial bounds for the difference V ∗ − VM with VM given in (2.6).

THEOREM 3.3. Let S be a subset of B such that the assumption (3.2) is
fulfilled for some ρ satisfying 0 < ρ ≤ 1, and

V ∗ − V̄ ≤ DM−1/(1+ρ)(3.4)

with V̄ := supS∈S Ex[Gτ1(S)(Xτ1(S))] and some constant D > 0. Furthermore,
assume that all functions Gk are uniformly bounded and the inequalities

Px

(|Gk(Xk) − Ek[V ∗
k+1(Xk+1)]| ≤ δ

) ≤ A0,kδ
α, δ < δ0,(3.5)
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hold for some α > 0, A0,k > 0, k = 1, . . . ,K −1, and δ0 > 0. Then for any U > U0
and M > M0

P⊗M
x

(
V ∗ − VM ≥ (U/M)(1+α)/(2+α(1+ρ))) ≤ C exp

(−√
U/B

)
(3.6)

with some constants U0 > 0, M0 > 0, B > 0 and C > 0.

We stress that the inequality (3.6) has nonasymptotic nature since it holds
for all M > M0, where M0 depends only on the characteristics of the process
(Gk(Xk))k>0.

REMARK 3.4. Without condition (3.4) the inequality (3.6) continues to hold
with V ∗ replaced by V̄ , the best approximation of V ∗ within the class of stopping
regions S.

REMARK 3.5. The requirement that functions Gk are uniformly bounded can
be replaced by the existence of all moments of Gk(Xk), k = 1, . . . ,K −1, under P.

In this case, on can reformulate Theorem 7.2 of Section 7 using generalized en-
tropy with bracketing instead of the usual entropy with bracketing [see Chapter 5.4
in Van de Geer (2000)]. We also note that no convexity or smoothness of the func-
tions Gk is required as it usual in the case of stochastic programming problems of
the form (1.2).

REMARK 3.6. The choice of the class of approximating sets S is very impor-
tant for a good performance of simulation-based optimization algorithms. On the
one hand, if the class S is too large, then the optimization over S in (2.4) can be-
come infeasible. On the other hand, if S is too small, the condition (3.4) may not
be fulfilled and the approximation may be too rough. An ingenious choice of S

should be a trade-off between the above two extremes. In many practical appli-
cations it is, however, often clear how to choose a parsimonious parametrization
of the stopping regions. This choice can be based on a deep understanding of the
nature of the underlying problem or some heuristics (see Section 4 for some ex-
amples). An alternative and more constructive way to choose S is to use the so
called ε-nets. A class of sets N ⊂ B is called a ε-net for S w.r.t. a pseudo-distance
d on B if for any S ∈ S there is S̃ ∈ N such that d(S, S̃) ≤ ε. In the case of dis-
tance d defined as the Lebesgue measure of symmetric difference of sets, an ε-net
N for S can be often taken finite. It can be shown that Theorem 3.3 continues to
hold if one performs an optimization in (2.4) not over the whole class S but only
over its ε-net N, provided that ε tends to 0 with M sufficiently fast.

REMARK 3.7. There is a close connection between the simulation-based op-
timization algorithm of this paper and the so-called regression-based Monte Carlo
approach. The latter one relies on the Wald–Bellman equations (2.2) and tries to
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approximate all expectations in (2.2) by means of linear or nonlinear regression
methods. This approach was first introduced in financial literature on option pric-
ing (see Section 4 for some additional references) and since then become very
popular among practitioners. A theoretical analysis of this type of algorithms was
done in Clément, Lamberton and Protter (2002), Egloff (2005), Egloff, Kohler
and Todorovic (2007) and Kohler, Krzyzak and Todorovic (2010), among others.
Both approaches have their advantages and disadvantages. While the simulation-
based optimization algorithm requires a careful choice of the class of approximat-
ing sets S (see Remark 3.6) and involves optimization over S that can be rather
time consuming, the regression methods are usually fast. On the other hand, for a
regression approach to perform well it is necessary to choose a set of basis func-
tions (a bandwidth, a class of sieves) in a proper way. Moreover, the simulation-
based optimization approach seems to be rather natural given the structure of the
underlying optimal stooping problem (1.1).

REMARK 3.8. The way of estimating the optimal value function V ∗ presented
in Section 2 suggests that one can use the simulation-based optimization algorithm
to estimate the boundaries of stopping regions as well. In this case, it would be
interesting to reformulate the results of Theorem 3.3 in terms of a distance between
∂S∗ and ∂SM which is different from V ∗ −VM. It is an open problem whether on
can relax or completely avoid the conditions (3.4) and (3.5) in this situation.

In order to illustrate the conditions of Theorem 3.3, let us look at a simple
example.

EXAMPLE 3.9. Fix some α > 0 and x0 ∈ R+ and consider the following op-
timal stopping problem:

V ∗ = sup
τ∈{1,2}

E[G(Xτ )|X0 = x0],(3.7)

where

G(x) := (K1/α − x1/α)+, x ∈ R+,(3.8)

with some K > 0. Suppose that the Markov chain (Xk, k = 0,1,2) originates from
the discretization of a continuous process Y(t) which in turn follows the Black–
Scholes model with volatility σ and zero interest rate, that is,

dY (t) = σY (t) dW(t), t > 0, Y (0) = x0,

and Xk = Y(k�), k = 0,1,2, with some � > 0. By Itô’s formula, the process
Z(t) := Y 1/α(t) fulfills the following SDE:

dZ(t)

Z(t)
= σ 2

2α

(
1

α
− 1

)
dt + σ

α
dW(t).
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Therefore, the expectation E[G(X2)|X1 = x] can be computed via the well known
Black–Scholes formula:

E[G(X2)|X1 = x] = K1/α�(−d2) − x1/αe�(α−1−1)(σ 2/2α)�(−d1),(3.9)

with � being the cumulative distribution function of the standard normal distribu-
tion,

d1 := log(x/K) + σ 2(α−1 − 2−1)�

σ
√

�

and d2 := d1 − σ
√

�/α. As can be easily seen from (3.9), the function

B(x) := E[G(X2)|X1 = x] − G(x)

that appears in (3.5), satisfies B(x) � Cx1/α as x → +0 for some constant C.

Hence,

P
(
0 < |E[G(X2)|X1] − G(X1)| ≤ δ

)
� δα, δ → 0, α > 1,

and

P
(
0 < |E[G(X2)|X1] − G(X1)| ≤ δ

)
� δ, δ → 0, α ≤ 1.

Turn now to the condition (3.4). In fact, for any α > 0, the optimal stopping region
S ∗ = {x ∈ E : B(x) ≤ 0} can be represented in the form S ∗ = {x : 0 ≤ x ≤ θ∗} for
some real positive number θ∗ depending on α,σ,� and K. Hence, if S is taken
to be a collection of sets of the form [0, θ) with θ ∈ � ⊂ R+, we get V̄ = V ∗ and
the condition (3.4) is fulfilled.

The convergence rates obtained in Theorem 3.3 are in fact optimal and cannot
be, in general, improved as shown in the next theorem.

PROPOSITION 3.10. Consider the problem (2.1) with k = 1 and two possible
stopping dates, that is, τ ∈ {1,2}. Fix a pair of nonzero functions G1,G2 such that
G2 : Rd → {0,1} and 0 < G1(x) < 1 on [0,1]d . Fix some γ > 0 and α > 0 and
let Pα,γ be a class measures such that the condition (3.5) is fulfilled and for any
P ∈ Pα,γ , the corresponding stopping set S∗ = S∗(P) is in Sγ . Then there exist
a subset P of Pα,γ and a constant B > 0 such that for any M ≥ 1, any stopping
time τM ∈ {1,2} measurable w.r.t. F ⊗M, it holds

sup
P∈P

{
sup

τ∈{1,2}
EP[Gτ(Xτ )] − EP⊗M [EPGτM

(XτM
)]

}
≥ BM−(1+α)/(2+α(1+(d−1)/γ )).

Hence, for any stopping time τM ∈ {1,2} measurable w.r.t. F ⊗M, there is a mea-
sure P from P, such that

P⊗M(
V ∗ − VM ≥ CM−(1+α)/(2+α(1+(d−1)/γ ))) > 0(3.10)

with some positive constant C and all M ≥ 1, where V ∗ = supτ∈{1,2} EP[Gτ(Xτ )]
and VM = EP[GτM

(XτM
)].



SIMULATION-BASED OPTIMIZATION ALGORITHMS 223

REMARK 3.11. In order to compare (3.10) with (3.6) note that ρ = (d −1)/γ

in the case S = Sγ and K = 2 (see Example 3.2).

Discussion. It follows from Theorem 3.3 that

V ∗ − VM = OP
(
M−(1+α)/(2+α(1+ρ))) = oP(M−1/2)

as long as α > 0. Using the decomposition

V ∗ − VM,N = V ∗ − VM + VM − VM,N

and the fact that VM − VM,N = OP(1/
√

N) for any M > 0, we conclude that

V ∗ − VM,N = OP
(
M−(1+α)/(2+α(1+ρ)) + N−1/2)

.

Hence, given N , a reasonable choice of M , the number of Monte Carlo paths used
in the optimization step, can be defined as M � N(2+α(1+ρ))/(2(1+α)). In the case
when there exists a parametric family of stopping regions satisfying (3.4) (see
Example 3.9), one gets

M � N(2+α)/(2(1+α))(3.11)

since any parametric family of stopping regions with finite-dimensional compact
parameter set fulfills (3.2) for arbitrary small ρ > 0. Let us also make a few re-
marks on the condition (3.5) and the parameter α. If all functions

Bk(x) = Gk(x) − Ek,x[V ∗
k+1(Xk+1)], k = 1, . . . ,K − 1,(3.12)

have a nonvanishing Jacobian in the vicinity of the stopping boundary ∂Sk and Xk

has continuous distribution, then (3.5) is fulfilled with α = 1. Another situation,
where α can be easily determined is described by the following useful lemma.

LEMMA 3.12. Let X1, . . . ,XK be a time homogenous Markov chain with a
state space R+ and a transition density p(y|x) = x−1p̄(y/x) such that the func-
tion p̄(z) stays positive on (0,∞) and satisfies p̄(z) � z−3/2, z → +∞. More-
over, assume that Gk(x) = ak(κ − x)+, where ak, k = 1, . . . ,K, is a decreasing
sequence of positive numbers and κ is a fixed positive number, then the condi-
tion (3.5) is fulfilled with α ≥ 1/2.

PROOF. First, note that

EK−1,x[GK(XK)] = aK

∫ κ/x

0
(κ − zx)p̄(z) dz(3.13)

and the function

d2

dx2 EK−1,x[GK(XK)] = aK

κ2

x3 p̄(κ/x)
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is positive on (0,∞). The function BK−1(x) defined in (3.12) satisfies

BK−1(0) = (aK−1 − aK)κ > 0

and BK−1(x) < 0 for x ≥ κ. Hence, there is a unique point x0 ∈ (0, κ) such that
BK−1(x0) = 0. Since d2

dx2 GK−1(x) = 0 on R+ \ {κ} and GK−1(κ) = 0, we get
B′′

K−1(x0) > 0. Let us now look at the behavior of BK−1(x) for large x. It directly
follows from (3.13) that

BK−1(x) � aKp̄(+0)
κ2

2x
, x → +∞.

Therefore,

P
(|BK−1(XK−1)| ≤ δ

)
≤ P(|XK−1 − x0| ≤ Aδ1/2) + P(XK−1 ≥ Bδ−1) � δ1/2, δ → 0,

for some properly chosen positive constants A and B not depending on δ. In a
similar manner, using the fact (it can be proved by induction) that

d2

dx2 Ek,x[V ∗
k+1(Xk+1)] > 0, x ∈ (0,∞)

and Ek,x[V ∗
k+1(Xk+1)] � EK−1,x[GK(XK)] as x → ∞ for all k = 1, . . . ,K − 1,

one derives bounds for other functions Bk, k = 1, . . . ,K − 2. �

In fact, it is not difficult to construct examples showing that the parameter α

can take any value from [1,∞) (see Example 3.9). If α = 1 (the most common
case) (3.11) simplifies to M � N3/4, the rule of thumb supported by our numerical
example.

Finally, we would like to mention an interesting methodological connection be-
tween our analysis and the analysis of statistical discrimination problem performed
in Mammen and Tsybakov (1999) [see also Devroye, Györfi and Lugosi (1996)].
In particular, we need similar results form the theory of empirical processes and
the condition (3.5) formally resembles the so-called “margin” condition often en-
countered in the literature on discrimination analysis.

4. Applications. In this section, we illustrate our theoretical results by some
financial applications. Namely, we consider the problem of pricing discrete time
American options. According to the modern financial theory, pricing an American
option in a complete market is equivalent to solving an optimal stopping problem
(with a corresponding generalization in incomplete markets), the optimal stopping
time being the rational time for the option to be exercised. Due to the enormous
importance of the early exercise feature in finance, this line of research has been
intensively pursued in recent times. Solving the optimal stopping problem, and
hence pricing an American option is straightforward in low dimensions. However,
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many problems arising in practice have high dimensions, and these applications
have motivated the development of Monte Carlo methods for pricing American
option. Solving a high-dimensional optimal stopping problems or pricing Ameri-
can style derivatives with Monte Carlo is a challenging task because the determi-
nation of the optimal value function requires a backwards dynamic programming
algorithm that appears to be incompatible with the forward nature of Monte Carlo
simulation. Much research was focused on the development of fast methods to
compute approximations to the optimal value function. Notable examples include
mesh method of Broadie and Glasserman (1997), the regression-based approaches
of Carriere (1996), Longstaff and Schwartz (2001), Tsitsiklis and Van Roy (1999)
and Egloff (2005). All these methods aim at approximating the so-called continua-
tion values that can be used later to construct suboptimal strategies and to produce
lower bounds for the optimal value function. The convergence analysis for this
type of methods was performed in several papers including Egloff (2005), Egloff,
Kohler and Todorovic (2007) and Belomestny (2010). In the context of our paper,
we consider the so called parametric approximation algorithms [see, Glasserman
(2003), Section 8.2]. In essence, these algorithms represent the optimal stopping
sets S ∗

k by a finite numbers of parameters and then find the American option price
by maximizing, over the parameter space, a Monte Carlo approximation of the cor-
responding value function. The important question here is whether on can parame-
trize the optimal stopping region S∗ by a finite-dimensional set of parameters, i.e.
S∗ = S∗(θ), θ ∈ �, where � is a compact finite-dimensional set. It turns out that
that this is possible in many situations [see Garcia (2003)]. The assumption (3.2)
and (3.4) are then automatically fulfilled with arbitrary small ρ > 0.

4.1. Numerical example: Bermudan max-call. This is a benchmark example
studied in Broadie and Glasserman (1997) and Glasserman (2003) among others.
Specifically, the model with d identically distributed assets is considered, where
each underlying has dividend yield δ. The risk-neutral dynamic of the asset X(t) =
(X1(t), . . . ,Xd(t)) is given by

dXl(t)

Xl(t)
= (r − δ) dt + σ dWl(t), Xl(0) = x0, l = 1, . . . , d,

where Wl(t), l = 1, . . . , d , are independent one-dimensional Brownian motions
and x0, r, δ, σ are constants. At any time t ∈ {t1, . . . , tK} the holder of the option
may exercise it and receive the payoff

Gk(Xk) := (
max(X1

k, . . . ,X
d
k ) − κ

)+
,

where Xk := X(tk) for k = 1, . . . ,K. We take d = 2, r = 5%, δ = 10%, σ =
0.2, κ = 100, x0 = 90 and tk = kT /K,k = 1, . . . ,K , with T = 3,K = 9 as in
Glasserman (2003), Chapter 8.
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To describe the optimal early exercise region at date tk, k = 1, . . . ,K, one can
divide R

2 into three different connected sets: one exercise region and two continu-
ation regions [see Broadie and Detemple (1997) for more details]. All these regions
can be parameterized by using two functions depending on two-dimensional para-
meter θk ∈ R

2. Making use of this characterization, we define a parametric family
of stopping regions as in Garcia (2003) via

Sk(θk) := {
(x1, x2) : max

(
max(x1, x2) − K,0

)
> θ1

k ; |x1 − x2| > θ2
k

}
,

where θk ∈ �,k = 1, . . . ,K and � is a compact subset of R
2. Furthermore, we

simplify the corresponding optimization problem by setting θ1 = · · · = θK. This
will introduce an additional bias and hence may increase the left-hand side of (3.4)
(see Remark 3.4). However, this bias turns out to be rather small in practice. In
order to implement and analyze the simulation-based optimization based algorithm
in this situation, we perform the following steps:

• Simulate L independent sets of trajectories of the process (Xk) each of the size
M : (

X
(l,m)
1 , . . . ,X

(l,m)
K

)
, m = 1, . . . ,M,

where l = 1, . . . ,L.

• Compute estimates θ
(1)
M , . . . , θ

(L)
M via

θ
(l)
M := arg max

θ∈�

{
1

M

M∑
m=1

G
τ

(l,m)
1 (S(θ))

(
X

(l,m)

τ
(l,m)
1 (S(θ))

)}
.

To compute estimates θ
(1)
M , . . . , θ

(L)
M , we use Tom Rowan’s subspace-searching

simplex algorithm for unconstrained maximization of a function (package sub-
plex in R). This choice of optimization algorithm responds to the discontinuity
of the value function, together with the presence of multiple local maxima.

• Simulate a new set of trajectories of size N independent of (X
(l,m)
k ):(

X̃
(n)
1 , . . . , X̃

(n)
K

)
, n = 1, . . . ,N.

• Compute L estimates for the optimal value function V ∗
1 as follows

V
(l)
M,N := 1

N

N∑
n=1

G
τ

(l,n)
M

(
X̃

(n)

τ
(l,n)
M

)
, l = 1, . . . ,L,

with

τ
(l,n)
M := min

{
1 ≤ k ≤ K : X̃(n)

k ∈ Sk

(
θ

(l)
M

)}
, n = 1, . . . ,N.

Denote by σM,N,l the standard deviation computed from the sample (G
τ

(l,n)
M

, n =
1, . . . ,N) and set σM,N = minl σM,N,l.
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• Compute

μM,N,L := 1

L

L∑
l=1

V
(l)
M,N , ϑM,N,L :=

√√√√ 1

L − 1

L∑
l=1

(
V

(l)
M,N − μM,N,L

)2
.

By the law of large numbers

μM,N,L
P→ EP⊗M [VM,N ], L → ∞,(4.1)

ϑM,N,L
P→ VarP⊗M [VM,N ], L → ∞,(4.2)

where

VM,N := 1

N

N∑
n=1

G
τ

(n)
M

(
X̃

(n)

τ
(n)
M

)
.

The difference V̄ − VM,N with

V̄ := max
θ∈�

E
[
Gτ1(S(θ))

(
Xτ1(S(θ))

)]
can be decomposed into the sum of three terms

(V̄ − EP⊗M [VM ]) + (EP⊗M [VM ] − VM) + VM − VM,N .(4.3)

The first term in (4.3) is deterministic and can be approximated by Q1(M) :=
μM∗,N∗,L∗ − μM,N∗,L∗ with large enough L∗, M∗ and N∗. The variability of the
second, zero mean, stochastic term can be measured by

√
VarP⊗M [VM ] which in

turn can be estimated by Q2(M) := √
ϑM,N∗,L∗ , due to (4.2). The standard devia-

tion of VM − VM,N for any M can be approximated by Q3(N) = σM∗,N/
√

N . In
our simulation study, we take N∗ = 1,000,000,L∗ = 500,M∗ = 10,000 and obtain
V̄ ≈ μM∗,N∗,L∗ = 7.96 [note that V ∗ = 8.07 according to Glasserman (2003)].
In the left-hand side of Figure 1, we plot both quantities Q1(M) and Q2(M)

as functions of M. Note that Q2(M) dominates Q1(M), especially for large M.

Hence, by comparing Q2(M) with Q3(N) and approximately solving the equa-
tion Q2(M) = Q3(N) in N , one can infer on the optimal relation between M

and N . In Figure 1 (on the right-hand side), the resulting empirical relation is de-
picted by crosses. Additionally, we plotted two benchmark curves N = M4/3 and
N = M4.5/3. As one can see the choice M = N3/4 is likely to be sufficient in this
situation since it always leads to the inequality Q1(M) + σQ2(M) ≤ σQ3(N) for
any σ > 1. As a consequence, for M = N3/4 and any N , V̄ lies with high proba-
bility in the interval [μM,N,L∗ − σQ3(N),μM,N,L∗ + σQ3(N)], provided that σ

is large enough.

5. Proofs of the main results. In this section, we give the proofs of Theo-
rem 3.3 and Proposition 3.10.
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FIG. 1. Left: functions Q1(M) and Q2(M); right: optimal empirical relationship between M

and N (crosses) together with benchmark curves N = M4/3 (dashed line) and N = M4.5/3 (dot-
ted line).

5.1. Proof of Theorem 3.3. Let us first sketch the structure of the proof and
main ideas behind it. For any S ∈ S, denote

�(S) := E[Gτ∗
1
(Xτ∗

1
)] − E

[
Gτ1(S)

(
Xτ1(S)

)]
.

To prove Theorem 3.3, we need a kind of probabilistic bound for the quantity
�(SM) with SM defined in (2.4). In a first step, we separate a probabilistic error
from an approximation error. The latter one can be quantified by the value �(S̄),

where

S̄ := arg max
S∈S

E
[
Gτ1(S)

(
X

(m)
τ1(S)

)]
(5.1)

is the best approximation of E[Gτ∗
1
(Xτ∗

1
)] within the class of stopping regions S.

Define now

�M(S) := M−1/2
M∑

m=1

{
G

τ
(m)
1 (S)

(
X

(m)

τ
(m)
1 (S)

) − E
[
G

τ
(m)
1 (S)

(
X

τ
(m)
1 (S)

)]}
and put �M(S ′,S) := �M(S ′) − �M(S) for any S ′,S ∈ S. The empirical
process �M(S ′,S) defined on B × B shall play a crucial role in obtaining a
probabilistic bound for �(S̄). Indeed, since

1

M

M∑
m=1

G
τ

(m)
1 (S̄)

(
X

(m)

τ
(m)
1 (S̄)

) ≤ 1

M

M∑
m=1

G
τ

(m)
1 (SM)

(
X

(m)

τ
(m)
1 (SM)

)
with probability 1, it holds

�(SM) ≤ �(S̄) + [�M(S∗, S̄) + �M(SM,S∗)]√
M

.(5.2)
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Thus, in order to get a bound for �(SM) we need probabilistic bounds for the
quantities �M(S∗, S̄) and �M(SM,S∗). These bounds in turn can be derived
from the exponential inequalities for the increments of empirical processes which
are stated in Theorem 7.2 (see Section 7). Let us elaborate on this point in more
detail. Set εM = M−1/2(1+ρ) and derive from (5.2)

�(SM) ≤ �(S̄) + 2√
M

sup
S∈S:�G(S∗,S)≤εM

|�M(S∗,S)|
(5.3)

+ 2 × �
(1−ρ)
G (S∗,SM)√

M
sup

S∈S:�G(S∗,S)>εM

[ |�M(S∗,S)|
�

(1−ρ)
G (S∗,S)

]
,

where

�G(S,S ′) := {
E

[
Gτ1(S)

(
Xτ1(S)

) − Gτ1(S ′)
(
Xτ1(S ′)

)]2}1/2

for any S,S ′ ∈ B. The reason behind splitting the right-hand side of (5.2) into
two parts is that the behavior of the empirical process �M(S∗,S) is different on
the sets {S ∈ S :�G(S∗,S) > εM} and {S ∈ S :�G(S∗,S) ≤ εM}. Theorem 7.2
of Section 7 would imply that for any S,S ′ ∈ S and any U > U0

P
(

sup
S ′∈S,�G(S,S ′)≤εM

|�M(S,S ′)| > Uε
1−ρ
M

)
≤ C exp(−Uε

−2ρ
M /C2),(5.4)

P
(

sup
S ′∈S,�G(S,S ′)>εM

|�M(S,S ′)|
�

1−ρ
G (S,S ′)

> U

)
≤ C exp(−U/C2),(5.5)

P
(

sup
S∈S

|�M(S,S ′)| > z
√

M
)

≤ C exp(−Mz2/C2B)(5.6)

with some constants C > 0,B > 0 and U0 > 0, provided that

HB(δ,S,�G) ≤ Aδ−2ρ,(5.7)

where HB(δ,S,�G) is the entropy with bracketing for the class S w.r.t. the
pseudo-distance �G. The condition (5.7) places a bound on the complexity of
S and is similar to (3.2). However, in order to deduce (5.7) from (3.2) we need
to relate the pseudo-distance �G to the pseudo-distance dX defined in (3.1). The
following lemma relates �G to another auxiliary pseudo-distance and is proved in
Section 6.

LEMMA 5.1. If maxk=1,...,K ‖Gk‖∞ ≤ AG with some constant AG > 0, then

�G(S,S ′) ≤ 2AG

√
K�X(S,S ′)

for any S,S ′ ∈ B, where �X is a pseudo-distance between any two sets S,S ′ ∈
B defined as

�X(S1 × · · · × SK, S ′
1 × · · · × S ′

K) :=
K−1∑
k=1

P

(
Xk ∈ (Sk
S ′

k)
∖ (

K−1⋂
l=k

S ′
l

))
.
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In fact, Lemma 5.1 and the assumption (3.2) immediately imply (5.7) since
�X(S,S ′) ≤ dX(S,S ′). So the inequalities (5.4)–(5.6) hold under assumptions
of Theorem 3.3. Let us now show how these inequalities can be used to estimate
the second and the third summands in (5.3). To simplify notations, denote

W1,M := sup
S∈S:�G(S∗,S)≤εM

|�M(S∗,S)|,

W2,M := sup
S∈S:�G(S∗,S)>εM

|�M(S∗,S)|
�

(1−ρ)
G (S∗,S)

and set A0 := {W1,M ≤ Uε
1−ρ
M } for some U > U0. Then the inequality (5.4) leads

to the estimate

P(Ā0) ≤ C exp(−Uε
−2ρ
M /C2).

Furthermore, since �(S̄) ≤ DM−1/(1+ρ) [see (3.4)] and ε
1−ρ
M /

√
M = M−1/(1+ρ),

we get on A0

�(SM) ≤ C0M
−1/(1+ρ) + 2 × �

(1−ρ)
G (S∗,SM)√

M
W2,M(5.8)

with C0 = D + 2U . Now we need to find a bound for �G(S∗,SM) in terms of
�(SM). This is exactly the place, where the condition (3.5) comes in. The follow-
ing lemma holds.

LEMMA 5.2. Assume that (3.5) holds for δ < δ0 < 1/2, then there exist con-
stants υα and δα such that

�(S) ≥ υα�
(1+α)/α
X (S∗,S)(5.9)

for all S ∈ B satisfying �X(S∗,S) ≤ δα . Moreover, it holds

�X(S∗,S) ≤
(

21/α

δ0

)
�(S) + δα

2(1 + α)
(5.10)

for any S ∈ B.

The proof of this lemma is given in Section 6. Lemma 5.2 together with
Lemma 5.1 imply now that

�G(S∗,SM) ≤ 2
√

KAGv−α/2(1+α)
α �α/2(1+α)(SM)(5.11)

on the set A1 := {�X(S∗,SM) ≤ δα}. Let us introduce yet another set

A2 := {
�(SM) > C0(1 − π)−1M−1/(1+ρ)}

for some 0 < π < 1. Combining (5.8) with (5.11), we get on A0 ∩ A1 ∩ A2

�(SM) ≤ C1
�α(1−ρ)/(2(1+α))(SM)

π
√

M
W2,M,
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where the constant C1 depends on α but not on π. Therefore,

�(SM) ≤ (π/C1)
−νM−ν/2W ν

2,M

with ν = 2(1+α)
2+α(1+ρ)

. What remains is to estimate P(Ā1). Using again Lemma 5.2,
we arrive at

P
(
�X(S∗,SM) > δα

) ≤ P
((

21/α

δ0

)
�(SM) + δα

2(1 + α)
> δα

)
= P

(
�(SM) > cα

)
with cα = δ0δα2−1/α(1 − 1

2(1+α)
). Furthermore, due to (5.2)

P
(
�(SM) > cα

) ≤ P
(
DM−1/(1+ρ) + 2M−1/2 sup

S∈S

|�M(S)| > cα

)
≤ P

(
sup
S∈S

|�M(S)| > cα

√
M/4

)
for large enough M. In order to bound the latter probability, we can employ the
inequality (5.6) to get

P
(

sup
S∈S

|�M(S)| > cα

√
M/4

)
≤ B1 exp(−MB2)

with some constants B1 > 0 and B2 = B2(α) > 0. Thus,

P(Ā1) ≤ B1 exp(−MB2).

Applying inequality (5.5) to W ν
2,M and using the fact that ν/2 ≤ 1/(1 + ρ) for all

0 < ρ ≤ 1, we finally obtain the desired bound for �(SM)

P
(
�(SM) > (V/M)ν/2)

≤ P
({�(SM) > (V/M)ν/2} ∩ A0 ∩ A1 ∩ A2

) + P(Ā0) + P(Ā1)

≤ C exp
(−√

V /B3
) + C exp

(
−UMρ/(1+ρ)

C2

)
+ B1 exp(−MB2)

which holds for all V > V0 and M > M0 with some constant B3 depending on π

and α.

5.2. Proof of Proposition 3.10. For simplicity, we give the proof only for the
case d = 2 (an extension to higher dimensions is straightforward). In the case
of two exercise dates, the corresponding optimal stopping problem is completely
specified by the distribution of the vector (X1,G2(X2)). Because of a digital struc-
ture of G2, the distribution of (X1,G2(X2)) would be completely determined if
the marginal distribution of X1 and the probability P(G2(X2) = 1|X1 = x) are
defined. Taking into account this, we now construct a family of distributions for
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(X1,G2(X2)) indexed by elements of the set � = {0,1}m. First, the marginal dis-
tribution of X1 is supposed to be the same for all ω ∈ � and possesses a density
p(x) satisfying

0 < p∗ ≤ p(x) ≤ p∗ < ∞, x ∈ [0,1]2.

Let us now construct a family of conditional distributions Pω(G2(X2) = 1|X1 =
x), ω ∈ �. To this end, let φ be an infinitely many times differentiable function
on R with the following properties: φ(z) = 0 for |z| ≥ 1, φ(z) ≥ 0 for all z and
supz∈R[φ(z)] ≤ 1. For j = 1, . . . ,m, put

φj (z) := δm−γ φ

(
m

[
z − 2j − 1

m

])
, z ∈ R,

with some 0 < δ < 1. For vectors ω = (ω1, . . . ,ωm) of elements ωj ∈ {0,1} and
for any z ∈ R, define

b(z,ω) :=
m∑

j=1

ωjφj (z).

Put for any ω ∈ � and any x ∈ R
2,

Cω(x) := Pω

(
G2(X2) = 1|X1 = x

)
= G1(x) − Am−γ /α1{0 ≤ x2 ≤ b(x1,ω)}

+ Am−γ /α1{b(x1,ω) < x2 ≤ δm−γ },
where A is a positive constant. Due to our assumptions on G1(x), there are con-
stants 0 < G− < G+ < 1 such that

G− ≤ G1(x) ≤ G+, x ∈ [0,1]2.

Hence, the constant A can be chosen in such a way that Cω(x) remains positive
and strictly less than 1 on [0,1]2 for any ω ∈ �. The stopping set

Sω := {x :Cω(x) ≤ G1(x)} = {(x1, x2) : 0 ≤ x2 ≤ b(x1,ω)}
belongs to Sγ since b(·,ω) ∈ �(γ,L) for δ small enough. Moreover, for any η > 0

Pω

(|G1(X1) − Cω(X1)| ≤ η
) = Pω(0 ≤ X2

1 ≤ δm−γ )1(Am−γ /α ≤ η)

≤ δp∗m−γ 1(Am−γ /α ≤ η) ≤ δp∗A−αηα

and the condition (3.5) is fulfilled. Let τM be a stopping time w.r.t. F ⊗M , then the
identity (see Lemma 6.1)

EPω [Gτ∗(Xτ∗)] − EPω [GτM
(XτM

)]
= EPω

[(
G1(X1) − G2(X2)

)
1(τ ∗ = 1, τM = 2)

]
+ EPω

[(
G2(X2) − G1(X1)

)
1(τ ∗ = 2, τM = 1)

]
= EPω [|G1(X1) − E(G2(X2)|F1)|1{τM �= τ ∗}]
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leads to

EPω [Gτ∗(Xτ∗)] − EP⊗M
ω

{EPω [GτM
(XτM

)]} = EP⊗M
ω

EPω [|�ω(X1)|1{τM �= τ ∗}]
with �ω(x) := G1(x) − Cω(x). By conditioning on X1, we get

EP⊗M EPω [|�ω(X1)|1{τM �= τ ∗}] = Am−γ /αP(0 ≤ X2
1 ≤ δm−γ )P⊗M

ω (τM �= τ ∗)

≥ Am−γ /αp∗δm−γ P⊗M
ω (τM �= τ ∗).

Using now a well-known Birgé’s or Huber’s lemma [see, e.g., Devroye, Györfi and
Lugosi (1996), page 243], we get

sup
ω∈{0,1}m

P⊗M
ω (τ̂M �= τ ∗) ≥

[
0.36 ∧

(
1 − MKH

log(|H|)
)]

,

where KH := supP,Q∈H K(P,Q), H := {Pω,ω ∈ {0,1}m} and K(P,Q) is a
Kullback–Leibler distance between two measures P and Q. Since for any two
measures P and Q from H with Q �= P

K(P,Q) ≤ sup
ω1,ω2∈{0,1}m

ω1 �=ω2

E
[
Cω1(X1) log

{
Cω1(X1)

Cω2(X1)

}

+ (
1 − Cω1(X1)

)
log

{
1 − Cω1(X1)

1 − Cω2(X1)

}]
≤ (1 − G+ − A)−1(G− − A)−1P(0 ≤ X2

1 ≤ δm−γ )[A2m−2γ /α]
≤ CMm−γ−2γ /α−1

with some constant C > 0 for small enough A, and log(|H|) = m log(2), we get

sup
ω∈{0,1}m

P⊗M
ω (τ̂M �= τ ∗) ≥ [0.36 ∧ (1 − CMm−γ−2γ /α−1)]

with some constant C > 0. Hence,

sup
ω∈{0,1}m

P⊗M
ω (τ̂M �= τ ∗) > 0

provided that m = qM1/(γ+2γ /α+1) for small enough real number q > 0. In this
case,

sup
ω∈{0,1}m

{
EPω [Gτ∗(Xτ∗)] − EP⊗M

ω
{EPω [GτM

(XτM
)]}}

≥ Ap∗δq−γ /α−γ M−(γ /α+γ )/(γ+2γ /α+1) = BM−(1+α)/(2+α(1+1/γ ))

with B = Ap∗δq−γ /α−γ .
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6. Proofs of lemmas. In this section, we prove Lemmas 5.1 and 5.2. The
proofs of both lemmas essentially rely on the following proposition.

PROPOSITION 6.1. For any S,S ′ ∈ B, it holds with probability one∣∣Gτk(S)

(
Xτk(S)

) − Gτk(S ′)
(
Xτk(S ′)

)∣∣
(6.1)

≤
K−1∑
l=k

∣∣Gl(Xl) − Gτl+1(S)

(
Xτl+1(S)

)∣∣1{Xl∈(Sl
S ′
l )\(

⋂K−1
l′=l

S ′
l′ )}

and

V ∗
k (Xk) − Vk(Xk)

(6.2)

= E

[
K−1∑
l=k

∣∣Gl(Xl) − E[V ∗
l+1(Xl+1)|Fl]

∣∣1{Xl∈(S ∗
l 
Sl )\(⋂K−1

l′=l
Sl′ )}

∣∣∣Fk

]

for k = 1, . . . ,K − 1, where

Vk(Xk) := E
[
Gτk(S)

(
Xτk(S)

)|Fk

]
, k = 1, . . . ,K.

Before proving this proposition let us recall some basic properties of the se-
quence of stopping times τk(S), k = 1, . . . ,K, with S ∈ S. First, it immediately
follows from the definition of τk that τk(S) = k iff Xk ∈ Sk, k = 1, . . . ,K. In
particular, τK(S) = K with probability 1. Next, the sequence τk(S) satisfies the
so-called consistency property

if Xk /∈ Sk then τk(S) = τk+1(S), k = 1, . . . ,K − 1.

Let us also recall that due to the Wald–Bellman equation (2.2)

V ∗
k (Xk) =

{
E[V ∗

k+1(Xk+1)|Fk], Xk /∈ S ∗
k ,

Gk(Xk), Xk ∈ S ∗
k

for k = 1, . . . ,K − 1.

PROOF. We prove (6.2) by induction. The inequality (6.1) can be proved in a
similar way. For k = K − 1, we get

V ∗
K−1(XK−1) − VK−1(XK−1)

= E
[(

GK−1(XK−1) − GK(XK)
)
1{XK−1∈S ∗

K−1,XK−1 /∈SK−1}|FK−1
]

+ E
[(

GK(XK) − GK−1(XK−1)
)
1{XK−1 /∈S ∗

K−1,XK−1∈SK−1}|FK−1
]

= |GK−1(XK−1) − E[GK(XK)|FK−1]|1{XK−1∈S ∗
K−1
SK−1}

since the events {XK−1 /∈ S ∗
K−1} and {XK−1 /∈ SK−1} are measurable w.r.t. FK−1

and GK−1(XK−1) ≥ E[GK(XK)|FK−1] on the set {XK−1 ∈ S ∗
K−1}. Thus, (6.2)
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holds with k = K − 1. Suppose that (6.2) holds with k = K ′ + 1. Let us prove it
for k = K ′. Consider a decomposition

Gτ∗
K′ (Xτ∗

K′ ) − GτK′ (XτK′ ) = S1 + S2 + S3(6.3)

with

S1 := (
Gτ∗

K′ (Xτ∗
K′ ) − GτK′ (XτK′ )

)
1{XK′ /∈S ∗

K′ ,XK′ /∈SK′ },

S2 := (
Gτ∗

K′ (Xτ∗
K′ ) − GτK′ (XτK′ )

)
1{XK′ /∈S ∗

K′ ,XK′∈SK′ },

S3 := (
Gτ∗

K′ (Xτ∗
K′ ) − GτK′ (XτK′ )

)
1{XK′∈S ∗

K′ ,XK′ /∈SK′ }.

Using the fact that τk = τk+1 if Xk /∈ Sk for any k = 1, . . . ,K − 1, we get

E[S1|FK ′ ] = E
[(

V ∗
K ′+1(XK ′+1) − VK ′+1(XK ′+1)

)
1{XK′ /∈S ∗

K′ ,XK′ /∈SK′ }|FK ′
]
,

E[S2|FK ′ ] = (
E[Gτ∗

K′+1
(Xτ∗

K′+1
)|FK ′ ] − GK ′(XK ′)

)
1{XK′ /∈S ∗

K′ ,XK′∈SK′ }

= (
E[V ∗

K ′+1(XK ′+1)|FK ′ ] − GK ′(XK ′)
)
1{XK′ /∈S ∗

K′ ,XK′∈SK′ }

and

E[S3|FK ′ ]
= (

GK ′(XK ′) − E[GτK′+1
(XτK′+1

)|FK ′ ])1{XK′∈S ∗
K′ ,XK′ /∈SK′ }

= (
GK ′(XK ′) − E[V ∗

K ′+1(XK ′+1)|FK ′ ])1{XK′∈S ∗
K′ ,XK′ /∈SK′ }

+ E
[(

V ∗
K ′+1(XK ′+1) − VK ′+1(XK ′+1)

)
1{XK′∈S ∗

K′ ,XK′ /∈SK′ }|FK ′
]
,

with probability one. Hence,

V ∗
K ′(XK ′) − VK ′(XK ′)

= |GK ′(XK ′) − E[V ∗
K ′+1(XK ′+1)|FK ′ ]|1{XK′∈S ∗

K′
SK′ }

+ E
[(

V ∗
K ′+1(XK ′+1) − VK ′+1(XK ′+1)

)|FK ′
]
1{XK′ /∈SK′ }

since GK ′(XK ′) − E[V ∗
K ′+1(XK ′+1)|FK ′ ] ≥ 0 on the set {XK ′ ∈ S ∗

K ′ } and
GK ′(XK ′) − E[V ∗

K ′+1(XK ′+1)|FK ′ ] ≤ 0 on the set {XK ′ /∈ S ∗
K ′ } [see (2.3)]. Our

induction assumption implies now that

V ∗
K ′(XK ′) − VK ′(XK ′)

= E

[
K−1∑
l=K ′

|Gl(Xl) − E[V ∗
l+1(Xl+1)|Fl]|1{Xl∈(S ∗

l 
Sl )\(⋂K−1
l′=l

Sl′ )}
∣∣∣FK ′

]

and hence (6.2) holds with k = K ′. �
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Let us turn now to the proof of Lemma 5.1. We get by (6.1)

�G(S,S ′) = {
E

[
Gτ1(S)

(
Xτ1(S)

) − Gτ1(S ′)
(
Xτ1(S ′)

)]2}1/2

≤ 2AG

√√√√√E

[
K−1∑
l=1

1{Xl∈(Sl
S ′
l )\(

⋂K−1
l′=l

S ′
l′ )}

]2

≤ 2AG

√√√√√K

K−1∑
l=1

P

{
Xl ∈ (Sl
S ′

l )
∖ (

K−1⋂
l′=l

S ′
l′

)}

= 2AG

√
K�X(S,S ′).

The proof of Lemma 5.2 is a little bit more involved and relies on the assumption
(3.5). For any δ ≤ δ0, define the sets

Ak := {
x ∈ R

d :
∣∣E[V ∗

k+1(Xk+1)|Xk = x] − Gk(x)
∣∣ > δ

}
, k = 1, . . . ,K − 1.

Due to (6.2), we have

�(S) ≥ δ

K−1∑
k=1

P

(
Xk ∈ (S ∗

k 
Sk)
∖ (

K−1⋂
l=k

Sk

)
∩ Ak

)

≥ δ

K−1∑
k=1

{
P

(
Xk ∈ (S ∗

k 
Sk)
∖ (

K−1⋂
l=k

Sk

))
− P(Āk)

}
(6.4)

≥ δ[�X(S∗,S) − A0δ
α]

with A0 = ∑K−1
k=1 Ak,0, where Ak,0 were defined in (3.5). The maximum of (6.4)

is attained at δ∗ = [�X(S∗,S)/(α + 1)A0]1/α . Since δ∗ ≤ δ0 for �X(S∗,S) ≤
A0(α + 1)δα

0 , the inequality (5.9) holds with υα := A
−1/α
0 α(1 + α)−1−1/α and

δα := A0(α + 1)δα
0 . The inequality (5.10) directly follows from (6.4) by taking

δ = δ0/21/α.

7. Exponential inequalities for the increments of empirical processes. In
this section, we will use the notation introduced in Section 2. In particular, let
X1, . . . ,XK be a Markov chain with the joint distribution PX and let(

X
(m)
1 , . . . ,X

(m)
K

)
, m = 1, . . . ,M,

be M independent copies of X. For any set S ∈ B, define the empirical process
νM(S) via

νM(S) := M−1/2
M∑

m=1

{
gS

(
X

(m)
1 , . . . ,X

(m)
K

) − E[gS(X1, . . . ,XK)]}
= √

M

∫
gS d(P ⊗M

X − PX)
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with functions gS : Rd × · · · × R
d︸ ︷︷ ︸

K

→ R defined as

gS(x1, . . . , xK) :=
K−1∑
k=0

Gk+1(xk+1)1{x1 /∈S1,...,xk /∈Sk,xk+1∈Sk+1}.

Denote G = {gS :S ∈ S} and define the entropy with bracketing of the class G.

DEFINITION 7.1. Let NB(δ, G,PX) be the smallest value of n for which
there exist pairs of functions {[gL

j , gU
j ]}nj=1 such that ‖gU

j − gL
j ‖L2(PX) ≤ δ for

all j = 1, . . . , n, and such that for each g ∈ G, there is j = j (g) ∈ {1, . . . , n} such
that

gL
j ≤ g ≤ gU

j .

Then HB(δ, G,PX) = log[NB(δ, G,PX)] is called the entropy with bracketing
of G .

The following theorem provides us with the exponential bounds for the incre-
ment νM(S) − νM(S0), where S0 is a fixed element of S.

THEOREM 7.2. Assume that there exists a constant A > 0 such that

HB(δ, G,PX) ≤ Aδ−κ(7.1)

for any δ > 0 and some κ > 0, where HB(δ, G,PX) is the δ-entropy with brack-
eting of G. Fix some S0 ∈ S then for ε = M−1/(2+κ) the following inequalities
hold

P
(

sup
S∈S,‖gS−gS0‖L2(PX)≤ε

|νM(S) − νM(S0)| > Uε1−κ/2
)

≤ C exp(−Uε−κ/C2),

P
(

sup
S∈S,‖gS−gS0‖L2(PX)>ε

|νM(S) − νM(S0)|
‖gS − gS0‖1−κ/2

L2(PX)

> U

)
≤ C exp(−U/C2)

for all U > C and M > M0, where C and M0 are two positive constants. Moreover,
for any z > 0

P
(

sup
S∈S

|νM(S) − νM(S0)| > z
√

M
)

≤ C exp(−Mz2/C2B)

with some positive constant B > 0.

Theorem 7.2 follows from Theorems 5.11 and 5.13 in Van de Geer (2000). Let
us make this statement more precise. First, note that G is a uniformly bounded
class of functions provided that all functions Gk are uniformly bounded. The first
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inequality of Theorem 7.2 follows from the inequality (5.42) of Lemma 5.13 in
Van de Geer (2000) if we take β = 0, α = κ. Similarly, the second inequality is
a direct consequence of the inequality (5.43) of the same Lemma 5.13. Finally,
the third inequality of Theorem 7.2 can be derived from the inequality (5.35) of
Theorem 5.11 in Van de Geer (2000) by taking a = L

√
n with small enough, but

independent of n, constant L [see also the proof of Theorem 5.13 in Van de Geer
(2000)].
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