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The main focus of this paper is to determine whether the thermodynamic
magnetization is a physically relevant estimator of the finite-size magnetiza-
tion. This is done by comparing the asymptotic behaviors of these two quan-
tities along parameter sequences converging to either a second-order point
or the tricritical point in the mean-field Blume–Capel model. We show that
the thermodynamic magnetization and the finite-size magnetization are as-
ymptotic when the parameter α governing the speed at which the sequence
approaches criticality is below a certain threshold α0. However, when α ex-
ceeds α0, the thermodynamic magnetization converges to 0 much faster than
the finite-size magnetization. The asymptotic behavior of the finite-size mag-
netization is proved via a moderate deviation principle when 0 < α < α0 and
via a weak-convergence limit when α > α0. To the best of our knowledge, our
results are the first rigorous confirmation of the statistical mechanical theory
of finite-size scaling for a mean-field model.

1. Introduction. For the mean-field Blume–Capel model, as for other mean-
field spin systems, the magnetization in the thermodynamic limit is well under-
stood within the theory of large deviations. In this framework the thermodynamic
magnetization arises as the unique, positive, global minimum point of the rate
function in a large deviation principle. The question answered in this paper is
whether, in a neighborhood of criticality, the thermodynamic magnetization is a
physically relevant estimator of the finite-size magnetization, which is the expected
value of the spin per site. A similar question is answered by the heuristic, statistical
mechanical theory of finite-size scaling. This paper is both motivated by the the-
ory of finite-size scaling and puts that theory on a firm foundation in the context of
mean-field spin systems. It is hoped that our results suggest how this question can
be addressed in the context of much more complicated, short-range spin systems.

Our approach is to evaluate the asymptotic behaviors of the thermodynamic
magnetization and the physically relevant, finite-size magnetization along para-
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meter sequences converging to either a second-order point or the tricritical point
in the mean-field Blume–Capel model. The thermodynamic magnetization is then
considered to be a physically relevant estimator of the finite-size magnetization
when these two quantities have the same asymptotic behavior. Our main finding
is that the value of the parameter α governing the speed at which the sequence
approaches criticality determines whether or not the asymptotic behaviors of these
two quantities are the same. Specifically, we show in Theorem 4.1 that the thermo-
dynamic magnetization and the finite-size magnetization are asymptotic when α is
below a certain threshold α0 and that therefore the thermodynamic magnetization
is a physically relevant estimator when 0 < α < α0. However, when α exceeds α0,
then according to Theorem 4.2, the thermodynamic magnetization converges to 0
much faster than the finite-size magnetization, and therefore the thermodynamic
magnetization is not a physically relevant estimator when α > α0. An advantage
of using the thermodynamic magnetization as an estimator of the finite-state mag-
netization when 0 < α < α0 is that the asymptotic behavior of the former quantity
is much easier to derive than the asymptotic behavior of the latter quantity [see the
discussion at the end of the paragraph after (1.5)].

The investigation is carried out for a mean-field version of an important lattice
spin model due to Blume and Capel, to which we refer as the B–C model [4, 6–8].
This mean-field model is equivalent to the B–C model on the complete graph on
N vertices. It is one of the simplest models that exhibits the following intricate
phase-transition structure: a curve of second-order points, a curve of first-order
points and a tricritical point, which separates the two curves. A generalization of
the B–C model is studied in [5].

The mean-field B–C model is defined by a canonical ensemble that we denote
by PN,β,K ; N equals the number of spins, β is the inverse temperature and K is
the interaction strength. PN,β,K is defined in (2.1) in terms of the Hamiltonian

HN,K(ω) =
N∑

j=1

ω2
j − K

N

(
N∑

j=1

ωj

)2

,

in which ωj represents the spin at site j ∈ {1,2, . . . ,N} and takes values in
� = {1,0,−1}. The configuration space for the model is the set �N contain-
ing all sequences ω = (ω1,ω2, . . . ,ωN) with each ωj ∈ �. Expectation with re-
spect to PN,β,K is denoted by EN,β,K . The finite-size magnetization is defined by
EN,β,K{|SN/N |}, where SN equals the total spin

∑N
j=1 ωj .

Before introducing the results in this paper, we summarize the phase-transition
structure of the model. For β > 0 and K > 0 we denote by Mβ,K the set of equi-
librium values of the magnetization. Mβ,K coincides with the set of global min-
imum points of the free-energy functional Gβ,K , which is defined in (2.5). It is
known from heuristic arguments and is proved in [16] that there exists a critical in-
verse temperature βc = log 4 and that for 0 < β ≤ βc there exists a quantity K(β)

and for β > βc there exists a quantity K1(β) having the following properties. The
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positive quantity m(β,K) appearing in the following list is the thermodynamic
magnetization.

1. Fix 0 < β ≤ βc. Then for 0 < K ≤ K(β), Mβ,K consists of the unique pure
phase 0, and for K > K(β), Mβ,K consists of two nonzero values ±m(β,K).

2. For 0 < β ≤ βc, Mβ,K undergoes a continuous bifurcation at K = K(β),
changing continuously from {0} for K ≤ K(β) to {±m(β,K)} for K > K(β).
This continuous bifurcation corresponds to a second-order phase transition.

3. Fix β > βc. Then for 0 < K < K1(β), Mβ,K consists of the unique pure phase
0, for K = K1(β), Mβ,K consists of 0 and two nonzero values ±m(β,K1(β))

and for K > K1(β), Mβ,K consists of two nonzero values ±m(β,K).
4. For β > βc, Mβ,K undergoes a discontinuous bifurcation at K = K1(β),

changing discontinuously from {0} for K < K(β) to {0,±m(β,K)} for K =
K1(β) to {±m(β,K)} for K > K1(β). This discontinuous bifurcation corre-
sponds to a first-order phase transition.

Because of items 2 and 4, we refer to the curve {(β,K(β)),0 < β < βc} as the
second-order curve and to the curve {(β,K1(β)), β > βc} as the first-order curve.
Points on the second-order curve are called second-order points, and points on the
first-order curve first-order points. The point (βc,K(βc)) = (log 4,3/2 log 4) sep-
arates the second-order curve from the first-order curve and is called the tricritical
point. The two-phase region consists of all points in the positive β-K quadrant for
which Mβ,K consists of two values. Thus this region consists of all (β,K) above
the second-order curve, above the tricritical point and above the first-order curve;
that is, all (β,K) satisfying 0 < β ≤ βc and K > K(β) and satisfying β > βc and
K > K1(β). The sets that describe the phase-transition structure of the model are
shown in Figure 1.

For fixed (β,K) lying in the two-phase region the finite-size magnetiza-
tion EN,β,K{|SN/n|} converges to the thermodynamic magnetization m(β,K) as
N → ∞. In order to see this, we use the large deviation principle (LDP) for SN/N

with respect to PN,β,K in [16], Theorem 3.3, and the fact that the set of global min-
imum points of the rate function in that LDP coincides with the set Mβ,K [16],
Proposition 3.4, the structure of which has just been described. Since for (β,K)

lying in the two-phase region Mβ,K = {±m(β,K)}, the LDP implies that the
PN,β,K -distributions of SN/N put an exponentially small mass on the comple-
ment of any open set containing ±m(β,K). Symmetry then yields the weak-
convergence limit

PN,β,K{SN/N ∈ dx} �⇒ (1
2δm(β,K) + 1

2δ−m(β,K)

)
(dx).(1.1)

This implies the desired result

lim
N→∞EN,β,K{|SN/N |} = m(β,K).(1.2)

The limit in the last display is closely related to the main focus of this paper. It
shows that because the thermodynamic magnetization is the limit, as the number
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FIG. 1. The sets that describe the phase-transition structure of the mean-field B–C model: the sec-
ond-order curve {(β,K(β)),0 < β < βc}, the first-order curve {(β,K1(β)),β > βc} and the tricrit-
ical point (βc,K(βc)). The phase-coexistence region consists of all (β,K) above the second-order
curve, above the tricritical point, on the first-order curve and above the first-order curve. The exten-
sion of the second-order curve to β > βc is called the spinodal curve.

of spins goes to ∞, of the finite-size magnetization, the thermodynamic magneti-
zation m(β,K) is a physical relevant estimator of the finite-size magnetization, at
least when evaluated at fixed (β,K) in the two-phase region.

The main focus of this paper is to determine whether the thermodynamic mag-
netization is a physically relevant estimator of the finite-size magnetization in a
more general sense, namely, when evaluated along a class of sequences (βn,Kn)

that converge to a second-order point (β,K(β)) or the tricritical point (βc,K(βc)).
The criterion for determining whether m(βn,Kn) is a physically relevant estima-
tor is that as n → ∞, m(βn,Kn) is asymptotic to the finite-size magnetization
En,βn,Kn{|Sn/n|}, both of which converge to 0. In this formulation we let N = n in
the finite-size magnetization; that is, we let the number of spins N coincide with
the index n parametrizing the sequence (βn,Kn). As summarized in Theorems 4.1
and 4.2, our main finding is that m(βn,Kn) is a physically relevant estimator if the
parameter α governing the speed at which (βn,Kn) approaches criticality is below
a certain threshold α0; however, this is not true if α > α0. For the sequences under
consideration the parameter α determines the limits

b = lim
n→∞nα(βn − β) and k = lim

n→∞nα(
Kn − K(β)

)
,

which are assumed to exist and not to be both 0. The value of α0 depends on
the type of the phase transition—first-order, second-order or tricritical—that influ-
ences the sequence, an issue addressed in Section 5 of [13].
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FIG. 2. Possible paths for the six sequences converging to a second-order point and to the tricritical
point. The asymptotic results for the sequences converging on the paths labeled 1, 2, 3, 4a–4d, 5
and 6 are discussed in the respective Theorems 5.1–5.6. The sequences on the paths labeled 4a–4d
are defined in (5.4) and in the second paragraph after that equation.

We illustrate the results contained in these two theorems by applying them to
six types of sequences. In the case of second-order points two such sequences are
considered in Theorems 5.1 and 5.2, and in the case of the tricritical point four
such sequences are considered in Theorems 5.3–5.6. Possible paths followed by
these sequences are shown in Figure 2. We believe that modulo uninteresting scale
changes, irrelevant higher order terms and other inconsequential modifications,
these are all the sequences of the form βn = β + b/nα and Kn equal to K(β)

plus a polynomial in 1/nα , where (β,K(β)) is either a second-order point or the
tricritical point and m(βn,Kn) ∼ c/nδ for some c > 0 and δ > 0.

We next summarize our main results on the asymptotic behaviors of the ther-
modynamic magnetization and the finite-size magnetization, first for small values
of α and then for large values of α. The relevant information is given, respec-
tively, in Theorems 3.1, 4.1 and 4.2. These theorems are valid for suitable positive
sequences (βn,Kn) parametrized by α > 0, lying in the two-phase region for all
sufficiently large n, and converging either to a second-order point or to the tricriti-
cal point. The hypotheses of these three theorems overlap but do not coincide. The
hypotheses of Theorem 3.1 are satisfied by all six sequences considered in Sec-
tion 5 while the hypotheses of each of the Theorems 4.1 and 4.2 are satisfied by
all six sequences with one exception. For each of the six sequences the quantities
θ and α0 appearing in these asymptotic results are specified in Table 1.

The difference in the asymptotic behaviors of the thermodynamic magnetization
and the finite-size magnetization for α > α0 is described in item 3. As we discuss
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TABLE 1
The equations where each of the six sequences is defined, the theorems where the asymptotic results

in (1.3), (1.4) and (1.5) are stated for each sequence, and the values of α0, θ and
κ = 1

2 (1 − α/α0) + θα [see (1.6)] for each sequence

Seq. Defn. Thm. α0 θ κ

1 (5.1) Theorem 5.1 1
2

1
2

1
2 (1 − α)

2 (5.2) Theorem 5.2 1
2p

p
2

1
2 (1 − pα)

3 (5.3) Theorem 5.3 2
3

1
4

1
2 (1 − α)

4 (5.4) Theorem 5.4 1
3

1
2

1
2 (1 − 2α)

5 (5.5) Theorem 5.5 1
3

1
2

1
2 (1 − 2α)

6 (5.6) Theorem 5.6 1
2p−1

1
2 (p − 1) 1

2 (1 − pα)

in Section 6, the difference is explained by the statistical mechanical theory of
finite-size scaling.

1. According to Theorem 3.1, there exists positive quantities x̄ and θ such that for
all α > 0

m(βn,Kn) ∼ x̄/nθα.(1.3)

2. (0 < α < α0). According to Theorem 4.1, there exists a threshold value α0 > 0
such that for all 0 < α < α0

En,βn,Kn{|Sn/n|} ∼ x̄/nθα and En,βn,Kn{|Sn/n|} ∼ m(βn,Kn).(1.4)

Because m(βn,Kn) is asymptotic to the finite-size magnetization, m(βn,Kn)

is a physically relevant estimator of the finite-size magnetization. In this case
(βn,Kn) converges to criticality slowly, and we are in the two-phase region,
where the system is effectively infinite. Formally the first index n parametrizing
the finite-size magnetization can be sent to ∞ before the index n parametrizing
the sequence (βn,Kn) is sent to ∞, and so we have

En,βn,Kn{|Sn/n|} ≈ lim
N→∞EN,βn,Kn{|SN/N |} = m(βn,Kn).

3. (α > α0). According to Theorem 4.2, there exists a positive quantity ȳ such that
for all α > α0

En,βn,Kn{|Sn/n|} ∼ ȳ/nθα0 and
(1.5)

En,βn,Kn{|Sn/n|} 
 m(βn,Kn) ∼ x̄/nθα.

Because m(βn,Kn) converges to 0 much faster than the finite-size magnetiza-
tion, m(βn,Kn) is not a physically relevant estimator of the finite-size magne-
tization. In this case (βn,Kn) converges to criticality quickly, and we are in the
critical regime, where finite-size scaling effects are important.
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The asymptotic behavior of the thermodynamic magnetization m(βn,Kn) → 0
stated in (1.3) holds for all α > 0. It is derived in Theorem 3.2 in [13] and is
summarized in Theorem 3.1 in the present paper. In (1.4) we state the asymptotic
behavior of the finite-size magnetization En,βn,Kn{|Sn/n|} → 0 for 0 < α < α0.
This result is proved in part (a) of Theorem 4.1 as a consequence of the moderate
deviation principle (MDP) for the spin in Theorem 7.1, the weak-convergence limit
in Corollary 7.3, and the uniform integrability estimate in Lemma 7.4. The asymp-
totic behavior of En,βn,Kn{|Sn/n|} → 0 stated in (1.5) for α > α0 is proved in part
(a) of Theorem 4.2 as a consequence of the weak-convergence limit for the spin
in Theorem 8.1 and the uniform-integrability-type estimate in Proposition 8.3. In
part (a) of Theorem 4.3 we state the asymptotic behavior of En,βn,Kn{|Sn/n|} → 0
for α = α0. That result is a consequence of a weak-convergence limit analogous
to the limit in Theorem 8.1 and the uniform-integrability-type estimate in Propo-
sition 8.3. With changes in notation only, Theorem 3.1 and Theorems 4.1–4.3 also
apply to other mean-field models including the Curie–Weiss model [12] and the
Curie–Weiss–Potts model [17]. The proof of the asymptotic behavior of the ther-
modynamic magnetization in [13], Theorem 3.2, is purely analytic and is much
more straightforward than the probabilistic proofs of the asymptotic behaviors of
the finite-size magnetization in Theorems 4.1–4.3.

Figure 3 gives a pictorial representation of the phenomena that are summa-
rized in (1.4) for 0 < α < α0 and in (1.5) for α > α0. As we discuss in Section 2,
for the sequences (βn,Kn) under consideration the thermodynamic magnetization
m(βn,Kn) can be characterized as the unique, positive, global minimum point in
an LDP or, equivalently, as the unique, positive, global minimum point of the dual,
free-energy functional Gβn,Kn defined in (2.5). According to graph (a) in Figure 3,
for 0 < α < α0, Gβn,Kn has two deep, global minimum points at ±m(βn,Kn).

FIG. 3. Gβn,Kn
and Pn,βn,Kn

{Sn/n ∈ dx} for (a) 0 < α < α0, (b) α > α0. Graph (b) is not shown
to scale. In fact, for α > α0 the global minimum points ±m(βn,Kn) of Gβn,Kn

are much closer to
the origin and are much shallower than shown in graph (b).
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Graph (b) in Figure 3, which is not shown to scale, exhibits the contrasting situa-
tion for α > α0. In this case the global minimum points of Gβn,Kn at ±m(βn,Kn)

are shallow and close to the origin. In the two graphs we also show the form of
the distribution Pn,βn,Kn{Sn/n ∈ dx}. For 0 < α < α0 this probability distribution
is sharply peaked at ±m(βn,Kn) as n → ∞. In contrast, for α > α0 the prob-
ability distribution is peaked at 0 and its standard deviation is much larger than
m(βn,Kn).

In a work in progress we refine the asymptotic result in (1.4), which states that
for 0 < α < α0, m(βn,Kn) is asymptotic to En,βn,Kn{|Sn/n|} as n → ∞. Define
κ = 1

2(1 − α/α0) + θα, which exceeds θα since 1 − α/α0 > 0. We conjecture that
for a class of suitable sequences (βn,Kn) that includes the first five sequences con-
sidered in Section 5, there exists a positive quantity v̄ such that for all 0 < α < α0

En,βn,Kn

{∣∣|Sn/n| − m(βn,Kn)
∣∣} ∼ v̄/nκ .(1.6)

This refined asymptotic result would extend part (b) of Theorem 4.1. It is a conse-
quence of the conjecture that when Sn/n is conditioned to lie in a suitable neigh-
borhood of m(βn,Kn), the Pn,βn,Kn -distributions of nκ(Sn/n − m(βn,Kn)) con-
verge in distribution to a Gaussian.

For easy reference we list in Table 1 information about the six sequences con-
sidered in Section 5. The first two columns list, respectively, the equation in which
each sequence is defined and the theorem in which the asymptotic results in equa-
tions (1.3), (1.4) and (1.5) are stated for each sequence. In these theorems the
quantities x̄ and ȳ appearing in the three asymptotic results are defined. The three
asymptotic results involve the quantities α0, θ , θα and θα0, the values of the first
two of which are listed in the next two columns of the table. In the last column
of the table we list the values of κ = 1

2(1 − α/α0) + θα. Through the factor n−κ ,
κ governs the conjectured asymptotics of En,βn,Kn{||Sn/n| − m(βn,Kn)|} stated
in (1.6).

The contents of this paper are as follows. In Section 2 we summarize the phase-
transition structure of the mean-field B–C model. Theorem 3.1 in Section 3 gives
the asymptotic behavior of the thermodynamic magnetization m(βn,Kn) → 0
for suitable sequences (βn,Kn) converging either to a second-order point or to
the tricritical point. The heart of the paper is Section 4. In this section Theo-
rems 4.1, 4.2 and 4.3 give the asymptotic behavior of the finite-size magnetization
En,βn,Kn{|Sn/n|} → 0 for three respective ranges of α : 0 < α < α0, α > α0 and
α = α0. The quantity α0 is a threshold value that depends on the type of the phase
transition—first-order, second-order or tricritical—that influences the associated
sequence (βn,Kn). These theorems also compare the asymptotic behaviors of the
thermodynamic magnetization and the finite-size magnetization, showing that they
are the same for 0 < α < α0 but not the same for α > α0. In Section 5 the three the-
orems in the preceding section are applied to six specific sequences (βn,Kn), the
first two of which converge to a second-order point and the last four of which con-
verge to the tricritical point. Section 6 gives an overview of the statistical mechan-
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ical theory of finite-size scaling, which gives insight into the physical phenomena
underlying our mathematical results. Part (a) of Theorem 4.1 is derived in Sec-
tion 7 from the MDP for the spin in Theorem 7.1, the weak-convergence limit for
the spin in Corollary 7.3, and the uniform integrability estimate in Lemma 7.4. Fi-
nally, part (a) of Theorem 4.2 is derived in Section 8 from the weak-convergence
limit for the spin in Theorem 8.1 and the uniform-integrability-type estimate in
Proposition 8.3.

2. Phase-transition structure of the mean-field B–C model. After defining
the mean-field B–C model, we introduce a function Gβ,K , called the free-energy
functional. The global minimum points of this function define the equilibrium val-
ues of the magnetization. The phase-transition structure of the model is summa-
rized in Theorems 2.1 and 2.2. The first theorem shows that the model exhibits a
second-order phase transition for β ∈ (0, βc], where βc = log 4 is the critical in-
verse temperature of the model. The second theorem shows that the model exhibits
a first-order phase transition for β > βc.

For N ∈ N the mean-field B–C model is a lattice-spin model defined on the com-
plete graph on N vertices 1,2, . . . ,N . The spin at site j ∈ {1,2, . . . ,N} is denoted
by ωj , a quantity taking values in � = {1,0,−1}. The configuration space for
the model is the set �N containing all sequences ω = (ω1,ω2, . . . ,ωN) with each
ωj ∈ �. In terms of a positive parameter K representing the interaction strength,
the Hamiltonian is defined by

HN,K(ω) =
N∑

j=1

ω2
j − K

N

(
N∑

j=1

ωj

)2

for each ω ∈ �N . Let PN be the product measure on �N with identical one-
dimensional marginals ρ = 1

3(δ−1 + δ0 + δ1). Thus PN assigns the probability
3−N to each ω ∈ �N . For inverse temperature β > 0 and for K > 0, the canonical
ensemble for the mean-field B–C model is the sequence of probability measures
that assign to each subset B of �N the probability

PN,β,K(B) = 1

ZN(β,K)
·
∫
B

exp[−βHN,K ]dPN

(2.1)

= 1

ZN(β,K)
· ∑
ω∈B

exp[−βHN,K(ω)] · 3−N.

In this formula ZN(β,K) is the partition function equal to∫
�N

exp[−βHN,K ]dPN = ∑
ω∈�N

exp[−βHN,K(ω)] · 3−N.

Expectation with respect to PN,β,K is denoted by EN,β,K .
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The analysis of the canonical ensemble PN,β,K is facilitated by absorbing the
noninteracting component of the Hamiltonian into the product measure PN , ob-
taining

PN,β,K(dω) = 1

Z̃N(β,K)
· exp

[
NβK

(
SN(ω)

N

)2]
PN,β(dω).(2.2)

In this formula SN(ω) equals the total spin
∑N

j=1 ωj , PN,β is the product measure

on �N with identical one-dimensional marginals

ρβ(dωj ) = 1

Z(β)
· exp(−βω2

j )ρ(dωj ),(2.3)

Z(β) is the normalization equal to
∫
� exp(−βω2

j )ρ(dωj ) = (1 + 2e−β)/3 and

Z̃N(β,K) is the normalization equal to ZN(β,K)/[Z(β)]N .
We denote by Mβ,K the set of equilibrium macrostates of the mean-field B–C

model. In order to describe this set, we introduce the cumulant generating function
cβ of the measure ρβ defined in (2.3); for t ∈ R this function is defined by

cβ(t) = log
∫
�

exp(tω1)ρβ(dω1)

(2.4)

= log
(

1 + e−β(et + e−t )

1 + 2e−β

)
.

For x ∈ R we define

Gβ,K(x) = βKx2 − cβ(2βKx).(2.5)

As shown in Proposition 3.4 in [16], the set Mβ,K of equilibrium macrostates
of the mean-field B–C model can be characterized as the set of global minimum
points of Gβ,K :

Mβ,K = {x ∈ [−1,1] :x is a global minimum point of Gβ,K(x)}.(2.6)

In [16] the set Mβ,K was denoted by Ẽβ,K .
We also define the canonical free energy

ϕ(β,K) = − lim
N→∞

1

βN
log Z̃N(β,K),

where Z̃N(β,K) is the normalizing constant in (2.2). This limit exists and equals
minx∈R β−1Gβ,K(x). Because of this property of Gβ,K , we call Gβ,K the free-
energy functional of the mean-field B–C model.

The next two theorems use (2.6) to determine the structure of Mβ,K for 0 <

β ≤ βc = log 4 and for β > βc. The positive quantity m(β,K) appearing in these
theorems is called the thermodynamic magnetization. The first theorem, proved in
Theorem 3.6 in [16], describes the continuous bifurcation in Mβ,K for 0 < β ≤ βc



2128 R. S. ELLIS, J. MACHTA AND P. T.-H. OTTO

as K crosses a curve {(β,K(β)) : 0 < β < βc}. This bifurcation corresponds to a
second-order phase transition, and this curve is called the second-order curve. The
quantity K(β), defined in (2.7), is denoted by K

(2)
c (β) in [16].

THEOREM 2.1. For 0 < β ≤ βc, we define

K(β) = 1/[2βc′′
β(0)] = (eβ + 2)/(4β).(2.7)

For these values of β , Mβ,K has the following structure:
(a) For 0 < K ≤ K(β), Mβ,K = {0}.
(b) For K > K(β), there exists m(β,K) > 0 such that Mβ,K = {±m(β,K)}.
(c) m(β,K) is a positive, increasing, continuous function for K > Kc(β), and

as K → (K(β))+, m(β,K) → 0. Therefore, Mβ,K exhibits a continuous bifurca-
tion at K(β).

The next theorem, proved in Theorem 3.8 in [16], describes the discontinuous
bifurcation in Mβ,K for β > βc as K crosses a curve {(β,K1(β)) :β > βc}. This
bifurcation corresponds to a first-order phase transition, and this curve is called the
first-order curve. As shown in Theorem 3.8 in [16], for all β > βc, K1(β) < K(β).
The quantity K1(β) is denoted by K

(1)
c (β) in [16].

THEOREM 2.2. For β > βc, Mβ,K has the following structure in terms of the

quantity K1(β), denoted by K
(1)
c (β) in [16] and defined implicitly for β > βc on

page 2231 of [16]:
(a) For 0 < K < K1(β), Mβ,K = {0}.
(b) For K = K1(β) there exists m(β,K1(β)) > 0 such that Mβ,K1(β) =

{0,±m(β,K1(β))}.
(c) For K > K1(β) there exists m(β,K) > 0 such that Mβ,K = {±m(β,K)}.
(d) m(β,K) is a positive, increasing, continuous function for K ≥ K1(β), and

as K → K1(β)+, m(β,K) → m(β,K1(β)) > 0. Therefore, Mβ,K exhibits a dis-
continuous bifurcation at K1(β).

The phase-coexistence region is defined as the set of all points in the positive
β-K quadrant for which Mβ,K consists of more than one value. According to
Theorems 2.1 and 2.2, the phase-coexistence region consists of all points above the
second-order curve, above the tricritical point, on the first-order curve and above
the first-order curve; that is,

{(β,K) : 0 < β ≤ βc,K > K(β) and β > βc,K ≥ K1(β)}.
Our derivation of the asymptotic behavior of the finite-size magnetization
En,βn,Kn{|Sn/n|} → 0 in this paper is valid for a class of sequences (βn,Kn) lying
in the phase-coexistence region for all sufficiently large n and converging either
to a second-order point or to the tricritical point. In the next section we state an
asymptotic formula for m(βn,Kn) → 0 for a general class of such sequences. That
asymptotic formula will be used later in the paper when we study the asymptotic
behavior of the finite-size magnetization En,βn,Kn{|Sn/n|} → 0.
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3. Asymptotic behavior of m(βn,Kn). The main result in this section is
Theorem 3.1. It states the asymptotic behavior of the thermodynamic magneti-
zation m(βn,Kn) → 0 for sequences (βn,Kn) lying in the phase-coexistence re-
gion for all sufficiently large n and converging either to a second-order point or to
the tricritical point. The asymptotic behavior is expressed in terms of the unique
positive, global minimum point of an associated polynomial that is introduced in
hypothesis (iii) of the theorem. With several modifications the hypotheses of the
next theorem are also the hypotheses under which we derive the rates at which
En,βn,Kn{|Sn/n|} → 0 later in the paper.

As shown in part (iii) of Theorem 3.1, the asymptotics of m(βn,Kn) depend
on the asymptotics of the scaled free-energy function nα/α0Gβn,Kn(x/nθα). Be-
cause of Lemma 7.2, the asymptotics of the finite-size magnetization in Theo-
rems 4.1–4.3 depend on precisely the same asymptotics. Lemma 7.2 coincides
with Lemma 4.1 in [9]. In that paper the connections among the asymptotics of
the scaled free-energy functional, the limit theorems underlying the asymptotics
of the finite-size magnetization and Lemma 4.1 are described in detail. These limit
theorems are analogues of the MDP in Theorem 7.1 and of the weak convergence
limit in Theorem 8.1.

Theorem 3.1 restates the main theorem in [13], Theorem 3.2. Hypotheses (iii)(a)
and (iv) in the next theorem coincide with hypotheses (iii)(a) and (iv) in The-
orem 3.2 in [13] except that the latter hypotheses are expressed in terms of
u = 1−α/α0 and γ = θα while here we have substituted the formulas for u and γ .
Hence u and γ no longer appear.

THEOREM 3.1. Let (βn,Kn) be a positive sequence that converges either to a
second-order point (β,K(β)), 0 < β < βc, or to the tricritical point (β,K(β)) =
(βc,K(βc)). We assume that (βn,Kn) satisfies the following four hypotheses:

(i) (βn,Kn) lies in the phase-coexistence region for all sufficiently large n.
(ii) The sequence (βn,Kn) is parametrized by α > 0. This parameter regulates

the speed of approach of (βn,Kn) to the second-order point or the tricritical point
in the following sense:

b = lim
n→∞nα(βn − β) and k = lim

n→∞nα(
Kn − K(β)

)
both exist, and b and k are not both 0; if b = 0, then b equals 1 or −1.

(iii) There exists an even polynomial g of degree 4 or 6 satisfying g(x) → ∞
as |x| → ∞ together with the following two properties; g is called the Ginzburg–
Landau polynomial.

(a) ∃α0 > 0 and ∃θ > 0 such that for all ∀α > 0

lim
n→∞nα/α0Gβn,Kn(x/nθα) = g(x)

uniformly for x in compact subsets of R.
(b) g has a unique, positive global minimum point x̄; thus the set of global

minimum points of g equals {±x̄} or {0,±x̄}.
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(iv) There exists a polynomial H satisfying H(x) → ∞ as |x| → ∞ together
with the following property: ∀α > 0 ∃R > 0 such that ∀n ∈ N sufficiently large and
∀x ∈ R satisfying |x/nθα| < R, nα/α0Gβn,Kn(x/nθα) ≥ H(x).

Under hypotheses (i)–(iv), for any α > 0

m(βn,Kn) ∼ x̄/nθα , that is, lim
n→∞nθαm(βn,Kn) = x̄.

If b = 0, then this becomes m(βn,Kn) ∼ x̄|β − βn|θ .

It is clear from the proof of the theorem that if hypotheses (iii) and (iv) are valid
for a specific value of α > 0, then we obtain the asymptotic formula m(βn,Kn) ∼
x̄/nθα for that value of α.

In the next section, we state the main results on the rates at which En,βn,Kn{|Sn/

n|} → 0 for small α satisfying 0 < α < α0, for large α satisfying α > α0, and for
intermediate α satisfying α = α0. We also compare these rates with the asymptotic
behavior of the thermodynamic magnetization m(βn,Kn) → 0.

4. Main results on rates at which En,βn,Kn{|Sn/n|} → 0. Let an be a posi-
tive sequence converging to 0. In stating the three results on the rates at which the
finite-size magnetization En,βn,Kn{|Sn/n|} → 0, we write

En,βn,Kn{|Sn/n|} ∼ an if lim
n→∞En,βn,Kn{|Sn/n|}/an = 1,

and we write

En,βn,Kn{|Sn/n|} 
 an if lim
n→∞En,βn,Kn{|Sn/n|}/an = ∞.

Let α be the quantity parametrizing the sequences (βn,Kn) as explained in hy-
pothesis (ii) of Theorem 3.1. We begin with Theorem 4.1, which gives the rate
at which En,βn,Kn{|Sn/n|} → 0 for small α satisfying 0 < α < α0. Theorem 4.2
gives the rate at which En,βn,Kn{|Sn/n|} → 0 for large α satisfying α > α0 while
Theorem 4.3 gives the rate at which En,βn,Kn{|Sn/n|} → 0 for intermediate α sat-
isfying α = α0. In all three cases we compare these rates with the rate at which
m(βn,Kn) → 0. In the next section we specialize these theorems to the six se-
quences mentioned in the Introduction.

Part (a) of the next theorem gives the rate at which En,βn,Kn{|Sn/n|} → 0 for
0 < α < α0, and part (b) shows that for these values of α, En,βn,Kn{|Sn/n|} ∼
m(βn,Kn). It follows that for 0 < α < α0, m(βn,Kn) is a physically relevant es-
timator of the finite-size magnetization En,βn,Kn{|Sn/n|} because it has the same
asymptotic behavior as that quantity.

The next theorem is valid under hypotheses (i) and (ii) of Theorem 3.1, hy-
potheses (iii)(a) and (iv) of that theorem for all 0 < α < α0, the inequality
0 < θα0 < 1/2, and a new hypothesis (iii′)(b). The inequality 0 < θα0 < 1/2 is
satisfied by all six sequences considered in Section 5. The new hypothesis (iii′)(b)
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restricts hypothesis (iii)(b) of Theorem 3.1 by assuming that the set of global min-
imum points of the Ginzburg–Landau polynomial g equals {±x̄} for some x̄. As
we remark after the statement of the theorem, this restriction is needed in order
to prove part (a). The proof does not cover the case where the set of global mini-
mum points of g equals {0,±x̄} for some x̄ > 0. The conjecture is that in this case
there exists 0 < λ < 1/2 such that En,βn,Kn{|Sn/n|} ∼ 2λx̄/nθα (see the discus-
sion before Corollary 7.3). An example of a sequence for which the set of global
minimum points of g contains three points is given in case (d) of sequence 4 in
the next section. By contrast, all the other sequences considered in the next section
satisfy the new hypothesis that the set of global minimum points of g equals {±x̄}
for some x̄.

THEOREM 4.1 (0 < α < α0). Let (βn,Kn) be a positive sequence para-
metrized by α > 0 and converging either to a second-order point (β,K(β)),
0 < β < βc, or to the tricritical point (βc,K(βc)). We assume hypotheses (i) and
(ii) of Theorem 3.1 together with hypotheses (iii)(a) and (iv) of that theorem for
all 0 < α < α0. We also assume the inequality 0 < θα0 < 1/2 and the following
hypothesis, which restricts hypothesis (iii)(b) of Theorem 3.1:

(iii′)(b) The set of global minimum points of the Ginzburg–Landau polynomial
g equals {±x̄} for some x̄ > 0.

The following conclusions hold:
(a) For all 0 < α < α0

En,βn,Kn{|Sn/n|} ∼ x̄/nθα , that is, lim
n→∞nθαEn,βn,Kn{|Sn/n|} = x̄.

(b) For all 0 < α < α0, En,βn,Kn{|Sn/n|} ∼ m(βn,Kn).

Part (a) of the theorem is proved from the moderate deviation principle (MDP)
for the Pn,βn,Kn -distributions of Sn/n1−θα in Theorem 7.1, which shows that the
rate function equals g − infy∈R g(y). The inequality 0 < θα0 < 1/2 is used to
control an error term in the proof of the MDP. According to hypothesis (iii′)(b),
the set of global minimum points of g equals {±x̄} for some x̄ > 0. It quickly
follows from the MDP that the sequence of Pn,βn,Kn -distributions of Sn/n1−θα

converges weakly to 1
2δx̄ + 1

2δ−x̄ . The uniform integrability of Sn/n1−θα , de-
rived in Lemma 7.4 from the MDP, yields the limit En,βn,Kn{|Sn/n1−θα|} → x̄

as n → ∞. This is the asymptotic formula for En,βn,Kn{|Sn/n|} in part (a) of The-
orem 4.1. Part (b) of the theorem follows from part (a) and the asymptotic formula
m(βn,Kn) ∼ x̄/nθα , which is the conclusion of Theorem 3.1.

We next state Theorem 4.2, which in part (a) gives the rate at which
En,βn,Kn{|Sn/n|} → 0 for α > α0. Part (b) shows that for these values of α,
En,βn,Kn{|Sn/n|} 
 m(βn,Kn). Because m(βn,Kn) → 0 at an asymptotically
faster rate than the finite-size magnetization En,βn,Kn{|Sn/n|}, m(βn,Kn) is not
a physically relevant estimator of that quantity for α > α0.
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In order to prove part (a) of the next theorem, we need hypothesis (iv) of The-
orem 3.1 for α = α0, the inequality 0 < θα0 < 1/2 and a new hypothesis (v), in
which we assume that for all α > α0, nGβn,Kn(x/nθα0) convergence pointwise to
a polynomial g̃(x) that goes to ∞ as |x| → ∞. As we will see for the first five
of the six sequences considered in the next section, g̃ in hypothesis (v) equals the
highest order term of the Ginzburg–Landau polynomial g. We omit the analysis
showing that this description of g̃ can, in fact, be validated in general if the uni-
form convergence in hypothesis (iii)(a) of Theorem 3.1 on compact subsets of R is
strengthened to uniform convergence on compact subsets of an appropriate open
set in C containing the origin and if θα0 equals a certain value depending on the
degree of g. This stronger convergence is valid for the six sequences considered in
the next section. However, the additional condition on θα0, valid for the first five
sequences, is not satisfied by the sixth sequence.

In part (b) of the next theorem the rates at which En,βn,Kn{|Sn/n|} → 0 and
m(βn,Kn) → 0 are compared. In order to prove part (b), we also need hypotheses
(i) and (ii) of Theorem 3.1 and hypotheses (iii) and (iv) of that theorem for all
α > α0. These hypotheses allow us to apply Theorem 3.1 for all α > α0.

THEOREM 4.2 (α > α0). Let (βn,Kn) be a positive sequence parametrized by
α > 0 and converging either to a second-order point (β,K(β)), 0 < β < βc, or to
the tricritical point (βc,K(βc)). We assume hypotheses (i) and (ii) of Theorem 3.1,
hypothesis (iii) of Theorem 3.1 for all α > α0 and hypothesis (iv) of Theorem 3.1
for all α ≥ α0. We also assume the inequality 0 < θα0 < 1/2 and the following
hypothesis:

(v) There exists an even polynomial g̃ of degree 4 or 6 satisfying g̃(x) → ∞
as |x| → ∞ together with the following property: ∃α0 > 0 and ∃θ > 0 such that
∀α > α0 and ∀x ∈ R

lim
n→∞nGβn,Kn(x/nθα0) = g̃(x).

The following conclusions hold:
(a) We define

ȳ = 1∫
R

exp[−g̃(x)]dx
·
∫

R

|x| exp[−g̃(x)]dx.

Then for all α > α0

En,βn,Kn{|Sn/n|} ∼ ȳ/nθα0 , that is, lim
n→∞nθα0En,βn,Kn{|Sn/n|} = ȳ.

(b) For all α > α0, En,βn,Kn{|Sn/n|} 
 m(βn,Kn).

Part (a) of the theorem is proved from the weak convergence of the sequence
of Pn,βn,Kn -distributions of Sn/n1−θα to a probability measure having a density
proportional to exp[−g̃], which is shown in Theorem 8.1. The proof of this weak
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convergence relies on hypothesis (v) of Theorem 4.2 and the lower bound in hy-
pothesis (iv) of Theorem 3.1 for α = α0. The inequality 0 < θα0 < 1/2 is used
to control an error term in the proof. The uniform-integrability-type estimate in
Proposition 8.3 yields the limit En,βn,Kn{|Sn/n1−θα0 |} → ȳ as n → ∞. This is the
asymptotic formula for En,βn,Kn{|Sn/n|} in part (a) of Theorem 4.2. Part (b) of the
theorem follows from part (a), the asymptotic formula m(βn,Kn) ∼ x̄/nθα and
the fact that since α > α0, the decay rate n−θα of m(βn,Kn) → 0 is asymptoti-
cally larger than the decay rate n−θα0 of En,βn,Kn{|Sn/n|}.

We end this section by stating Theorem 4.3. Part (a) gives the rate at which
En,βn,Kn{|Sn/n|} → 0 for α = α0, and part (b) compares this rate with the rate at
which m(βn,Kn) → 0. The theorem is valid under hypotheses (i) and (ii) of The-
orem 3.1, hypotheses (iii) and (iv) of Theorem 3.1 for α = α0 and the inequality
0 < θα0 < 1/2.

THEOREM 4.3 (α = α0). Let (βn,Kn) be a positive sequence parametrized by
α > 0 and converging either to a second-order point (β,K(β)), 0 < β < βc, or to
the tricritical point (βc,K(βc)). We assume hypotheses (i) and (ii) of Theorem 3.1,
hypotheses (iii) and (iv) of Theorem 3.1 for α = α0 and the inequality 0 < θα0 <

1/2. The following conclusions hold:
(a) We define

z̄ = 1∫
R

exp[−g(x)]dx
·
∫

R

|x| exp[−g(x)]dx.

Then for all α = α0

En,βn,Kn{|Sn/n|} ∼ z̄/nθα0 , that is, lim
n→∞nθα0En,βn,Kn{|Sn/n|} = z̄.

(b) For α = α0, En,βn,Kn{|Sn/n|} ∼ z̄ · m(βn,Kn)/x̄.

We omit the proof of part (a) of the theorem, which can be derived like part (a) of
Theorem 4.2. According to hypothesis (iii)(a) of Theorem 3.1, nGβn,Kn(x/nθα0)

converges to g(x) uniformly for x in compact subsets of R. The pointwise conver-
gence of nGβn,Kn(x/nθα0) to g(x) and the lower bound in hypothesis (iv) of The-
orem 3.1 for α = α0 allow us to prove that the sequence of Pn,βn,Kn -distributions
of Sn/n1−θα0 converges weakly to a probability measure having a density propor-
tional to exp[−g]. The inequality 0 < θα0 < 1/2 is used to control an error term in
the proof. The asymptotic formula for En,βn,Kn{|Sn/n|} in part (a) of Theorem 4.3
follows from this weak-convergence limit and the uniform-integrability-type esti-
mate in Proposition 8.3, the hypotheses of which can be verified in the context of
Theorem 4.3 as they are verified at the end of Section 8 in the context of Theo-
rem 4.2. When α = α0, m(βn,Kn) ∼ x̄/nθα0 [Theorem 3.1(b)]. Hence part (a) of
Theorem 4.3 implies that

En,βn,Kn{|Sn/n|} ∼ z̄/nθα0 ∼ z̄ · m(βn,Kn)/x̄.
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This is the conclusion of part (b) of the theorem.
In numerical calculations we studied the relative size of z̄ and x̄. Depending

on the magnitude of the coefficient of the quadratic term in the Ginzburg–Landau
polynomial g, z̄/x̄ can be less than 1, can equal 1 and can exceed 1.

In the next section we specialize Theorems 4.1, 4.2 and 4.3 to the six sequences
mentioned in the Introduction.

5. Results for six sequences. In [13] we apply Theorem 3.1 to determine
the asymptotic behavior of the thermodynamic magnetization m(βn,Kn) → 0 for
six sequences (βn,Kn) parametrized by α > 0. The first two sequences converge
to a second-order point (β,K(β)), 0 < β < βc, and the last four sequences con-
verge to the tricritical point (βc,K(βc)). In the present section we specialize to
the first five sequences the results in Theorems 4.1, 4.2 and 4.3 concerning the
the asymptotic behaviors of En,βn,Kn{|Sn/n|} → 0 for 0 < α < α0, α > α0 and
α = α0. We also compare these asymptotic behaviors with the asymptotic behav-
ior of m(βn,Kn) → 0. In addition we state the results of Theorems 3.1, 4.1 and 4.3
for the sixth sequence. However, for this sequence, one of the hypotheses of The-
orem 4.2 is not valid, and so that theorem cannot be applied.

In order to be able to apply these four theorems, we must verify the validity of
their hypotheses, which are the following:

• Theorem 3.1. Hypotheses (i) and (ii) and hypotheses (iii) and (iv) for all α > 0.
• Theorem 4.1. Hypotheses (i) and (ii) of Theorem 3.1, hypotheses (iii)(a) and (iv)

of Theorem 3.1 for all 0 < α < α0, the inequality 0 < θα0 < 1/2 and the new
hypothesis (iii′)(b).

• Theorem 4.2. Hypotheses (i) and (ii) of Theorem 3.1, hypothesis (iii) of The-
orem 3.1 for all α > α0, hypothesis (iv) of Theorem 3.1 for all α ≥ α0, the
inequality 0 < θα0 < 1/2 and the new hypothesis (v).

• Theorem 4.3. Hypotheses (i) and (ii) of Theorem 3.1, hypotheses (iii) and (iv)
of Theorem 3.1 for α = α0 and the inequality 0 < θα0 < 1/2.

Thus, in order to verify the hypotheses of the four theorems, it suffices to verify
hypotheses (i) and (ii) of Theorem 3.1, hypotheses (iii)(a) and (iv) of Theorem 3.1
for all α > 0, hypothesis (iii′)(b) for all 0 < α < α0, hypothesis (iii)(b) for all
α ≥ α0, the inequality 0 < θα0 < 1/2, and hypothesis (v) of Theorem 4.2.

The quantities ȳ and z̄ appearing in the asymptotic formulas in Theorems 4.2
and 4.3 are defined as follows in terms of the polynomial g̃, introduced in hypoth-
esis (v) of Theorem 4.2, and in terms of the Ginzburg–Landau polynomial g:

ȳ = 1∫
R

exp[−g̃(x)]dx
·
∫

R

|x| exp[−g̃(x)]dx

and

z̄ = 1∫
R

exp[−g(x)]dx
·
∫

R

|x| exp[−g(x)]dx.
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For the first five sequences, g̃ equals the highest-order term in g. For the sixth
sequence, Theorem 4.2 cannot be applied because hypothesis (v) of that theo-
rem is not valid. In each sequence K(β) = (eβ + 2)/(4β) for β > 0. The curve
{(β,K(β)) : 0 < β < βc} is the second-order curve, (βc,K(βc)) is the tricritical
point and the curve {(β,K(β)) :β > βc} is the spinodal curve.

Sequence 1.
Definition of sequence 1. Given 0 < β < βc, α > 0, b ∈ {1,0,−1} and k ∈ R,

k = 0, the sequence is defined by

βn = β + b/nα and Kn = K(β) + k/nα.(5.1)

This sequence converges to the second-order point (β,K(β)) along a ray with
slope k/b if b = 0.

Hypotheses (i) and (ii) in Theorem 3.1. Hypothesis (i) states that (βn,Kn) lies
in the phase-coexistence region for all sufficiently large n. In order to guarantee
this, we assume that K ′(β)b − k < 0. This inequality is equivalent to Kn > K(βn)

for all sufficiently large n and thus guarantees that (βn,Kn) lies in the phase-
coexistence region above the second-order curve for all sufficiently large n. Hy-
pothesis (ii) is also satisfied.

Other hypotheses.

1. Define α0 = 1/2 and θ = 1/2. As shown in Theorem 4.1 in [13], the uniform
convergence in hypothesis (iii)(a) of Theorem 3.1 is valid for all α > 0 with the
Ginzburg–Landau polynomial

g(x) = β
(
K ′(β)b − k

)
x2 + c4(β)x4

where c4(β) = (eβ + 2)2(4 − eβ)/8 · 4!.
Since θα0 = 1/4, we have 0 < θα0 < 1/2, which is one of the hypotheses of
Theorems 4.1–4.3.

2. We assume that K ′(β)b − k < 0. Then, as required by hypothesis (iii)(b) of
Theorem 3.1 and hypothesis (iii′)(b) of Theorem 4.1, the set of global minimum
points of g is {±x̄}, where x̄ > 0 is defined in (4.6) in [13].

3. Hypothesis (iv) of Theorem 3.1 is valid for all α > 0 with the polynomial H

given on page 113 of [13].
4. The pointwise convergence in hypothesis (v) of Theorem 4.2 holds with g̃ equal

to the highest order term in g; namely, g̃(x) = c4(β)x4. This is easily verified
using equation (4.4) in [13].

We now specialize to sequence 1 the results in Theorems 3.1, 4.1, 4.2 and 4.3
concerning the asymptotic behavior of m(βn,Kn) → 0 and the asymptotic behav-
iors of En,βn,Kn{|Sn/n|} → 0 for 0 < α < α0, for α > α0 and for α = α0.
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THEOREM 5.1. Let (βn,Kn) be sequence 1 that is defined in (5.1) and con-
verges to a second-order point (β,K(β)) for 0 < β < βc. Assume that K ′(β)b −
k < 0. The following conclusions hold:

(a) For all α > 0,

m(βn,Kn) ∼ x̄/nα/2.

If b = 0 in the definition of βn, then m(βn,Kn) ∼ x̄|β − βn|1/2.
(b) For all 0 < α < α0 = 1/2,

En,βn,Kn{|Sn/n|} ∼ x̄/nα/2 ∼ m(βn,Kn).

(c) For all α > α0 = 1/2,

En,βn,Kn{|Sn/n|} ∼ ȳ/n1/4 
 m(βn,Kn).

(d) For α = α0 = 1/2,

En,βn,Kn{|Sn/n|} ∼ z̄/n1/4 ∼ z̄ · m(βn,Kn)/x̄.

Sequence 2.
Definition of sequence 2. Given 0 < β0 < βc, α > 0, b ∈ {1,−1}, an integer

p ≥ 2 and a real number  = K(p)(β), the sequence is defined by

βn = β0 + b/nα and
(5.2)

Kn = K(β0) +
p−1∑
j=1

K(j)(β0)b
j /(j !njα) + bp/(p!npα).

This sequence converges to the second-order point (β0,K(β0)) along a curve that
coincides with the second-order curve to order p − 1 in powers of β − β0.

Hypotheses (i) and (ii) in Theorem 3.1. Hypothesis (i) states that (βn,Kn) lies
in the phase-coexistence region for all sufficiently large n. In order to guarantee
this, we assume that (K(p)(β0) − )bp < 0. This inequality is equivalent to Kn >

K(βn) for all sufficiently large n and thus guarantees that (βn,Kn) lies in the
phase-coexistence region above the second-order curve for all sufficiently large n.
Hypothesis (ii) is also satisfied.

Other hypotheses.

1. Define α0 = 1/2p and θ = p/2. As shown in Theorem 4.2 in [13], the uniform
convergence in hypothesis (iii)(a) of Theorem 3.1 is valid for all α > 0 with the
Ginzburg–Landau polynomial

g(x) = 1

p!β0
(
K(p)(β0) − 

)
bpx2 + c4(β0)x

4

where c4(β0) = (eβ0 + 2)2(4 − eβ0)/8 · 4!.
Since θα0 = 1/4, we have 0 < θα0 < 1/2, which is one of the hypotheses of
Theorems 4.1–4.3.
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2. We assume that (K(p)(β0) − )bp < 0. Then, as required by hypothesis (iii)(b)
of Theorem 3.1 and hypothesis (iii′)(b) of Theorem 4.1, the set of global mini-
mum points of g is {±x̄}, where x̄ > 0 is defined in (4.9) in [13].

3. Hypothesis (iv) of Theorem 3.1 is valid for all α > 0 with the polynomial H

given on page 115 of [13].
4. The pointwise convergence in hypothesis (v) of Theorem 4.2 holds with g̃ equal

to the highest order term in g; namely, g̃(x) = c4(β0)x
4. This is easily verified

using (4.8) in [13].

We now specialize to sequence 2 the results in Theorems 3.1, 4.1, 4.2 and 4.3
concerning the asymptotic behavior of m(βn,Kn) → 0 and the asymptotic behav-
iors En,βn,Kn{|Sn/n|} → 0 for 0 < α < α0, for α > α0 and for α = α0.

THEOREM 5.2. Let (βn,Kn) be sequence 2 that is defined in (5.2) and
converges to a second-order point (β0,K(β0)) for 0 < β0 < βc. Assume that
(K(p)(β0) − )bp < 0. The following conclusions hold:

(a) For all α > 0,

m(βn,Kn) ∼ x̄/npα/2 = x̄|β0 − βn|p/2.

(b) For all 0 < α < α0 = 1/2p,

En,βn,Kn{|Sn/n|} ∼ x̄/npα/2 ∼ m(βn,Kn).

(c) For all α > α0 = 1/2p,

En,βn,Kn{|Sn/n|} ∼ ȳ/n1/4 
 m(βn,Kn).

(d) For α = α0 = 1/2p,

En,βn,Kn{|Sn/n|} ∼ z̄/n1/4 ∼ z̄ · m(βn,Kn)/x̄.

Sequence 3.
Definition of sequence 3. This sequence is defined as in (5.1) with β replaced

by βc. Thus given α > 0, b ∈ {1,0,−1}, and k ∈ R, k = 0, the sequence is defined
by

βn = βc + b/nα and Kn = K(βc) + k/nα.(5.3)

This sequence converges to the tricritical point (βc,K(βc)) along a ray with slope
k/b if b = 0.

Hypotheses (i) and (ii) in Theorem 3.1. Hypothesis (i) states that (βn,Kn) lies in
the phase-coexistence region for all sufficiently large n. In order to guarantee this,
we assume that K ′(βc)b − k < 0. This inequality is equivalent to Kn > K(βn) for
all sufficiently large n and thus guarantees that for all sufficiently large n, (βn,Kn)

lies in the phase-coexistence region above the spinodal curve if b = 1, above the
second-order curve if b = −1 and above the tricritical point if b = 0. Hypothe-
sis (ii) is also satisfied.
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Other hypotheses.

1. Define α0 = 2/3 and θ = 1/4. As shown in Theorem 4.3 in [13], the uniform
convergence in hypothesis (iii)(a) of Theorem 3.1 is valid for all α > 0 with the
Ginzburg–Landau polynomial

g(x) = βc

(
K ′(βc)b − k

)
x2 + c6x

6 where c6 = 9/40.

Since θα0 = 1/6, we have 0 < θα0 < 1/2, which is one of the hypotheses of
Theorems 4.1–4.3.

2. We assume that K ′(βc)b − k < 0. Then, as required by hypothesis (iii)(b) of
Theorem 3.1 and hypothesis (iii′)(b) of Theorem 4.1, the set of global minimum
points of g is {±x̄}, where x̄ > 0 is defined in (4.14) in [13].

3. Hypothesis (iv) of Theorem 3.1 is valid for all α > 0 with the polynomial H

given on page 117 of [13].
4. The pointwise convergence in hypothesis (v) of Theorem 4.2 holds with g̃ equal

to the highest order term in g; namely, g̃(x) = c6x
6. This is easily verified using

(4.13) in [13].

We now specialize to sequence 3 the results in Theorems 3.1, 4.1, 4.2 and 4.3
concerning the asymptotic behavior of m(βn,Kn) → 0 and the asymptotic behav-
iors of En,βn,Kn{|Sn/n|} → 0 for 0 < α < α0, for α > α0 and for α = α0.

THEOREM 5.3. Let (βn,Kn) be sequence 3 that is defined in (5.3) and con-
verges to the tricritical point (βc,K(βc)). Assume that K ′(βc)b − k < 0. The fol-
lowing conclusions hold:

(a) For all α > 0,

m(βn,Kn) ∼ x̄/nα/4.

If b = 0 in the definition of βn, then m(βn,Kn) ∼ x̄|β − βn|1/4.
(b) For all 0 < α < α0 = 2/3,

En,βn,Kn{|Sn/n|} ∼ x̄/nα/4 ∼ m(βn,Kn).

(c) For all α > α0 = 2/3,

En,βn,Kn{|Sn/n|} ∼ ȳ/n1/6 
 m(βn,Kn).

(d) For α = α0 = 2/3,

En,βn,Kn{|Sn/n|} ∼ z̄/n1/6 ∼ z̄ · m(βn,Kn)/x̄.

Sequence 4.
Of the six sequences this sequence exhibits the most complicated behavior, the

description of which is divided into four cases (a)–(d) described in the third para-
graph below. In addition, for cases (c) and (d) the validity of hypothesis (i) of
Theorem 3.1 involves the validity of two conjectures. For cases (a), (b) and (c)
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all the other hypotheses of Theorems 3.1, 4.1, 4.2 and 4.3 are valid. However, for
case (d) hypothesis (iii′)(b) of Theorem 4.1 is not valid, and therefore that theorem
cannot be applied in that case.

Definition of sequence 4. Given α > 0, a curvature parameter  ∈ R, and another
parameter ̃ ∈ R, sequence 4 is defined by

βn = βc + 1/nα and Kn = K(βc) + K ′(βc)/n
α + /(2nα) + ̃/(6n3α).(5.4)

Since βn −βc = 1/nα the sequence converges from the right to the tricritical point
(βc,K(βc)) along the curve (β, K̃(β)), where for β > βc

K̃(β) = K(βc) + K ′(βc)(β − βc) + (β − βc)
2/2 + ̃(β − βc)

3/6.

At the tricritical point this curve is tangent to the spinodal curve, which is the
extension of the second-order curve to β > βc. As shown in [16], Theorem 3.8, the
spinodal curve lies above the first-order curve for all β > βc.

Hypotheses (i) and (ii) in Theorem 3.1. The discussion of hypothesis (i) for this
sequence involves four cases (a), (b), (c) and (d) that are presented in the next
paragraph. The validity of this hypotheses for the last two of these four cases de-
pends on the validity of conjectures 1 and 2 stated at the end of this paragraph.
These conjectures are supported by partial proofs, numerical evidence and prop-
erties of the Ginzburg–Landau polynomials and are discussed in detail in Sec-
tion 6 of [14]. The two conjectures involve the behavior, in a neighborhood of
the tricritical point, of the first-order curve defined by K1(β) for β > βc. Since
limβ→β+

c
K1(β) = K(βc) [16], Sections 3.1 and 3.3, by continuity we extend the

definition of K1(β) to βc by defining K1(βc) = K(βc). We assume that the first
three right-hand derivatives of K1(β) exist at βc and denote them by K ′

1(βc),
K ′′

1 (βc) and K ′′′
1 (βc). We also define c = K ′′(βc) − 5/(4βc). Conjectures 1 and 2

state the following: (1) K ′
1(βc) = K ′(βc), (2) K ′′

1 (βc) = c < 0 < K ′′(βc).
The choices of  and ̃ defining the four cases of sequence 4 are as follows.

Cases (a)–(c) correspond to  > c and suitable values of ̃, and case (d) corre-
sponds to  = c and suitable values of ̃.

(a)  > K ′′(βc) and any ̃ ∈ R.
(b)  = K ′′(βc) and any ̃ > K ′′′(βc).
(c) K ′′(βc) >  > c and any ̃ ∈ R.
(d)  = c and any ̃ > K ′′′

1 (βc).

For all four cases hypothesis (ii) is satisfied. For cases (a) and (b) and for all
sufficiently large n, (βn,Kn) lies in the phase-coexistence region above the spin-
odal curve, and so hypothesis (i) is satisfied. If conjectures 1 and 2 are valid, then
for cases (c) and (d) (βn,Kn) lies in the phase-coexistence region between the
spinodal and first-order curves for all sufficiently large n, and again hypothesis (i)
is valid. In the discussion of the validity of the hypotheses of Theorems 3.1 and
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4.1–4.3 for sequence 4, conjectures 1 and 2 are needed only for the last asser-
tion. For all four cases (βn,Kn) converges to the tricritical point along the curve
{(β, K̃(β)) :β > βc}, where K̃(β) is defined in the display after (5.4). If conjec-
tures 1 and 2 are valid, then for cases (a)–(c) this curve coincides with the first-
order curve to order 1 in powers of β − βc, while for case (d) this curve coincides
with the first-order curve to order 2 in powers of β − βc.

Other hypotheses.
The validity of these hypotheses for cases (c) and (d) does not depend on con-

jectures 1 and 2. A major difference between cases (a)–(c) and case (d) appears in
item 2.

1. Define α0 = 1/3 and θ = 1/2. As shown in Theorem 4.4 in [13], for all four
cases the uniform convergence in hypothesis (iii)(a) of Theorem 3.1 is valid for
all α > 0 with the Ginzburg–Landau polynomial

g(x) = 1
2βc

(
K ′′(βc) − 

)
x2 − 4c4x

4 + c6x
6

where c4 = 3/16 and c6 = 9/40.

Since θα0 = 1/6, we have 0 < θα0 < 1/2, which is one of the hypotheses of
Theorems 4.1–4.3.

2. We assume that  > c = K ′′(βc) − 5/(4βc). Then, as required by hypothe-
sis (iii)(b) of Theorem 3.1 and hypothesis (iii′)(b) of Theorem 4.1, for cases
(a)–(c) the set of global minimum points of g equals {±x̄}, where x̄ = x̄() > 0
is defined in (4.19) in [13]. If  = c, then for case (d) the set of global minimum
points of g equals {0,±x̄}, where x̄ = x̄(c) > 0 is defined in (4.19) in [13].
Hence for case (d) hypothesis (iii)(b) of Theorem 3.1 is valid, but hypothesis
(iii′)(b) of Theorem 4.1 is not valid.

3. For all four cases, hypothesis (iv) of Theorem 3.1 is valid for all α > 0 with the
polynomial H given on page 120 of [13].

4. For all four cases, the pointwise convergence in hypothesis (v) of Theorem 4.2
holds with g̃ equal to the highest order term in g; namely, g̃(x) = c6x

6. This is
easily verified using (4.16) in [13].

We now specialize to sequence 4 the results in Theorems 3.1, 4.1, 4.2 and 4.3
concerning the asymptotic behavior of m(βn,Kn) → 0 and the asymptotic behav-
iors of En,βn,Kn{|Sn/n|} → 0 for 0 < α < α0, for α > α0 and for α = α0. Parts (a),
(c) and (d) of the theorem are valid for all four cases of the sequence. However,
part (b) is valid only for cases (a), (b) and (c) because, as we point out in item 2
above, for case (d) hypothesis (iii′)(b) of Theorem 4.1 does not hold.

THEOREM 5.4. Let (βn,Kn) be sequence 4 that is defined in (5.4) and con-
verges to the tricritical point (βc,K(βc)). Assume that  and ̃ are defined as in
one of the four cases (a)–(d) and that for cases (c)–(d) conjectures 1 and 2 are
valid. The following conclusions hold:
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(a) For cases (a)–(d), for all α > 0,

m(βn,Kn) ∼ x̄/nα/2 = x̄(βn − βc)
1/2.

(b) For cases (a)–(c), for all 0 < α < α0 = 1/3,

En,βn,Kn{|Sn/n|} ∼ x̄/nα/2 ∼ m(βn,Kn).

(c) For cases (a)–(d), for all α > α0 = 1/3,

En,βn,Kn{|Sn/n|} ∼ ȳ/n1/6 
 m(βn,Kn).

(d) For cases (a)–(d), for α = α0 = 1/3,

En,βn,Kn{|Sn/n|} ∼ z̄/n1/6 ∼ z̄ · m(βn,Kn)/x̄.

Sequence 5.
Definition of sequence 5. This sequence is defined as in (5.2) with b = −1,

p = 2 and β0 replaced by βc. Thus given α > 0 and a real number  = K ′′(βc), the
sequence is defined by

βn = βc − 1/nα and Kn = K(βc) − K ′(βc)/nα + /2n2α.(5.5)

This sequence converges to the tricritical point (βc,K(βc)) from the left along a
curve that coincides with the second-order curve to order 2 in powers of β − βc.

Hypotheses (i) and (ii) in Theorem 3.1. Hypothesis (i) states that (βn,Kn) lies in
the phase-coexistence region for all sufficiently large n. In order to guarantee this,
we assume that  > K ′′(βc). This inequality is equivalent to Kn > K(βn) for all
sufficiently large n and thus guarantees that (βn,Kn) lies in the phase-coexistence
region above the second-order curve for all sufficiently large n. Hypothesis (ii) is
also satisfied.

Other hypotheses.

1. Define α0 = 1/3 and θ = 1/2. As shown in Theorem 4.5 in [13], the uniform
convergence in hypothesis (iii)(a) of Theorem 3.1 is valid for all α > 0 with the
Ginzburg–Landau polynomial

g(x) = 1
2βc

(
K ′′(βc) − 

)
x2 + 4c4x

4 + c6x
6

where c4 = 3/16 and c6 = 9/40.

Since θα0 = 1/6, we have 0 < θα0 < 1/2, which is one of the hypotheses of
Theorems 4.1–4.3.

2. We assume that  > K ′′(βc). Then, as required by hypothesis (iii)(b) of The-
orem 3.1 and hypothesis (iii′)(b) of Theorem 4.1, the set of global minimum
points of g is {±x̄}, where x̄ > 0 is defined in (4.23) in [13].

3. Hypothesis (iv) of Theorem 3.1 is valid for all α > 0 with the polynomial H

given on page 121 of [13].
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4. The pointwise convergence in hypothesis (v) of Theorem 4.2 holds with g̃ equal
to the highest order term in g; namely, g̃(x) = c6x

6. This is easily verified using
(4.21) in [13].

We now specialize to sequence 5 the results in Theorems 3.1, 4.1, 4.2 and 4.3
concerning the asymptotic behavior of m(βn,Kn) → 0 and the asymptotic behav-
iors of En,βn,Kn{|Sn/n|} → 0 for 0 < α < α0, for α > α0 and for α = α0.

THEOREM 5.5. Let (βn,Kn) be sequence 5 that is defined in (5.5) and con-
verges to the tricritical point (βc,K(βc)). Assume that  > K ′′(βc). The following
conclusions hold:

(a) For all α > 0,

m(βn,Kn) ∼ x̄/nα/2 = x̄(βc − βn)
1/2.

(b) For all 0 < α < α0 = 1/3,

En,βn,Kn{|Sn/n|} ∼ x̄/nα/2 ∼ m(βn,Kn).

(c) For all α > α0 = 1/3,

En,βn,Kn{|Sn/n|} ∼ ȳ/n1/6 
 m(βn,Kn).

(d) For α = α0 = 1/3,

En,βn,Kn{|Sn/n|} ∼ z̄/n1/6 ∼ z̄ · m(βn,Kn)/x̄.

Sequence 6.
For this sequence the hypotheses of Theorems 3.1, 4.1 and 4.3 are all valid.

However, Theorem 4.2 cannot be applied because hypothesis (v) of that theorem
is not valid.

Definition of sequence 6. This sequence is defined as in (5.2) with b = −1,
an integer p ≥ 3, and β0 replaced by βc. Thus given α > 0 and a real number
 = K(p)(βc), the sequence is defined by

βn = βc − 1/nα and
(5.6)

Kn = K(βc) +
p−1∑
j=1

K(j)(βc)(−1)j /(j !njα) + (−1)p/(p!npα).

This sequence converges to the tricritical point (βc,K(βc)) from the left along
a curve that coincides with the second-order curve to order p − 1 in powers of
β − βc.

Hypotheses (i) and (ii) in Theorem 3.1. Hypothesis (i) states that (βn,Kn) lies
in the phase-coexistence region for all sufficiently large n. In order to guarantee
this, we assume that (K(p)(βc) − )(−1)p < 0. This inequality is equivalent to
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Kn > K(βn) for all sufficiently large n and thus guarantees that (βn,Kn) lies in the
phase-coexistence region above the second-order curve for all sufficiently large n.
Hypothesis (ii) is also satisfied.

Other hypotheses.

1. Define α0 = 1/(2p − 1) and θ = (p − 1)/2. As shown in Theorem 4.6 in [13],
the uniform convergence in hypothesis (iii)(a) of Theorem 3.1 is valid for all
α > 0 with the Ginzburg–Landau polynomial

g(x) = 1

p!βc

(
K(p)(βc) − 

)
(−1)px2 + 4c4x

4 where c4 = 3/16.

Since θα0 = (p − 1)/[2(2p − 1] and p ≥ 3, we have 0 < θα0 < 1/2, which is
one of the hypotheses of Theorems 4.1–4.3.

2. We assume that (K(p)(βc) − )(−1)p < 0. Then, as required by hypothesis
(iii)(b) of Theorem 3.1 and hypothesis (iii′)(b) of Theorem 4.1, the set of global
minimum points of g is {±x̄}, where x̄ > 0 is defined in (4.25) in [13].

3. Hypothesis (iv) of Theorem 3.1 is valid for all α > 0 with the polynomial H

given on page 122 of [13].
4. The only problem arises in hypothesis (v) of Theorem 4.2, which is not valid for

all α > α0 with the values of α0 and θ in item 1. In fact, one uses equation (4.21)
in [13] to verify that with these values of α0, θ and α, nGβn,Kn(x/nθα0) → 0
for all x ∈ R. Hence with these values of α0, θ and α, Theorem 4.2 cannot be
applied.

We now specialize to sequence 6 the results in Theorems 3.1, 4.1 and 4.3 con-
cerning the asymptotic behavior of m(βn,Kn) → 0 and the asymptotic behaviors
of En,βn,Kn{|Sn/n|} → 0 for 0 < α < α0 and for α = α0.

THEOREM 5.6. Let (βn,Kn) be sequence 6 that is defined in (5.5) and con-
verges to the tricritical point (βc,K(βc)). Assume that (K(p)(β) − )(−1)p < 0.
The following conclusions hold:

(a) For all α > 0,

m(βn,Kn) ∼ x̄/n(p−1)α/2 = x̄(βc − βn)
(p−1)/2.

(b) For all 0 < α < α0 = 1/(2p − 1),

En,βn,Kn{|Sn/n|} ∼ x̄/n(p−1)α/2 ∼ m(βn,Kn).

(c) For α = α0 = 1/(2p − 1),

En,βn,Kn{|Sn/n|} ∼ z̄/n(p−1)/[2(2p−1)] ∼ z̄ · m(βn,Kn)/x̄.

The one gap in Theorem 5.6 is the failure of hypothesis (v) of Theorem 4.2 for
all α > α0. We omit the analysis that gives a variation of Theorem 4.2 describing
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a subset of α > α0 for which the asymptotics of En,βn,Kn{|Sn/n|} → 0 can be
determined.

This completes our description, in the context of the six sequences, of the
three theorems in Section 4 on how the asymptotic behaviors of the ther-
modynamic magnetization m(βn,Kn) → 0 and the finite-size magnetization
En,βn,Kn{|Sn/n|} → 0 compare for 0 < α < α0, α > α0 and α = α0. In the next
section we outline the theory of finite-size scaling, which gives insight into the
physical phenomena underlying the theorems in Section 4.

6. The theory of finite-size scaling. In Theorems 4.1 and 4.2 we compare the
asymptotic behavior of the thermodynamic magnetization m(βn,Kn) → 0 with the
asymptotic behavior of the finite-size magnetization En,βn,Kn{|Sn/n|} → 0, first
for 0 < α < α0 and then for α > α0. The results described in these two theorems
are intimately connected with the theory of finite-size scaling. This nonrigorous
but highly suggestive theory was developed in statistical mechanics in order to
understand phase transitions in finite systems. In fact, our work in this paper was
motivated by the theory of finite-size scaling and can be understood in that context.
At the same time, our results put ideas of finite-size scaling on a firm mathematical
footing for the mean-field B–C model. To the best of our knowledge, this is the
first time that the theory of finite-size scaling has been rigorously derived for a
mean-field model. After sketching the theory of finite-size scaling, we show that
its predictions are consistent with those in Theorem 5.1. That theorem specializes
Theorems 4.1 and 4.2 to sequence 1, which is defined in (5.1).

The theory of finite-size scaling is a generalization of scaling theory to apply to
finite systems [2]. Scaling theory gives a methodology for analyzing the singular-
ities of thermodynamic quantities such as the magnetization in a neighborhood of
criticality. One formulation of scaling theory emphasizes the fundamental role of
the correlation length ξ by expressing the singularities in thermodynamic quanti-
ties in terms of ξ . For example, in a neighborhood of criticality the thermodynamic
magnetization behaves like ξ−β̃/ν , where β̃ is the magnetization exponent and ν is
the correlation-length exponent [22]. The singularity in the correlation length as a
function of the distance to criticality is controlled by the exponent −ν.

The theory of finite-size scaling asserts that in a neighborhood of criticality
quantities such as the finite-size magnetization behave like functions of the linear
system size L and the ratio of the correlation length ξ to the linear system size.
When ξ/L � 1, the system is effectively infinite so that finite-size quantities are
independent of L, and the critical singularities are the same as those in the thermo-
dynamic limit. On the other hand, when ξ/L 
 1, critical fluctuations are instead
limited by the system size. In this regime, the theory of finite-size scaling asserts
that the power-law singularities as a function of ξ are replaced by power-law singu-
larities as a function of L. For example, in the case of the finite-size magnetization
the theory of finite-size scaling asserts that in a neighborhood of criticality it be-
haves like L−β̃/νf (ξ/L). The function f (x) interpolates continuously between
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the two regimes. Thus, as x = ξ/L → 0, f (x) ≈ x−β̃/ν . In this case the finite-
size magnetization behaves like L−β̃/ν(ξ/L)−β̃/ν = ξ−β̃/ν and so is independent
of L. As discussed in the preceding paragraph, the thermodynamic magnetization
also behaves like the same function ξ−β̃/ν . On the other hand, as x = ξ/L → ∞,
f (x) → 1 and the finite-size magnetization behaves like L−β̃/ν .

These ideas cannot be directly applied to the mean-field B–C model or other
mean-field spin systems since neither the system length L nor the correlation
length ξ are defined. Appropriate quantities for mean-field spin systems are N ,
the number of spins, and �, the size of the giant cluster in the Fortuin–Kasteleyn
representation [18, 19]. For such systems the mappings N = Ldc and � = ξdc

are expected to yield, in a neighborhood of criticality, correct scaling relations for
thermodynamic quantities such as the magnetization and correct finite-size scal-
ing relations for quantities such as the finite-size magnetization. In these equations
dc denotes the upper critical dimension. This is defined as the dimension above
which short-range spin systems such as the B–C model [4, 6–8] have the same
critical exponents as the associated mean-field models. Thus in the case of the
thermodynamic magnetization the scaling expression ξ−β̃/ν , which is appropri-
ate for short-range models, is replaced by �−β̃/dcν . In addition, in the case of the
finite-size magnetization, the finite-size scaling expression L−β̃/νf (ξ/L), which
is appropriate for short-range models, is replaced by N−β̃/dcνf ((�/N)1/dc ).

In order to apply the ideas of finite-size scaling to the mean-field B–C model,
we consider a sequence (βn,Kn) converging to criticality—that is, a second-order
point or the tricritical point—from the phase-coexistence region. We also identify
the number of spins N with the index n parametrizing the sequence (βn,Kn). Thus
the finite-size scaling expression for the finite-size magnetization takes the form
n−β̃/dcνf ((�/n)1/dc ). As in Section 5 of [13], we bring in the quantity μ1(βn,Kn)

representing the distance of (βn,Kn) to criticality. According to scaling theory, �

behaves like μ
−dcν
1 .

We now specialize these ideas to sequence 1. Defined in (5.1), this sequence
converges to a second-order point and μ1 ≈ n−α . Thus for this sequence the cor-
relation volume � behaves like μ

−dcν
1 = ndcαν , and so the ratio �/n appearing in

the argument of f behaves like ndcαν−1. Since for mean-field second-order points
ν = β̃ = 1/2 and dc = 4 [20], we see that � and �/n behave, respectively, like
n2α and n2α−1. The conclusion is that for sequence 1 the scaling relation for the
thermodynamic magnetization takes the form

�−β̃/dcν ≈ n−α/2,(6.1)

and the finite-size scaling expression for the finite-size magnetization takes the
form

n−β̃/dcνf
(
(�/n)1/dc

) ≈ n−1/4f
(
n(2α−1)/4)

.(6.2)
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The next step is to relate this phenomenology with the conclusions of Theo-
rem 5.1, which specializes Theorems 4.1 and 4.2 to sequence 1. The key is to recall
that f (x) ≈ x−β̃/ν = x−1 as x → 0 and f (x) → 1 as x → ∞. According to the
formula in (6.2), the theory of finite-size scaling predicts a change in behavior in
the finite-size magnetization when α = 1/2. This agrees with Theorem 5.1, which
states that for sequence 1 the threshold value α0 equals 1/2. For 0 < α < 1/2,
the ratio �/n = n2α−1 is much less than 1, and the finite-size magnetization be-
haves like n−1/4n−(2α−1)/4 = n−α/2. This behavior coincides with the behavior
of the thermodynamic magnetization given in (6.1), making this prediction of the
theory of finite-size scaling consistent with part (b) of Theorem 5.1. On the other
hand, for α > 1/2, since the ratio �/n = n2α−1 is much bigger than 1, we have
f (n(2α−1)/4) ≈ 1, and so the finite-size magnetization behaves like n−1/4. This
converges to 0 much more slowly than the thermodynamic magnetization, which
behaves like n−α/2. Again this prediction of the theory of finite-size scaling is
consistent with part (c) of Theorem 5.1.

Similar heuristic arguments based on the theory of finite-size scaling can be
applied to the other sequences discussed in Section 5. They yield the correct as-
ymptotic behaviors for the finite-size magnetization for 0 < α < α0 and α > α0,
in agreement with Theorems 5.2–5.6. However, the tricritical region presents ad-
ditional difficulties because of the cross-over from the second-order regime to the
tricritical regime. The correct treatment of these sequences in the scaling regime is
discussed in the context of scaling theory in Section 5 of [13].

This completes our discussion of the theory of finite-size scaling and its rela-
tionship with the main mathematical results given in Theorems 4.1 and 4.2 and
specialized to the six sequences in Theorems 5.1–5.6. In the next section we dis-
cuss how part (a) of Theorem 4.1 follows from the MDP in Theorem 7.1. These
two theorems describe the asymptotic behavior of suitably scaled versions of the
spin per site for small values of α.

7. Proof of part (a) of Theorem 4.1. We start by sketching how we will
prove part (a) of Theorem 4.1. When the quantity α parametrizing the sequence
(βn,Kn) satisfies 0 < α < α0, Theorem 7.1 states the MDP for Sn/n1−θα under the
hypotheses of Theorem 4.1 except for hypothesis (iii′)(b). The rate function in this
MDP is g(x)− infy∈R g(y), which under the latter hypothesis has global minimum
points at ±x̄. The MDP implies that the Pn,βn,Kn -distributions of Sn/n1−θα put an
exponentially small mass on the complement of any open set containing the global
minimum points ±x̄ of the rate function. Symmetry then yields the following weak
limit, stated in Corollary 7.3:

Pn,βn,Kn{Sn/n1−θα ∈ dx} �⇒ (1
2δx̄ + 1

2δ−x̄

)
(dx);

that is, if f is any bounded, continuous function, then

lim
n→∞

∫
�n

f (Sn/n1−θα) dPn,βn,Kn =
∫

R

f d

(
1

2
δx̄ + 1

2
δ−x̄

)
= 1

2
f (x̄) + 1

2
f (−x̄).
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In Lemma 7.4 we verify that with respect to Pn,βn,Kn , the sequence Sn/n1−θα is
uniformly integrable. The uniform integrability allows us to replace the bounded,
continuous function f in the last display by the absolute value function, yielding

lim
n→∞

∫
�n

|Sn/n1−θα|dPn,βn,Kn = lim
n→∞En,βn,Kn |Sn/n1−θα| = x̄.

This limit is the conclusion of part (a) of Theorem 4.1.
We next formulate the concept of an MDP for the mean-field B–C model. Let

(βn,Kn) be a positive sequence converging either to a second-order point or to
the tricritical point. Also let γ and u be real numbers satisfying γ ∈ (0,1/2) and
u ∈ (0,1), and let � be a continuous function on R that satisfies �(x) → ∞ as
|x| → ∞. For any subset A of R, �(A) denotes the infimum of � over A. We say
that with respect to Pn,βn,Kn , Sn/n1−γ satisfies the MDP with exponential speed
nu and rate function � if for any closed set F in R

lim sup
n→∞

1

nu
logPn,βn,Kn{Sn/n1−γ ∈ F } ≤ −�(F)(7.1)

and for any open set � in R

lim inf
n→∞

1

nu
logPn,βn,Kn{Sn/n1−γ ∈ �} ≥ −�(�).(7.2)

While an MDP is also a large deviation principle, the term MDP is often used
whenever the exponential speed an of the large deviation probabilities satisfies
an/n → 0 as n → ∞; [10], Section 3.7.

For 0 < α < α0 we now state the MDP for Sn/n1−θα with exponential speed
n1−α/α0 . The hypotheses of Theorem 4.1 are hypotheses (i) and (ii) of Theo-
rem 3.1, hypotheses (iii)(a) and (iv) of that theorem for all 0 < α < α0, hypothesis
(iii′)(b) and the inequality 0 < θα0 < 1/2. The MDP holds under the same hy-
potheses except for hypothesis (iii′)(b), which requires that the set of global min-
imum points of the Ginzburg–Landau polynomial g equals {±x̄} for some x̄ > 0.
Later in this section we will use the MDP together with this hypothesis on the
set of global minimum points of g to prove Theorem 4.1. Since 0 < α < α0 and
0 < θα0 < 1/2, the quantities appearing in the exponents of n in the MDP sat-
isfy 0 < θα < 1/2 and 0 < 1 − α/α0 < 1. The latter inequality implies that the
exponential speed satisfies n1−α/α0 → ∞ as n → ∞.

THEOREM 7.1. Let (βn,Kn) be a positive sequence parametrized by α > 0
and converging either to a second-order point (β,K(β)), 0 < β < βc, or to
the tricritical point (βc,K(βc)). We assume hypotheses (i) and (ii) of Theo-
rem 3.1, hypotheses (iii)(a) and (iv) of that theorem for all 0 < α < α0 and
the inequality 0 < θα0 < 1/2. Then for all 0 < α < α0, Sn/n1−θα satisfies the
MDP with respect to Pn,βn,Kn with exponential speed n1−α/α0 and rate function
�(x) = g(x) − infy∈R g(y).
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The MDP in Theorem 7.1 is proved exactly like the MDP in part (a) of Theo-
rem 8.1 in [9] with only changes in notation. Rather than repeat the proof, we moti-
vate the MDP via the related Laplace principle. Given γ ∈ (0,1/2) and u ∈ (0,1),
we say that with respect to Pn,βn,Kn , Sn/n1−γ satisfies the Laplace principle with
exponential speed nu and rate function � if for any bounded, continuous func-
tion ψ

lim
n→∞

1

nu
log

∫
�n

exp[nuψ(Sn/n1−γ )]dPn,βn,Kn = sup
x∈R

{ψ(x) − �(x)}.

By Theorem 1.2.3 in [11], if Sn/n1−γ satisfies the Laplace principle with expo-
nential speed nu and rate function �, then Sn/n1−γ satisfies the MDP with the
same exponential speed and the same rate function.

Under the hypotheses of Theorem 7.1 we now motivate the Laplace principle
for Sn/n1−θα with exponential speed n1−α/α0 and thus the MDP stated in that
theorem. The main ideas are only sketched because full details of the proof of
an analogous Laplace principle are given in the proof of Theorem 8.1 in [9]. Fix
u ∈ (0,1). If bn and cn are two positive sequences, then we write bn � cn if

lim
n→∞

1

nu
logbn = lim

n→∞
1

nu
log cn.

We need the following lemma. It can be proved like Lemma 3.3 in [15], which
applies to the Curie–Weiss model, or like Lemma 3.2 in [17], which applies to the
Curie–Weiss–Potts model. In an equivalent form, the next lemma is well known
in the literature as the Hubbard–Stratonovich transformation, where it is invoked
to analyze models with quadratic Hamiltonians (see, e.g., [1], page 2363). The
following lemma is also used in the proof of Theorem 4.2 in the next section.

LEMMA 7.2. Given a positive sequence (βn,Kn), let Wn be a sequence of
normal random variables with mean 0 and variance (2βnKn)

−1 defined on a prob-
ability space (�, F ,Q). Then for any γ̄ ∈ [0,1) and any bounded, continuous
function f ,∫

�n×�
f (Sn/n1−γ̄ + Wn/n1/2−γ̄ ) d(Pn,βn,Kn × Q)

(7.3)

= 1∫
R

exp[−nGβn,Kn(x/nγ̄ )]dx
·
∫

R

f (x) exp[−nGβn,Kn(x/nγ̄ )]dx.

Let ψ be any bounded, continuous function. We start our motivation of the
proof of the Laplace principle for Sn/n1−θα with exponential speed n1−α/α0 by
substituting γ̄ = θα and f = exp(n1−α/α0ψ) into (7.3), obtaining∫

�n×�
exp[nuψ(Sn/n

1−γ + Wn/n
1/2−γ )]d(Pn,βn,Kn × Q)

(7.4)

= 1

Zn,γ

·
∫

R

exp[nu{ψ(x) − n1−uGβn,Kn(x/nγ )}]dx.
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In order to simplify the notation, we have written γ in place of θα and u in place
of 1 − α/α0. In the last display Zn,γ is the normalization equal to

Zn,γ =
∫

R

exp[−nGβn,Kn(x/nγ )]dx.(7.5)

Let us suppose that the limit of n−u times the logarithm of the right-hand side
of (7.4) exists. We then claim that since 0 < α < α0, the term Wn/n

1/2−γ does
not contribute to the asymptotic behavior of the left-hand side of (7.4). From this
claim it follows that if the limit of n−u times the logarithm of the right-hand side
exists, then ∫

�n
exp[nuψ(Sn/n

1−γ )]dPn,βn,Kn

(7.6)

� 1

Zn,γ

·
∫

R

exp[nu{ψ(x) − n1−uGβn,Kn(x/nγ )}]dx.

As on page 543 of [9], we justify the claim by showing that Wn/n
1/2−γ is

superexponentially small relative to nu [11], Theorem 1.3.3. This holds provided
1 − 2γ = 1 − 2θα > u = 1 − α/α0, which is valid since 0 < θα0 < 1/2. This
completes our justification of the claim.

We continue our motivation of the Laplace principle for Sn/n1−γ . The uniform
convergence of n1−uGβn,Kn(x/nγ ) to g(x) in hypothesis (iii)(a) of Theorem 3.1
suggests that∫

�n
exp[nuψ(Sn/n

1−γ )]dPn,βn,Kn

� 1

Zn,γ

·
∫

R

exp[nu{ψ(x) − n1−uGβn,Kn(x/nγ )}]dx(7.7)

� 1∫
R

exp[−nug(x)}]dx
·
∫

R

exp[nu{ψ(x) − g(x)}]dx.

The proof of this asymptotic relationship is based on hypothesis (iii)(a) of Theo-
rem 3.1 for 0 < α < α0, which states that n1−uGβn,Kn(x/nγ ) = nα/α0Gβn,Kn(x/

nθα) converges to g(x) uniformly on compact sets, and on several other steps,
which depend in part on the lower bound in hypothesis (iv) of Theorem 3.1 for
0 < α < α0.

We define ḡ = infy∈R g(y). According to Laplace’s method, the asymptotic be-
havior of the integrals in the last line of (7.7) is governed by the maximum values
of the respective integrands. Hence∫

R

exp[nu{ψ(x) − n1−uGβn,Kn(x/nγ )}]dx

�
∫

R

exp[nu{ψ(x) − g(x)}]dx(7.8)

� exp
[
nu · sup

x∈R

{ψ(x) − g(x)}
]
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and

Zn,γ =
∫

R

exp[nu{−n1−uGβn,Kn(x/nγ )}]dx

�
∫

R

exp[−nug(x)]dx(7.9)

� exp
[
−nu · inf

y∈R
g(y)

]
= exp[−nuḡ].

Combining these two asymptotic relationships gives∫
�n

exp[nuψ(Sn/n1−γ )]dPn,βn,Kn

� 1

Zn,γ

∫
R

exp[nu{ψ(x) − n1−uGβn,Kn(x/nγ )}]dx

� exp
[
nu · sup

x∈R

{
ψ(x) − (

g(x) − ḡ
)}]

.

These calculations complete the motivation that Sn/n1−γ = Sn/n1−θα satisfies the
Laplace principle and thus the MDP with exponential speed nu = n1−α/α0 and rate
function �(x) = g(x) − ḡ.

The hypotheses of the MDP in Theorem 7.1 are the hypotheses of Theorem 4.1
except for hypothesis (iii′)(b). We now bring in that hypothesis, which states that
the set of global minimum points of the Ginzburg–Landau polynomial equals {±x̄}
for some x̄ > 0. In conjunction with the MDP we use this hypothesis to prove
part (a) of Theorem 4.1. The next step in that proof is contained in the follow-
ing corollary, which states that the sequence of Pn,βn,Kn -distributions of Sn/n1−θα

converges weakly to a symmetric sum of point masses at x̄ and −x̄. This is al-
most immediate because up to an additive constant the rate function in the MDP
equals g, and so the Pn,βn,Kn -distributions of Sn/n1−θα put an exponentially small
mass on the complement of any open set containing the global minimum points
±x̄ of the rate function.

We saw in the last section that the hypotheses of Theorem 4.1 are valid for all
six sequences defined in equations (5.1)–(5.6) except for case (d) of sequence 4,
which is defined for  = c and suitable values of ̃. As noted in the discussion
leading up to Theorem 5.4, when  = c, the set of global minimum points of g

equals {0,±x̄} for some x̄ > 0. We are currently investigating the form of the weak
limit replacing (7.10) in the next corollary when the set of global minimum points
of g has this form. The conjecture is that in this case there exists 0 < λ < 1/2 such
that

Pn,βn,Kn{Sn/n1−θα ∈ dx} �⇒ (
(1 − 2λ)δ0 + λδx̄ + λδ−x̄

)
(dx).

By the uniform integrability proved in Lemma 7.4, this weak limit, if true, would
imply that

lim
n→∞En,βn,Kn{|Sn/n1−θα|} = 2λx̄.
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COROLLARY 7.3. Let (βn,Kn) be a positive sequence parametrized by α > 0
and converging either to a second-order point (β,K(β)), 0 < β < βc, or to the
tricritical point (βc,K(βc)). We assume the hypotheses of Theorem 4.1. Then for
all 0 < α < α0 we have the weak limit

Pn,βn,Kn{Sn/n1−θα ∈ dx} �⇒ (1
2δx̄ + 1

2δ−x̄

)
(dx),(7.10)

where {±x̄} is the set of global minimum points of g as specified in hypothesis
(iii′)(b) of Theorem 4.1.

PROOF. We write γ for θα and u for 1−α/α0. Since 0 < α < α0, we have 0 <

u < 1, and so nu → ∞ as n → ∞. Let ε > 0 be given. There exists M > 0 such
that the rate function �(x) = g(x) − infy∈R g(y) in the MDP in Theorem 7.1 is
an increasing function on the interval [M,∞) and �(M) > 0. Hence the moderate
deviation upper bound and symmetry imply that

Pn,βn,Kn{|Sn/n1−γ | ≥ M} ≤ exp[−nu�(M)/2].
It follows that for all sufficiently large n, Pn,βn,Kn{Sn/n1−γ /∈ [−2M,2M]} ≤ ε.
Thus the distributions Pn,βn,Kn{Sn/n1−γ ∈ dx} are tight, and any subsequence has
a weakly convergent subsubsequence [21], Theorem 1, Section III.2. We now ap-
ply the moderate deviation upper bound to any closed set F in R not containing
the global minimum points ±x̄ of �. Since �(F) > 0, we have for all sufficiently
large n

Pn,βn,Kn{Sn/n1−γ ∈ F } ≤ exp[−nu�(F )/2] → 0.

Thus by symmetry, any subsequence of Pn,βn,Kn{Sn/n1−γ ∈ dx} has a subsub-
sequence converging weakly to (1

2δx̄ + 1
2δ−x̄ )(dx). This yields the weak limit in

(7.10). �

We are now ready to prove part (a) of Theorem 4.1. If the sequence Sn/n1−θα

is uniformly integrable [3], Theorem 5.4, then by integrating both sides of (7.10)
with respect to the absolute value function, we obtain for all 0 < α < α0

lim
n→∞En,βn,Kn{|Sn/n1−θα|} = x̄.

This assertion is part (a) of Theorem 4.1. The required uniform integrability is
proved in the next lemma from the MDP in Theorem 7.1.

LEMMA 7.4. The random variables Sn/n1−θα in Corollary 7.3 are uniformly
integrable with respect to Pn,βn,Kn ; that is,

lim
M→∞ sup

n∈N

En,βn,Kn

{|Sn/n1−θα| · 1{|Sn/n1−θα |≥M}
} = 0.
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PROOF. We write γ for θα and u for 1 − α/α0. � denotes the rate function
g− infy∈R g(y) in the MDP in Theorem 7.1. Since 0 < α < α0, we have 0 < u < 1,
and so nu → ∞ as n → ∞. Let ε > 0 be given. Since g is a polynomial and
g(x) → ∞ as |x| → ∞, ∃M0 ∈ (0,∞) such that

inf|x|≥M0
�(x) ≥ g(M0)/2 > 0 and exp

[
−1

8
g(M0)

]
≤ ε.

The MDP in Theorem 7.1 implies that for all M ≥ M0 there exists N0 ∈ N depend-
ing only on M0 such that for all n ≥ N0

Pn,βn,Kn{|Sn/n1−γ | ≥ M} ≤ Pn,βn,Kn{|Sn/n1−γ | ≥ M0}

≤ exp
[
−1

2
nu inf{|x|≥M0}

�(x)

]
.

Since |Sn| ≤ n, it follows that for all M ≥ M0 and for all n ≥ N0

En,βn,Kn

{|Sn/n1−γ | · 1{|Sn/n1−γ |≥M}
}

≤ En,βn,Kn

{|Sn/n1−γ | · 1{|Sn/n1−γ |≥M0}
}

≤ nγ · exp
[
−1

2
nu inf|x|≥M0

�(x)

]

≤ nγ · exp
[
−1

4
nug(M0)

]
.

There exists N1 ≥ N0 such that for all n ≥ N1, nγ · exp[−1
8nug(M0)] ≤ 1. Hence

for all M ≥ M0 and for all n ≥ N1,

En,βn,Kn

{|Sn/n1−γ | · 1{|Sn/n1−γ |≥M}
} ≤ exp

[−1
8nug(M0)

] ≤ exp
[−1

8g(M0)
] ≤ ε,

which implies that for all M ≥ M0

sup
n≥N1

En,βn,Kn

{|Sn/n1−γ | · 1{|Sn/n1−γ |≥M}
} ≤ ε.

In addition,

max
1≤n<N1

En,βn,Kn

{|Sn/n1−γ | · 1{|Sn/n1−γ |≥M}
}

≤ N
γ
1 · max

1≤n<N1
Pn,βn,Kn{|Sn/n1−γ | ≥ M} → 0 as M → ∞.

The last two displays complete the proof of the desired uniform integrability. The
proof of part (a) of Theorem 4.1 is complete. �

In the next section we prove part (a) of Theorem 4.2. This theorem gives the
asymptotics of En,βn,Kn{|Sn/n1−θα0 |} when the quantity α parametrizing the se-
quence (βn,Kn) exceeds α0.
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8. Proof of part (a) of Theorem 4.2. Under the assumption that the quantity
α parametrizing the sequence (βn,Kn) exceeds α0, part (a) of Theorem 4.2 states
that

lim
n→∞nθα0En,βn,Kn{|Sn/n|}

= lim
n→∞En,βn,Kn{|Sn/n1−θα0 |}

= ȳ = 1∫
R

exp[−g̃(x)]dx
·
∫

R

|x| exp[−g̃(x)]dx.

Let �n and � denote the probability measures on R defined by

�n(dx) = 1∫
R

exp[−nGβn,Kn(x/nθα0)]dx
· exp[−nGβn,Kn(x/nθα0)]dx(8.1)

and

�(x) = 1∫
R

exp[−g̃(x)]dx
· exp[−g̃(x)]dx.(8.2)

The quantity ȳ can be written in terms of � as
∫
R

|x|d�. Part (a) of Theorem 4.2
is proved in two steps, the weak-convergence limit in step 1 and the uniform-
integrability-type limit in Proposition 8.3 that yields step 2.

Step 1. Prove that the sequence �n and the sequence of Pn,βn,Kn -distributions
of Sn/n1−θα0 both converge weakly to �; that is, for any bounded, continuous
function f ,

lim
n→∞

∫
R

f d�n =
∫

R

f d�

and

lim
n→∞En,βn,Kn{f (Sn/n1−θα0)} = lim

n→∞

∫
R

f (Sn/n1−θα0) dPn,βn,Kn

=
∫

R

f d�.

Step 2. Prove

lim
n→∞En,βn,Kn{|Sn/n1−θα0 |} = lim

n→∞

∫
R

|Sn/n1−θα0 |dPn,βn,Kn

= lim
n→∞

∫
R

|x|d�n = ȳ(8.3)

=
∫

R

|x|d�.

The key is to approximate the unbounded function |x| by the sequence of bounded,
continuous functions fj (x) = min{|x|, j}. The limits in the last display are a con-
sequence of the limits in step 1 and the uniform-integrability-type limit in Propo-
sition 8.3.
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The proof of the weak-convergence limit in step 1 is given in the next theorem.

THEOREM 8.1. We assume the hypotheses of Theorem 4.2. Then for all α >

α0 the following conclusions hold:
(a) The sequence �n defined in (8.1) converges weakly to the probability mea-

sure � defined in (8.2).
(b) The Pn,βn,Kn -distributions of Sn/n1−θα0 converges weakly to �.

The proof of this theorem relies on the following technical lemma, which is
proved in part (c) of Lemma 4.4 in [9].

LEMMA 8.2. Let (βn,Kn) be a positive sequence parametrized by α > 0 and
converging either to a second-order point (β,K(β)), 0 < β < βc, or to the tricriti-
cal point (β,K(β)) = (βc,K(βc)). Assume that there exists γ̄ > 0 and R̄ > 0 such
that the sequence

ξn =
∫
{|x|<R̄nγ̄ }

exp[−nGβn,Kn(x/nγ̄ )]dx

is bounded. Then there exist constants c1 > 0 and c2 > 0 such that for all suffi-
ciently large n∫

{|x|≥R̄nγ̄ }
exp[−nGβn,Kn(x/nγ̄ )]dx ≤ c1 exp[−c2n] → 0.

We now prove Theorem 8.1.

PROOF OF THEOREM 8.1. We write γ0 for θα0. The proof follows the same
pattern as the proof of Theorem 6.1 in [9]. The starting point is Lemma 7.2 with
γ̄ = γ0 = θα0. That lemma states that for any bounded, continuous function f∫

�n×�
f (Sn/n1−γ0 + Wn/n1/2−γ0) d(Pn,βn,Kn × Q)

= 1∫
R

exp[−nGβn,Kn(x/nγ0)]dx
(8.4)

×
∫

R

f (x) exp[−nGβn,Kn(x/nγ0)]dx,

where Wn is a sequence of normal random variables with mean 0 and variance
(2βnKn)

−1. Suppose that the limit of the right-hand side of (8.4) equals
∫
R

f d�.
Since by hypothesis 0 < γ0 = θα0 < 1/2, rewriting the limit of the left-hand side
of (8.4) in terms of characteristic functions shows that the term Wn/n1/2−γ0 does
not contribute to this limit. It follows that if the limit of the right-hand side of (8.4)
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equals
∫
R

f d�, then

lim
n→∞

∫
�n

f (Sn/n1−γ0) dPn,βn,Kn

= lim
n→∞

1∫
R

exp[−nGβn,Kn(x/nγ0)]dx
(8.5)

×
∫

R

f (x) exp[−nGβn,Kn(x/nγ0)]dx

= lim
n→∞

∫
R

f d�n =
∫

R

f d�.

In order to calculate the limit of the sequence
∫
R

f d�n, we appeal to the point-
wise convergence of nGβn,Kn(x/nγ0) to g̃(x) in hypotheses (v) of Theorem 4.2
and the lower bound in hypotheses (iv) of Theorem 3.1 for α = α0. This states
that there exists a polynomial H satisfying H(x) → ∞ as |x| → ∞ together with
the following property: ∃R > 0 such that ∀n ∈ N sufficiently large and ∀x ∈ R

satisfying |x/nγ0 | < R, nGβn,Kn(x/nγ0) ≥ H(x). We then use the integrability of
exp[−H ] and the dominated convergence theorem to write

lim
n→∞

∫
{|x|<Rnγ0 }

f (x) exp[−nGβn,Kn(x/nγ0)]dx

(8.6)
=

∫
R

f (x) exp[−g̃(x)]dx.

In order to handle the integrals over the complementary sets {|x| ≥ Rnγ0}, we
appeal to Lemma 8.2, for which we must verify the hypothesis. Setting f ≡ 1
in (8.6), we see that

lim
n→∞

∫
{|x|<Rnγ0 }

exp[−nGβn,Kn(x/nγ0)]dx =
∫

R

exp[−g̃(x)]dx

and thus that the sequence
∫
{|x|<Rnγ0 } exp[−nGβn,Kn(x/nγ0)]dx is bounded.

Lemma 8.2 with γ̄ = γ0 and R̄ = R implies that

lim
n→∞

∫
{|x|≥Rnγ0 }

exp[−nGβn,Kn(x/nγ0)]dx = 0.

It follows that

lim
n→∞

∫
R

f (x) exp[−nGβn,Kn(x/nγ0)]dx =
∫

R

f (x) exp[−g̃(x)]dx(8.7)

and

lim
n→∞

∫
R

exp[−nGβn,Kn(x/nγ0)]dx =
∫

R

exp[−g̃(x)]dx.(8.8)
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Substituting into (8.5) the limits in the last two displays yields the weak conver-
gence asserted in parts (a) and (b) of Theorem 8.1:

lim
n→∞

∫
R

f (Sn/n1−γ0) dPn,βn,Kn

= lim
n→∞

1∫
R

exp[−nGβn,Kn(x/nγ0)]dx
·
∫

R

f (x) exp[−nGβn,Kn(x/nγ0)]dx

= lim
n→∞

∫
R

f d�n = 1∫
R

exp[−g̃(x)]dx
·
∫

R

f (x) exp[−g̃(x)]dx =
∫

R

f d�.

The proof of the theorem is complete. �

We now turn to the proof of the limit in (8.3) in step 2, writing γ0 for θα0. The
proof depends on an appropriate asymptotic formula for En,βn,Kn{|Sn/n1−γ0 |},
which we derive from Lemma 7.2. In that lemma let γ̄ = γ0, let the bounded, con-
tinuous function f equal fj (x) = min{|x|, j}, and send j → ∞. The monotone
convergence theorem implies that∫

�n×�
|Sn/n

1−γ0 + Wn/n
1/2−γ0 |d(Pn,βn,Kn × Q)

= 1∫
R

exp[−nGβn,Kn(x/nγ0)]dx
·
∫

R

|x| exp[−nGβn,Kn(x/nγ0)]dx(8.9)

=
∫

R

|x|d�n.

In this formula Wn is a sequence of normal random variables with mean 0 and
variance (2βnKn)

−1 defined on a probability space (�, F ,Q), and �n is the prob-
ability measure defined in (8.1).

We write Ẽn,βn,Kn to denote expectation with respect to the product measure
Pn,βn,Kn ×Q. Since (βn,Kn) → (β,K(β)), there exists a positive constant c such
that for all n ∈ N,

Ẽn,βn,Kn{|Wn/n1/2−γ0 |} ≤ c/n1/2−γ0 .

Thus

Ẽn,βn,Kn{|Sn/n1−γ0 + Wn/n1/2−γ0 |} + c/n1/2−γ0

≥ En{|Sn/n1−γ0 |} ≥ Ẽn,βn,Kn{|Sn/n1−γ0 + Wn/n1/2−γ0 |} − c/n1/2−γ0 .

Suppose that we could prove

lim
n→∞

∫
R

|x|d�n = ȳ =
∫

R

|x|d�.
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Since 0 < γ0 = θα0 < 1/2, we would then obtain from (8.9) the desired limit

lim
n→∞En,βn,Kn{|Sn/n1−γ0 |}

= lim
n→∞ Ẽn,βn,Kn{|Sn/n1−γ0 + Wn/n1/2−γ0 |}(8.10)

= lim
n→∞

∫
R

|x|d�n = ȳ =
∫

R

|x|d�.

We complete the proof of part (a) of Theorem 4.2 by showing the limit in the
last line of (8.10). Part (a) of Theorem 8.1 shows that the sequence �n converges
weakly to �. According to a standard result, the limit in the last line of (8.10)
would follow immediately from the weak convergence of �n to � if we could
prove that �n satisfies the following uniform-integrability estimate:

lim
j→∞ sup

n∈N

∫
{|x|>j}

|x|d�n = 0.

The next proposition shows that the limit in the last line of (8.10) is a consequence
of a condition that is weaker than uniform integrability.

PROPOSITION 8.3. Let �̃n be a sequence of probability measures on R that
converges weakly to a probability measure �̃ on R. Assume in addition that∫
R

|x|d�̃ < ∞ and that

lim
j→∞ lim sup

n→∞

∫
{|x|>j}

|x|d�̃n = 0.(8.11)

It then follows that

lim
n→∞

∫
R

|x|d�̃n =
∫

R

|x|d�̃.

PROOF. For j ∈ N, fj denotes the bounded, continuous function that equals
|x| for |x| ≤ j and equals j for |x| > j . Then∣∣∣∣

∫
R

|x|d�̃n −
∫

R

|x|d�̃

∣∣∣∣
≤

∫
R

∣∣|x| − fj

∣∣d�̃n +
∣∣∣∣
∫

R

fj d�̃n −
∫

R

fj d�̃

∣∣∣∣ +
∫

R

∣∣|x| − fj

∣∣d�̃

≤ 2
∫
{|x|>j}

|x|d�̃n +
∣∣∣∣
∫

R

fj d�̃n −
∫

R

fj d�̃

∣∣∣∣ + 2
∫
{|x|>j}

|x|d�̃.

Since �̃n ⇒ �̃, we have
∫
R

fj d�̃n → ∫
R

fj d�̃, and therefore

lim sup
n→∞

∣∣∣∣
∫

R

|x|d�̃n −
∫

R

|x|d�̃

∣∣∣∣
≤ 2 lim sup

n→∞

∫
{|x|>j}

|x|d�̃n + 2
∫
{|x|>j}

|x|d�̃.
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By the assumptions on �̃n and �̃, both terms on the right-hand side of this in-
equality converge to 0 as j → ∞. This completes the proof. �

In order to justify the limit in the last line of (8.10), we must verify the hy-
potheses of Proposition 8.3 for the measures �n and � defined in (8.1) and (8.2).
Clearly the measure � defined in (8.2) satisfies

∫
R

|x|d� < ∞. We now verify
the condition in (8.11) for the measures �n defined in (8.1). For any j ∈ N and
all sufficiently large n we will find quantities Aj , Bn and Cn with the following
properties: ∫

{|x|>j}
|x|d�n ≤ Aj + Bn + Cn,

Aj → 0 as j → ∞, Bn → 0 as n → ∞ and Cn → 0 as n → ∞. It follows from
these properties that

lim
j→∞ lim sup

n→∞

∫
{|x|>j}

|x|d�n ≤ lim
j→∞Aj + lim

n→∞Bn + lim
n→∞Cn = 0.(8.12)

This yields the limit in (8.11), proving step 2 and thus completing the proof of
part (a) of Theorem 4.2.

We now specify the quantities Aj , Bn, and Cn having the properties in the pre-
ceding paragraph. Given positive integers j and n, let R and c be positive num-
bers that satisfy c > R and that will be specified below. We then partition the set
{|x| > j} into the following three subsets:

{|x| > j} = [{|x| > j} ∩ {|x/nγ0 | < R}]
∪ [{|x| > j} ∩ {R ≤ |x/nγ0 | < c}] ∪ [{|x| > j} ∩ {|x/nγ0 | ≥ c}].

Since for all n

{|x| > j} ⊂ [{|x| > j} ∩ {|x/nγ0 | < R}] ∪ {R ≤ |x/nγ0 | < c} ∪ {|x/nγ0 | ≥ c},
it follows that for all n∫

{|x|>j}
|x|d�n ≤

∫
{|x|>j}∩{|x/nγ0 |<R}

|x|d�n +
∫
{R≤|x/nγ0 |<c}

|x|d�n

(8.13)
+

∫
{|x/nγ0 |≥c}

|x|d�n.

We next estimate each of these three integrals. The convergence proved in (8.8)
implies that the sequence 1/Zn is positive and bounded. By hypothesis (iv) of
Theorem 3.1 for α = α0 there exists R > 0 such that for all sufficiently large n ∈ N

and all x ∈ R satisfying |x/nγ0 | < R

nGβn,Kn(x/nγ0) ≥ H(x),
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where H is a polynomial satisfying H(x) → ∞ as |x| → ∞. Since exp[−H(x)] is
integrable, for all sufficiently large n we estimate the first integral on the right-hand
side of (8.13) by∫

{|x|>j}∩{|x/nγ0 |<R}
|x|d�n

(8.14)
≤ Aj = const ·

∫
{|x|>j}

|x| exp[−H(x)]dx → 0 as j → ∞.

By part (a) of Lemma 4.4 in [9], there exists c > 0 and D > 0 such that
Gβn,Kn(x) ≥ Dx2 for all |x| ≥ c; thus for all n ∈ N and all x ∈ R satisfying
|x/nγ0 | ≥ c,

nGβn,Kn(x/nγ0) ≥ nD(x/nγ0)2 = n1−2γ0Dx2.

Without loss of generality c can be chosen to be larger than the quantity R specified
in the preceding paragraph. Since the sequence 1/Zn is bounded, we estimate the
third integral on the right-hand side of (8.13) by∫

{|x/nγ0 |≥c}
|x|d�n

≤ Cn = 1

Zn

·
∫
{|x/nγ0 |≥c}

|x| exp[−n1−2γ0Dx2]dx(8.15)

≤ const · n2γ0−1 · exp[−nc2D] → 0 as n → ∞.

With these choices of R and c we estimate the middle integral on the right-hand
side of (8.13) by∫

{R≤|x/nγ0 |<c}
|x|d�n

≤ Bn = cnγ0 · �n{|x/nγ0 | ≥ R}
= cnγ0 · 1

Zn

·
∫
{|x/nγ0 |≥R}

exp[−nGβn,Kn(x/nγ0)]dx.

Since the sequence 1/Zn is bounded, the display after (8.6) and Lemma 8.2 with
R̄ = R and γ̄ = γ0 imply the existence of constants c1 > 0 and c2 > 0 such that∫

{R≤|x/nγ0 |<c}
|x|d�n ≤ Bn ≤ cnγ0 · const · c1 exp[−c2n] → 0

(8.16)
as n → ∞.

Together, equations (8.14), (8.16) and (8.15) prove (8.12), which completes the
proof of part (a) of Theorem 4.2. �
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