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LAW OF LARGE NUMBERS LIMITS FOR MANY-SERVER
QUEUES

BY HAYA KASPI1,2 AND KAVITA RAMANAN1,3

Technion—Israel Institute of Technology and Brown University

This work considers a many-server queueing system in which customers
with independent and identically distributed service times, chosen from a
general distribution, enter service in the order of arrival. The dynamics of the
system are represented in terms of a process that describes the total number
of customers in the system, as well as a measure-valued process that keeps
track of the ages of customers in service. Under mild assumptions on the ser-
vice time distribution, as the number of servers goes to infinity, a law of large
numbers (or fluid) limit is established for this pair of processes. The limit is
characterized as the unique solution to a coupled pair of integral equations
which admits a fairly explicit representation. As a corollary, the fluid lim-
its of several other functionals of interest, such as the waiting time, are also
obtained. Furthermore, when the arrival process is time-homogeneous, the
measure-valued component of the fluid limit is shown to converge to its equi-
librium. Along the way, some results of independent interest are obtained,
including a continuous mapping result and a maximality property of the fluid
limit. A motivation for studying these systems is that they arise as models of
computer data systems and call centers.

CONTENTS

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2. Model dynamics and basic assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3. Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4. Uniqueness of solutions to the fluid equation . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5. Functional law of large numbers limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6. Convergence of the fluid limit to equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . 104
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Received July 2007; revised November 2009.
1Supported in part by the US–Israel Binational Science Foundation under Grant BSF-2006379.
2Supported in part by the Technion Fund for the Promotion of Research under Grant 2003941 and

the Milford Bohm Chair grant.
3Supported in part by NSF Grants DMS-04-06191, CMMI-1059967 (formerly CMMI-0728064)

and CMMI-1052750 (formerly CMMI-0928154).
AMS 2000 subject classifications. Primary 60F17, 60K25, 90B22; secondary 60H99, 35D99.
Key words and phrases. Multi-server queues, GI/G/N queue, fluid limits, mean-field limits,

strong law of large numbers, measure-valued processes, call centers.

33

http://www.imstat.org/aap/
http://dx.doi.org/10.1214/09-AAP662
http://www.imstat.org
http://www.ams.org/msc/


34 H. KASPI AND K. RAMANAN

1. Introduction.

1.1. Background and motivation. The main objective of this work is to obtain
functional strong laws of large numbers limits or “fluid” approximations of various
functionals of the G/GI/N queue (in other words, a queue with N servers that
has a general cumulative arrival process, and in which customers with independent
and identically distributed service times are processed in their order of arrival), in
the limit as the number of servers tends to infinity. In fact, a more general setting is
considered that allows for possibly time-inhomogeneous arrivals. In order to obtain
a Markovian description of the dynamics, the state includes a nonnegative integer-
valued process that represents the total number of customers in system, as well as
a measure-valued process that keeps track of the ages of customers in service. The
fluid limit obtained is for this pair of processes and thus contains more informa-
tion than just the limit of the scaled number of customers in system. In particular,
it also yields a description of the fluid limits of several other functionals of inter-
est, including the waiting time. A fairly explicit representation for the fluid limit is
obtained, which is then used to study the convergence, as t →∞, of the fluid limit
to equilibrium in the case when the arrival process is time-homogeneous. These
results are obtained under mild assumptions on the service distribution, such as
the existence of a density, which are satisfied by most distributions that arise in
applications. While we expect that these conditions can be relaxed, the representa-
tion of the fluid limit is likely to be more involved in that setting. Thus, for ease of
exposition, we have restricted ourselves to this generality.

Multiserver queueing systems arise in many applications, and have generally
proved to be more difficult to analyse than single server queues. Thus, it is nat-
ural to resort to an asymptotic analysis in order to gain insight into the behavior
of these systems. It is of particular interest to consider an asymptotic regime in
which the probability of a positive queue lies strictly between zero and one since
this captures what is observed in many applications. In the seminal paper of Halfin
and Whitt [8], it was shown that for the case of Poisson arrivals and exponen-
tially distributed service times, this can be achieved by letting both the number of
servers N and the corresponding arrival rate λN go to infinity in such a manner that
λN = N − β

√
N , for some β > 0. Specifically, Halfin and Whitt [8] established

a central limit theorem for the number of customers in system in this setting, and
then used it to derive an approximation for the probability of a positive queue
(equivalently, the probability of a customer having to wait a positive amount of
time). For networks of multi-server queues with (possibly time-varying) Poisson
arrivals and exponential services, fluid and diffusion limits for the total number of
customers in system were obtained by Mandelbaum, Massey and Reiman [15]. All
of these results were obtained under the assumption of exponential service times.

This work is to a large extent motivated by the fact that G/GI/N queues arise
as models of large-scale telephone call centers, for which the limiting regime con-
sidered here admits the natural interpretation of the scaling up of the number of
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servers in response to an analogous scaling up of the arrival rate of customers (see
Brown et al. [2] for a survey of applications of multi-server models to call centers).
Recent statistical evidence from real call centers presented in Brown et al. [2] sug-
gests that, in many cases, it may be more appropriate to model the service times
as being nonexponentially distributed and, in particular, chosen from a lognormal
distribution. This emphasizes the need to characterize fluid limits when the ser-
vice times are generally distributed. With this as motivation, a deterministic fluid
approximation for a G/GI/N queue, with abandonments that are possibly gener-
ally distributed, was proposed by Whitt [22]. However, a general functional strong
law of large numbers justifying the fluid approximation was not obtained in [22]
(instead, convergence was established for a discrete-time version of the model,
allowing for time-dependent and state-dependent arrivals). In this paper, we estab-
lish a functional strong law of large numbers limit allowing for time-dependent
arrivals, but in the absence of abandonments, and provide an intuitive and fairly
explicit characterization of the limit. We consider an asymptotic regime in which
the number of servers N goes to infinity, and the arrival rate λN scales roughly
as Nλ(·), for some possibly time-varying function λ. This asymptotic regime is
essentially the same as the one considered in [22], and is a slight generalization of
the one introduced originally by Halfin and Whitt in [8], adapted to the situation
in which only a “fluid” approximation (as opposed to a central limit theorem) is
sought. Concurrently with this work, fluid and central limit theorems for just the
number in system were established in the work of Reed [19] using a clever com-
parison with a G/GI/∞ system. Here, we take a different approach that involves
a measure-valued representation. This leads to a fairly explicit representation of
the fluid limit of the number in system and also yields the fluid limits of several
other functionals of interest.

One of the challenges in going from exponential to nonexponential service dis-
tributions is that a Markovian description of the dynamics leads, in the limit as
N →∞, to an infinite-dimensional state. The measure-valued representation and
martingale methods adopted in this paper provide a convenient framework for the
asymptotic analysis of multi-server queues (see Pang et al. [17] for a recent sur-
vey on the use of martingale methods for establishing heavy-traffic limits of multi-
server queues with exponentially distributed service times). Indeed, the framework
developed here is quite flexible and can be extended in many ways. For exam-
ple, the results of this paper have been generalized by Kang and Ramanan in [12]
and [13] to include abandonments and also to establish ergodicity of many-server
queues with abandonment. In addition, the characterization of the pre-limit ob-
tained here is used to establish functional central limit theorems by Kaspi and
Ramanan [14]. In the context of single-server queueing networks, there have been
several recent works that have used measure-valued processes to study fluid limits
(see [3, 6, 7] and references therein). In these papers, the measure-valued processes
keep track of the residual service times or lead times of customers. In contrast,
in the present paper we introduce a different measure-valued representation that
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keeps track of the ages of customers in service. The latter representation offers
several advantages such as yielding semimartingale representations that are more
amenable to computation, and can therefore be more convenient in many contexts.

The outline of the paper is as follows. A precise mathematical description of the
model, including the basic assumptions, is provided in Section 2. Section 3 intro-
duces the fluid equations and contains a summary of the main results. Uniqueness
of solutions to the fluid equations is established in Section 4, and the functional
strong law of large numbers limit is proved in Section 5. Finally, the large-time or
equilibrium behavior of the fluid limit is described in Section 6. In the remainder
of this section, we introduce some common notation used in the paper.

1.2. Notation and terminology. The following notation will be used through-
out the paper. N is the set of pbositive integers, Z+ is the set of nonnegative in-
tegers, R is set of real numbers and R+ the set of nonnegative real numbers. For
a, b ∈ R, a ∨ b denotes the maximum of a and b, a ∧ b the minimum of a and b

and the short-hand a+ is used for a ∨ 0. Given A ⊂ R and a ∈ R, A − a equals
the set {x ∈ R :x + a ∈A}, and 1B denotes the indicator function of the set B [i.e.,
1B(x)= 1 if x ∈ B and 1B(x)= 0 otherwise].

1.2.1. Function spaces. Given any Polish space S, Cb(S) and Cc(S) are, re-
spectively, the space of bounded and continuous real-valued functions and the
space of continuous real-valued functions with compact support defined on S. In
this paper, S will typically be either a subset of R or of R

2+. Specifically, the space
Cc([0,M) × R+) will refer to the space of continuous functions on R

2 that have
compact support in [0,M)×R+, restricted to the domain [0,M)×R+, the space
C 1,1

c ([0,M) × R+) is defined to be the subset of functions ϕ in Cc([0,M) × R+)

for which the directional derivative

ϕx(x, s)+ ϕs(x, s)
.= lim

�↓0

ϕ(x +�,s +�)− ϕ(x, s)

�
, (x, s) ∈ [0,M)×R+,

exists and lies in Cc([0,M)×R+), and the space C 1,1
b ([0,M)×R+) is the space of

bounded functions on [0,M)×R+ for which the directional derivative ϕx +ϕs ex-
ists, and is also bounded and continuous. Similarly, the space Cc[0,M) is the space
of continuous functions on R with compact support on [0,M), restricted to the do-
main [0,M). Moreover, C 1

c [0,M) is the subset of once continuously differentiable
functions in Cc[0,M) and for f ∈ C 1

c [0,M), we let f ′ denote the derivative of f .
In addition C∞

c (R2+) is the space of infinitely differentiable functions on R
2+. Also,

BV 0[0,∞) is the space of càdlàg functions on [0,∞) with f (0) = 0 that have
finite variation on every bounded interval in R+, and I0[0,∞) is the subspace
of nondecreasing càdlàg functions with f (0) = 0. Let L1[0,M) and L1

loc[0,M)

represent, respectively, the spaces of Lebesgue integrable and locally Lebesgue
integrable functions on [0,M). Recall that for M ≤∞, a function is said to be lo-
cally Lebesgue integrable on [0,M) if and only if it satisfies

∫
[0,m] |f (x)|dx <∞
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for all m < M . The constant functions f ≡ 1 and f ≡ 0 on [0,M) will be rep-
resented by the symbols 1 and 0, respectively. With some abuse of notation, we
will also use 1 and 0 for the constant functions on [0,M) × [0,∞) that equal 1
and 0, respectively. The use will be clear from the context. In addition, we use 1̃ to
denote the constant function on [0,∞) that is equal to 1. Furthermore, we use id
to represent the identity function on [0,∞) : id(t) = t for t ∈ [0,∞). Given any f

defined on [0,M),M ≤∞, we define ‖f ‖T
.= sups∈[0,T ) |f (s)| for every T ≤M .

For a real-valued function ϕ on S, let ‖ϕ‖∞ .= supx∈S |ϕ(x)|. Note that both ‖f ‖T

and ‖f ‖∞ could possibly equal infinity. In addition, the support of a function ϕ is
denoted by supp(ϕ).

Given a nondecreasing, right continuous function f with f∗ .= sups∈[0,∞) f (s),
consider the following inverse functionals that take values in the extended reals:

inv[f ](t) .= inf{s ≥ 0 :f (s)≥ t}, t ∈ [0, f∗],(1.1)

with the convention that [0, f∗] = [0,∞) if f∗ = ∞, and if f∗ < ∞ then
inv[f ](t) .=∞ for t > f∗. Likewise, let

f−1(t)
.= sup{s ≥ 0 :f (s)≤ t}, t ∈ [0, f∗),(1.2)

and f−1(t)
.=∞ for t ≥ f∗.

1.2.2. Measure spaces. The space of Radon measures on a Polish space S,
endowed with the Borel σ -algebra, is denoted by M(S), while MF (S), M1(S)

and M≤1(S) are, respectively, the subspaces of finite nonnegative, probability and
sub-probability measures in M(S). Also, given B < ∞, M≤B(S) ⊂ MF (S) de-
notes the space of measures μ in MF (S) such that μ(S)≤ B . Recall that a Radon
measure is one that assigns finite measure to every relatively compact subset of S.
By identifying a Radon measure μ ∈ M(S) with the mapping on Cc(S) defined by

ϕ �→
∫
S
ϕ(x)μ(dx),

one can equivalently define a Radon measure on S as a linear mapping from Cc(S)

into R such that for every compact set K ⊂ S, there exists LK <∞ such that∣∣∣∣
∫
S
ϕ(x)μ(dx)

∣∣∣∣≤ LK‖ϕ‖∞ ∀ϕ ∈ Cc(S) with supp(ϕ)⊂ K.(1.3)

The space M(S) is equipped with the vague topology, that is, a sequence of
measures {μn}n∈N in M(S) is said to converge to μ in the vague topology (denoted
μn

v→ μ) if and only if for every ϕ ∈ Cc(S),∫
S
ϕ(x)μn(dx)→

∫
S
ϕ(x)μ(dx) as n→∞.(1.4)

On MF (S), we will also consider the weak topology, that is, a sequence {μn} in
MF (S) is said to converge weakly to μ (denoted μn

w→ μ) if and only if (1.4)
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holds for every ϕ ∈ Cb(S). As is well known, M(S) and MF (S), endowed with
the vague and weak topologies, respectively, are Polish spaces. The symbol δx will
be used to denote the measure with unit mass at the point x and, with some abuse of
notation, we will use 0̃ to denote the identically zero Radon measure on S. When S

is an interval, say [0,M), for notational conciseness, we will often write M[0,M)

instead of M([0,M)).
As mentioned above, we will mostly be interested in the case when S = [0,M)

and S = [0,M) × [0,∞), for some M ∈ (0,∞]. To distinguish these cases, we
will usually use f to denote generic functions on [0,M) and ϕ to denote generic
functions on [0,M) × [0,∞). With some abuse of notation, given f on [0,M),
we will sometimes also treat it as a function on [0,M) × [0,∞) that is constant
in the second variable. For any Borel measurable function f : [0,M) → R that is
integrable with respect to ξ ∈ M[0,M), we often use the short-hand notation

〈f, ξ〉 .=
∫
[0,M)

f (x)ξ(dx).

Also, for ease of notation, given ξ ∈ M[0,M) and an interval (a, b)⊂ [0,M), we
will use ξ(a, b) and ξ(a) to denote ξ((a, b)) and ξ({a}), respectively.

1.2.3. Measure-valued stochastic processes. Given a Polish space H, we let
D H[0, T ] and D H[0,∞), respectively, denote the spaces of H-valued, càdlàg
functions on [0, T ] and [0,∞), both endowed with the usual Skorokhod J1-
topology [16]. Then D H[0, T ] and D H[0,∞) are also Polish spaces (see [16]).
In this work, we will be interested in H-valued stochastic processes, where
H = MF [0,M) for some M ≤∞. These are random elements that are defined
on a probability space (	, F ,P) and take values in D H[0,∞), equipped with the
Borel σ -algebra (generated by open sets under the Skorokhod J1-topology). A se-
quence {Xn}n∈N of càdlàg, H-valued processes, with Xn defined on the probabil-
ity space (	n, Fn,Pn), is said to converge in distribution to a càdlàg H-valued
process X defined on (	, F ,P) if, for every bounded, continuous functional
F : D H[0,∞)→ R, we have

lim
n→∞En[F(Xn)] = E[F(X)],

where En and E are the expectation operators with respect to the probability mea-
sures Pn and P, respectively. Convergence in distribution of Xn to X will be de-
noted by Xn ⇒X.

2. Model dynamics and basic assumptions. In Section 2.1 we describe our
basic model and state our main assumptions, and in Section 2.2 we introduce some
auxiliary processes that are useful for the study of the dynamics of the model.

2.1. Description of the model. Consider a system with N servers, where ar-
riving customers are served in a nonidling, First-Come-First-Serve (FCFS) man-
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ner, that is, a newly arriving customer immediately enters service if there are any
idle servers, or, if all servers are busy, then the customer joins the back of the
queue, and the customer at the head of the queue (if one is present) enters ser-
vice as soon as a server becomes free. Our results are not sensitive to the exact
mechanism used to assign an arriving customer to an idle server, as long as the
nonidling condition is satisfied. Let E(N) denote the cumulative arrival process,
with E(N)(t) representing the total number of customers that arrive into the sys-
tem in the time interval [0, t], and let the service requirements be drawn from an
i.i.d. sequence {vi, i =−N + 1,−N + 2, . . . ,0,1, . . .}, with common cumulative
distribution function G. For i ∈ N, vi represents the service requirement of the ith
customer to enter service after time 0. Let X(N)(0) denote the number of customers
in the system at time 0. Then {vi, i =−(X(N)(0) ∧N)+ 1, . . . ,0} represents the
service requirements of customers already in service at time zero. When E(N) is a
renewal process, this is simply a GI/GI/N queueing system.

Consider the càdlàg, real-valued process R
(N)
E defined by

R
(N)
E (s)

.= inf
{
t > s :E(N)(t) > E(N)(s)

}− s,(2.1)

which denotes the time from s until the next arrival. If E(N) is a renewal process,
then R

(N)
E is simply the forward recurrence time. The following mild assumptions

will be imposed throughout, without explicit mention:

• E(N) is a nondecreasing, pure jump process with E(N)(0) = 0 and for t ∈
[0,∞), E(N)(t) <∞ and E(N)(t)−E(N)(t−) ∈ {0,1};

• the cumulative arrival process E(N) is independent of the sequence of service
requirements {vj , j =−N + 1,−N + 2, . . .};

• the process R
(N)
E is Markovian with respect to its own natural filtration; this

holds, for example, when E(N) is a renewal process (see Proposition 1.5 of
Section V of [1]) or an inhomogeneous Poisson process;

• G has density g;
• without loss of generality, we can (and will) assume that the mean service re-

quirement is 1, that is∫
[0,∞)

(
1 −G(x)

)
dx =

∫
[0,∞)

xg(x) dx = 1.(2.2)

The sequence of processes {R(N)
E ,E(N),X(N)(0), vi, i = −N + 1, . . . ,0,1,

. . .}N∈N are all assumed to be defined on a common probability space (	, F ,P)

that is large enough for the independence assumptions stated above to hold.
The first three assumptions stated above are very general, allowing for a large

class of arrival processes. Note that the fourth assumption implies, in particular,
that G(0+) = 0. The existence of a density is assumed for convenience, and is
satisfied by a large class of distributions of interest in applications. The relaxation
of this assumption would lead to a more complicated and somewhat less intuitive
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representation for the fluid limit, and thus, for ease of exposition, we have restricted
ourselves to this generality. Define the hazard rate

h(x)
.= g(x)

1 −G(x)
, x ∈ [0,M),(2.3)

where

M
.= sup{x ∈ [0,∞) :G(x) < 1}.(2.4)

Note that in many interesting cases, M =∞. Also, observe that h is always locally
integrable on [0,M) because for every 0 ≤ a ≤ b < M ,∫ b

a
h(x) dx = ln

(
1 −G(a)

)− ln
(
1 −G(b)

)
<∞.

However, the same calculation shows that h is not integrable on [0,M). When
additional assumptions on h are needed, they will be mentioned explicitly in the
statements of the results.

The N -server model described above can be represented in many ways (see,
e.g., representations for GI/G/N queueing systems in [1], Chapter XII). For
our purposes, we will find it convenient to encode the state of the system in the
processes (R

(N)
E ,X(N), ν(N)), where R

(N)
E is the process defined in (2.1), X(N)(t)

represents the number of customers in the system at time t (including those in
service and those in the queue, waiting to enter service) and ν

(N)
t is the discrete

nonnegative Borel measure on [0,M) that has a unit mass at the age of each of the
customers in service at time t . Here, the age a

(N)
j of customer j is (for every real-

ization) the piecewise linear function on [0,∞) that is defined to be 0 till the cus-
tomer enters service, then increases linearly while the customer is in service (rep-
resenting the amount of time elapsed since entering service) and is then constant
(equal to the total service requirement) after the customer departs. Hence, the total
number of customers in service at time t is given by 〈1, ν

(N)
t 〉 = ν

(N)
t [0,M), which

is bounded above by N and so ν
(N)
t ∈ M≤N [0,M) for every t ∈ [0,∞). Our re-

sults will be independent of the particular rule used to assign customers to servers,
but for technical purposes we will find it convenient to also introduce the additional
“station process” sequence ϒ(N) .= (ϒ

(N)
j , j ∈ {−(X(N)(0)∧N)+ 1, . . . ,0}∪N),

N ∈ N, defined on the same probability space (	, F ,P). For each t ∈ [0,∞), if
customer j has already entered service by time t , then ϒ

(N)
j (t) is equal to the in-

dex i ∈ {1, . . . ,N} of the station at which customer j receives/received service and
ϒ

(N)
j (t)

.= 0 otherwise. Finally, for t ∈ [0,∞), let F̃ (N)
t be the σ -algebra generated

by {X(N)(0),R
(N)
E (s), a

(N)
j (s),ϒ

(N)
j (s), j ∈ {−(X(N)(0)∧N)+1, . . . ,0}∪N, s ∈

[0, t]} and let {F (N)
t }t≥0 denote the associated right continuous filtration, which

is completed (with respect to P) so that it satisfies the usual conditions. As dis-
cussed in the next section, it is not hard to see that (E(N),X(N), ν(N)) is {F (N)

t }-
adapted. An explicit construction of these processes (in a more general setting
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that allows the possibility of abandonments) can be found in Appendix A of
Kang and Ramanan [12]. Moreover, it follows from Appendix B of [12] that
{(R(N)

E (t),X(N)(t), ν
(N)
t ), F (N)

t ,P} is a strong Markov process, although we do
not use this property in this paper.

2.2. Some auxiliary processes. We now introduce the following auxiliary
processes that will be useful for the study of the evolution of the system:

• the cumulative departure process D(N), where D(N)(0) = 0 and for t > 0,
D(N)(t) is the cumulative number of customers that have departed the system in
the interval (0, t];

• the process K(N), where K(N)(0) = 0 and for t > 0, K(N)(t) represents the
cumulative number of customers that have entered service in the interval (0, t].

Simple mass balances show that

D(N) .=X(N)(0)−X(N) +E(N)(2.5)

and

K(N) .= 〈1, ν(N)〉− 〈1, ν
(N)
0

〉+D(N).(2.6)

Due to the FCFS nature of the service and the absence of abandonments, observe
that K(N)(t) is also the highest index of any customer that has entered service by

time t , and so K(N) is {F (N)
t }-adapted.

For N ∈ N and each j , let α
(N)
j

.= inv[K(N)](j), where inv is defined as in

(1.2). In other words, α
(N)
j is the time at which customer j enters service. The age

process of each customer in service increases linearly, and so, given the service
requirement of the customer, the evolution of the age process can be described
explicitly in terms of the stopping times α

(N)
j as follows:

a
(N)
j (t)=

{[
t − α

(N)
j

]∨ 0, if t − α
(N)
j < vj ,

vj , otherwise.
(2.7)

For t ≥ 0, the measure ν
(N)
t can be written in the form

ν
(N)
t =

K(N)(t)∑
j=−〈1,ν

(N)
0 〉+1

δ
a

(N)
j (t)

1{a(N)
j (t)<vj }.(2.8)

Recall that δx represents the Dirac mass at the point x. Now, at any time t , the age
process of any customer has a right-derivative that is positive (and equal to one)
if and only if the customer is in service, and has a left-derivative that is positive
and a right-derivative that is zero if and only if it has just departed. Thus D(N) is
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clearly {F (N)
t }-adapted and, since ν

(N)
t can be written explicitly purely in terms of

the age process as

ν
(N)
t =

K(N)(t)∑
j=−〈1,ν

(N)
0 〉+1

δ
a

(N)
j (t)

1{d/dta
(N)
j (t+)>0},(2.9)

ν(N) is also {F (N)
t }-adapted. Furthermore, since 〈1, ν

(N)
t 〉 represents the number

of customers in service at time t , the nonidling condition takes the form

N − 〈1, ν(N)〉= [N −X(N)]+.(2.10)

This shows that 〈1, ν
(N)
t 〉 < N if and only if X(N)(t) < N , which occurs if and

only if the number in system is equal to the number in service, and so there is
no queue. From the above discussion, it follows immediately that the processes
X(N), ν(N),D(N) and K(N) are all {F (N)

t }-adapted. For an explicit construction of
these processes, in a more general context that allows the possibility of customer
abandonment, see Appendix A of Kang and Ramanan [12].

REMARK 2.1. If M <∞, then for every N , we will always assume that ν
(N)
0

has support in [0,M). From (2.8), this automatically implies that ν
(N)
t also has sup-

port in [0,M) for every t ∈ [0,∞) and, moreover, that ν(N) ∈ D M≤N [0,M)[0,∞).

3. Main results. We now summarize our main results. First, in Section 3.1,
we introduce the so-called fluid equations, which provide a continuous analog of
the discrete model introduced in Section 2. In Section 3.2 we present our main
results, which in particular show that, under the specified assumptions, the fluid
equations uniquely characterize the strong law of large numbers limit of the multi-
server system, as the number of servers goes to infinity. Lastly, in Section 3.3, we
show how our results can be used to obtain fluid limits of various other functionals
of interest. This, in particular, illustrates the usefulness of adopting a measure-
valued representation for the state.

3.1. Fluid equations. Consider the following scaled versions of the ba-
sic processes describing the model. For N ∈ N, the scaled state descriptor
(R

(N)
E ,X(N), ν(N)) is given by

R
(N)
E (t)

.=R
(N)
E (t); X(N)(t)

.= X(N)(t)

N
; ν

(N)
t (B)

.= ν
(N)
t (B)

N
(3.1)

for t ∈ [0,∞) and any Borel subset B of [0,M), and observe that ν
(N)
t is a sub-

probability measure on [0,M) for every t ∈ [0,∞). Analogously, define

E(N) .= E(N)

N
; D(N) .= D(N)

N
; K(N) .= K(N)

N
.(3.2)
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Recall that I0[0,∞) is the subset of nondecreasing functions f ∈ DR+[0,∞)

with f (0)= 0 and M = sup{x ∈ [0,∞) :G(x) < 1}, and define

S0
.= {(f, x,μ) ∈ I0[0,∞)×R+ × M≤1[0,M) : 1− 〈1,μ〉 = [1 − x]+}.(3.3)

S0 serves as the space of possible input data for the fluid equations. We make the
following convergence assumptions on the primitives of the scaled sequence of
systems.

ASSUMPTION 1 (Initial conditions). There exists an S0-valued random ele-
ment (E,X(0), ν0) such that, as N →∞, the following limits hold:

(1) E(N) → E in DR+[0,∞), P-a.s., and E[E(N)(t)] → E[E(t)] < ∞ for every
t ∈ [0,∞);

(2) X(N)(0)→X(0) in R+, P-a.s., and E[X(N)(0)]→ E[X(0)]<∞;
(3) ν

(N)
0 → ν0 weakly in M≤1[0,M), P-a.s.

REMARK 3.1. Note that conditions (1) and (2) of Assumption 1 imply that
for every t ∈ [0,∞), lim supN E[X(N)(0)+E(N)(t)]<∞.

REMARK 3.2. Using the Skorokhod representation theorem in the standard
way, it can be shown that all the stochastic process convergence results in the
paper continue to hold if, in Assumption 1, the almost sure limits are replaced by
limits in the sense of weak convergence.

Our goal is to identify the limit in distribution of the quantities (X(N), ν(N)),
as N → ∞. In this section, we first introduce the so-called fluid equations and
provide some intuition as to why the limit of any sequence {(X(N), ν(N))} should
be expected to be a solution to these equations. In Section 5, we provide a rigorous
proof of this fact. In what follows, h is the hazard rate function defined in (2.3).

DEFINITION 3.3 (Fluid equations). The càdlàg function (X, ν) defined on
[0,∞) and taking values in [0,∞) × M≤1[0,M) is said to solve the fluid equa-
tions associated with (E,X(0), ν0) ∈ S0 if and only if for every t ∈ [0,∞),∫ t

0
〈h, νs〉ds <∞,(3.4)

and the following relations are satisfied: for every ϕ ∈ C 1,1
c ([0,M)×R+),

〈ϕ(·, t), νt 〉 = 〈ϕ(·,0), ν0〉 +
∫ t

0
〈ϕx(·, s)+ ϕs(·, s), νs〉ds

(3.5)

−
∫ t

0
〈h(·)ϕ(·, s), νs〉ds +

∫
[0,t]

ϕ(0, s) dK(s);

X(t) = X(0)+E(t)−
∫ t

0
〈h, νs〉ds(3.6)
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and

1 − 〈1, νt 〉 = [1 −X(t)]+,(3.7)

where

K(t)= 〈1, νt 〉 − 〈1, ν0〉 +
∫ t

0
〈h, νs〉ds.(3.8)

We now provide an intuitive explanation for the form of the fluid equations. Sup-
pose (X, ν) solves the fluid equations associated with some (E,X(0), ν0) ∈ S0.
Then, roughly speaking, for x ∈ R+, νs(dx) represents the amount of mass (or
limiting fraction of customers) whose age lies in the range [x, x + dx) at time s.
Since h is the hazard rate, h(x) represents the fraction of mass with age x that
would depart from the system at any time. Thus, the quantity 〈h, νs〉, which is fi-
nite for almost every s by (3.4), represents the departure rate of mass from the fluid
system at time s, and the process D given by

D(t)
.=
∫ t

0
〈h, νs〉ds, t ∈ [0,∞),(3.9)

represents the cumulative amount of departures from the fluid system. Because E

is the limiting cumulative arrival rate of mass into the fluid system in the interval
[0, t], a simple mass balance yields the relation (3.6) [which is the analogue of (2.5)
describing the N -server system]. Likewise, (3.7) and (3.8) are the fluid versions of
the nonidling condition (2.10) and the mass balance relation (2.6), respectively.
It is clear from (3.6) that X is continuous (resp., absolutely continuous) if E is
continuous (resp., absolutely continuous).

Next, note that the fluid equation (3.5) implies, in particular, that for f ∈
C 1

c [0,M),

〈f, νt 〉 = 〈f, ν0〉 +
∫ t

0
〈f ′, νs〉ds −

∫ t

0
〈f h, νs〉ds + f (0)K(t).(3.10)

The difference 〈f, νt 〉−〈f, ν0〉 is caused by three different phenomena—evolution
of the mass in the system, departures and arrivals—which are represented by
the second, third and fourth terms, respectively, on the right-hand side of (3.10).
Specifically, the second term on the right-hand side represents the change in ν due
to the fact that the ages of all customers in service increase at a constant rate 1,
the third term represents the change due to departures of customers that have com-
pleted service and the last term on the right-hand side of (3.10) accounts for new
customers entering service. Here K(t) represents the cumulative amount of mass
that has entered service in the fluid system, and is multiplied by f (0) because, by
definition, any customer entering service has age 0 at the time of entry.

To close the section, we state a simple property, which we will sometimes refer
to as the “nonanticipative” property, of solutions to the fluid limit that will be used
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in Section 6. For this, we require the following notation: for any t ∈ [0,∞),

E
[t] .= E(t + ·)−E(t), K [t] .=K(t + ·)−K(t),

X
[t] .= X(t + ·), ν[t] .= νt+·.

LEMMA 3.4. Suppose (X, ν) is a solution to the fluid equations for a given
initial condition (E,X(0), ν0) ∈ S0, and K is the associated process that satis-

fies (3.8). Then for any t ∈ [0,∞), (X
[t]

, ν[t]) is a solution to the fluid equations

associated with the initial condition (E
[t]

,X(t), νt ) ∈ S0, and K [t] is the corre-
sponding process that satisfies (3.8), with ν replaced by ν[t].

The proof of the lemma involves straightforward algebraic manipulations of the
fluid equations, and is thus omitted.

3.2. Summary of main results. Our first result concerns uniqueness of solu-
tions to the fluid equations, which is established at the end of Section 4.1.

THEOREM 3.5. Given any (E,X(0), ν0) ∈ S0, there exists at most one solu-
tion (X, ν) to the associated fluid equations (3.4)–(3.7). Also, if ν satisfies (3.4)
then (X, ν) is a solution to the fluid equations (3.5)–(3.8) if and only if (X, ν)

satisfies (3.6) and, for every f ∈ Cb(R+),∫
[0,M)

f (x)νt (dx) =
∫
[0,M)

f (x + t)
1 −G(x + t)

1 −G(x)
ν0(dx)

(3.11)
+
∫
[0,t]

f (t − s)
(
1 −G(t − s)

)
dK(s),

where K is given by (3.8). Moreover, if E is absolutely continuous with derivative
a.e. equal to λ, then K is also absolutely continuous and its derivative κ satisfies
for a.e. t ∈ [0,∞),

κ(t)
.=
⎧⎨
⎩

λ(t), if X(t) < 1,
λ(t)∧ 〈h, νt 〉, if X(t)= 1,
〈h, νt 〉, if X(t) > 1.

(3.12)

Furthermore, if both ν0 and E are absolutely continuous, then νt is absolutely
continuous for every t ∈ [0,∞).

REMARK 3.6. If E is absolutely continuous with respect to Lebesgue measure
on [0,∞), then so is 〈f, ν〉, and the solutions to the fluid equation are continuous
(in the time parameter), as the word fluid suggests.
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It is also possible to consider the case when the residual service times of the
customers already in the system is distributed according to another distribution G̃.
Indeed, it can be shown that in this case, the relations (3.11) and (3.12) continue to
hold, but with G in the first integral on the right-hand side of (3.11) replaced by G̃.

Our next main result shows that, under a mild additional condition on the hazard
rate function h stated as Assumption 2 below, a solution to the fluid equations
exists and is the functional law of large numbers limit of the N -server system, as
N →∞.

ASSUMPTION 2. There exists m0 < M such that h is either bounded or lower
semicontinuous on (m0,M).

THEOREM 3.7. Suppose the initial conditions (E,X(0), ν0) ∈ S0 satisfy As-
sumption 1. Then the sequence {(X(N), ν(N))} is relatively compact. If, in addition,
Assumption 2 holds, then a unique solution (X, ν) to the fluid equations associ-
ated with (E,X(0), ν0) exists and (X(N), ν(N)) converges weakly, as N →∞, to
(X, ν).

The proof of Theorem 3.7 is given at the end of Section 5.4. The key steps in the
proof involve showing tightness of the sequence {(X(N), ν(N))}, which is carried
out in Section 5.3, characterizing the limit points of the sequence as solutions to
the fluid equations, which is done in Section 5.4, and invoking the uniqueness of
solutions to the fluid equations stated above in Theorem 3.5.

REMARK 3.8. Define ν∗ to be the measure on [0,M) that is absolutely con-
tinuous with respect to Lebesgue measure, and has density 1−G(x): for any Borel
set A⊂ [0,M),

ν∗(A)
.=
∫
A

(
1 −G(x)

)
dx.(3.13)

It is easy to verify that, when E is absolutely continuous with derivative λ(·) al-
most everywhere bounded below by 1, X(0) = c ≥ 1 and ν0 = ν∗, the pair (X, ν)

defined by

X(t)= c+E(t)− t, νt = ν∗, t ∈ [0,∞),

satisfy (3.6), (3.11) and (3.12) with K(t) = t and κ = 1 and K = id, where recall
that id denotes the identity function id(t) = t, t ≥ 0. In particular, if E = id then
(c1̃, ν∗) constitutes an invariant solution for the fluid equations; that is, if X(0)= c

and ν0 = ν∗ then X(t)= c and νt = ν∗ for all t ≥ 0.

In the time homogeneous setting (i.e., with constant fluid arrival rate) it is there-
fore natural to ask whether the component ν of the unique solution to the fluid
equations (when it exists) converges to ν∗ in the large-time limit. This is the subject
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of our last result. Also, recall that a family of finite, nonnegative measures {μt }t∈R+
is said to converge weakly, as t →∞, monotonically up to a finite, nonnegative
measure μ if and only if for every nonnegative, bounded, continuous function f ,
the sequence of real numbers 〈f,μt 〉 increases, as t →∞, to 〈f,μ〉.

THEOREM 3.9. Suppose Assumption 2 is satisfied. Given (λ id,X(0), ν0) ∈ S0
with λ ∈ [0,1], let (X, ν) be the unique solution to the associated fluid equations.
Then the following two properties are satisfied:

(1) if X(0) = 0 then, as t →∞, X(t) = 〈1, νt 〉 converges monotonically up to λ

and νt converges weakly monotonically up to λν∗;
(2) if the service distribution has a second moment, then given any initial con-

dition (id,X(0), ν0) ∈ S0, as t →∞, νt converges weakly to ν∗, that is, for
every f ∈ Cb[0,∞),

lim
t→∞〈f, νt 〉 = 〈f, ν∗〉 =

∫
[0,∞)

f (x)
(
1 −G(x)

)
dx.(3.14)

The proof of Theorem 3.9 is presented in Section 6. For the case λ < 1, prop-
erty 1 of Theorem 3.9 was stated as Theorem 7.3 of [22] without proof.

REMARK 3.10. Our main theorems hold for the majority of distributions
that arise in practice, including the exponential, lognormal, phase type, uniform,
Weibull and Pareto distributions. It does not, however, cover the deterministic dis-
tribution.

3.3. Fluid limits of other functionals. In the last section, we identified the fluid
limit of the scaled number of customers in system. In fact, the fluid limit contains
a lot more information. For instance, as a direct consequence of the continuous
mapping theorem, Theorem 3.7 also identifies the limit, as N →∞, of the scaled
queue length process Q(N) = Q(N)/N , which is the normalized number of cus-
tomers waiting in queue (and not in service) at any time: we have

Q(N) .=Q(N)(0)+E(N) −K(N) ⇒ Q
.=Q(0)+E −K.

Below, we identify the fluid limits of other functionals of interest.

3.3.1. Waiting time. The waiting time functional is of particular interest in the
context of call centers, where service targets are often specified in terms of the
proportion of calls that experience a wait of less than some given level (see, e.g.,
[2]).

Recall the definitions of inv[f ] and f−1 given in (1.1) and (1.2), respectively.
Assuming the system starts empty, the waiting time w(N)(j) of the j th customer
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in the N th system is the time elapsed between arrival into the system and entry
into service. This functional can be written explicitly as

w(N)(j)
.= inv

[
K(N)](j)− inv

[
E(N)](j), j ∈ N.(3.15)

Also, consider the related process defined on [0,∞) by w(N)(t)
.= w(N)(E(N)(t))

and note that for t ∈ [0,∞),

w(N)(t)= inv
[
K(N)](E(N)(t)

)− inv
[
E(N)](E(N)(t)

)
.

Finally, let w be the process given by

w(t)
.=K−1(E(t))− t, t ∈ [0,∞).(3.16)

We will say a function f ∈ D[0,∞) is uniformly strictly increasing if it is ab-
solutely continuous and there exists θ > 0 such that f ′(t) ≥ θ for all t ∈ [0,∞).
Note that for any such function, f−1(f (t)) = t and f−1 is continuous on [0,∞).
We have the following fluid limit result for the waiting times in the system.

THEOREM 3.11. Suppose the conditions of Theorem 3.7 hold, and E is uni-
formly strictly increasing. If, in addition, K is continuous and uniformly strictly
increasing, then w(N) ⇒w as N →∞.

PROOF. By Assumption 1 and Theorem 3.7, it follows that E(N) ⇒ E and
K(N) ⇒ K . Using the Skorokhod representation theorem, we can assume that the
convergence in both cases is almost sure. When combined with the fact that E and
K are uniformly strictly increasing, Lemma 4.10 of [18] shows that inv[f (N)] →
f−1 (almost surely, uniformly on compact sets) for f =E and K . Now, fix T <∞
and ω ∈ 	 such that these limits hold and also fix some ε > 0. Moreover, let
N0 =N0(ω) <∞ be such that for all N ≥N0,

sup
s∈[0,E(N)(T )]

[
inv
[
f (N)](s)− f−1(s)

]≤ ε

for f =E,K . Then we have

sup
t∈[0,T ]

∣∣inv
[
K(N)](E(N)(t)

)−K−1(E(t))
∣∣

≤ sup
t∈[0,T ]

∣∣inv
[
K(N)](E(N)(t)

)−K−1(E(N)(t)
)∣∣

+ sup
t∈[0,T ]

∣∣K−1(E(N)(t)
)−K−1(E(t))

∣∣
≤ ε + sup

t∈[0,T ]
∣∣K−1(E(N)(t)

)−K−1(E(t))
∣∣.
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The continuity of K−1 and the fact that a.s., E(N) → E u.o.c., as N → ∞, to-
gether, ensure that a.s. |K−1(E(N)) − K−1(E)| → 0 u.o.c. as N → ∞. So, we
have

lim
N→∞ sup

t∈[0,T ]
∣∣inv
[
K(N)](E(N)(t)

)−K−1(E(t))
∣∣≤ ε.

Sending ε → 0, we infer that inv[K(N)] ◦ E(N) → K−1 ◦ E uniformly on [0, T ].
An analogous argument shows that inv[E(N)] ◦ E(N) → id, where recall that
id : t �→ t is the identity mapping on [0,∞). When combined with the definition
of w, the theorem follows. �

3.3.2. Workload process. The workload (or unfinished work) process V (N) is
defined to be the amount of work in the N -server system (including the work of
customers waiting in queue and the residual service of customers in service)

V (N)(t)=
K(N)(t)∑

j=−〈1,ν
(N)
0 〉+1

(
vj − a

(N)
j (t)

)
1{a(N)

j (t)<vj } +
X(N)(0)−〈1,ν

(N)
0 〉+E(N)(t)∑

j=K(N)(t)+1

vj .

Let the scaled workload process V (N) be defined in the usual fashion. We briefly
outline below how the results and techniques of this paper may be used to charac-
terize the limit V of the sequence {V (N)} of scaled workload processes. A rigorous
proof is beyond the scope of this paper.

Let η(N) be the measure-valued process (analogous to ν(N)) that represents the
residual service times (rather than the ages) of customers in service in the N th
system: for t ∈ [0,∞),

η
(N)
t

.=
K(N)(t)∑

j=−〈1,ν
(N)
0 〉+1

δ
vj−a

(N)
j (t)

1{a(N)
j (t)<vj }.

Also, let η(N) denote the corresponding scaled quantity. Fluid equations can be
derived for the limit η of the sequence {η(N)} in a manner similar to those derived
for ν in this paper. Moreover, under mild assumptions, we believe it can be shown
that, as N →∞, η(N) ⇒ η, where for every f ∈ Cc[0,M) and t ∈ [0,∞),

〈f,ηt 〉 .=
∫
[0,M)

(∫ ∞
0

g(x + r)

1 −G(x)
f (r) dr

)
νt (dx).(3.17)

A completely rigorous proof of this result is beyond the scope of this paper. How-
ever, below we provide a plausible argument to justify the above claim. Given the
age x of any customer that was already in service at time 0, the probability that
the residual service time of the customer at time t is greater than u is given by
(1 −G(x + t + u))/(1 −G(x)). Thus the density of the residual service time dis-
tribution at time t for a customer that had age x at time 0 is g(x+ t+·)/(1−G(x)).
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Likewise, the density of the residual service distribution at time t for a customer
that entered the system at time 0 < s < t is g(t − s + ·). Moreover, given the ages
of all customers in service, the residual service times of customers in service are
independent. Therefore, by a strong law of large numbers reasoning, one expects
that the limiting residual service measure η can be written in terms of the limit-
ing initial age measure ν0 and limiting cumulative entry-into-service process K as
follows: for f ∈ Cc[0,M),

〈f,ηt 〉 =
∫
[0,M)

(∫ ∞
0

g(x + t + r)

1 −G(x)
f (r) dr

)
ν0(dx)

+
∫
[0,t]

(∫ ∞
0

g(t − s + r)f (r) dr

)
dK(s).

The expression (3.17) can then be obtained by using the representation (4.3) to
rewrite the right-hand side above as an integral with respect to νt .

From the definition of η
(N)
t , the workload process admits the alternative repre-

sentation

V (N)(t)=
∫
[0,M)

xη
(N)
t (dx)+

E(N)(t)+X(N)(0)−〈1,ν
(N)
0 〉∑

j=K(N)(t)+1

vj .

Due to (2.5), (2.6) and (2.10), it follows that the number of terms in the second sum
equals [X(N)(t) − N ]+. When combined with the fact that the service times {vj }
are i.i.d. with mean 1 and the convergence of η(N) to η it is natural to conjecture
(under suitable assumptions that justify the substitution of linear test functions f )
the convergence V (N) ⇒ V as N →∞, where

V (t)
.=
∫
[0,M)

(∫ ∞
0

rg(x + r)

1 −G(x)
dr

)
νt (dx)+ (X(t)− 1

)+
.(3.18)

It is worthwhile to note that, when ν0 equals the invariant measure ν∗ defined in
(3.13), then νt = ν∗ for all t ∈ [0,∞) and V (t) < ∞ if and only if G has a finite
second moment.

4. Uniqueness of solutions to the fluid equation. In this section we show
that there is at most one solution to the fluid equation for any given initial con-
dition. In fact, we will establish two stronger properties of the fluid equation,
both of which imply uniqueness. The first is continuity of the mapping that takes
(E,X(0), ν0) ∈ S0 to a corresponding solution (X, ν) of the fluid equation, which
is established in Section 4.1. The second is a maximality property that is estab-
lished in Section 4.2. The proofs of both continuity and maximality rely on identi-
fying the solution to a certain integral equation, which is carried out in Section 4.3.
Existence of solutions to the fluid equation will follow from results established in
Section 5 (see, in particular, Theorem 5.15).
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4.1. Continuity of the fluid equation map. We begin by analyzing the integral
equation (4.2) below, which is the fluid equation (3.5), but with K replaced by an
arbitrary, bounded variation càdlàg function Z in BV 0[0,∞), and with ν0 replaced
by an arbitrary Radon measure υ0 in M[0,M). Specifically, in Theorem 4.1 we
provide an explicit formula for the solution ν to the integral equation in terms of
υ0 and Z. Roughly speaking, when υ0 = ν0 and Z is any càdlàg, nondecreasing
process this formula characterizes the evolution of the fluid age process ν that
would result when the cumulative fluid arrivals into service is Z. On substituting
Z =K , this yields a relation that must be satisfied by any pair of processes ν and K

that satisfy the fluid equations for the initial condition ν0. This relation, along with
the nonidling condition, is then used to establish continuity of the fluid solution
map in Theorem 4.6.

Recall that M ∈ (0,∞] is the right-end of the support of the hazard rate func-
tion h, and that h is always locally Lebsegue integrable on [0,M).

THEOREM 4.1. Suppose {νs}s≥0 ∈ D M[0,M)[0,∞) has the property that for
every m ∈ [0,M) and T ∈ [0,∞), there exists C(m,T ) <∞ such that∣∣∣∣

∫ ∞
0

〈ϕ(·, s)h(·), νs〉ds

∣∣∣∣≤C(m,T )‖ϕ‖∞(4.1)

for every ϕ ∈ Cc([0,M)×[0,∞)) with supp(ϕ)⊆ [0,m]× [0, T ]. Then, given any
υ0 ∈ M[0,M) and Z ∈ BV 0[0,∞), {νt }t≥0 satisfies the integral equation

〈ϕ(·, t), νt 〉 = 〈ϕ(·,0), υ0〉 +
∫ t

0
〈ϕx(·, s)+ ϕs(·, s), νs〉ds

(4.2)

−
∫ t

0
〈h(·)ϕ(·, s), νs〉ds +

∫
[0,t]

ϕ(0, s) dZ(s)

for every ϕ ∈ C 1,1
c ([0,M)×R+) and t ∈ [0,∞), if and only if {νs}s≥0 satisfies∫

[0,M)
f (x)νt (dx) =

∫
[0,M)

f (x + t)
1 −G(x + t)

1 −G(x)
υ0(dx)

(4.3)
+
∫
[0,t]

f (t − s)
(
1 −G(t − s)

)
dZ(s)

for every f ∈ Cc(R+) and t ∈ [0,∞). Moreover, if υ0 ∈ MF [0,M), then (4.3)
holds for every f ∈ Cb(R+).

REMARK 4.2. We shall refer to the integral equation (4.2) as the age equation
(corresponding to υ0 and Z). Note that (4.1) is implied by condition (3.4) of the
fluid equations and, as remarked earlier, the age equation is simply the fluid equa-
tion (3.5), with υ0 and Z in place of ν0 and K , respectively. Furthermore, note that
equation (4.3) only depends on the values of f in [0,M) since f (u)(1−G(u))= 0
for all u≥M , and (4.3) completely characterizes the deterministic measure-valued
process ν.
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REMARK 4.3. The last integral in (4.3) is, as usual, to be interpreted as a
Riemann–Stieltjes integral. A straightforward integration-by-parts shows that for
every f ∈ C 1

b(R+) and t ∈ [0,∞), this integral also admits the alternative repre-
sentation ∫

[0,t]
f (t − s)

(
1 −G(t − s)

)
dZ(s)

= f (0)Z(t)+
∫
[0,t]

f ′(t − s)
(
1 −G(t − s)

)
Z(s) ds(4.4)

−
∫
[0,t]

f (t − s)g(t − s)Z(s) ds.

The proof of Theorem 4.1 involves PDE techniques and is relegated to Sec-
tion 4.3. As a simple corollary of Theorem 4.1, we have the following result.

COROLLARY 4.4. Let (X, ν) be a solution to the fluid equations associated
with (E,X(0), ν0) ∈ S0. Then, for every t ∈ [0,∞), the function K defined by
(3.8) satisfies the renewal equation

K(t) = 〈1, νt 〉 − 〈1, ν0〉 +
∫
[0,M)

G(x + t)−G(x)

1 −G(x)
ν0(dx)

(4.5)

+
∫ t

0
g(t − s)K(s) ds,

and admits the representation

K(t) =
∫
[0,t]

(〈1, νt−s〉 − 〈1, ν0〉) dU(s)

(4.6)

+
∫
[0,t]

(∫
[0,M)

G(x + t − s)−G(x)

1 −G(x)
ν0(dx)

)
dU(s),

where dU is the renewal measure associated with the distribution G.

PROOF. We first claim that if (X, ν) solve the fluid equations associated with
(E,X(0), ν0), then K defined by (3.8) must necessarily be nondecreasing (as one
would expect from the interpretation of K as the limiting fraction of cumulative
entries into service). In order to justify the claim, fix 0 ≤ s ≤ t . If X(t) > 1 then
the nonidling condition (3.7) implies that 〈1, νt 〉 = 1 which, when substituted into
(3.8), shows that

K(t)−K(s)= 1 − 〈1, νs〉 +
∫ t

s
〈h, νu〉du≥

∫ t

s
〈h, νu〉du≥ 0.

On the other hand, if X(t) ≤ 1, then the nonidling condition (3.7) shows that
〈1, νt 〉 =X(t) and 〈1, νs〉 ≤X(s). Hence, (3.8), (3.6) and the fact that E is nonde-
creasing, show that

K(t)−K(s)= 〈1, νt 〉 −X(t)− 〈1, νs〉 +X(s)+E(t)−E(s)≥ 0,
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which proves the claim.
In addition, by assumption, K and ν satisfy (3.4) and (3.5). In other words, (4.1)

is satisfied and (4.2) holds with υ0 = ν0 and Z = K . Therefore, by Theorem 4.1,
(4.3) also holds with υ0 = ν0 and Z =K , and substituting f = 1, we obtain∫

[0,t]
(
1 −G(t − s)

)
dK(s)

= 〈1, νt 〉 −
∫
[0,M)

1 −G(x + t)

1 −G(x)
ν0(dx)

= 〈1, νt 〉 − 〈1, ν0〉 +
∫
[0,M)

G(x + t)−G(x)

1 −G(x)
ν0(dx).

On the other hand, equation (4.4), with Z =K and f = 1, shows that∫
[0,t]
(
1 −G(t − s)

)
dK(s)=K(t)−

∫ t

0
g(t − s)K(s) ds.

Equating the right-hand sides of the last two displays, we obtain (4.5). Finally,
since K is bounded on finite intervals, and the sum of the first two terms on the
right-hand side of (4.5) is uniformly bounded by two, representation (4.6) is a
direct result of the renewal theorem (see, e.g., Theorem 2.4(ii) of Section V in [1]).

�

As an immediate consequence of Theorem 4.1 and Corollary 4.4, we obtain the
following simple bound. Given a Radon measure μ ∈ M[0,M), let |μ|TV repre-
sent the total variation of μ on [0,M).

LEMMA 4.5. For i = 1,2, suppose υi
0 ∈ M[0,M) and Zi ∈ BV 0[0,∞) are

given, and suppose (4.1) and (4.2) are satisfied with ν, υ0 and Z replaced by νi ,
υi

0 and Zi , respectively. Then for every T <∞ and f ∈ C 1
b(R+),

‖〈f, ν2
s 〉 − 〈f, ν1

s 〉‖T ≤ ‖f ‖M |�υ0|TV + (2‖f ‖T + ‖f ′‖T )‖�Z‖T ,(4.7)

where �Z
.= Z2 −Z1 and �υ0

.= υ
(2)
0 − υ

(1)
0 .

PROOF. By Theorem 4.1 and Remark 4.3, for i = 1,2, relations (4.3) and (4.4)
are satisfied with ν, υ0 and Z replaced by νi , υi

0 and Zi , respectively. Together,
these relations imply that for f ∈ C 1

b(R+) and t ∈ [0,∞),

〈f, ν2
t 〉 − 〈f, ν1

t 〉 =
∫
[0,M)

f (x + t)
1 −G(x + t)

1 −G(x)
�υ0(dx)+ f (0)�Z(t)

+
∫ t

0
f ′(t − s)

(
1 −G(t − s)

)
�Z(s) ds

−
∫ t

0
f (t − s)g(t − s)�Z(s) ds.



54 H. KASPI AND K. RAMANAN

Since 1 − G(u) = 0 for u ≥ M , this implies that for f ∈ C 1
b(R+) and for every

t ∈ [0, T ],
|〈f, ν2

t 〉 − 〈f, ν1
t 〉| ≤

∫
[0,M−t)

|f (x + t)||�υ0|(dx)

+ (|f (0)| + ‖f ‖t∧M + ‖f ′‖t∧M

)‖�Z‖T

from which (4.7) follows. �

We now state the main result of this section. Below, �H denotes H(2) − H(1)

for H =K,D,E,X and ν.

THEOREM 4.6 (Continuity of solution map). For i = 1,2, let (Xi, ν(i)) be a
solution to the fluid equations associated with (Ei,Xi(0), ν

(i)
0 ) ∈ S0 and let Ki

and Di be defined as in (3.8) and (3.9), respectively, with ν replaced by νi . If
ν1

0 = ν2
0 then for every T <∞,[

sup
t∈[0,T ]

�K(t)
]
∨
[

sup
t∈[0,T ]

�D(t)
]
≤
[
|�X(0)| + sup

t∈[0,T ]
�E(t)

]
∨ 0(4.8)

and, hence,

‖�K‖T ∨ ‖�D‖T ≤ |�X(0)| + ‖�E‖T .(4.9)

Moreover, for every T <∞ and f ∈ C 1
b(R+),

‖〈f, ν2
s 〉 − 〈f, ν1

s 〉‖T ≤ (2‖f ‖T + ‖f ′‖T )
(
�X(0)+ ‖�E‖T

)
.(4.10)

PROOF. Fix T <∞ and define ε ≥ 0 by

ε
.=
[
�X(0)+ sup

t∈[0,T ]
�E(t)

]
∨ 0.(4.11)

For δ > 0, let

τδ
.= inf{t ≥ 0 :�K(t)≥ ε + δ}.

We shall prove by contradiction that τδ > T a.s., from which the continuity prop-
erty will follow. If τδ =∞ for all δ > 0, then supt∈[0,∞) �K(t)≤ ε, and the result
follows. Therefore, we can assume without loss of generality that there exists δ > 0
such that τδ <∞, and, for simplicity of notation, denote τδ simply by τ . The right-
continuity of K1 and K2 imply that

�K(τ)≥ ε + δ.(4.12)

We now show that τ > T . Indeed, suppose τ ∈ [0, T ] and consider the following
two cases:

Case 1. X1(τ ) < 1. In this case, the nonidling condition (3.7) implies that

X1(τ )− 〈1, ν1
τ 〉 = 0 ≤X2(τ )− 〈1, ν2

τ 〉.
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Together with relations (3.8), (3.6), (4.11) and the fact that �ν0 ≡ 0, this implies
that

�K(τ)=�E(τ)+�X(0)− 〈1,�ν0〉 −�X(τ)+ 〈1,�ντ 〉 ≤ ε,

which contradicts (4.12).
Case 2. X1(τ ) ≥ 1. In this case, due to the nonidling condition (3.7), we have

〈1, ν1
τ 〉 = 1 ≥ 〈1, ν2

τ 〉. Along with Corollary 4.4 and the fact that �ν0 = 0, this
implies that

�K(τ) = 〈1,�ντ 〉 − 〈1,�ν0〉 +
∫
[0,M)

G(x + τ)−G(x)

1 −G(x)
�ν0(dx)

+
∫ τ

0
g(τ − s)�K(s) ds

= 〈1,�ντ 〉 +
∫ τ

0
g(τ − s)�K(s) ds

≤
∫ τ

0
g(τ − s)�K(s) ds.

We now assert that the right-hand side is strictly less than ε+ δ, which contradicts
(4.12). To see why the assertion holds, note that if g(s)= 0 for a.e. s ∈ [0, τ ], then
the right-hand side of the last inequality equals zero, which is trivially strictly less
than ε + δ. On the other hand, if g(s) > 0 for a set of positive Lebesgue measure
in [0, τ ], then the fact that �K(s) < ε + δ for all s ∈ [0, τ ) shows once again that

�K(τ)≤
∫ τ

0
g(τ − s)�K(s) ds < (ε + δ)G(τ)≤ (ε + δ).

Thus, in both cases 1 and 2, we arrive at a contradiction. Hence, it must be that
τ > T , which means that �K(t) < ε + δ for every t ∈ [0, T ]. Sending δ ↓ 0, we
conclude that �K(t)≤ ε for t ∈ [0, T ], as desired. In turn, using the relations (3.8),
(3.9) and Corollary 4.4, along with the identity �ν0 ≡ 0 and the nonnegativity of g,
we obtain for every t ∈ [0, T ],

�D(t)=�K(t)− 〈1,�νt 〉 =
∫ t

0
g(t − s)�K(s) ds ≤ εG(t)≤ ε.

This completes the proof of (4.8), and relation (4.9) follows by symmetry. Finally,
since for i = 1,2, νi and Ki satisfy the fluid equations (by assumption), inequality
(4.10) is a direct consequence of Lemma 4.5 and inequality (4.9). �

PROOF OF THEOREM 3.5. Let (X1, ν1) and (X2, ν2) be two solutions to the
fluid equations corresponding to (E,X(0), ν0) ∈ S0. Fix r ∈ [0,M) and choose
a sequence of functions fn ∈ C 1

b(R+), n ∈ N, such that fn ↑ 1[0,r) pointwise as
n→∞. Then for every t ∈ [0,∞) and n ∈ N, 〈fn, ν

1
t 〉 = 〈fn, ν

2
t 〉 due to (4.10) and

the fact that E1 = E2 and X1 = X2. Sending n →∞ and invoking the monotone
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convergence theorem, we conclude that ν1
t [0, r) = ν2

t [0, r). Since r and t are ar-
bitrary, it follows that ν1 = ν2 and hence, by (3.6), that X1 =X2. This shows that
there is at most one solution to the fluid equations. The second assertion follows
immediately from Theorem 4.1 and Remark 4.2.

Now, suppose E is absolutely continuous with derivative λ. Then (3.6) immedi-
ately shows that X is also absolutely continuous. In turn, using (3.7), (3.8) and the
fact that |[1− a]+ − [1− b]+| ≤ |a − b|, it is easy to see that K is also absolutely
continuous. Fix t such that both the derivative λ of E and the derivative κ of K

exist at t . If X(t) < 1, then the nonidling condition (3.7) and the continuity of X

show that 〈1, νs〉 = X(s) for all s in a neighborhood of t . When combined with
(3.6) and (3.8), this shows that κ(t) = λ(t). On the other hand, if X(t) > 1, then
(3.7) and the continuity of X show that 〈1, νs〉 = 1 for s in a neighborhood of t .
When substituted into (3.8) this shows that κ(t) = 〈h, νt 〉. Finally, since X and
〈1, ν〉 are absolutely continuous, dX(t)/dt = d〈1, νt 〉/dt = 0 for a.e. t on which
X(t)= 〈1, νt 〉 = 1 (see, e.g., Theorem A.6.3 of [4]). Together with (3.6) and (3.8),
this implies that for a.e. t ∈ [0,∞) such that X(t)= 1 [and λ(t) and κ(t) are well
defined], we have κ(t) = λ(t) = 〈h, νt 〉 = λ(t) ∧ 〈h, νt 〉. This proves (3.12). Fi-
nally, because K is absolutely continuous, if ν0 is also absolutely continuous then
the representation (3.11) immediately guarantees that νs is absolutely continuous
for every s ∈ [0,∞). �

4.2. A maximality property of the fluid solution. In this section we establish a
result of independent interest. This result is not used in the rest of the paper, and
can thus be safely skipped without loss of continuity. Specifically, we show that the
nonidling property (3.7) implies a certain maximality property for solutions to the
fluid equations. In particular, this result provides an alternative proof of uniqueness
of solutions to the fluid limit that is different from the one using continuity of the
solution map given in the last section.

Let (E,X(0), ν0) ∈ S0. Suppose that (X, ν) solve the corresponding fluid equa-
tions (3.4)–(3.7), and let K and D be the associated processes, as defined in
(3.8) and (3.9), respectively. Also, let (X�, ν�) be any process taking values in
R+ × M≤1[0,M) that satisfy the fluid equations, (3.4)–(3.6), and the relation

〈1, ν�t 〉 ≤X�(t), t ∈ [0,∞).(4.13)

Here, X� and ν�, respectively, represent the total number of (fluid) customers
in system and the distribution of ages of (fluid) customers in service under any
given feasible assignment of customers to servers that does not necessarily satisfy
the nonidling condition (3.7). Let K� and D�, respectively, be the corresponding
processes representing the cumulative entry into service and cumulative departures
from the system, as defined by the right-hand sides of (3.8) and (3.9), respectively,
but with ν replaced by ν�. Then we have the following intuitive result that shows
that the nonidling condition (3.7) ensures that the cumulative entry into service
and cumulative departures from the system are maximized.
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LEMMA 4.7. For every t ∈ [0,∞), K(t)≥K�(t) and D(t)≥D�(t).

PROOF. We shall argue by contradiction to prove the lemma. Fix ε > 0 and let

T = inf{t :K�(t)≥K(t)+ ε}.
Suppose T <∞. Then we consider the following two mutually exhaustive cases:

Case 1. X(T ) < 1. In this case, (3.7) implies that X(T )= 〈1, νT 〉 which, along
with (3.6) and (3.8), shows that

K(T )=X(0)− 〈1, ν0〉 +E(T ).

On the other hand, (3.6), (3.8) and (4.13), when combined, show that for every
t ∈ [0,∞),

K�(t)= 〈1, ν�t 〉 −X�(t)+X(0)− 〈1, ν0〉 +E(t)≤X(0)− 〈1, ν0〉 +E(t).

The last two equations imply that K�(T )≤K(T ), which contradicts the definition
of T .

Case 2. X(T ) ≥ 1. In this case, (3.7) shows that 〈1, νT 〉 = 1. Since the pairs
(ν,K) and (ν�,K�) both satisfy the fluid equation (3.5), Corollary 4.4 and (3.8)
show that

D(T )=
∫
[0,M)

G(x + T )−G(x)

1 −G(x)
ν0(dx)+

∫ T

0
g(T − s)K(s) ds.(4.14)

If G(T ) > 0, then by the definition of T ,∫ T

0
g(T − s)K(s) ds >

∫ T

0
g(T − s)

(
K�(s)− ε

)
ds.

Together with (4.14), the corresponding equation for D� and the fact that ν0 = ν�0 ,
this shows that

D(T ) > D�(T )− εG(T )≥D�(T )− ε.

On the other hand, if G(T )= 0, then (4.14) implies that

D(T )=D�(T ) > D�(T )− ε.

Combining the last two inequalities with (3.8) and the case assumption, we obtain

K(T )−K�(T ) = 〈1, νT 〉 − 〈1, ν�T 〉 +D(T )−D�(T )

= 1 − 〈1, ν�T 〉 +D(T )−D�(T )

> −ε,

which again contradicts the definition of T .
Thus we have shown that T =∞ or, equivalently, that K(t) ≥ K�(t) − ε for

every t ∈ [0,∞) and ε > 0. Sending ε → 0, we conclude that K(t) ≥ K�(t) for
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t ∈ [0,∞). Together with (3.6), Corollary 4.4 and the fact that ν�0 = ν0, this implies
that for every t ∈ [0,∞), we have

D(t)−D�(t)=
∫ t

0
g(t − s)

(
K(s)−K�(s)

)
ds ≥ 0,

which concludes the proof of the lemma. �

REMARK 4.8. A similar maximality property (in terms of a stochastic,
rather than pathwise, ordering) is satisfied by the “pre-limit” processes describing
G/GI/N queues (see, e.g., [1], Theorem 1.2 of Chapter XII). It is also worthwhile
to note the connection between Lemma 4.7 and a minimality property associated
with the one-dimensional reflection map that is used to characterize single-server
queues. In the latter case, the so-called complementarity condition plays the role of
the nonidling condition here, and ensures minimality of the associated constraining
term (see, e.g., [9]).

4.3. Analysis of the age equation (4.2). The goal of this section is to establish
Theorem 4.1. In fact, we establish the somewhat more general result of identify-
ing solutions to the so-called abstract age equation (see Definition 4.9 and Corol-
lary 4.17 below). The abstract age equation and a related integral equation, which
we refer to as the simplified age equation, are first introduced in Section 4.3.1. The
simplified age equation is shown to have a unique and explicit solution in Sec-
tion 4.3.2. Using a simple correspondence between solutions of the abstract age
equation and those of the simplified age equation, an explicit representation for
the unique solution to the abstract age equation is then obtained in Section 4.3.3.
These results are then combined in Section 4.3.4 to establish Theorem 4.1.

Throughout the analysis, the characterization of Radon measures described in
Section 1.2.2 is repeatedly used, often without explicit mention. For conciseness,
the following notations are also used. Let M̃ be the space of finite Radon measures
on R

2 whose support lies in [0,M) × R+, and let C̃ be the space of continuous
functions on R

2 with compact support in [0,M) × R+. Also, let C̃ 1,1 be the sub-
set of functions ϕ in C̃ for which the directional derivative ϕx + ϕs exists and is
continuous. The integral with respect to any Radon measure ζ on R

2 is denoted by

ζ(ϕ)
.=
∫ ∫

R2
ϕ(x, s)ζ(dx, ds), ϕ ∈ Cc(R

2).

As in the rest of the paper, given a measure θ on [0,M), and a θ -integrable func-
tion f on [0,∞), the integral of f with respect to θ over [0,M) is denoted by
〈f, θ〉. Lebesgue measure on R

2 is denoted by σ , and, for m1,m2 ∈ [0,∞), the
corresponding rectangle is represented by

Rm1,m2
.= [−m1,m1] × [−m2,m2].(4.15)
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Given a Radon measure ζ on R
2 and a function f ∈ C∞

c (R2), recall that the con-
volution f � ζ is the absolutely continuous measure whose density (with respect
to Lebesgue measure) lies in C∞

c (R2) and is given explicitly by

d(f � ζ )

dσ
(y,u)=

∫ ∫
R2

f (y − x,u− s)ζ(dx, ds).(4.16)

Definitions and standard properties of convolutions can be found in Section 2.5.9
of [21].

4.3.1. The abstract and simplified age equations. We first introduce the ab-
stract age equation.

DEFINITION 4.9 (Abstract age equation). Given γ ∈ M̃ and � ∈ L1
loc[0,M),

{ζt }t≥0 ∈ D M[0,M)[0,∞) is said to solve the abstract age equation for γ and � if
and only if the measure �ζ , defined by

(�ζ )(ϕ)
.=
∫ ∞

0
〈�(·)ϕ(·, s), ζs〉ds, ϕ ∈ C̃,

is a well defined measure that belongs to M̃, and for every ϕ ∈ C̃ 1,1,

−
∫ ∞

0
〈ϕx(·, s)+ ϕs(·, s), ζs〉ds =−(�ζ )(ϕ)+ γ (ϕ).(4.17)

In order to analyze the abstract age equation, we will find it convenient to first
study a related, but somewhat simpler, integral equation, which we refer to as the
simplified age equation.

DEFINITION 4.10 (Simplified age equation). Given γ̃ ∈ M̃, {μt }t≥0 ∈
D M[0,M)[0,∞) is said to solve the simplified age equation for γ̃ if and only if
for every ϕ̃ ∈ C̃ 1,1,

−
∫ ∞

0
〈ϕ̃x(·, s)+ ϕ̃s(·, s),μs〉ds = γ̃ (ϕ̃).(4.18)

REMARK 4.11. It follows immediately from the definitions that any {ζt }t≥0 ∈
D M[0,M)[0,∞) satisfies the abstract age equation for γ ∈ M̃ and � ∈ L1

loc[0,M)

if and only if {ζt }t≥0 satisfies the simplified age equation for γ̃ = γ − �ζ .

Recall the hazard rate function h ∈ L1
loc[0,M), the Radon measure υ0 on [0,M)

and the function Z that has finite variation on every bounded interval, which were
introduced in Section 4.1. Given (m1,m2) ∈ [0,M)×[0,∞), let |υ0|TV,m1 denote
the total variation of the Radon measure υ0 on [0,m1], and let V ar(Z; [0,m2]) de-
note the total variation of the function Z on the interval [0,m2]. We now introduce
some definitions that will help elucidate the connection between the abstract and
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simplified age equations introduced above, and the age equation (4.2) associated
with h, υ0 and Z. Consider the measure ξ = ξ(υ0,Z) on R

2 defined by

ξ(ϕ)
.=
∫
[0,M)

ϕ(x,0)υ0(dx)+
∫
[0,∞)

ϕ(0, s) dZ(s), ϕ ∈ Cc(R
2).(4.19)

Clearly, for all ϕ ∈ Cc(R
2) such that supp(ϕ)⊆ Rm1,m2 , ξ(ϕ) satisfies

|ξ(ϕ)| ≤ ‖ϕ‖∞(|υ0|TV,m1 + V ar(Z; [0,m2])).(4.20)

Moreover, ξ(ϕ) = 0 for all ϕ such that supp(ϕ) ∩ [0,M) × R+ = ∅. Therefore,
ξ is a Radon measure on R

2 that has support in [0,M) × [0,∞) and, hence, lies
in M̃.

Now, suppose that {νt }t≥0 ∈ D M[0,M)[0,∞) satisfies condition (4.1), and let hν

be the measure on R
2 defined by

(hν)(ϕ)
.=
∫ ∞

0
〈h(·)ϕ(·, s), νs〉ds, ϕ ∈ Cc(R

2).(4.21)

Then (4.1) shows that hν is a Radon measure, and it is clear from (4.21) that hν

has support in [0,M)×R+. Therefore, hν ∈ M̃. Also, define ξν = ξν(ν0,Z) by

ξν .= ξ − hν,(4.22)

with ξ as defined in (4.19). Clearly, ξν also lies in M̃. We now derive some al-
ternative characterizations of solutions to the age equation associated with υ0, Z

and h.

LEMMA 4.12. Suppose {νt }t≥0 ∈ D M[0,M)[0,∞) satisfies (4.1). Then, for
υ0 ∈ M[0,M) and Z ∈ BV 0[0,∞), the following statements are equivalent:

(1) {νt }t≥0 satisfies the age equation (4.2) for υ0 and Z;
(2) {νt }t≥0 satisfies the abstract age equation (4.17) for ξ = ξ(υ0,Z) and h;
(3) {νt }t≥0 satisfies the simplified age equation (4.18) for ξν = ξν(υ0,Z).

PROOF. Fix {νt }t≥0 ∈ D M[0,M)[0,∞) that satisfies (4.1), and let hν ∈ M̃ be
the Radon measure defined above in (4.21). We first show that (1) implies (2).
Suppose {νt }t≥0 satisfies the age equation (4.2) for all ϕ ∈ C̃ 1,1 and t ∈ [0,∞).
Then, because ϕ has compact support in [0,M)× R+, for all sufficiently large t ,
the left-hand side of (4.2) equals zero. Therefore, on sending t → ∞ in (4.2),
a little rearrangement shows that

−
∫ ∞

0
〈ϕx(·, s)+ ϕs(·, s), νs〉ds

=−
∫ ∞

0
〈h(·)ϕ(·, s), νs〉ds + 〈ϕ(·,0), υ0〉

(4.23)
+
∫
[0,∞)

ϕ(0, s) dZ(s)

=−hν(ϕ)+ ξ(ϕ),
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which shows that {νt }t≥0 satisfies the abstract age equation for ξ and h.
The equivalence of properties (2) and (3) is an immediate consequence of the

definitions (also see Remark 4.11). Therefore, to complete the proof, it suffices to
show that (3) implies (1). Suppose that {νt }t≥0 satisfies the simplified age equation
for ξν . Then, in particular, (4.23) holds for every ϕ ∈ C̃ 1,1. A standard mollification
argument will now be used to show that then {νt }t≥0 satisfies the age equation for
υ0 and Z. Fix t ∈ [0,∞) that is a continuity point of {νt }t≥0, and let {cn} = {ct

n}
be a uniformly bounded sequence of functions in C∞(R) such that the negative
of their derivatives, −c′n, are probability density functions on R and, as n →∞,
cn(s) → 1[0,t](s) and the sequence of probability measures −c′n(s) ds converge
weakly to the Dirac measure concentrated at t . (For instance, consider cn(s) =∫∞
s nρ(n(u − t)) du, s ∈ [0,∞), where ρ(x) = k exp(1/((x − 1)2 − 1))1[0,2](x)

and k is the appropriate normalization constant that makes ρ a probability density.)
Given ϕ ∈ C̃ 1,1, define ϕ̃n(x, s)

.= ϕ(x, s)cn(s) for all (x, s) ∈ R
2, and note that

ϕ̃n ∈ C̃ 1,1. Replacing ϕ by ϕ̃n in (4.23) then yields, for every n ∈ N,∫ ∞
0

−c′n(s)〈ϕ(·, s), νs〉ds −
∫ ∞

0
cn(s)〈ϕx(·, s)+ ϕs(·, s), νs〉ds

=−
∫ ∞

0
cn(s)〈h(·)ϕ(·, s), νs〉ds + cn(0)〈ϕ(·,0), υ0〉

+
∫
[0,∞)

cn(s)ϕ(0, s) dZ(s).

Now, take limits as n → ∞ in the above equation. Since supp(ϕ) ⊂ [0,M) ×
[0, T ] for some T <∞, the right-continuity of {νt }t≥0 implies s �→ 〈ϕ(·, s), νs〉 is
uniformly bounded. The weak convergence −c′n(s) ds

w→ δt and the fact that t is a
continuity point for s �→ 〈ϕ(·, s), νs〉 then shows that the first term above converges
to 〈ϕ(·, t), νt 〉. The limit of the remaining terms can be obtained using the fact that
cn → 1[0,t] and the dominated convergence theorem [whose application is justified
by the inequality (4.1) and the uniform boundedness of the sequence of functions
cn, n ∈ N] to yield

〈ϕ(·, t), νt 〉 −
∫ t

0
〈ϕx(·, s)+ ϕs(·, s), νs〉ds

=−
∫ t

0
〈h(·)ϕ(·, s), νs〉ds + 〈ϕ(·,0), υ0〉 +

∫
[0,t]

ϕ(0, s) dZ(s).

This shows that {νt }t≥0 satisfies the age equation (4.2) associated with υ0 and Z,
and so property (1) follows. �

Since ξν depends on {νt }t≥0, Lemma 4.12 only shows that solutions {νt }t≥0 to
the age equation satisfy the simplified age equation in an implicit sense. Neverthe-
less, this property is used in the proof of Theorem 4.1 in Section 4.3.4 in order to
justify the application of the estimate obtained in Proposition 4.15 below, and the
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application of the more explicit correspondence result obtained in Proposition 4.16
to {νt }t≥0.

4.3.2. Solution to the simplified age equation. In Lemma 4.13 below, it is
shown that the solution to the simplified age equation is unique and can be rep-
resented in terms of the following maps. For t ≥ 0, consider the map �t that takes
f ∈ Cc(R) to the measurable function �t

f defined by

�t
f (x, s)

.= f (x + t − s)1[0,t](s), (x, s) ∈ R
2.(4.24)

Observe that for any t > 0 and f ∈ Cc(R),

‖�t
f ‖∞ ≤ ‖f ‖∞(4.25)

and

supp(f )⊆ [−m̃,m] ⇒ supp(�t
f )⊆ [−m̃− t,m] × [0, t].(4.26)

Also, let the map π : Cc(R
2) �→ C(R2) that maps ϕ to πϕ , be defined by

πϕ(x, s)
.=
∫ ∞

0
ϕ(x + r, s + r) dr, (x, s) ∈ R

2.(4.27)

It is easily verified that for any ϕ ∈ Cc(R
2) with supp(ϕ)⊆ Rm1,m2 ,

‖πϕ‖∞ ≤ 2
√

m2
1 +m2

2‖ϕ‖∞ and
(4.28)

supp(πϕ) ⊆ (−∞,m1] × (−∞,m2].
LEMMA 4.13. The simplified age equation associated with γ̃ ∈ M̃ has a

unique solution {μt }t≥0 ∈ D M[0,M)[0,∞) that is given explicitly by

〈f,μt 〉 = γ̃ (�t
f ), f ∈ Cc[0,M), t ≥ 0.(4.29)

Moreover, for every ϕ ∈ C̃ ,∫ ∞
0

〈ϕ(·, t),μt 〉dt = γ̃ (πϕ).(4.30)

PROOF. Let {μt }t≥0 be as defined in (4.29). Then, to show that {μt }t≥0 be-
longs to D M[0,M)[0,∞), it clearly suffices to show that for every t ≥ 0 and
f ∈ Cc[0,M), γ̃ (�t+ε

f )→ γ̃ (�t
f ) as ε → 0. However, the latter limit holds due to

the pointwise convergence �t+ε
f → �t

f and the dominated convergence theorem,
whose application is justified by the properties in (4.25) and (4.26). Next, to show
that {μt }t≥0 satisfies the simplified age equation (4.18), we first claim that (4.29)
implies (4.30). Given ϕ ∈ C̃ , note that(∫ ∞

0
�t

ϕ(·,t) dt

)
(x, s) =

∫ ∞
0

ϕ(x + t − s, t)1[s,∞)(t) dt

=
∫ ∞

0
ϕ(x + r, s + r) dr = πϕ(x, s).
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Therefore, first replacing f in (4.29) by ϕ(·, t), then integrating both sides of (4.29)
over t ∈ [0,∞) and using Fubini’s theorem, we see that∫ ∞

0
〈ϕ(·, t),μt 〉dt =

∫ ∞
0

γ̃
(
�t

ϕ(·,t)
)
dt = γ̃

(∫ ∞
0

�t
ϕ(·,t) dt

)
= γ̃ (πϕ),

which proves the claim. Then, for ϕ̃ ∈ C̃ 1,1, replacing ϕ in (4.30) by ϕ̃x + ϕ̃s and
observing that πϕ̃x+ϕ̃s

= −ϕ̃ (this uses the fact that ϕ̃ has compact support), it
follows that {μt }t≥0 satisfies the simplified age equation.

It only remains to establish uniqueness. Let {μi
t }t≥0, i = 1,2, be two solutions

to the simplified age equation for γ̃ , and define ηt
.= μ1

t − μ2
t , t ≥ 0. Then η0 is

the zero measure and for every ϕ̃ ∈ C̃ 1,1,∫ ∞
0

〈ϕ̃x(·, s)+ ϕ̃s(·, s), ηs〉ds = 0.(4.31)

Fix ϕ ∈ C̃ 1,1, and define ϕ̃
.= πϕ . Then supp(ϕ̃)∩ ([0,M)× [0,∞)) is compact by

(4.28), ϕ̃ lies in C̃ 1,1 and ϕ̃x + ϕ̃s = (πϕ)x + (πϕ)s = −ϕ. When substituted into
(4.31) this shows that∫ ∞

0
〈ϕ(·, s), ηs〉ds = 0, ϕ ∈ C̃ 1,1.

Standard approximation arguments can now be used to show that η is identically
zero. Specifically, let {ρn}n∈N be a sequence of mollifiers, that is, nonnegative
functions in C∞

c (R), with ρn having support in [0,1/n] and
∫
R

ρn(x) dx = 1 and
such that, as n →∞, the family of measures ρn(x) dx converge vaguely to the
delta distribution δ0. For any t > 0 that is a continuity point of {ηs}s≥0 and f ∈
C 1

c [0,M), first replace ϕ in the last display by ϕn(x, s)
.= f (x)ρn(t − s) then take

limits as n →∞ and use the right continuity of the function s �→ 〈f,ηs〉 at t and
the vague convergence of ρn to δ0 in order to conclude that 〈f,ηt 〉 = 0. Since
C 1

c [0,M) is a determining class for Radon measures on [0,M), it follows that each
ηt is identically zero for every t that is a continuity point of {ηt }t≥0. The right
continuity of {ηt }t≥0 then implies that ηt is identically zero for every t ≥ 0, and so
uniqueness follows. �

Replacing γ̃ in Lemma 4.13 by the measure ξ defined in (4.19), we obtain the
following result.

COROLLARY 4.14. Given υ0 ∈ M[0,M) and Z ∈ BV 0[0,∞), the unique so-
lution {μt }t≥0 to the simplified age equation associated with ξ = ξ(υ0,Z) satisfies

〈f,μt 〉 = 〈f (· + t), υ0〉 +
∫
[0,t]

f (t − s) dZ(s).(4.32)
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We now establish a property of solutions to simplified age equations that will
be used in the proof of the correspondence property in Section 4.3.3. Given any
{μt }t≥0 ∈ D M[0,M)[0,∞), consider the measure �μ defined by

(�μ)(ϕ)
.=
∫ ∞

0

(∫
[0,M)

�(x)ϕ(x, s)μt (dx)

)
ds, ϕ ∈ C̃.(4.33)

When � is continuous, ϕ ∈ C̃ implies �ϕ ∈ C̃ , and hence �μ is a well-defined Radon
measure that lies in M̃. However, when � ∈ L1

loc[0,M), �μ need not always be
well defined for arbitrary {μt }t≥0 ∈ D M[0,M)[0,∞). In Proposition 4.15 below,
we show that if {μt }t≥0 satisfies the simplified age equation, then �μ is a well-
defined Radon measure for any � that is locally integrable on [0,M). A real-valued
function L̃ on [0,M)×[0,∞) is said to be coordinate-wise increasing if for every
(x, t) ∈ [0,M), L̃(·, t) and L̃(x, ·) are increasing functions on [0,M) and [0,∞),
respectively.

PROPOSITION 4.15. Suppose {μt }t≥0 solves the simplified age equation for
some γ̃ ∈ M̃. Then there exists a coordinate-wise increasing function L̃ on
[0,M)× [0,∞) such that given any � ∈ L1

loc[0,∞), for every m1 ∈ [0,M),m2 ∈
(0,∞) and ϕ ∈ Cc([0,M)×R+) with supp(ϕ)⊆ Rm1,m2 ,∣∣∣∣

∫ ∞
0

(∫
[0,M)

�(x)ϕ(x, s)μt (dx)

)
ds

∣∣∣∣
(4.34)

≤
(∫ m1

0
|�(x)|dx

)
L̃(m1,m2)‖ϕ‖∞.

Consequently, the definition in (4.33) yields a well-defined Radon measure �μ that
belongs to M̃.

PROOF. We first establish (4.34) for continuous �. Fix γ̃ and {μt }t≥0 as in the
statement of the proposition, and let L : [0,M) × R+ �→ R+ be the component-
wise nondecreasing function such that

|γ̃ (ϕ)| ≤ L(m1,m2)‖ϕ‖∞ ∀ϕ ∈ Cc(R
2) with supp(ϕ)⊂ Rm1,m2 .(4.35)

Such a function L exists since γ̃ is, by assumption, a Radon measure (see Sec-
tion 1.2.2). Let μ be the measure on R

2 defined by

μ(ϕ)
.=
∫ ∞

0

(∫
[0,M)

ϕ(x, s)μs(dx)

)
ds, ϕ ∈ C̃.(4.36)

Since {μt }t≥0 lies in D M[0,M)[0,∞), (4.36) shows that μ belongs to M̃. (Note
that we will always write μ for the Radon measure on R

2 and {μt }t≥0 for the
measure-valued function in order to keep these two quantities distinct.) The basic
idea behind the proof (for continuous �) is to construct a sequence μn,n ∈ N,
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of Radon measures on R
2 such that for each n ∈ N, μn is absolutely contin-

uous with respect to Lebesgue measure and satisfies the following two proper-
ties: (i) for every m1 ∈ [0,M),m2 ∈ (0,∞), for all n sufficiently large such that
m1 + 1/n < M , and all y < m1,∣∣∣∣

∫ m2

0

dμn

dσ
(y,u) du

∣∣∣∣≤L

(
m1 + 1

n
,m2 + 1

n

)
,(4.37)

and (ii) for continuous �, as n→∞,

μn(�ϕ)→ μ(�ϕ)= �μ(ϕ), ϕ ∈ C̃.(4.38)

Given such a sequence, for any ϕ ∈ C̃ , with supp(ϕ)⊆ Rm1,m2 ,

μn(�ϕ)=
∫ m1

0

(∫ m2

0

dμn

dσ
(x,u)ϕ(x,u) du

)
�(x) dx, n ∈ N.

Together with the estimate in (4.37), this shows that for all n ∈ N sufficiently large
such that m1 + 1/n < M ,

|μn(�ϕ)| ≤
(∫ m1

0
�(x) dx

)
‖ϕ‖∞L

(
m1 + 1

n
,m2 + 1

n

)
.

Taking limits as n → ∞ and using (4.38), we obtain (4.34) with L̃(m1,m2)
.=

L(m1+,m2+) for ϕ ∈ C̃ such that supp(ϕ) ⊂ Rm1,m2 . This implies that (4.34)
holds for all ϕ ∈ C̃ when � is continuous.

We now construct an approximating sequence μn,n ∈ N, that satisfies proper-
ties (4.37) and (4.38) mentioned above. Let {ρn}n∈N be a sequence of mollifiers,
where for each n ∈ N, ρn is a nonnegative function in C∞

c (R2) with support in
R1/n,1/n that has integral 1 and, as n →∞, converges vaguely to the delta dis-
tribution δ(0,0), defined by δ(0,0)(ϕ) = ϕ(0,0). For each n ∈ N, define μn to be
the convolution ρn � μ. In other words (see the discussion of convolutions at the
beginning of Section 4.3), μn is absolutely continuous with respect to Lebesgue
measure σ on R

2, with density dμn/dσ in C∞
c (R2) that has the explicit form

dμn

dσ
(y,u) =

∫ ∫
R2

ρn(y − x,u− s)μ(dx, ds)

(4.39)

=
∫ ∞

0

(∫
[0,M)

ρn(y − x,u− s)μs(dx)

)
ds.

Then, for any m2 ∈ (0,∞), by Fubini’s theorem,∫ m2

0

dμn

dσ
(y,u) du=

∫ ∞
0

(∫
[0,M)

θy
n (x, s)μs(dx)

)
ds,(4.40)

where, for y ∈ R,

θy
n (x, s)

.=
∫ m2

0
ρn(y − x,u− s) du, (x, s) ∈ [0,M)× [0,∞).
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Clearly, θ
y
n is continuous and, for any m1 ∈ [0,M) and y ∈ [0,m1], supp(θ

y
n ) ⊆

Rm1+1/n,m2+1/n. Therefore, for all sufficiently large n (such that m1 + 1/n < M),
we have θ

y
n ∈ C̃ . Since {μt }t≥0 solves the simplifed age equation for γ̃ , relation

(4.30) of Lemma 4.13 can be invoked to rewrite the right-hand side of (4.40) so as
to obtain ∫ m2

0

dμn

dσ
(y,u) du= γ̃ (πθ

y
n
).(4.41)

From the definition of π in (4.27) and the expression for θ
y
n given above, we have

πθ
y
n
(x, s)=

∫ ∞
0

(∫ m2

0
ρn(y − x − r, u− s − r) du

)
dr.

Since supp(ρn)⊆ R1/n,1/n and ρn is nonnegative with integral over R
2 equal to 1,

it follows that ‖πθ
y
n
‖∞ ≤ 1 and

supp(πθ
y
n
)∩R

2+ ⊂ Rm1+1/n,m2+1/n.

Due to (4.35) and the fact that supp(γ̃ )⊂ R
2+, this then implies that

|γ̃ (πθ
y
n
)| ≤ L

(
m1 + 1

n
,m2 + 1

n

)
.(4.42)

When combined with (4.41), this yields (4.37).
Next, we show that (4.38) holds for continuous �. For every ϕ̃ ∈ C̃ , multiply-

ing both sides of (4.39) by ϕ̃(y, u), then integrating over (y, u) ∈ R
2 and using

Fubini’s theorem, we see that

μn(ϕ̃)=
∫ ∞

0

(∫
[0,M)

(ρ̌n � ϕ̃)(x, s)μs(dx)

)
ds = μ(ρ̌n � ϕ̃),(4.43)

where ρ̌n(x, s)
.= ρn(−x,−s) for (x, s) ∈ R

2. Now, fix m1 ∈ [0,M) and m2 <∞.
If supp(ϕ̃) ⊆ Rm1,m2 then, since supp(ρ̌n) ⊆ R1/n,1/n, it follows that supp(ρ̌n �

ϕ̃) ⊆ Rm1+1/n,m2+1/n. Therefore, for all n sufficiently large so that m1 + 1/n <

M , ρ̌n � ϕ̃ ∈ C̃ . Since {μt }t≥0 satisfies the simplified age equation, (4.43) and the
relation (4.30) of Lemma 4.13 show that for all n such that m1 + 1/n < M ,

μn(ϕ̃)= γ̃ (πρ̌n�ϕ̃), ϕ̃ ∈ C̃ with supp(ϕ̃)⊆ Rm1,m2 .(4.44)

Next, send n →∞ in (4.44). Using the fact that for all sufficiently large n, the
functions πρ̌n�ϕ are uniformly bounded and have common compact support in
[0,M)×R+, ρ̌n � ϕ̃ → ϕ̃ and, hence, πρ̌n�ϕ̃ → πϕ̃ pointwise, we apply the domi-
nated convergence theorem to conclude that

μn(ϕ̃)= γ̃ (πρ̌n�ϕ̃)→ γ̃ (πϕ̃)= μ(ϕ̃),

where the last equality holds due to Lemma 4.13 because {μt }t≥0 satisfies the sim-
plified age equation for γ̃ . In turn, ϕ ∈ C̃ implies �ϕ ∈ C̃ because � is continuous.
Therefore, we can replace ϕ by �ϕ in the last display to conclude that (4.38) holds.
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Thus, we have constructed a sequence {μn}n∈N of Radon measures on R
2 that

satisfies (4.37) and (4.38). Therefore, by the argument given in the first paragraph
of the proof, it follows that (4.34) holds for continuous �. Let �μ be the Radon mea-
sure for which �μ(ϕ) equals the left-hand side of (4.34). Then, the estimate (4.34)
implies that the product mapping � �→ �μ from C[0,M) ⊂ L1

loc[0,M) to M(R2)

is continuous. Since L1
loc[0,M) and M(R2) are Fréchet spaces and C[0,M) is

dense in L1
loc[0,M) (with respect to convergence in the topology of L1

loc[0,M))
there exists a unique (uniformly) continuous extension of the mapping � �→ �μ to
L1

loc[0,M), and (4.34) automatically holds for this extension. �

4.3.3. Solution to the abstract age equation. In Proposition 4.16 below, we
establish an explicit one-to-one correspondence between solutions {ζt }t≥0 to the
abstract age equation for some γ ∈ M̃ and solutions {μt }t≥0 to the simplified
age equation for a related γ̃ ∈ M̃. In order to state this correspondence, given
� ∈ L1

loc[0,M), we define

ψ�(x, t)
.= exp(r�(x, t))(4.45)

for (x, t) ∈ R
2, where

r�(x, t)
.=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−
∫ x

x−t
�(u) du, if 0 ≤ t ≤ x < M ,

−
∫ x

0
�(u)du, if 0 ≤ x ≤ t, x < M ,

0, otherwise.

(4.46)

Note that ψ−� =ψ−1
� and r� and ψ� are continuous, locally bounded functions on

(−∞,M)×[0,∞). Hence, for every t ∈ [0,∞) and measure χ ∈ M̃, the measure
ψ�χ defined by ψ�χ(ϕ)

.= χ(ψ�ϕ), and, likewise, the measure ψ−�χ lie in M̃.
Also, if � is continuous, then (ψ�)x + (ψ�)s exists and is continuous and satisfies

(ψ�)x + (ψ�)s =−�ψ�.(4.47)

PROPOSITION 4.16. Given � ∈ L1
loc[0,M) and {ζt }t≥0 ∈ D M[0,M)[0,∞),

suppose that the measure �ζ defined by

(�ζ )(ϕ)
.=
∫ ∞

0
〈�(·)ϕ(·, s), ζs〉ds, ϕ ∈ C̃,(4.48)

lies in M̃. Then {ζt }t≥0 solves the abstract age equation for � and γ ∈ M̃ if and
only if {μt }t≥0 defined by

〈f,μt 〉 .= 〈f (·)ψ−�(·, t), ζt 〉(4.49)

satisfies the simplified age equation for γ̃
.= ψ−�γ , where (ψ−�γ )(ϕ)

.= γ (ψ−�ϕ)

for ϕ ∈ C̃ .



68 H. KASPI AND K. RAMANAN

PROOF. Let � ∈ L1
loc[0,M) and {ζt }t≥0 ∈ D M[0,M)[0,∞) be such that

�ζ ∈ M̃. Moreover, assume that {ζt }t≥0 solves the abstract age equation for �

and γ ∈ M̃. Since ψ−� is continuous, the function {μt }t≥0 defined in (4.49) lies
in D M[0,M)[0,∞). Choose a sequence of continuous functions �n, n ∈ N, defined
on [0,M) such that as n →∞, �n converges to � in L1

loc[0,M). From (4.47) it
follows that

(ψ−�n)x + (ψ−�n)s = �nψ−�n.(4.50)

Given ϕ̃ ∈ C̃ 1,1, let ϕ
.= ψ−�nϕ̃. Then ϕ clearly lies in C̃ . Moreover, because ϕ̃ ∈

C̃ 1,1, �n is continuous and (4.50) is satisfied, it follows that ϕx + ϕs exists and is
continuous and, hence, that ϕ ∈ C̃ 1,1. Therefore, substituting ϕ = ψ−�nϕ̃ into the
abstract age equation (4.17) and using (4.50), we obtain

−
∫ ∞

0
〈�n(·)ψ−�n(·, s)ϕ̃(·, s), ζs〉ds −

∫ ∞
0

〈
ψ−�n(·, s)

(
ϕ̃x(·, s)+ ϕ̃s(·, s)), ζs

〉
ds

=−
∫ ∞

0
〈�(·)ψ−�n(·, s)ϕ̃(·, s), ζs〉 + γ (ϕ̃ψ−�n).

Rewriting the right-hand side of the last equation using (4.49), we see that

−
∫ ∞

0

〈
ψ�−�n(·, s)

(
ϕ̃x(·, s)+ ϕ̃s(·, s)),μs

〉
ds

(4.51)
=
∫ ∞

0

〈(
�n(·)− �(·))ψ−�n(·, s)ϕ̃(·, s), ζs

〉
ds + γ̃ (ϕ̃ψ�−�n).

As n→∞, ψ�−�n → 1 uniformly on compact sets. As a result, we have

lim
n→∞

∫ ∞
0

〈
ψ�−�n(·, s)

(
ϕ̃x(·, s)+ ϕ̃s(·, s)),μs

〉
ds

(4.52)
=
∫ ∞

0

〈(
ϕ̃x(·, s)+ ϕ̃s(·, s)),μs

〉
ds,

and, due to the dominated convergence theorem, we have

lim
n→∞ γ̃ (ϕ̃ψ�−�n)= γ̃ (ϕ̃).(4.53)

Furthermore, due to the assumption that �ζ ∈ M̃, Lemma 4.12 shows that {ζt }t≥0

satisfies the simplified age equation for �ζ + γ ∈ M̃. Proposition 4.15 can then be
applied to conclude that for (m1,m2) ∈ [0,M)× [0,∞), there exist L̃(m1,m2) <

∞ such that for every ϕ̃ with supp(ϕ̃)⊆ Rm1,m2 ,∣∣∣∣
∫ ∞

0

〈(
�(·)− �n(·))ψ−�n(·, s)ϕ̃(·, s), ζs

〉
ds

∣∣∣∣
≤ ‖ϕ̃ψ−�n‖∞L̃(m1,m2)

(∫
[0,M)

|�(x)− �n(x)|dx

)
.
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Due to the convergence of �n to � in L1
loc[0,M) and the fact that ‖ϕ̃ψ−�n‖∞ →

‖ϕ̃ψ−�‖∞ < ∞, the right-hand side (and therefore the left-hand side) vanishes as
n→∞. Taking limits as n→∞ in (4.51), the last assertion, together with (4.52)
and (4.53), imply that {μt }t≥0 satisfies the simplified age equation for γ̃ .

The converse is established in an exactly analogous fashion, and so we provide
only a rough sketch of the proof. Suppose {μt }t≥0 satisfies the simplified age equa-
tion for γ̃ . Then, given ϕ ∈ C̃ 1,1, substituting ϕ̃

.= ψ�nϕ ∈ C̃ 1,1 into the simplified
age equation, using the PDE (4.47), (4.49) and the estimate from Proposition 4.15
and then sending n → ∞, it can be shown that {ζt }t≥0 solves the abstract age
equation for � and γ . �

Combining Lemma 4.13 with Proposition 4.16, we then obtain the following
characterization of solutions to the abstract age equation.

COROLLARY 4.17. Given {ζt }t≥0 such that �ζ defined by (4.48) lies in M̃,
{ζt }t≥0 satisfies the abstract age equation for some γ ∈ M̃ if and only if for every
t ∈ [0,∞),

〈f, ζt 〉 = 〈f (·)ψ�(·, t),μt 〉 = γ
(
ψ−��

t
f (·)ψ�(·,t)

)
.(4.54)

4.3.4. Proof of Theorem 4.1. To begin with, note that by substituting � = h

into the definition (4.45) of ψ�, elementary calculations show that

ψh(x, t)=

⎧⎪⎪⎨
⎪⎪⎩

1 −G(x)

1 −G(x − t)
, if 0 ≤ t ≤ x < M ,

1 −G(x), if 0 ≤ x ≤ t <∞,
0, otherwise.

(4.55)

In particular, this implies that

ψ−1
h (0, t)=ψ−1

h (x,0)= 1, x, t ∈ [0,M)×R+.(4.56)

Now, assume that {νs}s≥0 satisfies the condition (4.1). Then Lemma 4.12 shows
that {νs}s≥0 satisfies the age equation (4.2) for υ0 and Z if and only if {νs}s≥0
satisfies the abstract age equation for ξ = ξ(υ0,Z) defined in (4.19). In turn, by
Corollary 4.17 the latter statement holds if and only if

〈f, νt 〉 = ξ
(
ψ−h�

t
f (·)ψh(·,t)

)
, t ≥ 0, f ∈ Cc[0,M).(4.57)

However, for x ∈ [0,M),

(
ψ−h�

t
f (·)ψh(·,t)

)
(x,0)=ψ−h(x,0)f (x+ t)ψh(x+ t, t)= f (x+ t)

1 −G(x + t)

1 −G(x)
,

and for all s ∈ [0,∞),(
ψ−h�

t
f (·)ψh(·,t)

)
(0, s) = ψ−h(0, s)f (t − s)ψh(t − s, t)1[0,t](s)

= f (t − s)
(
1 −G(t − s)

)
1[0,t](s).
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Substituting this back into (4.57) and using the definition (4.19) of ξ , it follows
that (4.57) coincides with the representation (4.3) for νt . This completes the proof
of Theorem 4.1.

5. Functional law of large numbers limit. The main objective of this section
is to show that, under suitable assumptions, the sequence {(X(N), ν(N))} converges
to a process that solves the fluid equations. In particular, this establishes existence
of solutions to the fluid equations. First, in Section 5.1 we provide a useful de-
scription of the evolution of the state (X(N), ν(N)) of the N -server model. Then,
in Section 5.2, we introduce a family of martingales that are used in Section 5.3
to establish tightness of the sequence {(ν(N),X(N))}. Finally, in Section 5.4, we
provide the proof of Theorem 3.7.

5.1. A characterization of the pre-limit processes. The dynamics of the N -
server model was described in Section 2.1 and certain auxiliary processes were
introduced in Section 2.2. In this section, we provide a more succinct and conve-
nient description of the state dynamics, which takes a form similar to that of the
fluid equations.

Fix N ∈ N and, throughout the section, suppose R
(N)
E and initial conditions

X(N)(0) ∈ R+ and ν
(N)
0 ∈ M≤N [0,M) are given, and let E(N), X(N) and ν(N)

be the associated state processes, as described in Section 2.1. Recall that by the
definition (2.7) of the age process, a customer j completes service (and therefore
departs the system) at time s if and only if, at time s, the left derivative of the
age process a

(N)
j is positive and the right derivative is zero. For any measurable

function ϕ on [0,M)×R+, consider the sequence of real-valued processes {Q(N)
ϕ }

given by

Q(N)
ϕ (t)

.= ∑
s∈[0,t]

K(N)(t)∑
j=−〈1,ν

(N)
0 〉+1

1{d/dta
(N)
j (s−)>0,d/dta

(N)
j (s+)=0}

(5.1)
× ϕ
(
a

(N)
j (s), s

)
,

where K(N) and a
(N)
j are defined by the relations (2.6) and (2.7). It follows im-

mediately from (5.1) and the right-continuity of the filtration {F (N)
t } that Q

(N)
ϕ

is {F (N)
t }-adapted. Also, from relations (2.6)–(2.8), it is easy to see that Q

(N)
1 is

equal to the cumulative departure process D(N) defined in (2.5) and that for every
N ∈ N, bounded, measurable ϕ and t ∈ [0,∞),∣∣Q(N)

ϕ (t)
∣∣≤ ‖ϕ‖∞(〈1, ν

(N)
0

〉+K(N)(t)
)

(5.2)
≤ ‖ϕ‖∞(X(N)(0)+E(N)(t)

)
.
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Dividing (5.2) by N , taking first expectations and then the supremum over N , by
Remark 3.1, we also have

sup
N

E
[∣∣Q(N)

ϕ (t)
∣∣]≤ ‖ϕ‖∞ sup

N

(
E
[
X(N)(0)

]+E
[
E(N)(t)

])
<∞.(5.3)

We now state the main result of this section. Recall that for r, s ∈ [0,∞), ν
(N)
s rep-

resents ν(N)(s) and 〈ϕ(· + r, s), ν
(N)
s 〉 is used as a short form for

∫
[0,M) ϕ(x +

r, s)ν
(N)
s (dx).

THEOREM 5.1. The processes (E(N),X(N), ν(N)) satisfy a.s. the following
coupled set of equations: for ϕ ∈ C 1,1

c ([0,M)×R+) and t ∈ [0,∞),

〈
ϕ(·, t), ν(N)

t

〉= 〈ϕ(·,0), ν
(N)
0

〉+ ∫ t

0

〈
ϕx(·, s)+ ϕs(·, s), ν(N)

s

〉
ds

(5.4)
−Q(N)

ϕ (t)+
∫
[0,t]

ϕ(0, u) dK(N)(u),

X(N)(t) = X(N)(0)+E(N)(t)−Q
(N)
1 (t),(5.5)

N − 〈1, ν
(N)
t

〉= [N −X(N)(t)
]+

,(5.6)

where K(N) satisfies (2.6), and Q
(N)
ϕ is the process defined in (5.1).

The rest of this section is devoted to the proof of this theorem. Fix ω ∈ 	 (we
will later restrict ourselves to ω in a set of probability 1 on which Lemmas 5.2
and 5.3 apply). We start with the simple observation that for any ϕ ∈ C 1,1

c ([0,M)×
R+), due to the right-continuity of ν(N) we have for any t ∈ [0,∞),

〈
ϕ(·, t), ν(N)

t

〉− 〈ϕ(·,0), ν
(N)
0

〉
(5.7)

= lim
n→∞

�nt�∑
k=0

[〈
ϕ

(
·, k + 1

n

)
, ν

(N)
(k+1)/n

〉
−
〈
ϕ

(
·, k

n

)
, ν

(N)
k/n

〉]
.

In order to compute the increments on the right-hand side of the last equation, we
observe that for ϕ ∈ C 1,1

c ([0,M)×R+), n ∈ N and k = 0, . . . , �nt�, we can write〈
ϕ

(
·, k + 1

n

)
, ν

(N)
(k+1)/n

〉
−
〈
ϕ

(
·, k

n

)
, ν

(N)
k/n

〉

=
〈
ϕ

(
·, k + 1

n

)
− ϕ

(
·, k

n

)
, ν

(N)
(k+1)/n

〉
(5.8)

+
〈
ϕ

(
·, k

n

)
, ν

(N)
(k+1)/n

〉
−
〈
ϕ

(
·, k

n

)
, ν

(N)
k/n

〉
.
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Summing the first term on the right-hand side of (5.8) over k = 0, . . . , �nt�, we
obtain

�nt�∑
k=0

〈
ϕ

(
·, k + 1

n

)
− ϕ

(
·, k

n

)
, ν

(N)
(k+1)/n

〉

=
�nt�∑
k=1

〈
ϕ

(
·, k

n

)
− ϕ

(
·, k − 1

n

)
, ν

(N)
k/n

〉
(5.9)

+
〈
ϕ

(
·, �nt� + 1

n

)
− ϕ

(
·, �nt�

n

)
, ν

(N)
(�nt�+1)/n

〉
.

In order to simplify the last two terms on the right-hand side of (5.8), we first
observe that for ϕ ∈ C 1,1

c ([0,M)×R+), δ ∈ (0,M) and s ∈ [0,∞), we have〈
ϕ(·, s), ν(N)

s+δ

〉= I1 + I2,(5.10)

where

I1
.=
∫
[δ,M)

ϕ(x, s)ν
(N)
s+δ(dx) and I2

.=
∫
[0,δ)

ϕ(x, s)ν
(N)
s+δ(dx).

We begin by rewriting I1 in terms of quantities that are known at time s. For
x ≥ δ, customers in service with age equal to x at time s + δ are precisely those
customers that were already in service at time s with age equal to x − δ ≥ 0 and
that, in addition, did not depart the system in the interval [s, s + δ]. From (2.7) it
is clear that the age of a customer already in service increases linearly with rate 1.
Therefore, using the representation for ν(N) given in (2.8), we have

I1 =
K(N)(s+δ)∑

j=−〈1,ν
(N)
0 〉+1

ϕ
(
a

(N)
j (s + δ), s

)
1{δ≤a

(N)
j (s+δ)<vj }

=
K(N)(s)∑

j=−〈1,ν
(N)
0 〉+1

ϕ
(
a

(N)
j (s)+ δ, s

)
1{a(N)

j (s)+δ<vj }

=
K(N)(s)∑

j=−〈1,ν
(N)
0 〉+1

ϕ
(
a

(N)
j (s)+ δ, s

)
1{a(N)

j (s)<vj }

−
K(N)(s)∑

j=−〈1,ν
(N)
0 〉+1

ϕ
(
a

(N)
j (s)+ δ, s

)
1{a(N)

j (s)<vj≤a
(N)
j (s)+δ}.

(Here, and in what follows below, we always assume, without loss of generality,
that δ = δ(ω) is sufficiently small so that the range of the first argument of ϕ
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falls within [0,M), ensuring that all quantities are well defined.) Substituting the
definition of ν

(N)
s into the last expression, this can be rewritten as

I1 = 〈ϕ(· + δ, s), ν(N)
s

〉− q(N)
ϕ (s, δ),(5.11)

where for ϕ ∈ C 1,1
c ([0,M)×R+), s ∈ [0,∞) and δ > 0, we define

q(N)
ϕ (s, δ)

.=
K(N)(s)∑

j=−〈1,ν
(N)
0 〉+1

ϕ
(
a

(N)
j (s)+ δ, s

)
1{a(N)

j (s)<vj≤a
(N)
j (s)+δ}.(5.12)

We now expand I2 as follows:

I2 =
∫
[0,δ)

ϕ(0, s)ν
(N)
s+δ(dx)+

∫
[0,δ)

(
ϕ(x, s)− ϕ(0, s)

)
ν

(N)
s+δ(dx).

For any 0 ≤ r ≤ s < ∞, let K(N)(r, s] = K(N)(s) − K(N)(r) denote the number
of customers that entered service in the period (r, s], and let D

(N)∗ (r, s] denote
the number of customers that both entered service and departed the system in the
period (r, s]. Note that D

(N)∗ (r, s] admits the explicit representation

D(N)∗ (r, s] =
K(N)(s)∑

j=K(N)(r)+1

1{a(N)
j (s)=vj }.(5.13)

Also, note that ν
(N)
s+δ[0, δ) is the number of customers in service that have age less

than δ at time s + δ. These customers must therefore have entered service in the
interval (s, s + δ] and not yet departed by time s + δ. Therefore, we can write

ν
(N)
s+δ[0, δ)=K(N)(s, s + δ] −D(N)∗ (s, s + δ].

Combining the last three expressions, we obtain

I2 = ϕ(0, s)K(N)(s, s + δ] − ϕ(0, s)D(N)∗ (s, s + δ]
(5.14)

+
∫
[0,δ]
(
ϕ(x, s)− ϕ(0, s)

)
ν

(N)
s+δ(dx).

Substituting (5.11) and (5.14) into (5.10), with s = k/n and δ = 1/n, we obtain
for ϕ ∈ C 1,1

c ([0,M)×R+),〈
ϕ

(
·, k

n

)
, ν

(N)
(k+1)/n

〉
−
〈
ϕ

(
·, k

n

)
, ν

(N)
k/n

〉

=
〈
ϕ

(
· + 1

n
,
k

n

)
− ϕ

(
·, k

n

)
, ν

(N)
k/n

〉
− qϕ

(
k

n
,

1

n

)

+ ϕ

(
0,

k

n

)
K(N)

(
k

n
,
k + 1

n

]
− ϕ

(
0,

k

n

)
D(N)∗

(
k

n
,
k + 1

n

]

+
∫
[0,1/n)

(
ϕ

(
x,

k

n

)
− ϕ

(
0,

k

n

))
ν

(N)
(k+1)/n(dx).
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Summing the last expression over k = 0, . . . , �nt�, we obtain

�nt�∑
k=0

[〈
ϕ

(
·, k

n

)
, ν

(N)
(k+1)/n

〉
−
〈
ϕ

(
·, k

n

)
, ν

(N)
k/n

〉]

=
�nt�∑
k=0

1

n

〈
ϕ(· + 1/n, k/n)− ϕ(·, k/n)

1/n
, ν

(N)
k/n

〉
−Q(N),1/n

ϕ (t)(5.15)

+
�nt�∑
k=0

ϕ

(
0,

k

n

)
K(N)

(
k

n
,
k + 1

n

]
−R(N),n

ϕ (t),

where, for conciseness, we set, for ϕ ∈ C 1,1
c ([0,M)×R+), N ∈ N and t ∈ [0,∞),

Q(N),δ
ϕ (t)

.=
�t/δ�∑
k=0

q(N)
ϕ (kδ, δ), δ > 0,(5.16)

and, for n ∈ N,

R(N),n
ϕ (t)

.=
�nt�∑
k=0

ϕ

(
0,

k

n

)
D(N)∗

(
k

n
,
k + 1

n

]
(5.17)

−
�nt�∑
k=0

∫
[0,1/n)

(
ϕ

(
x,

k

n

)
− ϕ

(
0,

k

n

))
ν

(N)
(k+1)/n(dx).

Summing (5.8) over k = 0,1, . . . , �nt�, and using (5.9) and (5.15), we obtain

�nt�∑
k=0

[〈
ϕ

(
·, k + 1

n

)
, ν

(N)
(k+1)/n

〉
−
〈
ϕ

(
·, k

n

)
, ν

(N)
k/n

〉]

=
〈
ϕ

(
· + 1

n
,0
)
− ϕ(·,0), ν

(N)
0

〉

+
〈
ϕ

(
·, �nt� + 1

n

)
− ϕ

(
·, �nt�

n

)
, ν

(N)
(�nt�+1)/n

〉
(5.18)

+
�nt�∑
k=1

〈
ϕ

(
· + 1

n
,
k

n

)
− ϕ

(
·, k − 1

n

)
, ν

(N)
k/n

〉

+
�nt�∑
k=0

ϕ

(
0,

k

n

)
K(N)

(
k

n
,
k + 1

n

]

−Q(N),1/n
ϕ (t)−R(N),n

ϕ (t).
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Because ϕ ∈ C 1,1
c ([0,M) × R+) and ν(N)[0,M) ≤ N , by the bounded conver-

gence theorem, it follows that (for the fixed ω)

lim
n→∞

〈
ϕ

(
· + 1

n
,0
)
− ϕ(·,0), ν

(N)
0

〉
= 0,

(5.19)

lim
n→∞

〈
ϕ

(
·, �nt� + 1

n

)
− ϕ

(
·, �nt�

n

)
, ν

(N)
(�nt�+1)/n

〉
= 0.

Therefore, the first two terms on the right-hand side of (5.18) vanish as n →∞.
Next, multiplying and dividing the third and fourth terms on the right-hand side of
(5.18) by 1/n, and taking limits as n→∞, we obtain the corresponding Riemann–
Stieltjes integrals

lim
n→∞

�nt�∑
k=1

1

n

〈
ϕ(· + 1/n, k/n)− ϕ(·, (k − 1)/n)

1/n
, ν

(N)
k/n

〉
(5.20)

=
∫ t

0

〈
ϕx(·, s)+ ϕs(·, s), ν(N)

s

〉
ds

and

lim
n→∞

�nt�∑
k=0

ϕ

(
0,

k

n

)
K(N)

(
k

n
,
k + 1

n

]
(5.21)

=
∫
[0,t]

ϕ(0, s) dK(N)(s),

where we have used the fact that the process K(N) has right-continuous paths in the
latter limit. The next two results identify the limits, as n →∞, of the remaining
two terms, Q

(N),1/n
ϕ and R(N),n, on the right-hand side of (5.18).

LEMMA 5.2. Almost surely, for every N ∈ N, t ∈ [0,∞) and ϕ ∈ C 1,1
c ([0,

M)×R+), Q
(N),δ
ϕ (t) converges to Q

(N)
ϕ (t) as δ → 0.

PROOF. Fix N ∈ N, t ∈ [0,∞) and ϕ ∈ C 1,1
c ([0,M) × R+), and let L < ∞

be such that sups∈[0,t],y∈[0,M)|ϕx(y, s) + ϕt(y, s)| ≤ L. For any δ > 0, and j =
−〈1, ν

(N)
0 〉 + 1, . . . ,0, define τ δ(j)= 0 and for j = 1,2, . . . , define

τ δ(j)
.= inf

{
k ∈ N :a(N)

j (kδ + ε) > 0 ∀ε > 0
}
.

Observe that τ δ(j)δ represents the smallest point on the δ-lattice {kδ, k = 0,
1, . . . , �t/δ�} that is greater than or equal to the time at which the j th customer
enters service. The introduction of ε in the definition of τ δ(j) was necessary to
ensure that τ δ(j) = k if the j th customer enters service precisely at kδ, and thus
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has age 0 at that time. For any δ > 0, a simple interchange of summation shows
that

Q(N),δ
ϕ (t) =

�t/δ�∑
k=0

K(N)(kδ)∑
j=−〈1,ν

(N)
0 〉+1

ϕ
(
a

(N)
j (kδ)+ δ, kδ

)
1{a(N)

j (kδ)<vj≤a
(N)
j (kδ)+δ}

=
K(N)(�t/δ�δ)∑

j=−〈1,ν
(N)
0 〉+1

�t/δ�∑
k=τ δ(j)

ϕ
(
a

(N)
j (kδ)+ δ, kδ

)
1{a(N)

j (kδ)<vj≤a
(N)
j (kδ)+δ}.

However, when a
(N)
j (kδ) < vj ≤ a

(N)
j (kδ)+ δ, we have

sup
s∈[kδ,(k+1)δ]

∣∣ϕ(a(N)
j (kδ)+ δ, kδ

)− ϕ(vj , s)
∣∣≤ Lδ,

and we also know that there exists a (unique) s ∈ (kδ, (k + 1)δ] such that
d
dt

a
(N)
j (s−) > 0 and a

(N)
j (s)= vj (i.e., s is the unique time at which the customer

departs the system). Hence, we can write

Q(N),δ
ϕ (t) =

K(N)(�t/δ�δ)∑
j=−〈1,ν

(N)
0 〉+1

∑
s∈[0,(�t/δ�+1)δ]

ϕ(vj , s)1{d/dta
(N)
j (s−)>0,a

(N)
j (s)=vj }

+O(δ).

Sending δ → 0, because K(N) is càdlàg, we see that Q
(N),δ
ϕ (t) converges to the

quantity

K(N)(t−)∑
j=−〈1,ν

(N)
0 〉+1

∑
s∈[0,t]

ϕ
(
a

(N)
j (s), s

)
1{d/dta

(N)
j (s−)>0,a

(N)
j (s)=vj } =Q(N)

ϕ (t),

where the last equality follows by replacing K(N)(t−) by K(N)(t). This replace-
ment is justified even though we need not have K(N)(t−) = K(N)(t) because the
relation G(0+) = 0 ensures that every vj is almost surely strictly positive, and so
if customer j enters service precisely at time t , then 1{a(N)

j (s)=vj } = 0 for every

s ∈ [0, t]. �

LEMMA 5.3. Almost surely, for every T ∈ [0,∞) and every ϕ ∈ C 1,1
c ([0,M)×

R+),

lim
n→∞ sup

t∈[0,T ]
R(N),n

ϕ (t)= 0.(5.22)

PROOF. We will establish the lemma by showing that a.s. for any ϕ ∈
C 1,1

c ([0,M) × R+), as n →∞, both terms on the right-hand side of (5.17) con-
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verge uniformly to zero. Fix T < ∞ and t ∈ [0, T ]. Then for any n ∈ N, from the
representation (5.13) for D

(N)∗ it immediately follows that

�nt�∑
k=0

D(N)∗
(

k

n
,
k + 1

n

]
≤

�nt�∑
k=0

K(N)((k+1)/n)∑
j=K(N)(k/n)+1

1{vj≤1/n} =
K(N)((�nt�+1)/n)∑

j=1

1{vj≤1/n}.

We take first the supremum over t ∈ [0, T ] and then the expectation of both sides
above. Using the independence of the interarrival and service times and the fact
that K(N) ≤X(N)(0)+E(N), which can be deduced from the relations (2.5), (2.6)
and the fact that (2.10) implies 〈1, ν(N)〉 ≤X(N), we then obtain the bound

E

[
sup

t∈[0,T ]

�nt�∑
k=0

D(N)∗
(

k

n
,
k + 1

n

]]
≤G

(
1

n

)
E
[
X(N)(0)+E(N)(T + 1)

]
.

Next, taking the limit as n→∞, observe that the right-hand side tends to zero be-
cause E[X(N)(0) + E(N)(T + 1)] < ∞, G is right-continuous and G(0+) = 0.
At the same time, on the left-hand side, the expectation can be interchanged
with the limit by an application of the dominated convergence theorem because
D

(N)∗ (k/n, (k + 1)/n] is nonnegative for all k ∈ N, and is bounded above by
K(N)(T )+ 1, which has finite expectation. Thus,

0 = lim
n→∞E

[
sup

t∈[0,T ]

�nt�∑
k=0

D(N)∗
(

k

n
,
k + 1

n

]]

= E

[
lim

n→∞ sup
t∈[0,T ]

�nt�∑
k=0

D(N)∗
(

k

n
,
k + 1

n

]]
.

Since each term of the form D
(N)∗ ( k

n
, k+1

n
] is nonnegative, this implies that the

limit within the expectation on the right-hand side is almost surely zero. Therefore,
almost surely,

lim
n→∞ sup

t∈[0,T ]

�nt�∑
k=0

ϕ

(
0,

k

n

)
D(N)∗

(
k

n
,
k + 1

n

]

≤ ‖ϕ‖∞ lim
n→∞ sup

t∈[0,T ]

�nt�∑
k=0

D(N)∗
(

k

n
,
k + 1

n

]
= 0.

The monotonicity in T of the left-hand side allows us to conclude that there exists
a set 	1 of full P-measure on which this convergence holds simultaneously for
all T .

We now turn to the second term on the right-hand side of (5.17). Let m(δ)
.=

sup(x,t),(y,s)∈[0,M)×R+ : |(x,t)−(y,s)|≤δ|ϕ(x, t)− ϕ(y, s)| be the modulus of continu-
ity of ϕ. Note that limδ→0 m(δ) = 0 because ϕ ∈ C 1,1

c ([0,M)× R+) is uniformly
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continuous. For any t ∈ [0, T ] and n ∈ N,

�nt�∑
k=0

∫
[0,1/n)

∣∣∣∣ϕ
(
x,

k

n

)
− ϕ

(
0,

k

n

)∣∣∣∣ν(N)
(k+1)/n(dx)≤m

(
1

n

) �nt�∑
k=0

ν
(N)
(k+1)/n

[
0,

1

n

)
.

Now, any customer whose age lies in [0,1/n) at time (k + 1)/n entered service
strictly after k/n and would have age greater than or equal to 1/n at any time k′/n,
k + 1 < k′ ∈ N, if it were still in service at that time. Hence, for any fixed n ∈ N,
the unit mass corresponding to any given customer is counted in at most one term
of the form ν

(N)
(k+1)/n[0,1/n), k ∈ N. This implies the elementary bound

sup
t∈[0,T ]

�nt�∑
k=0

ν
(N)
(k+1)/n

[
0,

1

n

)
≤X(N)(0)+E(N)(T + 1).

Let 	2 be the set of full P-measure on which the property X(N)(0) + E(N)(t) <

∞ for every t ∈ [0,∞) is satisfied. Then on 	2, the right-hand side of the last
expression, which is independent of n, is a.s. finite. Therefore, a.s.,

lim
n→∞ sup

t∈[0,T ]

∣∣∣∣∣
�nt�∑
k=0

∫
[0,1/n)

∣∣∣∣ϕ
(
x,

k

n

)
− ϕ

(
0,

k

n

)∣∣∣∣ν(N)
(k+1)/n(dx)

∣∣∣∣∣
≤ (X(N)(0)+E(N)(T + 1)

)
lim

n→∞m

(
1

n

)
= 0.

Thus, we have shown that on the set 	1 ∩ 	2 of full P-measure, (5.22) holds for
every T <∞ and ϕ ∈ C 1,1

c ([0,M)×R+). �

We are now in a position to complete the proof of Theorem 5.1.

PROOF OF THEOREM 5.1. Fix N ∈ N and t ∈ [0,∞), choose a set 	̃ of
P-measure 1 on which the assertions of Lemmas 5.2 and 5.3 hold for every
ϕ ∈ C 1,1

c ([0,M) × R+). Fix ω ∈ 	̃. Combining (5.18) with (5.19), (5.20), (5.21),
Lemmas 5.2 and 5.3, it follows that the right-hand side of (5.7) equals∫ t

0

〈
ϕx(·, s)+ ϕs(·, s), ν(N)

s

〉
ds −Q(N)

ϕ (t)+
∫
[0,t]

ϕ(0, s) dK(N)(s).

Equating this with the left-hand side of (5.7), we obtain (5.4). The remaining rela-
tions (5.5) and (5.6) follow immediately from (2.5), (2.10) and the observation
that Q

(N)
1 = D(N) and the observation made in the dicussion below (5.1) that

Q
(N)
1 =D(N). �

5.2. A useful family of martingales. An inspection of the integral equation
(5.4) suggests that identification of the limit of the sequence {(X(N), ν(N))} of
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scaled state processes is likely to require a characterization of the limit of a scaled
version Q

(N)
ϕ of Q

(N)
ϕ . In order to achieve this task, we first identify the compen-

sator of Q
(N)
ϕ (in Corollary 5.5) and then identify the limit of the quadratic varia-

tion of the associated scaled martingale M
(N)
ϕ , obtained as a compensated sum of

jumps (see Lemma 5.9).
We begin by introducing some notation. Recall that h is the hazard rate function

defined in (2.3). For any ϕ ∈ Cb([0,M)×R+), consider the sequences of processes
{A(N)

ϕ } defined by

A(N)
ϕ (t)

.=
∫ t

0

(∫
[0,M)

ϕ(x, s)h(x)ν(N)
s (dx)

)
ds(5.23)

for every t ∈ [0,∞). We now derive an alternative representation for the process
A

(N)
ϕ which shows, in particular, that A

(N)
ϕ is well defined and takes values in R for

every t ∈ [0,∞). For j ∈ N, recall that α
(N)
j

.= inv[K(N)](j) is the time that the j th
customer entered service. Interchanging the order of integration and summation
and using the linear increase of the age process, we can write for t ∈ [0,∞),

A(N)
ϕ (t) =

∫ t

0

(
K(N)(s)∑

j=−〈1,ν
(N)
0 〉+1

h
(
a

(N)
j (s)

)
ϕ
(
a

(N)
j (s), s

)
1{a(N)

j (s)<vj }

)
ds

=
0∑

j=−〈1,ν
(N)
0 〉+1

∫ t

0
h
(
a

(N)
j (0)+ s

)
ϕ
(
a

(N)
j (0)+ s, s

)
1{a(N)

j (0)+s<vj } ds(5.24)

+
K(N)(t)∑

j=1

∫ t

α
(N)
j

h
(
s − α

(N)
j

)
ϕ
(
s − α

(N)
j , s

)
1{s<α

(N)
j +vj } ds.

This shows that A
(N)
ϕ is well defined because vj < M a.s., and h is locally inte-

grable on [0,M). Moreover, using the inequality 〈1, ν
(N)
0 〉+K(N)(t)≤X(N)(0)+

E(N)(t), we have for every N ∈ N and ϕ ∈ Cc([0,M) × R+) with supp(ϕ) ⊂
[0,m] ×R+ for m ∈ [0,M),∣∣A(N)

ϕ (t)
∣∣≤ ‖ϕ‖∞(X(N)(0)+E(N)(t)

)(∫ m

0
h(x) dx

)
, t ∈ [0,∞),(5.25)

which is finite due to the local integrability of h.
Now, let J

(N)
t be the (random) set of jump points of the departure process D(N)

up to time t

J
(N)
t

.= {s ∈ [0, t] :D(N)(s) �=D(N)(s−)
}

and set J (N) = J
(N)∞ .=⋃t>0 J

(N)
t . Recall that Q

(N)
1 =D(N). We start by identify-

ing the (predictable) compensator of D(N) (see Section 3b of [10] for the defini-
tion).
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LEMMA 5.4. For every N ∈ N, the process A
(N)
1 is the {F (N)

t }-compensator

of the departure process D(N). In other words, A
(N)
1 is an increasing, {F (N)

t }-
adapted process, with E[A(N)

1 (t)] < ∞ for every t ∈ [0,∞), such that for every

nonnegative {F (N)
t }-predictable process H ,

E

[ ∑
s∈J (N)

Hs

]
= E

[∫ ∞
0

Hs dA
(N)
1 (s)

]
(5.26)

= E

[∫ ∞
0

Hs

(∫
[0,M)

h(x)ν(N)
s (dx)

)
ds

]
.

PROOF. Fix N ∈ N, label the servers from 1, . . . ,N and assume without loss
of generality that, for j = −〈1, ν

(N)
0 〉 + 1, . . . ,0, the j th customer in service at

time 0 is being served at the kj th station, where kj
.= j + 〈1, ν

(N)
0 〉.

In order to prove the lemma, we shall find it convenient to introduce the follow-
ing notation. For k = 1, . . . ,N and n ∈ N, let θ

(N),k
n (resp., ζ

(N),k
n ) be the time at

which the nth customer to be served at station k starts (resp., completes) service,

where for j =−〈1, ν
(N)
0 〉+ 1, . . . ,0, we set θ

(N),kj

1 equal to −a
(N)
j (0). We also let

D(N),k(t) represent the total number of customers that have departed from the kth
station in the interval [0, t]. Then clearly D(N),k(0)= 0 and

D(N) =
N∑

k=1

D(N),k.

For conciseness, for the rest of this proof we shall omit the explicit dependence of
all quantities on N .

For k = 1, . . . ,N , the process Dk =D(N),k admits the decomposition

Dk(t)=
∞∑

n=1

[Dk(t ∧ ζ k
n )−Dk(t ∧ θk

n)], t ∈ [0,∞).

Define

Dk
n(t)

.=Dk(t ∧ ζ k
n )−Dk(t ∧ θk

n), t ∈ [0,∞).

Observe that Dk
n is a point process with just one point representing the nth depar-

ture from station k. We claim (and justify below) that the {Ft }-compensator of Dk
n

is given by the process Ak
n that is defined, for t ∈ [0,∞), by

Ak
n(t)

.=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, if t ∈ [0, θk
n ∨ 0],∫ t

θk
n∨0

h(u− θk
n) du, if t ∈ (θk

n ∨ 0, ζ k
n ],

∫ ζ k
n

θk
n∨0

h(u− θk
n) du, if t ∈ (ζ k

n ,∞).
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It is straightforward to verify that θk
n and ζ k

n are both {Ft }-stopping times (this
can be done by rewriting the events {θk

n ≤ t} and {ζ k
n ≤ t} as events involving

{a(N)
j (s),ϒ

(N)
j (s), s ∈ [0, t], j ∈ {−N + 1, . . . ,0} ∪N}—the details are left to the

reader). As a result, it follows that Ak
n is {Ft }-adapted. Moreover, by definition,

Ak
n is continuous and, hence, {Ft }-predictable. Thus, to establish the claim that it

is the {Ft }-compensator for Dk
n, by Theorem 3.17 on page 32 of [10], it suffices to

show that for every {Ft }-stopping time T ,

E

[∫ ∞
0

1[0,T ](s) dDk
n(s)

]
= E

[∫ ∞
0

1[0,T ](s) dAk
n(s)

]
.

We will prove the result for the case when θk
n > 0 (i.e., when n ≥ 2 or n = 1

and k �= kj for j =−〈1, ν
(N)
0 〉 + 1, . . . ,0). The result in the remaining cases also

follows from the same argument, but with G replaced by the conditional distri-
bution [G(·) − G(a

(N)
j (0))]/[1 − G(a

(N)
j (0))]1[a(N)

j (0),∞)
, which has hazard rate

h1[a(N)
j (0),∞)

. Fix n, k such that θk
n > 0. Due to the monotone convergence the-

orem, it is clear that it in fact suffices to show that the above equality holds for
any bounded {Ft }-stopping time T . Now, note that, because neither Dk

n nor Ak
n

increase outside (θk
n , ζ k

n ], the last equation is equivalent to the relation

E

[∫ ∞
0

1[0,T ]∩(θk
n ,∞)(s) dDk

n(s)

]
= E

[∫ ∞
0

1[0,T ]∩(θk
n ,ζ k

n ](s) dAk
n(s)

]
.

However, the term on the left-hand side can be rewritten as

E

[∫ ∞
0

1[0,T ]∩(θk
n ,∞)(s) dDk

n(s)

]
= lim

m→∞E

[ ∞∑
j=0

1{θk
n≤j/2m<T,j/2m<ζk

n≤(j+1)/2m}

]
.

Since T , θk
n and ζ k

n are all {Ft }-stopping times, conditioning on Fj/2m , it follows
that for any m ∈ N and j = 1, . . . ,2m,

E
[
1{θk

n≤j/2m<T }1{j/2m<ζk
n≤(j+1)/2m}

]
= E
[
E
[
1{θk

n≤j/2m<T,ζ k
n >j/2m}1{ζ k

n≤(j+1)/2m}|Fj/2m

]]

= E

[
1{θk

n≤j/2m<T,ζ k
n >j/2m}

∫ (j+1)/2m

j/2m

g(u− θk
n)

1 −G(j/2m − θk
n)

du

]

= E

[
1{θk

n≤j/2m<T,ζ k
n >j/2m}

G((j + 1)/2m − θk
n)−G(j/2m − θk

n)

1 −G(j/2m − θk
n)

]
.

Note that the second equality above uses the independence of the service require-
ment of a given customer from the cumulative arrival process and the service re-
quirements of all other customers. Combining the last two displays and invoking
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the monotone convergence theorem to justify the interchange of expectation and
summation over j , we conclude that

E

[∫ ∞
0

1[0,T ]∩(θk
n ,∞)(s) dDk

n(s)

]

= lim
m→∞E

[ ∞∑
j=0

1{θk
n≤j/2m<T,ζ k

n >j/2m}
G((j + 1)/2m − θk

n)−G(j/2m − θk
n)

1 −G(j/2m − θk
n)

]
.

To complete the proof, it only remains to show that the right-hand side of the
last equation is equal to E[∫∞0 1[0,T )(s)A

k
n(ds)]. For this, first note that the term

within the expectation on the right-hand side of the last equation can be rewritten
in the form E[∫∞0 1[0,T )(s)A

k
m,n(ds)] where, for m ∈ N, Ak

m,n(·) = Ak
m,n(ω; ·) is

the random measure defined for each ω ∈	 by

Ak
m,n(ω;ds) =

∞∑
j=0

δj/2m(ds)1{θk
n (ω)≤j/2m<ζk

n (ω)}

× G((j + 1)/2m − θk
n(ω))−G(j/2m − θk

n(ω))

1 −G(j/2m − θk
n(ω))

,

where δx is, as usual, the Dirac mass at x. Next, observe that if θk
n + 2−m ≤

u ≤ j2−m, then G(u − θk
n) ≤ G(j2−m − θk

n) and therefore 1 − G(u − θk
n) ≥

1 − G(j2−m − θk
n) and similarly, if θk

n ≤ j2−m ≤ u then 1 − G(u − θk
n) ≤

1 −G(j2−m − θk
n). It follows that

∫ ζ k
n

θk
n+1/2m

g(u− θk
n)

1 −G(u− θk
n)

du ≤ Ak
m,n[0,∞)

≤
∫ ζ k

n+1/2m

θk
n

g(u− θk
n)

1 −G(u− θk
n)

du

=− ln
(

1 −G

(
ζ k
n + 1

2m
− θk

n

))
.

The random variable ζ k
n − θk

n is distributed according to G because it represents
a service time. Hence, G(ζ k

n − θk
n) is uniformly distributed in (0,1). Due to the

continuity of G, for every ω, there exists a sufficiently large m0 = m0(ω) such
that for m ≥ m0, G(ζ k

n (ω) − θk
n(ω) + 1/2m) < 1, so that − ln(1 − G(ζ k

n (ω) +
1

2m − θk
n(ω))) <∞. Combining the last four statements, we conclude that for each

ω, Ak
m,n(ω; [0,∞)) is finite for all m ≥ m0 and, moreover, that as m →∞, the

measure Ak
m,n(ω; ·) converges vaguely to the measure that has density

g(u− θk
n(ω))

1 −G(u− θk
n(ω))

1{θk
n (ω)<u≤ζ k

n (ω)} = h
(
u− θk

n(ω)
)
1{θk

n (ω)<u≤ζ k
n (ω)},
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which is precisely the measure Ak
n(ω; ·). The latter measure does not charge points,

and in particular does not charge u= T (ω). So we conclude that for every ω,

lim
m→∞

∫ ∞
0

1[0,T (ω))(s)A
k
m,n(ω;ds) =

∫ ∞
0

1[0,T (ω))(s)A
k
n(ω;ds)

≤
∫ B−θk

n (ω)

0
h(u)du,

where B is an upper bound on the stopping time T (note that if M < ∞ we may
restrict our attention to bounded stopping times whose bound B satisfies B < θk

n +
M). Therefore, the last term is finite due to the local integrability of the hazard rate
function on [0,M). The limit above, along with the bounded convergence theorem,
then implies the desired convergence

lim
m→∞E

[ ∞∑
j=0

1{θk
n≤j/2m<T,ζ k

n >j/2m}
G((j + 1)/2m − θk

n)−G(j/2m − θk
n)

1 −G(j/2m − θk
n)

]

= E

[
lim

m→∞

∫ ∞
0

1[0,T )(u) dAk
m,n(u)

]

= E

[∫ ∞
0

1[0,T )(u) dAk
n(u)

]

= E

[∫ ∞
0

1[0,T ](u) dAk
n(u)

]
,

where the last equality uses the continuity of Ak
n. This establishes (5.26). In partic-

ular, this shows that for every t ∈ [0,∞), E[A(N)
1 (t)] = E[D(N)(t)] ≤ E[E(N)(t)+

X(N)(0)]. Thus, the lemma follows from Remark 3.1. �

Because D(N) = Q
(N)
1 and the ages of customers are continuous and, hence,

predictable processes, the following (seemingly stronger) result can be immedi-
ately deduced from the proof of the last lemma.

COROLLARY 5.5. For every N ∈ N and ϕ ∈ Cb([0,M) × R+), the process
A

(N)
ϕ is the {F (N)

t }-compensator of the process Q
(N)
ϕ . In particular, the process

M
(N)
ϕ defined by

M(N)
ϕ

.=Q(N)
ϕ −A(N)

ϕ(5.27)

is a local {F (N)
t }-martingale.

As usual, let Q
(N)
ϕ , A

(N)
ϕ and M

(N)
ϕ , respectively, denote the scaled processes

Q
(N)
ϕ /N , A

(N)
ϕ /N and M

(N)
ϕ /N . The following lemma will be used in Section 5.3

to establish tightness of these processes.
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LEMMA 5.6. For every T <∞ and ϕ ∈ Cb([0,M)×R+),

lim sup
N

E
[∣∣Q(N)

ϕ (T )
∣∣]<∞

and lim supN E[A(N)
ϕ (T )]<∞. Also, for t ∈ [0,∞) and N ∈ N,

lim
δ→0

E
[
D(N)(t + δ)−D(N)(t)

]= 0.(5.28)

Moreover, for every δ > 0 and interval Z = [m+ δ,M) with m ∈ [0,M − δ),

E
[
Q

(N)
1Z (t + δ)−Q

(N)
1Z (t)|F (N)

t

]≤U(δ)ν
(N)
t [m,M),(5.29)

where U(·) is the renewal function associated with the service distribution G.

PROOF. For every T <∞ and ϕ ∈ Cb([0,M)×R+),

E
[∣∣A(N)

ϕ (T )
∣∣]≤ E

[
A

(N)
|ϕ| (T )

]= E
[
Q

(N)
|ϕ| (T )

]
,

where the last equality is justified by Corollary 5.5. Therefore, the first assertion
of the lemma follows from (5.3). For notational conciseness, throughout the rest
of this proof we will use f (t, t + δ] to denote f (t + δ)− f (t) for any function f ,
t ∈ [0,∞) and δ > 0. Since 1Z is only a function of x, we can write

Q
(N)
1Z (t, t + δ] =

K(N)(t+δ)∑
j=−〈1,ν

(N)
0 〉+1

∑
s∈(t,t+δ]

1{d/dta
(N)
j (s−)>0,a

(N)
j (s)=vj }1Z

(
a

(N)
j (s)

)
,

which is simply the number of departures from the N -server system during the
time interval (t, t + δ] by customers whose ages at the time of departure (which
equals their service times) lie in the set Z .

We shall bound the departures during the time interval (t, t + δ] in the N -server
system by the departures in another system that is easier to analyze. Consider a
modified system in which at time t , there are an infinite number of arrivals (or,
equivalently, customers in queue) so that after t , at each station, every time a
customer finishes service, a new customer joins. Let D̃1(δ|x) denote the num-
ber of departures from a single station in this modified system during the period
(t, t + δ], given that at time t there exists a customer with age x in that station
(note that, as the notation reflects, this quantity is independent of t and the choice
of station). In fact, the quantity D̃1(δ|x) is simply the number of renewals in the
interval [0, δ] of a delayed renewal process with initial distribution that has density
g0(y) = g(y + x)/(1 − G(x)), and inter-renewal distribution G. Thus, as is well
known (see, e.g., Theorem 2.4(iii) of [1]), E[D̃1(δ|x)] is bounded above by U(δ),
where U(·) is the renewal function of a pure (zero-delayed) renewal process that
has inter-renewal distribution G (and a renewal at 0).

Let D̃(t, t + s] be the departure process from the modified system during the in-
terval (t, t + s]. At time t , each customer present in the original system is also
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present in the modified system and has the same age in both systems. On the
other hand, if there are idle servers in the original system at time t , that is, if
N − 〈1, ν

(N)
t 〉 > 0, then the modified system has N − 〈1, ν

(N)
t 〉 servers that have

customers with age zero at time t . Thus, μ
(N)
t

.= ν
(N)
t + (N − 〈1, ν

(N)
t 〉)δ0 repre-

sents the age distribution of customers in the modified system at time t . As a result,
μ

(N)
t [0,M)=N and a simple monotonicity argument shows that

E
[
D(N)(t + δ)−D(N)(t)|F (N)

t

] ≤ 1

N
E
[
D̃(t, t + δ]|F (N)

t

]

= 1

N

∫
[0,M)

E[D̃1(δ|x)]μ(N)
t (dx)(5.30)

≤ U(δ).

Now, U(δ) is finite for any finite δ and nondecreasing (see, e.g., Theorem 2.4(i)
of [1]). Because E[D̃1(δ|x)] converges monotonically down to zero as δ → 0, the
bounded convergence theorem shows that for every N ∈ N,

lim
δ→0

∫
[0,M)

E[D̃1(δ|x)] 1

N
μ

(N)
t (dx)= 0.

Taking expectations of both sides of (5.30) and then sending δ → 0, the last display
and another application of the bounded convergence theorem shows that (5.28) is
satisfied for every N ∈ N.

To establish (5.29), fix δ > 0 and m ∈ (0,M − δ). Then any customer whose
service time is greater than or equal to m+ δ and who departed the system during
the time interval (t, t + δ] must have been in the system at time t with age greater
than or equal to m > 0. Thus, the total number of such departures is bounded
above by the number of departures in the modified system from stations that had
a customer present at time t with age greater than or equal to m. By the same
reasoning provided above, this implies that

E
[
Q

(N)
1[m+δ,M)

(t, t + δ)|F (N)
t

]≤ ∫
[m,M)

E[D̃1(δ|x)]ν(N)
t (dx)

≤ U(δ)ν
(N)
t [m,M),

which completes the proof of the lemma. �

We now derive another estimate, which can be viewed as a “pre-limit” analogue
of the estimate (4.34) that was obtained for solutions of the age equation in Propo-
sition 4.15.

PROPOSITION 5.7. Given � ∈ L1
loc[0,M) and ϕ ∈ Cb([0,M)×R+),

∫ ·
0〈�(·)×

ϕ(·, s), ν(N)
s 〉ds is well defined for every N ∈ N. Moreover, if � ∈ L1[0,M), then
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for every 0 ≤ r ≤ t <∞,∣∣∣∣
∫ t

r

〈
ϕ(·, s)�(·), ν(N)

s

〉
ds

∣∣∣∣
(5.31)

≤ ‖ϕ‖∞(X(N)(0)+E(N)(t)
)

sup
u∈[0,M)

∫ (u+t−r)∧M

u
|�(x)|dx.

PROOF. The fact that
∫ t

0 〈�(·)ϕ(·, s), ν(N)
s 〉ds equals the right-hand side of

(5.24), but with h replaced by �, shows that it is well defined. To obtain the esti-
mate (5.31), manipulating (5.24) with h replaced by �, we obtain for every N ∈ N

and 0 < r < t <∞,∣∣∣∣
∫ t

r

〈
ϕ(·, s)�(·), ν(N)

s

〉
ds

∣∣∣∣
≤ ‖ϕ‖∞

N

0∑
j=−〈1,ν

(N)
0 〉+1

∫ t

r

∣∣�(a(N)
j (0)+ s

)∣∣1{a(N)
j (0)+s<vj } ds

+ ‖ϕ‖∞
N

K(N)(r)∑
j=1

∫ t

r

∣∣�(s − α
(N)
j

)∣∣1{s−α
(N)
j ≤vj } ds(5.32)

+ ‖ϕ‖∞
N

K(N)(t)∑
j=K(N)(r)+1

∫ t

α
(N)
j

∣∣�(s − α
(N)
j

)∣∣1{s−α
(N)
j ≤vj }

≤ ‖ϕ‖∞(〈1, ν
(N)
0

〉+K(N)(t)
)

sup
u∈[0,M)

∫ (u+t−r)∧M

u
|�(x)|dx,

where the last inequality uses the fact that almost surely vj < M and α
(N)
j ∈ [r, t]

for j =K(N)(r)+1, . . . ,K(N)(t). The estimate (5.31) then follows from the above
display, (2.5), (2.6), the nonnegativity of X(N) and the fact that ν

(N)
s is a sub-

probability measure for every s. �

In the next lemma, these estimates are used to obtain some convergence results,
which will in turn be used to prove tightness of the sequence of state processes
in Section 5.3. Assumptions (5.33) and (5.34) imposed in the lemma below are
shown to follow from Assumption 1(3) in Lemma 5.12.

LEMMA 5.8. Suppose that the limit

lim
m↑M

sup E
[
ν

(N)
0 (m,M)

]= 0(5.33)
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holds, and if M <∞, then

lim
m↑M

sup E

[∫
[0,m)

1 −G(m)

1 −G(x)
ν

(N)
0 (dx)

]
= 0(5.34)

is also satisfied. Then the following three properties hold:

(1) For t ∈ [0,∞),

lim
m↑M

sup
N

E

[∫ t

0

(∫
[m,M)

h(x)ν(N)
s (dx)

)
ds

]
= 0.

(2) For every ϕ ∈ Cb([0,M)×R+) and T ∈ [0,∞),

lim
δ→0

lim sup
N

E

[
sup

t∈[0,T ]
(
A(N)

ϕ (t + δ)−A(N)
ϕ (t)

)]= 0

and for t ∈ [0,∞),

lim
δ→0

lim sup
N

E
[
Q(N)

ϕ (t + δ)−Q(N)
ϕ (t)

]= 0.

(3) Given m < M and any sequence of subsets Hn ⊂ [0,m] such that the Lebesgue
measure of the set Hn goes to zero as n→∞, we have for every T ∈ [0,∞),

lim
n→∞ lim sup

N

E

[
sup

t∈[0,T ]
A

(N)
1Hn

(t)
]
= 0.(5.35)

PROOF. As in the last two proofs, in this proof too we will use f (t, t + δ] to
denote f (t + δ)− f (t) for any function f , t ∈ [0,∞) and δ > 0. We shall divide
the proof of the first property into two cases.

Case 1. M = ∞. We start by proving a preliminary result, (5.36) below. For
m,�, s ∈ [0,∞), let fm,�,s ∈ Cb(R+) be such that

1[2m+�+s,∞) ≤ fm,�,s ≤ 1[m+�+s,∞).

By Corollary 5.5 and (5.29), we have for every N ∈ N,

E
[
A

(N)
fm,�,s

(s, s +�]|F (N)
s

]= E
[
Q

(N)
fm,�,s

(s, s +�]|F (N)
s

]
≤ E
[
Q

(N)
1[m+�+s,∞)

(s, s +�]|F (N)
s

]
≤ U(�)ν(N)

s [m+ s,∞).

Taking expectations of both sides, we see that

E
[
A

(N)
fm,�,s

(s, s +�]]≤U(�)E
[
ν(N)

s [m+ s,∞)
]
.(5.36)
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We now show how the first property (in the case M =∞) follows from the above
estimate. Fix t ∈ [0,∞), choose m > t and let m̃

.= (m− t)/2. Then we have

E

[∫ t

0

(∫
[m,∞)

h(x)ν(N)
s (dx)

)
ds

]
= E

[∫ t

0

(∫
[2m̃+t,∞)

h(x)ν(N)
s (dx)

)
ds

]

≤ E
[
A

(N)
fm̃,t,0

(t)
]

≤ U(t)E
[
ν

(N)
0 [m̃,∞)

]
,

where the last inequality is justified by the estimate (5.36), with m,� and s re-
placed by m̃, t and 0, respectively. Taking the supremum of both sides over N ,
and then sending m →∞ (in which case m̃ →∞), relation (5.33) ensures that
property (1) holds for the case M =∞.

Case 2. M < ∞. In this case, for m < M , by Corollary 5.5 and the fact that
1(m,M)(a

(N)
j (·)) is left-continuous and hence predictable, we have

E

[∫ t

0

(∫
(m,M)

h(x)ν(N)
s (dx)

)
ds

]

= E
[
A

(N)
1(m,M)

(t)
]= E

[
Q

(N)
1(m,M)

(t)
]

= 1

N
E

[ ∑
s∈[0,t]

K(N)(t)∑
j=−〈1,ν

(N)
0 〉+1

1{d/dta
(N)
j (s−)>0,a

(N)
j (s)=vj }1(m,M)

(
a

(N)
j (s)

)]

≤ E
[
ν

(N)
0 (m,M)

]+ 1

N
E

[ 0∑
j=−〈1,ν

(N)
0 〉+1

1{a(N)
j (0)≤m}1{vj∈(m,M)}

]

+ 1

N
E

[
E(N)(t)∑

j=1

1{vj∈(m,M)}
]
.

Conditioning on F (N)
0 and using the fact that a

(N)
j (0), j =−〈ν(N)

0 ,1〉, . . . ,0 and,

hence, ν
(N)
0 are measurable with respect to F (N)

0 , we see that the second term on
the right-hand side can be rewritten as

1

N
E

[ 0∑
j=−〈1,ν

(N)
0 〉+1

1{a(N)
j (0)≤m}1{vj∈(m,M)}

]

= 1

N
E

[ 0∑
j=−〈1,ν

(N)
0 〉+1

1{a(N)
j (0)≤m}E

[
1{vj∈(m,M)}|a(N)

j (0)
]]
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= 1

N
E

[ 0∑
j=−〈1,ν

(N)
0 〉+1

1{a(N)
j (0)≤m}

1 −G(m)

1 −G(a
(N)
j (0))

]

= E

[∫
[0,m]

1 −G(m)

1 −G(x)
ν

(N)
0 (dx)

]
.

On the other hand, the independence of the arrival process and the service require-
ments of the customers implies that the third term can be simplified to

1

N
E

[
E(N)(t)∑

j=1

1{vj∈[m,M)}
]
= (1 −G(m)

)
E
[
E(N)(t)

]
.

Combining the last three displays, we conclude that

E

[∫ t

0

(∫
(m,M)

h(x)ν(N)
s (dx)

)
ds

]

≤ E
[
ν

(N)
0 (m,M)

]+E

[∫
[0,m]

1 −G(m)

1 −G(x)
ν

(N)
0 (dx)

]

+ (1 −G(m)
)
E
[
E(N)(t)

]
.

Taking the supremum of both sides over N and then sending m → M , (5.33),
(5.34) and Assumption 1(1) ensure that property 1 is satisfied.

We now turn to the proof of property 2. Fix ϕ ∈ Cb([0,M) × R+) and T ∈
[0,∞). For any m < M and t ∈ [0, T ], we have

E

[
sup

t∈[0,T ]
A(N)

ϕ (t, t + δ]
]
≤ E

[
sup

t∈[0,T ]
A

(N)
ϕ1[0,m](t, t + δ]

]
(5.37)

+E

[
sup

t∈[0,T ]
A

(N)
ϕ1(m,M)

(t, t + δ]
]
.

However, applying (5.31) with � = h1[0,m], and r and t replaced by t and t + δ,
respectively, then taking the supremum over t ∈ [0, T ], next the expectation and
finally the limit superior over N , we obtain

lim sup
N→∞

E

[
sup

t∈[0,T ]
A

(N)
ϕ1[0,m](t, t + δ]

]
≤ ‖ϕ‖∞C(T + δ) sup

u∈[0,m]

∫ (u+δ)∧m

u
h(x) dx,

where C(T + δ) = E[X(0) + E(T + δ)] < ∞ by properties 1 and 2 of Assump-
tion 1. The right-hand side goes to zero as δ → 0 because h is locally integrable.
As a result, we have

lim
δ→0

lim sup
N→∞

E

[
sup

t∈[0,T ]
A

(N)
ϕ1[0,m](t, t + δ]

]
= 0.

Taking first the limit superior of (5.37), as N →∞, next sending δ → 0 and then
taking the limit as m ↑M , the first term on the right-hand side vanishes due to the
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last display, whereas the second term goes to zero by property 1. This proves the
first relation of property 2. The second relation of property 2 follows trivially from
the first on account of Corollary 5.5.

Once again considering (5.31), this time with ϕ = 1, �n = h1Hn = h1Hn∩[0,m]
and r = 0, taking first the supremum over t ∈ [0, T ], next expectations and then
the limit superior, as N →∞, we obtain

lim sup
N→∞

E

[
sup

t∈[0,T ]
A

(N)
1Hn

(t)
]
≤ C(T )

∫
Hn∩[0,m]

h(x) dx,

with C(T ) = lim supN E[X(N)(0) + E(T )] < ∞, where the finiteness is a conse-
quence of properties 1 and 2 of Assumption 1. Sending n → ∞, the local inte-
grability of h and the fact that the Lebesgue measure of Hn converges to zero as
n → ∞ show that the right-hand side above tends to zero. This proves the last
property of the lemma. �

The local martingale M
(N)
ϕ has a well-defined predictable quadratic variation

process 〈M(N)
ϕ 〉 because M

(N)
ϕ (0) = 0 and M

(N)
ϕ has bounded jumps (see, e.g.,

statement (4.1) of Section I of [10]). We now show that the sequence of predictable
quadratic variation processes 〈M(N)

ϕ 〉, N ∈ N, converges to zero as N →∞.

LEMMA 5.9. For every ϕ ∈ Cb([0,M)×R+) and t ∈ [0,∞),

lim
N→∞E

[〈
M(N)

ϕ

〉
(t)
]= 0.(5.38)

Consequently, M
(N)
ϕ ⇒ 0 as N →∞.

PROOF. Because M
(N)
ϕ is a compensated sum of jumps with a continuous

compensator A
(N)
ϕ , M

(N)
ϕ does not have any predictable jump times, that is,

�M
(N)
ϕ (T ) = 0 for every predictable time T (see, e.g., Corollary 1.19 of Sec-

tion II and Definition 2.25 of Section I in [10]). Therefore, by Proposition 2.29 of
Section II in [10], the predictable quadratic variation of the martingale is given by

〈
M(N)

ϕ

〉
(t)=

∫ t

0

(∫
[0,M)

ϕ2(x, s)h(x)ν(N)
s (dx)

)
ds.

This means that the scaled process M
(N)
ϕ has predictable quadratic variation

〈
M(N)

ϕ

〉
(t)= 1

N2

〈
M(N)

ϕ

〉
(t)= 1

N

[∫ t

0

(∫
[0,M)

ϕ2(x, s)h(x)ν(N)
s (dx)

)
ds

]
,

which implies that for any t ∈ [0,∞),

〈
M(N)

ϕ

〉
(t)≤ ‖ϕ‖2∞

N
A

(N)
1 (t).
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Noting that E[A(N)
1 (t)] = E[D(N)(t)] by Lemma 5.4, the first assertion of

Lemma 5.6 shows that supN∈N E[A(N)
1 (t)] < ∞. Thus, taking first expectations

and then limits as N →∞ in the last display, we obtain the first assertion of the
lemma. To show that M

(N)
ϕ ⇒ 0 as N →∞, we note that by Doob’s lemma, for

any λ > 0

P

(
sup

s∈[0,T ]
∣∣M(N)

ϕ (s)
∣∣> λ

)
≤ E[〈M(N)

ϕ 〉(T )]
λ2 ,

which converges to 0 as N →∞ by the first assertion. Because this is true for all
λ > 0, this completes the proof of the lemma. �

5.3. Proof of relative compactness. We now establish the relative compactness
of the sequence of scaled state processes {(X(N), ν(N))}, as well as of several of
the auxiliary processes. For this, it will be convenient to use Kurtz’s criteria for
relative compactness of processes {Y (N)} with sample paths in DR[0,∞).

Kurtz’s criteria.

K1. For every rational t ≥ 0,

lim
R→∞ sup

N

P
(∣∣Y (N)(t)

∣∣> R
)= 0;(5.39)

K2. For each t > 0, there exists β > 0 such that

lim
δ→0

sup
N

E
[∣∣Y (N)(t + δ)− Y (N)(t)

∣∣β]= 0.(5.40)

The sufficiency of these conditions for relative compactness follows from Theo-
rem 3.8.6 of [5] (condition K1 corresponds to condition (a) of Theorem 3.7.2 in [5],
and condition K2 follows from condition (b) of Theorem 3.8.6 and Remark 3.8.7
in [5]).

LEMMA 5.10. Suppose Assumption 1 holds. Then the sequences {Q(N)
ϕ },

{A(N)
ϕ } and {M(N)

ϕ }, ϕ ∈ Cb([0,M)× R+), the sequences {X(N)} and {〈1, ν(N)〉},
and the sequences {〈f, ν

(N)· 〉}, f ∈ C 1
b [0,M), are all relatively compact in

DR[0,∞).

PROOF. Since we are working on Polish spaces, by Prohorov’s theorem the
notions of relative compactness and tightness are equivalent. Fix T < ∞ and ϕ ∈
Cb([0,M) × R+). The fact that {A(N)

ϕ } and {Q(N)
ϕ } satisfy condition K1 is easily

deduced from the bounds supN E[|Q(N)
ϕ (T )|] < ∞ and supN E[|A(N)

ϕ (T )|] < ∞
that were proved in Lemma 5.6. In addition, from Lemma 5.8(2) it follows that for
every ϕ ∈ Cb([0,M) × R), the sequences {A(N)

ϕ } and {Q(N)
ϕ } satisfy criterion K2
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(with β = 1), and thus are relatively compact. Finally, K1 and K2 for {M(N)
ϕ }

follow from K1 and K2 for {A(N)
ϕ } and {Q(N)

ϕ }.
By Assumption 1 and the result just proved above, the sequences {E(N)} and

{X(N)(0)} and {D(N)} are tight and, therefore, relatively compact. Hence, by The-
orem 3.7.2 of [5], they satisfy (5.39). The elementary bound〈

1, ν
(N)
t

〉≤X(N)(t)≤X(N)(0)+E(N)(t), t ∈ [0,∞),

then shows that the sequences {X(N)} and {〈1, ν(N)〉} also satisfy condition K1. To
prove the relative compactness of these sequences, we will use a slightly different
set of criteria, namely K1 above and condition (b) of Theorem 3.7.2 of [5], which
is expressed in terms of the modulus of continuity w′(f, δ, T ) of a function f (see
(3.6.2) of [5] for a precise definition of w′). For every 0 ≤ s ≤ t < ∞, from (5.5)
it is clear that∣∣X(N)(t)−X(N)(s)

∣∣≤ ∣∣E(N)(t)−E(N)(s)
∣∣∨ ∣∣D(N)(t)−D(N)(s)

∣∣,
and the complementarity condition (5.6) shows that∣∣〈1, ν

(N)
t

〉− 〈1, ν(N)
s

〉∣∣≤ ∣∣[1−X(N)(t)
]+− [1−X(N)(s)

]+∣∣≤ ∣∣X(N)(t)−X(N)(s)
∣∣.

From this it is easy to see that for every N ∈ N, δ > 0 and T <∞,

w′(〈1, ν(N)〉, δ, T )∨w′(X(N), δ, T
)≤w′(E(N), δ, T

)∨w′(D(N), δ, T
)
.

The relative compactness of {X(N)} and {〈1, ν(N)〉} is then a direct consequence
of the above estimate, the relative compactness of {E(N)} and {D(N)} and Theo-
rem 3.7.2 of [5].

Now, let f ∈ C 1
b [0,M). We shall prove the relative compactness of the se-

quence {〈f, ν
(N)· 〉}. First, substituting ϕ = f (as usual, interpreting f as a func-

tion on [0,M) × R+ that depends only on the first variable and noting that then
the continuous differentiability of f in the first variable trivially guarantees that
f ∈ C 1,1

c ([0,M)×R+)) in the N -server equation (5.4), and then dividing the equa-
tion by N , we obtain for any t ∈ [0,∞),

〈
f, ν

(N)
t

〉− 〈f, ν
(N)
0

〉= ∫ t

0

〈
f ′, ν(N)

s

〉
ds −Q

(N)
f (t)+ f (0)K(N)(t)

=
∫ t

0

〈
f ′, ν(N)

s

〉
ds −Q

(N)
f (t)

+ f (0)
[
Q

(N)
1 (t)+ 〈1, ν

(N)
t

〉− 〈1, ν
(N)
0

〉]
,

where the last equality uses the relation (2.6). Thus, to show that {〈f, ν(N)〉} is rel-
atively compact, it suffices to show that {〈f, ν

(N)
0 〉} and the sequences associated

with each of the three terms on the right-hand side of the last display are relatively
compact. The relative compactness of the last two terms is a direct result of the rel-
ative compactness of {Q(N)

f }, {Q(N)
1 } and {〈1, ν(N)〉} proved above and the relative
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compactness of the sequence {〈1, ν
(N)
0 〉}, which holds due to Assumption 1(3). In

addition, since ν(N) is a sub-probability measure for every N ∈ N, the first term is
uniformly bounded by ‖f ′‖∞t and, moreover,∫ t+u

t

∣∣〈f ′, ν(N)
s

〉∣∣ds ≤ ‖f ′‖∞u.

This verifies Kurtz’ criteria K1 and K2 (with β = 1), for the sequence associated
with the first term and, hence, establishes its relative compactness. �

We now show that several sequences of measure-valued processes associated
with the many-server model are relatively compact. Given a complete separable
metric space S, the space MF (S), equipped with the topology of weak conver-
gence, is also a complete separable metric space. Therefore, Jakubowski’s crite-
ria (see, e.g., Theorem 4.6 of [11]) for tightness, summarized below, can be ap-
plied to establish relative compactness on D MF (S)[0,∞), with S = [0,M) and
S = [0,M)×R+.

Jakubowski’s criteria. A sequence {π(N)} of D MF (S)[0,∞)-valued random
elements defined on (	, F ,P) is tight if and only if the following two conditions
are satisfied:

J1. For each T > 0 and η > 0 there exists a compact set KT ,η ⊂ MF (S) such that

lim inf
N→∞ P

(
π

(N)
t ∈ KT ,η for all t ∈ [0, T ])> 1 − η.

This is referred to as the compact containment condition.
J2. There exists a family F of real-valued continuous functions H on MF (S) that

separates points in MF (S) and is closed under addition such that {ν̃(N)} is
F-weakly tight, that is, for every H ∈ F, the sequence {H(π

(N)
s ), s ∈ [0,∞)},

N ∈ N, is tight in DR[0,∞).

REMARK 5.11. Consider the family of real-valued functions F on M1(S)

given by

F
.= {H :∃f ∈ C 1

b [0,M) such that H(μ)= 〈f,μ〉 ∀μ ∈ M1(S)}.
Every function in F is clearly continuous with respect to the weak topology on

M1(S) and the class F is trivially closed with respect to addition. Moreover,
F clearly separates points in M1(S).

We start by establishing the relative compactness of the sequence of measure-
valued processes {ν(N)}.

LEMMA 5.12. Suppose Assumption 1 holds. Then the sequence {ν(N)} is rel-
atively compact. Moreover, the limits (5.33) and (5.34) hold.
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PROOF. By Lemma 5.10 and Remark 5.11, {ν(N)} satisfies Jakubowski’s cri-
terion J2. Therefore, it suffices to show that {ν(N)} satisfies Jakubowski’s crite-
rion J1. Define ν̃(N) .= (1 − 〈1, ν(N)〉)δ0 + ν(N), where δ0 is the Dirac mass at
zero. Then ν̃

(N)
s is a probability measure on [0,M) for every s ∈ [0,∞) and, since

1 − 〈1, ν
(N)
s 〉 ∈ [0,1], to prove the lemma it clearly suffices to show that ν̃(N) sat-

isfies Jakubowski’s criterion J1. We split the proof of the latter into two cases,
depending on the value of M .

Case 1. M =∞. By Assumption 1(3) and the complementarity condition (5.6),
there exists a set 	̃ of measure 1 such that for all ω ∈ 	̃, ν(N)

0 (ω) converges weakly,
as N →∞, to a sub-probability measure ν0(ω), which in turn implies that 1 −
ν

(N)
0 (ω) converges to 1−〈1, ν0(ω)〉. Fix ω ∈ 	̃. Then by Prohorov’s theorem (see

Section 3.2 of [5]), the sequence {ν̃(N)
0 (ω),N ∈ N} must be tight. Hence, for every

ε > 0, the positive random variable r(ω, ε) defined by

r(ω, ε)
.= sup

N

inf
{
a : ν̃(N)

0 (ω)[a,∞) < ε
}

is finite. Note that we then have

ν̃
(N)
0 (ω)(r(ω, ε),∞) < ε for all N ∈ N.

Since r(ω,1/n) <∞ for every ω ∈ 	̃ and n ∈ N, there exists a sequence r(n) that
converges to infinity as n →∞, and is such that P(ω : r(ω,1/n) > r(n)) ≤ 2−n.
Define An

.= {ω : r(ω,1/n) > r(n)}. By the Borel–Cantelli lemma, almost surely
An occurs only finitely often. Furthermore, P(

⋃
n≥N0

An) ≤ 2−N0+1 for every
N0 ∈ N. Now, fix T < ∞ and note that because the age process of each customer
in service increases linearly, for every n ∈ N and t ∈ [0, T ],{

ω : ν̃(N)
0 (ω)(r(n),∞)≤ 1

n

}
⊆
{
ω : ν̃(N)

0 (ω)
(
r(n)− t + T ,∞)≤ 1

n

}

⊆
{
ω : ν̃(N)

t (ω)
(
r(n)+ T ,∞)≤ 1

n

}
.

Thus, given η > 0, now define

Kη,T
.=
{
μ ∈ M1(R+) :μ

(
r(n)+ T ,∞)≤ 1

n
for all n > N0(η)

}
,

where we choose N0(η)
.=−!lnη/ ln 2" so that 2−N0+1 < η. Then observe that

inf
C⊂R+ : C compact

sup
μ∈Kη,T

μ(Cc)≤ inf
n>N0(η)

sup
μ∈Kη,T

μ
(
r(n)+ T ,∞)= 0.

Therefore, another application of Prohorov’s theorem shows that Kη,T is a rela-
tively compact subset of M1(R+) (equipped with the Prohorov metric). Let Kη,T
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be its closure in the Prohorov metric. Then for every N ∈ N,

P
(
ν̃

(N)
t ∈ Kη,T for every t ∈ [0, T ])
≥ P

(
ν̃

(N)
0 (r(n),∞)≤ 1

n
for every n > N0(η)

)
≥ 1 − 2−N0+1

≥ 1 − η,

which proves the compact containment condition when M =∞.
In addition, this also shows that (5.33) holds. Indeed, if η > 0 and N1(η) ∈ N

satisfies N1(η) ≥ N0(η) ∨ [1/η], then the last display implies that for every m ≥
r(N1(η)),

inf P

(
ν̃

(N)
0 [m,∞)≤ 1

N1(η)

)
≥ 1 − η,

which in turn shows that for every for every m≥ r(N1(η)),

sup E
[
ν

(N)
0 [m,∞)

]≤ 1

N1(η)
+ η.

The result then follows by sending first m→∞ and then η → 0.
Case 2. M < ∞. We start by establishing (5.33) and (5.34) using an argument

similar to that used in Case 1 to prove (5.33). The almost sure weak convergence
of ν

(N)
0 to ν0 in M≤1[0,M) implies that the sequence {r(n)} considered in Case 1

can be taken strictly smaller than M and converging to M . Defining N1(δ) as in
Case 1, we see that for m≥ r(N1(δ)),

sup E
[
ν

(N)
0 [m,M)

]≤ 1

N1(η)
+ η,

and the result follows as above by sending first m → M and then η → 0. The
limit (5.34) follows from the weak convergence of ν

(N)
0 to ν0 and the fact that

(1 −G(L))/(1 −G(x)) is bounded (by 1) and continuous on [0,L).
It only remains to show that the compact containment condition is satisfied

when M < ∞. For this, we need to show that for every ε > 0, η > 0 we can
find m(ε) < M so that

inf
N

P
(
ν̃

(N)
t [0,m(ε)]> 1 − ε for every t ∈ [0, T ])> 1 − η.

However, for any m < M , we have

P
(
ν̃

(N)
t (m,M) > ε for some t ∈ [0, T ]) ≤ P

(
Q

(N)
1(m,M)

(T +M) > ε
)

≤ E[Q(N)
1(m,M)

(T +M)]
ε

= E[A(N)
1(m,M)

(T +M)]
ε

,
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where the last equality follows from Corollary 5.5. Using now Lemma 5.8(1)
[which is justified since we have already established (5.33) and (5.34)], one can
find m(ε) close enough to M to make the supremum over N of the right-hand side
above smaller than η, thus yielding the desired result. �

For all N ∈ N and t ∈ [0,∞), from (5.2), (5.25) and the fact that Q
(N)
1 (t)

and A
(N)
1 (t) are a.s. finite, it immediately follows that a.s., the linear function-

als Q(N)
(t) :ϕ �→ Q

(N)
ϕ (t) and A(N)(t) :ϕ �→ A

(N)
ϕ (t) on Cc([0,M)× R+) are fi-

nite nonnegative Radon measures on [0,M) × R+ (see Section 1.2.2 for a char-
acterization of Radon measures as linear functionals). In other words, for every
ϕ ∈ Cc([0,M)×R+) the integral of ϕ with respect to the Radon measure Q(N)(t)

and A(N)(t), respectively, equal Q
(N)
ϕ (t) and A

(N)
ϕ (t), thus {Q(N)(t), t ∈ [0,∞)}

and {A(N)(t), t ∈ [0,∞)} can be viewed as MF ([0,M) × R+)-valued càdlàg
processes. We now show that the sequences of measure-valued processes {Q(N)}
and {A(N)} are relatively compact.

LEMMA 5.13. Suppose Assumption 1 is satisfied. Then the sequences {Q(N)}
and {A(N)} are relatively compact in D MF ([0,M)×R+)[0,∞).

PROOF. Due to Remark 5.11 and the fact that for t ≥ 0, the integrals of ϕ with
respect to Q(N)(t) and A(N)(t), respectively, are given by Q

(N)
ϕ (t) and A

(N)
ϕ (t).

Lemma 5.10 implies that {Q(N)} and {A(N)} satisfy Jakubowski’s criterion J2.
Thus it suffices to verify Jakubowski’s J1 criterion for these sequences. Fix T <

∞. For η > 0, define

B(η)
.= 2

η
sup
N

E
[
A

(N)
1 (T )

]
,(5.41)

which is finite by the first assertion of Lemma 5.6, and let {m(n,η)}n∈N ⊂ [0,M)

be a sequence such that m(n,η)→M as n→∞ and

sup
N

E
[
A

(N)
1(m(n,η),M)

(T )
]≤ η

n2n+1 , n ∈ N.(5.42)

Such a sequence exists by Lemma 5.8(1). Also, define

Kη
.=
{
μ ∈ M

([0,M)×R+
)

: 〈1,μ〉 ≤ B(η)

and μ
(
(m(n,η),M)×R+

)≤ 1

n
∀n ∈ N

}
.

Since supμ∈Kη
μ([0,M)×R+)≤ B(η) and

inf
C⊂[0,M)×R+:

C compact

sup
μ∈Kη

μ(Cc)≤ inf
n

sup
μ∈Kη

μ
(
(m(n,η),M)×R+

)= 0,
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Kη is a compact subset of MF ([0,M) × R+). Moreover, for η > 0 and N ∈ N,

by the monotonicity of A
(N)
ϕ (t) in t for nonnegative ϕ, Markov’s inequality, (5.41)

and (5.42), we have

P
(

A(N)(t) /∈ Kη for some t ∈ [0, T ])
≤ P
(
A

(N)
1 (T )≥ B(η)

)+∑
n∈N

P

(
A

(N)
1[m(n,η),M)

(T )≥ 1

n

)

≤ sup
N∈N

E[A(N)
1 (T )]

B(η)
+∑

n∈N

n sup
N∈N

E
[
A

(N)
1[m(n,η),M)

(T )
]

≤ η,

which proves the compact containment condition for {A(N)}. Due to Corollary 5.5,
an exactly analogous argument shows that {Q(N)} also satisfies this condition, thus
completing the proof of the lemma. �

We are now ready to state the main relative compactness result. Consider the
space

Y .= R+ × (DR[0,∞))2 × MF [0,M)× D MF [0,M) × (D MF ([0,M)×R+)

)2
equipped with the product metric, and let

Y (N) .= (X(N)(0),E(N),X(N), ν
(N)
0 , ν(N), Q(N), A(N)), N ∈ N.(5.43)

Then Y is clearly a Polish space, and so, combining Assumption 1 with Lem-
mas 5.10, 5.12 and 5.13, we arrive at the main result of this section.

THEOREM 5.14. Suppose Assumption 1 is satisfied. Then the sequence {Y (N)}
is relatively compact in the Polish space Y .

5.4. Characterization of subsequential limits. The main result of this section
is the following theorem.

THEOREM 5.15. Suppose Assumptions 1 and 2 are satisfied. Then the limit
(X, ν) of any subsequence of {(X(N), ν(N))} solves the fluid equations.

The rest of the section is devoted to the proof of this theorem. Let (E,X(0), ν0)

be the S0-valued random variable that satisfies Assumption 1, and let {Y (N)} be the
sequence of processes defined in (5.43). Then, by Assumption 1, Theorem 5.14 and
the fact that M(N) =Q(N)−A(N) ⇒ 0 by Lemma 5.9, there exist X ∈ DR+[0,∞),
ν ∈ D MF [0,M)[0,∞) and A ∈ D MF ([0,M)×R+)[0,∞) such that Y (N) converges
weakly (along a suitable subsequence) to Y ∈ Y that has the form

Y
.= (X(0),E,X, ν0, ν, A, A).
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Denoting this subsequence again by {Y (N)} and invoking the Skorokhod repre-
sentation theorem, with a slight abuse of notation, we can assume that Y (N) → Y

P-almost surely.
We now identify some properties of the limit that will be used to prove The-

orem 5.15. First, note that we immediately have 〈1, ν(N)〉 → 〈1, ν〉 almost surely
and D(N) = Q

(N)
1 → A1, where Q

(N)
1 and A1 are defined in (5.1) and (5.23) with

ϕ = 1. When combined with (2.5) and (2.6), this implies that

X =X(0)+E −Q1 =X(0)+E −A1,(5.44)

and that K(N) converges a.s. to K , where

K(t)
.= 〈1, νt 〉 − 〈1, ν0〉 +A1, t ∈ [0,∞).(5.45)

Moreover, from (2.10) it follows that nonidling condition (3.7) holds. Comparing
(5.44) and (5.45) with (3.6) and (3.8), it is clear that in order to prove that (X, ν)

satisfies the fluid equations, it is necessary to show that Q1 =A1 =D, where D is
defined in terms of ν via (3.9). If h is continuous and uniformly bounded on [0,M)

(as is the case, e.g., when G is a lognormal distribution), then this is a simple con-
sequence of the (almost sure) weak convergence of ν(N) to ν and the definition
of A

(N)
1 given in (5.23). However, as we show below, some additional work is re-

quired to justify this convergence for general h (that satisfies Assumption 2). We
start in Lemma 5.16 by establishing the bound (5.46) for certain integrals with re-
spect to ν. This bound is then used in Proposition 5.17 to show that, under mild
additional conditions on h, A1 equals D. Next, Lemma 5.18 establishes sufficient
conditions under which νs is absolutely continuous with respect to Lebesgue mea-
sure on [0,M), for every s. All these results are then combined to complete the
proof of Theorem 5.15 at the end of the section.

LEMMA 5.16. For m ∈ [0,M) and every � ∈ L1
loc[0,M) with support in

[0,m], there exists L̃(m,T ) <∞ such that∣∣∣∣
∫ ∞

0
〈�, νs〉ds

∣∣∣∣≤ L̃(m,T )

∫
[0,M)

|�(x)|dx.(5.46)

PROOF. To establish the lemma, it suffices to show that for every m ∈ [0,M),
T ∈ (0,∞) and ϕ ∈ C 1,1

c ([0,M)×R+) with supp(ϕ)⊂ [0,m]×[0, T ], there exists
C(m,T ) <∞ such that∣∣∣∣

∫ T

0
〈ϕx(·, s)+ ϕs(·, s), νs〉ds

∣∣∣∣≤ ‖ϕ‖∞C(m,T ).(5.47)

Then the measure γ̃ on R
2, defined by∫ ∫

R2
ϕ(x, s)γ̃ (dx, ds)

.=−
∫ ∞

0
〈ϕx(·, s)+ ϕs(·, s), νs〉ds,

ϕ ∈ C 1,1
c

([0,M)×R+
)
,
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is a Radon measure on R
2 with support in [0,M) × R+ and, moreover, {νs}s≥0

satisfies the simplified age equation for γ̃ . Therefore, (5.46) follows from Proposi-
tion 4.15. To establish (5.47), fix m,T and ϕ as above. For any ε > 0, substituting
t = T +ε in (5.4), the term 〈ϕ(·, T +ε), ν

(N)
T+ε〉 equals zero. Therefore, rearranging

the remaining terms, we obtain for every N ∈ N,
∫ T+ε

0

〈
ϕx(·, s)+ ϕs(·, s), ν(N)

s

〉
ds

= 〈ϕ(·,0), ν
(N)
0

〉+ ∫
[0,T+ε]

ϕ(0, u) dK(N)
u

+M(N)
ϕ (T + ε)+A(N)

ϕ (T + ε).

Sending ε → 0 and using the right-continuity of the processes, the fact that K(N)

is nondecreasing and the bound (5.25) on |A(N)
ϕ (T )|, this implies that

∣∣∣∣
∫ T

0

〈
ϕx(·, s)+ ϕs(·, s), ν(N)

s

〉
ds

∣∣∣∣≤ ‖ϕ‖∞C(N)(m,T )+M(N)
ϕ (T ),(5.48)

where

C(N)(m,T )
.= 〈1, ν

(N)
0

〉+K(N)(T )

+ (X(N)(0)+E(N)(T )
) ∫ m

0
h(x) dx.

Due to (2.5), (2.6) and the limits E(N) → E and X(N)(0) → X(0) as N →∞, it
follows that

lim sup
N→∞

C(N)(m,T )≤ C(m,T )
.= 2
(
1 +X(0)+E(T )

)[
1 ∨
(∫ m

0
h(x) dx

)]
.

Taking limits as N → ∞ on both sides of (5.48), recalling that M
(N)
ϕ (T ) → 0

(see Lemma 5.9) and observing that the left-hand side converges to |∫ T
0 〈ϕx(·, s)+

ϕs(·, s), νs〉ds| due to the bounded convergence theorem, the fact that ϕx(·, s) +
ϕs(·, s) ∈ Cc([0,M) × R+) and ν

(N)
s

w→ νs for a.e. s ∈ [0, T ], we obtain (5.47).
�

PROPOSITION 5.17. If h satisfies Assumption 2, then for every ϕ ∈ Cb([0,

M)×R+),

Aϕ(t)=
∫ t

0
〈ϕ(·, s)h(·), νs〉ds, t ∈ [0,∞).(5.49)

In particular, Aϕ is absolutely continuous and A1 =D.
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PROOF. We will show (5.49) only for the case when ϕ = 1 because the proof
for arbitrary ϕ ∈ Cb([0,M) × R+) is exactly analogous. Note that for any m ∈
[0,M), we have the elementary bound

sup
t∈[0,T ]

∣∣A(N)
1 (t)−D(t)

∣∣≤R
(N)
1 (m)+R

(N)
2 (m)+R3(m),(5.50)

where, setting hm
.= h1[0,m], we define

R
(N)
1 (m)

.=
∫ T

0

(∫
(m,M)

h(x)ν(N)
s (dx)

)
ds,

R
(N)
2 (m)

.=
∫ T

0

∣∣∣∣
(∫

[0,M)
hm(x)ν(N)

s (dx)

)
−
(∫

[0,M)
hm(x)νs(dx)

)∣∣∣∣ds,

R3(m)
.=
∫ T

0

(∫
(m,M)

h(x)νs(dx)

)
ds.

We now analyze each of the above terms. First, by Lemma 5.8(1), it follows that

lim
m→M

sup
N

E
[
R

(N)
1 (m)

]= 0.(5.51)

Next, note that hm is with compact support and integrable on [0,M). Hence, there
exists a sequence {hm,k}k∈N ⊂ Cc[0,M) that, as k →∞, converges in L1[0,M)

to hm. For every k,m ∈ N, we have the bound

R
(N)
2 (m) ≤

∫ T

0

(∫
[0,M)

|hm(x)− hm,k(x)|ν(N)
s (dx)

)
ds

+
∫ T

0

∣∣∣∣
(∫

[0,M)
hm,k(x)ν(N)

s (dx)

)
−
(∫

[0,M)
hm,k(x)νs(dx)

)∣∣∣∣ds(5.52)

+
∫ T

0

(∫
[0,M)

|hm(x)− hm,k(x)|νs(dx)

)
ds.

Applying Proposition 5.7, with � = |hm − hm,k|, ϕ = 1, r = 0 and t = T , and
taking first expectations and then the supremum over N , we see that

sup
N

E

[∫ T

0

(∫
[0,M)

|hm,k(x)− hm(x)|ν(N)(dx)

)
ds

]

≤ C(T )

∫ M

0
|hm,k(x)− hm(x)|dx,

where C(T )
.= 1 + supN E[X(N)(0)+E(N)(T )] is finite due to properties 1 and 2

of Assumption 1. Taking limits as k →∞ and using the L1-convergence of hm,k

to hm, we then obtain

lim
k→∞ sup

N

E

[∫ T

0

(∫
[0,M)

|hm(x)− hm,k(x)|ν(N)
s (dx)

)
ds

]
= 0.(5.53)
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Likewise, an application of Lemma 5.16 with �= |hm,k − hm| yields

lim
k→∞E

[∫ T

0

(∫
[0,M)

|hm(x)− hm,k(x)|νs(dx)

)
ds

]
(5.54)

≤ lim
k→∞ L̃(m,T )

(∫ M

0
|hm(x)− hm,k(x)|dx

)
= 0.

Moreover, by the weak convergence ν
(N)
s

w→ νs as N →∞ for a.e. s ∈ [0, T ], the
fact that hm,k is bounded and continuous and by the bounded convergence theorem,
we see that

lim sup
N→∞

E

[∫ T

0

∣∣∣∣
(∫

[0,M)
hm,k(x)ν(N)

s (dx)

)
(5.55)

−
(∫

[0,M)
hm,k(x)νs(dx)

)∣∣∣∣ds

]
= 0.

Taking first the expectation on both sides of (5.52), next the limit superior over
N and then limits as k →∞ of the right-hand side, and using (5.53)–(5.55), we
obtain

lim sup
N→∞

E
[
R

(N)
2 (m)

]= 0.(5.56)

We now consider the third term, using Assumption 2. If h is bounded (say by B)
on (m0,M), then by the bounded convergence theorem,

lim
m→M

E[R3(m)] ≤ lim
m→M

B

∫ T

0
νs(m,M)ds = B

∫ T

0
lim

m→M
νs(m,M)ds = 0.

On the other hand, suppose h is lower semicontinuous on (m0,M). Then for any
m≥m0, h1(m,M) is lower semicontinuous on [0,M) since it is identically zero on
[0,m), coincides with the lower semicontinuous function h on (m,∞) and at m,
the nonnegativity of h implies 1(m,M)(m)h(m)= 0 ≤ limx→m 1(m,M)(x). Together

with Theorem A.3.12 of [4] and the fact that P-a.s., ν
(N)
s

w→ νs as N →∞ for a.e.
s ∈ [0, T ], this implies that for any such s and m≥m0,∫

[0,M)
1(m,M)(x)h(x)νs(dx)≤ lim inf

N→∞

∫
[0,M)

1(m,M)(x)h(x)ν(N)
s (dx).

Integrating both sides over s ∈ [0, T ] and taking expectations, an application of
Fatou’s lemma yields

E[R3(m)] ≤ lim inf
N→∞ E

[
R

(N)
1 (m)

]
.

Taking the limit as m ↑ M and invoking (5.51) we conclude that in this case as
well, we have

lim sup
m→M

E[R3(m)] = 0.(5.57)
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Taking first expectations and then the limit superior, as N →∞, of both sides
of (5.50), an application of Fatou’s lemma and the limit A

(N)
1 → A1 as N →∞,

show that for every m ∈ [0,M),

E

[
sup

t∈[0,T ]
|A1(t)−D(t)|

]
≤ lim sup

N→∞
E

[
sup

t∈[0,T ]
∣∣A(N)

1 (t)−D(t)
∣∣]

≤ lim sup
N→∞

E
[
R

(N)
1 (m)+R

(N)
2 (m)

]+E[R3(m)].

Sending m→M on the right-hand side and invoking (5.51), (5.56) and (5.57), we
see that the right-hand side converges to zero. This shows that supt∈[0,T ]|A1(t)−
D(t)| = 0 a.s. Because T is arbitrary, this proves the first assertion of the proposi-
tion. The second assertion is an immediate consequence of the first. �

LEMMA 5.18. If ν0 and E are absolutely continuous, then νs is also ab-
solutely continuous for every s ∈ [0,∞).

PROOF. For simplicity, we will assume that M =∞ for the rest of the proof.
The case M < ∞ is analogous and is left to the reader. Since E is absolutely
continuous by assumption and A1 is absolutely continuous by Proposition 5.17,
(5.44) allows us to deduce that X is absolutely continuous. The nonidling condition
(3.7) and the mass balance equation (3.8) then show that 〈1, ν〉 and K are also
absolutely continuous. Fix T < ∞, and let Cε denote the set of collections of
finite disjoint intervals (ai, bi)⊂ [0, T ], i = 1, . . . , n, such that

∑n
i=1(bi −ai)≤ ε.

Given δ > 0, choose ε > 0 small enough so that

sup
{(ai ,bi )}∈Cε

[
ν0

(
n⋃

i=1

[ai, bi]
)]

∨
[

sup
s∈[0,T ]

n∑
i=1

K(s − bi, s − ai)

]
<

δ

2
,

where we recall that K(s, t] = K(t) − K(s), and when t < 0, K(s, t] is defined
to be zero. Now, consider a particular collection {(ai, bi)} ∈ Cε . Fix s ∈ [0, T ].
Define J1 = {i ∈ {1, . . . , n} :ai − s ≥ 0} and let J2 = {1, . . . , n} \J1. Then we have

n∑
i=1

ν(N)
s (ai, bi) =

∑
i∈J1

ν(N)
s (ai, bi)+

∑
i∈J2

ν(N)
s (ai, bi)

≤ ∑
i∈J1

ν
(N)
0 (ai − s, bi − s)+∑

i∈J2

ν
(N)
s−ai

(0, bi − ai)

≤ ∑
i∈J1

ν
(N)
0 (ai − s, bi − s)

+∑
i∈J2

K(N)(s − bi, s − ai).
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Taking limits as N →∞ and using the fact that K(N) →K , Assumption 1(3) and
the Portmanteau theorem, we see that

νs

(
n⋃

i=1

(ai, bi)

)
≤ lim inf

N
ν(N)

s

(
n⋃

i=1

(ai, bi)

)
= lim inf

N

n∑
i=1

ν(N)
s (ai, bi)

≤ lim sup
N

∑
i∈J1

ν
(N)
0 (ai − s, bi − s)+∑

i∈J2

lim
N

K(N)(s − bi, s − ai)

≤ ν0

(⋃
i∈J1

[ai − s, bi − s]
)
+∑

i∈J2

K(s − bi, s − ai).

Taking the supremum over all collections of intervals in Cε , we conclude that for
every δ > 0, there exists ε > 0 such that

sup
{(ai ,bi )}∈Cε

n∑
i=1

νs(ai, bi)≤ δ,

which shows that νs is absolutely continuous. �

Combining the above results, we now have a proof of the main result of this
section.

PROOF OF THEOREM 5.15. Let 	̃ be the set of full P-measure on which the
properties stated in Assumptions 1 and 2 hold, and Y (N)(ω)→ Y(ω) for all ω ∈ 	̃.
Fix ω ∈ 	̃ (and suppress it from the notation), and then choose t ∈ [0,∞) such
that at that ω, ν

(N)
t

w→ νt , A(N)(t)
w→A(t), Q(N)(t)

w→A(t), E(N)(t)→E(t) and
X(N)(t) → X(t) as N →∞. Note that this occurs for t outside a countable set
of times (which may depend on ω). Moreover, because K(N)(t) can be written
in terms of E(N)(t),X(N)(t), 〈1, ν

(N)
t 〉 and the initial conditions due to (2.5) and

(2.6), and, likewise, K(t) can be expressed in terms of the E(t),X(t), 〈1, νt 〉 and
limits of the initial conditions using (3.6) and (3.8), it follows from the limits at t

assumed above and Assumption 1 that K(N)(t)→K(t).
Now, fix ϕ ∈ C 1,1

c ([0,M)×R+). By Proposition 5.17, as N →∞, we have

Q(N)
ϕ (t)→Aϕ(t)=

∫ t

0
〈ϕ(·, s)h(·, s), νs〉ds.(5.58)

In particular, this implies D(N)(t) = Q
(N)
1 (t) → D(t) and D(t) < ∞ for every

t ∈ [0,∞), which shows that condition (3.4) of the fluid equations is satisfied.
Also, when combined with (5.44), (5.45) and the fact that the nonidling condition
is satisfied (see the discussion immediately after the statement of Theorem 5.15),
this implies that the fluid equations (3.6)–(3.8) are also satisfied.
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It only remains to show that ν and K satisfy (3.5) for ϕ. First, dividing (5.4)
by N , we obtain

〈
ϕ(·, t), ν(N)

t

〉= 〈ϕ(·,0), ν
(N)
0

〉+ ∫ t

0

〈
ϕx(·, s)+ ϕs(·, s), ν(N)

s

〉
ds

−Q(N)
ϕ (t)+

∫
[0,t]

ϕ(0, u) dK(N)(u).

By the choice of ω and t , as N →∞, ν
(N)
0

w→ ν0, ν
(N)
s

w→ νs for a.e. s ∈ [0, t],
ν

(N)
t

w→ νt . Due to the boundedness of ϕ(·, t) and ϕx(·, s)+ ϕs(·, s), s ∈ [0, t], the
bounded convergence theorem then implies that, as N →∞,〈

ϕ(·,0), ν
(N)
0

〉→〈ϕ(·,0), ν0〉, 〈
ϕ(·, t), ν(N)

t

〉→〈ϕ(·, t), νt 〉
and ∫ t

0

〈
ϕx(·, s)+ ϕs(·, s), ν(N)

s

〉
ds →

∫ t

0
〈ϕx(·, s)+ ϕs(·, s), νs〉ds.

On the other hand, because K(N)(s) → K(s) for all continuity points s of K ,
the associated sequence of Stieltjes measures dK(N) converges vaguely to the
corresponding Stieltjes measure dK , as N → ∞. Since K(N)(t) → K(t) and
ϕ(0, ·) ∈ Cc(R+), this implies that, as N →∞,

lim
n→∞

∫
[0,t]

ϕ(0, u) dK(N)(u)=
∫
[0,t]

ϕ(0, u) dK(u).

Combining the last four displays with (5.58), it follows that the fluid equation (3.5)
is satisfied for all but countably many t . By right-continuity (with respect to t) of
each of the terms in (3.5), we conclude that (3.5) is satisfied for all t ∈ [0,∞).
This completes the proof of the desired result that a.s., (X, ν) satisfies the fluid
equations. �

We now obtain Theorem 3.7 as an immediate corollary.

PROOF OF THEOREM 3.7. The first statement of Theorem 3.7 is a direct con-
sequence of Theorem 5.14. The remainder of the theorem follows from Theo-
rem 5.15, the uniqueness of solutions to the fluid equations established in The-
orem 3.5 and the usual standard argument by contradiction that shows that the
original sequence converges to the solution of the fluid limit whenever the latter is
unique. �

6. Convergence of the fluid limit to equilibrium. Throughout this sec-
tion we assume that h satisfies Assumption 2 and that the initial condition
(E,X(0), ν0) ∈ S0 is such that E is absolutely continuous with derivative denoted
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by λ(·), that is,

E(t)=
∫ t

0
λ(s) ds, t ∈ [0,∞).

By Theorems 3.5 and 3.7, there exists a unique solution (X, ν) to the associated
fluid equations, which is characterized by (3.6), (3.11) and (3.12). The goal of
this section is to prove Theorem 3.9, which describes the large-time behavior of
(X, ν). First, in Proposition 6.1, the case when the system starts empty is analyzed
and, in addition, a certain comparison result is established between such systems
and systems with more general initial conditions that have the same (fluid) arrival
rate λ(·). The proof of Theorem 3.9 is provided at the end of the section, building
on two preliminary results obtained in Lemmas 6.2 and 6.3.

Recall from (3.13) that ν∗ is the probability measure with density 1 − G, and
also recall the definition of monotonic weak convergence stated before Theo-
rem 3.9.

PROPOSITION 6.1. Let (X, ν) be the unique solution to the fluid equations
associated with the initial condition (E,0, 0̃) ∈ S0. If

τ1
.= inf

{
t > 0 :

∫ t

0

(
1 −G(t − s)

)
λ(s) ds = 1

}
,(6.1)

then we have the following properties:

(1) For t ∈ [0, τ1),

〈1, νt 〉 =X(t)=
∫ t

0

(
1 −G(t − s)

)
λ(s) ds

and, as t → τ1, for every function f ∈ Cb(R+),

〈f, νt 〉→
∫ τ1

0
f (t − s)

(
1 −G(t − s)

)
λ(s) ds.

(2) Suppose λ(·) is a constant equal to λ ∈ [0,1]. Then, as t → ∞, X(t) =
〈1, νt 〉→ λ monotonically and νt converges weakly monotonically up to λν∗.

(3) Suppose (X�, ν�) is the unique solution to the fluid equations associated with
any other initial condition (E,X�(0), ν�0) that has the same fluid cumulative
arrival process. Then

〈1, ν�t 〉 ≥ 〈1, νt 〉 for all t ∈ [0, τ1).(6.2)

Moreover, if λ(·) is a constant equal to λ ∈ [0,1], then

〈1, ν�t 〉 ≥ λ

∫ t

0

(
1 −G(r)

)
dr for all t ∈ [0, τ1).(6.3)

PROOF. Let (X, ν) be the unique solution to the fluid equations associated
with the initial conditions (E,0, 0̃), and define

τ
.= inf{t > 0 : 〈1, νt 〉 = 1},
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with the usual convention that inf ∅ =∞. Then τ > 0 by the right-continuity of
t �→ 〈1, νt 〉 and for t ∈ (0, τ ), 〈1, νt 〉 < 1. The nonidling property in (3.7) then
implies that X(t)= 〈1, νt 〉< 1 for t ∈ [0, τ ). Combining relations (3.6) and (3.8),
this in turn implies that K(t) = E(t) for t ∈ [0, τ ). Since, by (3.11), ν satisfies
the age equation associated with ν0 ≡ 0̃ and K , we have for any f ∈ Cb(R+) and
t ∈ [0, τ ),

〈f, νt 〉 =
∫
[0,t]

f (t − s)
(
1 −G(t − s)

)
dE(s)

=
∫ t

0
f (t − s)

(
1 −G(t − s)

)
λ(s) ds.

Substituting f = 1, the left-hand side above is equal to X(t)= 〈1, νt 〉, from which
it is easy to see that τ = τ1 since the integrand on the right-hand side is continuous
in t . This proves property 1.

Next, consider the time-homogeneous setting where λ(·) equals a constant λ ∈
[0,1]. The case λ= 0 is trivial and when λ ∈ (0,1], we can rewrite

τ1 = inf
{
t > 0 :

∫ t

0

(
1 −G(x)

)
dx = 1/λ

}
.

This shows that τ1 = ∞ when either λ < 1, or λ = 1 and M = ∞, and so, by
property 1, it follows that νt

w→ λν∗ monotonically as t →∞. Thus property 2
is proved in this case. Now, suppose λ = 1 and M < ∞. Then analogous rea-
soning shows that τ1 = M < ∞, X(τ1) = 1 and ντ1 = ν∗. When combined with
the nonanticipative property stated in Lemma 3.4 and the fact that (1, ν∗) is an
invariant solution for the fluid equations with initial conditions (id,1, ν∗) (see Re-
mark 3.8), this shows that (X(t), νt ) = (1, ν∗) for all t ≥ τ1 and once again prop-
erty 2 follows.

We now turn to the last property. We first show that for every t ∈ (0, τ1), X�(t)≥
X(t). To this end we combine (3.6), (3.8) and the fact that 〈1, ν�t 〉 ≤ X�(t) due to
(3.7) to obtain

K�(t)= 〈1, ν�t 〉 − 〈1, ν�0〉 +X�(0)+E(t)−X�(t)≤X�(0)− 〈1, ν�0〉 +E(t).

When combined with (3.6), (3.8) and (4.5), this implies

X�(t) = X�(0)+E(t)−
∫
[0,M)

G(x + t)−G(x)

1 −G(x)
ν�0(dx)−

∫ t

0
g(t − s)K�(s) ds

≥ X�(0)+E(t)−
∫
[0,M)

G(x + t)−G(x)

1 −G(x)
ν�0(dx)

−
∫ t

0
g(t − s)

(
X�(0)− 〈1, ν�0〉 +E(s)

)
ds

≥ X�(0)+E(t)− 〈1, ν�0〉 −
∫ t

0
E(s)g(t − s) ds − (X�(0)− 〈1, ν�0〉

)
G(t).
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Since G(t)≤ 1 and X�(0)≥ 〈1, ν�0〉, we have in fact

X�(t)≥E(t)−
∫ t

0
E(s)g(t − s) ds.(6.4)

However, due to (3.12) and the fact that property 1 implies X(s) < 1 for s ∈ [0, τ1),
we know that E(s) = K(s) for all s ∈ [0, τ1). Together with the relations (3.6),
(3.8), (4.5) and the fact that X(0) = 0 and ν0 = 0̃, this shows that the right-hand
side of (6.4) equals X(t). This shows inequality (6.2) holds because if X�(t) ≥ 1,
then 〈1, ν�t 〉 = 1 ≥ 〈1, νt 〉, whereas if X�(t) < 1, then 〈1, ν�t 〉 = X�(t) ≥ X(t) =
〈1, νt 〉. Finally, note that when λ(·) ≡ λ ∈ [0,1], by property 1 we see that for t ∈
[0, τ1), 〈1, νt 〉 equals the right-hand side of (6.3). Thus (6.3) follows immediately
from (6.2). �

The result of Theorem 3.9(1) now follows from Proposition 6.1(2). We now
turn to the proof of Theorem 3.9(2), which involves a comparison of the measure-
valued function {νs}, which is the solution of the age equation corresponding to
ν0 and K , with another “reference” measure-valued function {πs} that solves the
age equation associated with an initial condition of the form π0 = νT for some
T < ∞, and the function Z defined in (6.5) below. Although we do not explicitly
use this below, the reference function {πs} has the property that its total mass
remains constant for all times or, equivalently, viewing Z as the cumulative entry
into service in a reference fluid server system, that the cumulative entry equals
the cumulative departures in that system at all times. This makes the long-time
behavior of the reference function {πs} easier to analyze. First, in Lemma 6.2, it
is shown that when 〈1, νT 〉 = 1, πs converges weakly to ν∗ as s →∞. Then, in
Lemma 6.3, an estimate is obtained which is used in the proof of Theorem 3.9(2)
to show that the difference between the original function {νs} and the reference
function {πs} vanishes as s →∞.

Recall that U is the renewal function associated with the service distribution
that has cumulative distribution function G, and let u denote its density, which
exists since G has a density (see Proposition 2.7 of Section V in [1]).

LEMMA 6.2. Given π0 ∈ M≤1[0,M), suppose Z ∈ I0[0,∞) and {πt } ∈
D MF

[0,∞) are defined as follows:

Z(t)
.=
∫
[0,t]

(∫
[0,M)

G(x + t − s)−G(x)

1 −G(x)
π0(dx)

)
dU(s),

(6.5)
t ∈ [0,∞),

and, for f ∈ Cb[0,M) and t ∈ [0,∞),

〈f,πt 〉 =
∫
[0,M)

f (x + t)
1 −G(x + t)

1 −G(x)
π0(dx)

(6.6)
+
∫
[0,t]

f (t − s)
(
1 −G(t − s)

)
dZ(s).
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Then for every f ∈ Cb[0,M),

lim
t→∞〈f,πt 〉 = 〈1, π0〉〈f, ν∗〉.(6.7)

PROOF. It is easy to see that Z is absolutely continuous with density

dZ

dt
(t)=

∫ t

0

(∫
[0,M)

g(x + t − s)

1 −G(x)
π0(dx)

)
u(s) ds a.e. t ∈ (0,∞).(6.8)

Indeed, define

Y(t)
.=
∫
[0,M)

G(x + t)−G(x)

1 −G(x)
π0(dx), t ∈ [0,∞),

and observe that the Lebesgue–Stieltjes measure dZ on [0,∞) is the convolution
of the renewal measure U with the Lebesgue–Stieltjes measure dY . Moreover, by
Fubini’s theorem, for t ∈ [0,∞),

Y(t) =
∫
[0,M)

(∫ t

0

g(x + s)

1 −G(x)
ds

)
π0(dx)

=
∫ t

0

(∫
[0,M)

g(x + s)

1 −G(x)
π0(dx)

)
ds,

which shows that dY is absolutely continuous with respect to Lebesgue measure
and has density y(·) .= ∫[0,M) g(x + ·)/(1 − G(x))π0(dx). Since dU is also ab-
solutely continuous with density u, it follows that (see, e.g., Problem 5 of Chap-
ter 7 of [20]) dZ is also absolutely continuous with respect to Lebesgue measure,
with density dZ/dt at t equal to the convolution of the functions y with u on [0, t],
for almost every t ∈ [0,∞). This proves (6.8).

Next, let α̃ be the backward recurrence time process associated with a renewal
process that has interrenewal distribution G and, for x ∈ [0,M), let P̃x be the law
of α̃ conditioned on α̃(0)= x, let Ẽx denote the corresponding expectation and for
any μ ∈ M≤1[0,M), let Ẽμ[·] .= ∫[0,M) Ẽx[·]μ(dx). We now show that

〈f,πt 〉 = Ẽπ0[f (α̃t )], f ∈ Cb(R+), t ∈ [0,∞).(6.9)

Indeed, it is well known (see Proposition 1.5 and Example 2.1 of Chapter V in [1])
that {α̃s} is a strong Markov process and that, for f ∈ Cb(R+), Ẽ0[f (α̃t )] satisfies
the renewal equation

Ẽ0[f (α̃t )] = (1 −G(t)
)
f (t)+

∫ t

0
Ẽ0[f (α̃t−s)]dG(s), t ∈ [0,∞),

and hence (see Theorem 2.4 of Chapter V in [1]) admits the representation

Ẽ0[f (α̃t )] =
∫ t

0

(
1 −G(t − s)

)
f (t − s)u(s) ds

= (1 −G)f � u(t), t ∈ [0,∞).
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Here, for any two functions f1 and f2, f1 � f2 denotes the convolution of f1 and
f2 on [0, t]. By standard renewal theory (see (3.1) on page 116 of [1]), if βs is the
forward recurrence time at s ≥ 0, then P(β0 > u|α̃0 = x) = (1 −G(x + u))/(1 −
G(x)). Moreover, α̃t = α̃0 + t on the event {β0 > t} and, conditioned on β0 ∈
(s, s + ds), α̃t under P̃x has the same distribution as α̃t−s under P̃0. Therefore, for
x ∈ [0,M) and f ∈ Cb(R+),

Ẽx[f (α̃t )] = 1 −G(x + t)

1 −G(x)
f (x + t)

(6.10)

+
∫ t

0
Ẽ0[f (α̃t−s)] g(x + s)

1 −G(x)
ds,

and therefore

Ẽπ0[f (α̃t )] =
∫
[0,M)

1 −G(x + t)

1 −G(x)
f (x + t)π0(dx)

+
∫
[0,M)

(∫ t

0
Ẽ0[f (α̃t−s)] g(x + s)

1 −G(x)
ds

)
π0(dx)

=
∫
[0,M)

1 −G(x + t)

1 −G(x)
f (x + t)π0(dx)

+
∫ t

0

(∫
[0,M)

g(x + s)

1 −G(x)
π0(dx)

)(
(1 −G)f � u

)
(t − s) ds.

However, using (6.8), it is clear that the last term above equals

y �
(
(1 −G)f � u

)
(t)= (1 −G)f � (y � u)(t)= (1 −G)f �

dZ

dt
(t),

which is equal to the last term in (6.6), and therefore (6.9) holds.
On the other hand, by the renewal theorem (see (4.5) of Theorem 4.3 of Chap-

ter V in [1]), for every x ∈ [0,M), limt→∞ Ẽx[f (α̃t )] = 〈f, ν∗〉 and therefore
limt→∞〈f,πt 〉 = limt→∞ Ẽπ0[f (α̃t )] = 〈1, π0〉〈f, ν∗〉, which is (6.7). �

LEMMA 6.3. If the service distribution has a finite second moment, then given
any ε > 0, there exists Tε ∈ (0,∞) such that∫

[0,t]

(∫ ∞
T+t−s

(
1 −G(r)

)
dr

)
U(ds)≤ ε for all T ≥ Tε.(6.11)

PROOF. Since the service distribution has a finite second moment, it follows
that

∫
[0,M) r(1 − G(r)) < ∞ and so there exists T̃ε < ∞ (which we can always

choose to be larger than M if M <∞) such that∫ ∞
T

r
(
1 −G(r)

)
dr ≤ ε

2
, T ≥ T̃ε.(6.12)
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Now, for any T <∞, we have∫
[0,t]

(∫ ∞
T+t−s

(
1 −G(r)

)
dr

)
U(ds)

=
∫ ∞
T

(∫
[(T+t−r),t]

U(ds)

)(
1 −G(r)

)
dr

=
∫ T+t

T

(
1 −G(r)

)(
U(t)−U(T + t − r)

)
dr

+U(t)

∫ ∞
T+t

(
1 −G(r)

)
dr.

We shall estimate the two terms on the last line above separately. Since G has a
finite second moment, by Lorden’s inequality (see Proposition V.6.2 of [1]) and the
fact that

∫
x dG(x), which is the mean time between renewals, equals 1, it follows

that U(t)− t is nonnegative and bounded by a constant, that we shall denote by B .
Using this, along with the inequality U(t) − U(t − r) ≤ U(r) for any 0 ≤ r ≤ t ,
the first term can be bounded as follows: for T ≥ B ,∫ T+t

T

(
1 −G(r)

)(
U(t)−U(T + t − r)

)
dr

=
∫ t

0

(
1 −G(r + T )

)(
U(t)−U(t − r)

)
dr

≤
∫ t

0

(
1 −G(r + T )

)
U(r) dr

≤
∫ t

0

(
1 −G(r + T )

)
(r +B)dr

≤
∫ t

0

(
1 −G(r + T )

)
(r + T )dr

≤
∫ ∞
T

r
(
1 −G(r)

)
dr.

As for the second term, we have for T ≥ B ,

U(t)

∫ ∞
T+t

(
1 −G(r)

)
dr ≤ (t +B)

∫ ∞
T+t

(
1 −G(r)

)
dr

≤ (t + T )

∫ ∞
T+t

(
1 −G(r)

)
dr

≤
∫ ∞
T+t

r
(
1 −G(r)

)
dr

≤
∫ ∞
T

r
(
1 −G(r)

)
dr.
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The last three displays, when combined with (6.12), show that the result holds with
Tε = max(B, T̃ε). �

PROOF OF THEOREM 3.9. The first statement of Theorem 3.9 follows from
Proposition 6.1(2). For the second statement of the theorem, consider an arbitrary
initial condition of the form (id,X(0), ν0) ∈ S0, let (X, ν) be the unique solution
to the associated fluid equations (which exists by Theorem 3.7) and let K and
D be the related processes defined in (3.8) and (3.9), respectively. Since E = id
is absolutely continuous, by Theorem 3.5 K is also absolutely continuous, with
derivative κ that satisfies (3.12). Moreover, by Proposition 6.1(3) and the fact that
〈1, νt 〉 ≤ 1 for all t ∈ [0,∞), shows that 〈1, νt 〉→ 1 as t →∞. We now consider
the following two mutually exhaustive cases:

Case 1. There exists T ′ ∈ (0,∞) such that 〈1, νt 〉< 1 for all t ≥ T ′.
In this case, X(t) < 1 for all t ≥ T ′. Therefore, by (3.12) it follows that κ(t) =

λ= 1 for all t ≥ T ′. As a result, by Lemma 3.4 and (3.11), for any r ≥ 0, we have

〈f, νT ′+r〉 =
∫
[0,M)

f (x + r)
1 −G(x + r)

1 −G(x)
νT ′(dx)

+
∫ r

0
f (r − s)

(
1 −G(r − s)

)
ds.

Since f is uniformly bounded on [0,∞) and for every x ∈ (0,∞), (1 − G(x +
r))/(1 − G(x)) → 0 as r → ∞, by the bounded convergence theorem, the first
term converges to zero as r → ∞. On the other hand, the second term trivially
converges to

∫∞
0 f (x)(1−G(x)) dx = 〈f, ν∗〉 as r →∞. Since limt→∞〈f, νt 〉 =

limr→∞〈f, νT ′+r〉, this completes the proof of the theorem in this case.
Case 2. Given any T ′ <∞, there exists T > T ′ such that 〈1, νT 〉 = 1.
Fix ε > 0. By Lemma 6.3, there exists Tε < ∞ such that the estimate (6.11)

holds for all T ≥ Tε . Choose T ≥ Tε such that 〈1, νT 〉 = 1 (which exists by the
case assumption). Let π0

.= νT , and let Z be defined as in Lemma 6.2. By the
representation (4.6) for K given in Corollary 4.4 and the nonanticipative property
of Lemma 3.4, it then follows that

K [T ](t) =
∫
[0,t]

(〈1, νT+t−s〉 − 〈1, νT 〉)U(ds)

(6.13)

+
∫
[0,t]

(∫
[0,M)

G(x + t − s)−G(x)

1 −G(x)
νT (dx)

)
U(ds),

where recall K [T ](·)=K(T +·). On the other hand, the comparison property (6.2)
in Proposition 6.1(3) shows that for every 0 ≤ s ≤ t ,

0 ≤ 〈1, νT 〉 − 〈1, νT+t−s〉 = 1 − 〈1, νT+t−s〉 ≤
∫ ∞
T+t−s

(
1 −G(r)

)
dr.
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As a result, comparing the expression for Z given in (6.5) with that for K [T ] in
(6.13), and using the last inequality and the estimate (6.11), we obtain for every
t ∈ [0,∞),

0 ≤ K [T ](t)−Z(t)

=
∫
[0,t]

(〈1, νT 〉 − 〈1, νT+t−s〉)U(ds)(6.14)

≤
∫
[0,t]

(∫ ∞
T+t−s

(
1 −G(r)

)
dr

)
U(ds)≤ ε.

Now, Lemma 3.4 and equation (3.11) show that for f ∈ Cb(R+), 〈f, νT+t 〉 is equal
to the right-hand side of the solution (4.3) to the age equation, but with ν0 and
Z replaced by νT and K [T ], respectively, while (6.6) shows that 〈f,πt 〉 equals
the right-hand side of (4.3), but with ν0 replaced by νT and Z as defined above.
Therefore, by Lemma 4.5 and (6.14), we have for every f ∈ Cb[0,∞),

sup
t∈[0,∞)

|〈f, νT+t 〉 − 〈f,πt 〉| ≤ Cf sup
t∈[0,∞)

|KT (t)−Z(t)| ≤ Cf ε,

where Cf = 2‖f ‖∞ + ‖f ′‖∞ <∞. As an immediate consequence, we have

lim sup
t→∞

|〈f, νt 〉 − 〈f,πt 〉| ≤Cf ε.

When combined with (6.7) of Lemma 6.2, this yields

lim sup
t→∞

|〈f, νt 〉 − 〈f, ν∗〉| ≤ lim sup
t→∞

|〈f, νt 〉 − 〈f,πt 〉|
+ lim sup

t→∞
|〈f,πt 〉 − 〈f, ν∗〉|

≤ Cf ε.

Since ε > 0 is arbitrary, this proves that νt
w→ ν∗ in Case 2 as well. This completes

the proof of the theorem. �
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