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LAMPERTI-TYPE LAWS

BY LANCELOT F. JAMES1

Hong Kong University of Science and Technology

This paper explores various distributional aspects of random variables
defined as the ratio of two independent positive random variables where one
variable has an α-stable law, for 0 < α < 1, and the other variable has the law
defined by polynomially tilting the density of an α-stable random variable by
a factor θ > −α. When θ = 0, these variables equate with the ratio investi-
gated by Lamperti [Trans. Amer. Math. Soc. 88 (1958) 380–387] which, re-
markably, was shown to have a simple density. This variable arises in a variety
of areas and gains importance from a close connection to the stable laws. This
rationale, and connection to the PD(α, θ) distribution, motivates the investi-
gations of its generalizations which we refer to as Lamperti-type laws. We
identify and exploit links to random variables that commonly appear in a va-
riety of applications. Namely Linnik, generalized Pareto and z-distributions.
In each case we obtain new results that are of potential interest. As some
highlights, we then use these results to (i) obtain integral representations and
other identities for a class of generalized Mittag–Leffler functions, (ii) iden-
tify explicitly the Lévy density of the semigroup of stable continuous state
branching processes (CSBP) and hence corresponding limiting distributions
derived in Slack and in Zolotarev [Z. Wahrsch. Verw. Gebiete 9 (1968) 139–
145, Teor. Veroyatn. Primen. 2 (1957) 256–266], which are related to the
recent work by Berestycki, Berestycki and Schweinsberg, and Bertoin and
LeGall [Ann. Inst. H. Poincaré Probab. Statist. 44 (2008) 214–238, Illinois J.
Math. 50 (2006) 147–181] on beta coalescents. (iii) We obtain explicit results
for the occupation time of generalized Bessel bridges and some interesting
stochastic equations for PD(α, θ)-bridges. In particular we obtain the best
known results for the density of the time spent positive of a Bessel bridge of
dimension 2 − 2α.

1. Introduction. Let Sα , for 0 < α < 1 denote a positive stable random vari-
able, with density fα , and having Laplace transform,

E[e−λSα ] = e−λα

.

Additionally, for θ > −α define variables Sα,θ independent of Sα whose laws
follow a polynomially tilted stable distribution having density proportional to
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t−θfα(t). When θ = 0, Sα,0 := S′
α

d= Sα . In this case Lamperti [62] (see also
Zolotarev [94] and Chaumont and Yor [20]) showed that, despite the general in-
tractability of fα , the ratio

Xα
d= Sα

S′
α

has a remarkably simple density given as

fXα(y) = sin(πα)

π

yα−1

y2α + 2yα cos(πα) + 1
for y > 0.(1.1)

This variable arises in many important and often seemingly unrelated contexts.
For instance, [13, 17, 25, 26, 67, 68, 73]. Inspired by these facts and connections
to the (α, θ) Poisson Dirichlet family of distributions discussed in Pitman and Yor
[80] leads us to investigate properties of variables defined as

Xα,θ
d= Sα

Sα,θ

.

We refer to these variables as being Lamperti variables or variables having
Lamperti-type laws. Our purpose, from a broad perspective, is to demonstrate that
these variables have strong connections to more familiar random variables that ap-
pear in a variety of applications in probability, statistics and related fields. In other
words, the Lamperti variables, albeit often hidden, appear in many important con-
texts. Furthermore, we show how to utilize these links to both deduce properties of
Xα,θ , and develop new nontrivial results related to the linked variables. These re-
sults can also be potentially used to expand modeling capabilities. Our results are
suggestive of an active beta–gamma-stable calculus that extends the notion often
associated with beta and gamma variables via Lukacs’ [66] characterization.

1.1. Outline. We now present an outline of this paper highlighting specifics.
More detailed references can be found in each section. Each section contains new
results of a nontrivial nature that in some cases are generalizations of existing
results. In addition, combined, they represent a nice partial survey of linked vari-
ables. Section 2 consists of essentially two parts. The first develops a series of
pertinent distributional results for Xα,θ and for a broader class defined by mul-
tiplying the Lamperti variables by beta variables. One shall notice the class of

random variables we denote as X
(σ)
α,1

d= βσ,1−σXα,σ plays a major role through-
out the sections. This multiplication is based on ideas we developed in [41]. The
second constitutes a natural progression of ideas, each section building on the pre-
vious one. Specifically, Section 2.3 establishes links with positive Linnik vari-
ables. In particular, we obtain expressions for the density of Linnik variables and
also establish an interesting gamma identity. Section 2.4, exploits this identity in
connection with generalized Pareto distributions. Albeit brief, the main result is
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used to identify an unknown limiting distribution obtained by Zolotarev [95] and
Slack [85] which we discuss in Section 4. Section 2.4 uses the characterization in
the previous sections to demonstrate how one can develop a calculus involving z-
distributions. In particular, we identify new classes of random variables, arising as
solutions to stochastic equations involving z-distributions, having both hyperbolic
characteristic functions and variables whose density can be computed explicitly.
Section 3 obtains results for a generalization of Mittag–Leffler functions that can
be expressed as Laplace transforms of S−α

α,θ or Xα,θ and can be represented in terms
of densities of Linnik variables. Section 4 solves a fairly hard problem, identifying
the explicit Lévy density of the semigroup of stable continuous state branching
processes. Results in Sections 5 and 6, with the exception of α = 1/2, present the
best known results for occupation times of various quantities including times spent
positive on certain random subsets. We also develop a series of interesting stochas-
tic equations. As one highlight we obtain results for the otherwise elusive case of
Bessel bridges of dimension 2 − 2α. Section 7 discusses aspects of Brownian time
changed models where we close by exploiting an interesting, yet not well known,
representation of symmetric stable variables of index 0 < 2α ≤ 1, found in [24].

1.2. Some notation and background. Here we briefly recount some notation
and background related to Bessel processes and the Poisson Dirichlet family of
laws. See Pitman [76, 77] for a more precise exposition. Let B := (Bt , t > 0) de-
note a strong Markov process on R whose normalized ranked lengths of excur-
sions, (Pi) ∈ P = {s = (s1, s2, . . .) : s1 ≥ s2 ≥ · · · ≥ 0 and

∑∞
i=1 si = 1}, follow a

Poisson Dirichlet law with parameters (α,0) for 0 < α < 1, as discussed in Pitman
and Yor [80]. Denote this law as PD(α,0). Let (Lt ; t > 0) denote its local time
starting at 0, and let τ	 = inf{t :Lt > 	}, 	 ≥ 0 denote its inverse local time. In this

case τ is an α-stable subordinator where we choose τ1
d= Sα . There is the scaling

identity (see [79]),

L1
d= Lt

tα
d= s

τα
s

d= S−α
α ,

where the local time up to time 1, L1, satisfies

L1 := 
(1 − α)−1 lim
ε→0

εα|{i :Pi ≥ ε}| a.s.,(1.2)

and is said to follow a Mittag–Leffler distribution. This shows that (Lt , τt ) have
distributions determined by PD(α,0). Furthermore, independent of (Pi), we sup-
pose that for a fixed 0 < p < 1, B is symmetrized so that P(Bt > 0) = p. Under
these specifications B could be a p-skewed Bessel process of dimension 2 − 2α.
In particular when p = 1/2, α = 1/2 then B behaves like a Brownian motion. An
interesting aspect of B is the time its spends on certain subsets of R. Let

A+
t =

∫ t

0
I(Bs>0) ds and A−

t =
∫ t

0
I(Bs<0) ds,
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such that t = A+
t + A−

t , denote the time B spends positive and negative, respec-
tively, up till time t . Remarkably, by excursion theory, the time changed-processes
(A+

τ	
;	 > 0) and (A−

τ	
;	 > 0) are independent α-stable subordinators such that

A+
τ1

d= p1/αSα and A−
τ1

d= (1 − p)1/αS′
α , for S′

α
d= Sα . This leads to

Xα
d= A+

τ	

A−
τ	

d= c
Sα

S′
α

and
cXα

cXα + 1
d= A+

τ	

τ	

d= A+
1 .(1.3)

Hereafter, denote the law that governs B and related functionals under the above
specifications as P

(p)
α,0. Denote the corresponding expectation operator as E

(p)
α,0.

Thus writing P
(p)
α,0(A

+
1 ∈ dx)/dx equates with the density of the time spent positive

on [0,1] of a p-skewed Bessel process. As noticed by Barlow, Pitman and Yor [3]
and Pitman and Yor [79], this law was originally obtained by Lamperti [62], and
from (1.3) it equates with

P
(p)
α,0(A

+
1 ∈ dx)/dx = P

(
cXα/(cXα + 1) ∈ dx

)
/dx.

Now for θ > −α let P
(p)
α,θ and E

(p)
α,θ denote the law and expectation operator of func-

tionals connected to a p-skewed process whose excursion lengths follow PD(α, θ).
In particular if (Pi) is distributed according to PD(α, θ), then it satisfies, for mea-
surable H ,

E
(p)
α,θ [H((Pi))] = 
(θ + 1)


(θ/α + 1)
E

(p)
α,0[H((Pi))τ

−θ
1 ].

When θ = α, this corresponds to the case of a Bessel bridge of dimension 2 − 2α.
We use the notation A

(br)
1 for the variable that satisfies

P
(p)
α,θ

(
A

(br)
1 ∈ dx

) = P
(p)
α,θ+α(A+

1 ∈ dx).

Note also that under P
(p)
α,θ , L1

d= S−α
α,θ , which is also equivalent in distribution to the

α-diversity of a PD(α, θ) law.
Let now U1,U2, . . . , denote a sequence of i.i.d. uniform [0,1] random variables

for (Pi) distributed according to PD(α, θ), and 0 ≤ u ≤ 1, the class of PD(α, θ)

random cumulative distribution functions are defined as

Pα,θ (u)
d=

∞∑
k=1

PkI(Uk≤u).

Furthermore under P
(u)
α,θ ,

A+
1

d= Pα,θ (u)

for a fixed u. See Bertoin [8] for applications to coagulation/fragmentation phe-
nomena where it is called a PD(α, θ)-bridge and Ishwaran and James [40] (see
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also Pitman [74]) for applications to Bayesian statistics where in particular Pα,θ

is referred to as a Pitman–Yor process. Under this name the process has also been
applied to problems arising in natural language processing (see Teh [87]). When
θ > 0 and α = 0 P0,θ is a Dirichlet process which has, since the seminal work of
Ferguson [32], played a fundamental role in Bayesian nonparametric statistics and
related areas.

REMARK 1.1. The Pα,θ processes can be defined more generally by replacing
(Uk) with i.i.d. random variables (Rk) having common distribution FR .

REMARK 1.2. For basic notation, we write γa and βa,b to denote a gamma
random variable with shape a and scale 1, and a beta random variable with para-
meters (a, b). If a > 0, and b = 0, then we use βa,0 := limb→0 βa,b = 1. Addition-
ally ξσ denotes a Bernoulli variable with success parameter 0 < σ ≤ 1. If X and
Y are random variables we will assume that XY is a product of independent ran-

dom variables unless otherwise specified, if we write X,X′ this will mean X
d= X′

but they are not equal. Last we always consider cα = p/q = p/(1 − p) where
q = 1 − p unless otherwise specified.

2. Distributional results for Xα,θ . In this section we shall derive various
distributional properties of Xα,θ . For τ > 0 and 0 < σ ≤ 1, we will sometimes
work with the parametrization τσ , to accommodate values such as τσ = θ > 0
and τσ = θ + α. First, we briefly discuss some pertinent properties of random
variables referred to as Dirichlet means and the related class of infinitely divisible
random variables whose distributions are generalized gamma convolutions (GGC),
as they will play a significant role in our exposition. For more details and related
notions, one may consult [16, 21–23, 30, 43, 44, 64] and, in particular for this
exposition, [41].

For a generic positive random variable M , let

Cτσ (λ;M) = E[(1 + λM)−τσ ] = E[e−λγτσ M ]
denote its Cauchy–Stieltjes transform of order τσ . Similar to Laplace transforms,
Cτσ (λ;M) uniquely characterizes the law of M . Let R denote a nonnegative ran-
dom variable with distribution function FR . A random variable M , depending on
parameters (τσ,R), is said to be a Dirichlet mean of order τσ if

− log Cτσ (λ;M) = τσE[log(1 + λR)] := τσψR(λ) < ∞.(2.1)

Equivalently M satisfies the stochastic equation

M
d= βτσ,1M + (1 − βτσ,1)R.

We denote such variables as M
d= Mτσ (FR).
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Importantly, Cifarelli and Regazzini [22] (see also [23]), apply an inversion for-
mula to obtain an expression for the distribution of Mτσ (FR). In general these are
expressed in terms of Abel-type transforms. An exception is the case of τσ = 1,
where the density of M1(FR) can be expressed as

1

π
sin(πFR(x))e−�R(x),(2.2)

where �R(x) = E[log|x − R|I(R �=x)]. Additionally,

τσψR(λ) = τσ

∫ ∞
0

(1 − esλ)s−1
E[e−s/R]ds

is also the Lévy exponent of an infinitely divisible random variable with Lévy
density τσs−1

E[e−s/R]. We say that such a random variable is GGC(τσ,R) and
may be represented in distribution as a gamma scale mixture

γτσMτσ (FR) = γτβτσ,τ(1−σ)Mτσ (FR).(2.3)

Highly relevant to (2.3), and our exposition, is a result by James [41], that for each
0 < σ ≤ 1,

βτσ,τ(1−σ)Mτσ (FR) = Mτ(FRξσ ),(2.4)

where ξσ is a Bernoulli variable with success probability σ . Note also that
βτσ,τ(1−σ)

d= Mτ(Fξσ ). One consequence is that a GGC(τσ,R) variable is also
a GGC(τ,Rξσ ) variable. In other words, for a fixed θ > 0, a GGC(θ,R) variable
is a GGC(θ ′,Rξθ/θ ′) variable for all θ ′ > θ . As pointed out in [41], one significant
point about these multiple representations is that if 0 < θ = σ ≤ 1, then one can set
θ ′ = 1 and use the explicit density formula for Dirichlet means of order 1, (2.2),
established by Cifarelli and Regazzini [22] to obtain an explicit representation of
the density of such a GGC(σ,R) variable. See [41] for its precise form and further
details.

REMARK 2.1. Letting F−1
R denote a quantile function, variables Mτσ (FR)

are called Dirichlet means since they can always be represented as

Mτσ (FR)
d=

∫ 1

0
F−1

R (u)P0,τσ (du)
d=

∫ ∞
0

yDτσ (dy),

where Dτσ (y)
d= ∑∞

k=1 PkI(Rk≤y) is a Dirichlet process with (Pk) ∼ PD(0, τσ )

and where (Rk) are i.i.d. FR .

2.1. Identities. For the case of Xα,θ , one can show that for θ > 0,

Cθ (λ;Xα,θ ) = (1 + λα)−θ/α = E[e−λγθXα,θ ],(2.5)

and for θ > −α,

C1+θ (λ;Xα,θ ) = E[e−λγθ+1Xα,θ ] = (1 + λα)−(θ+α)/α = Cθ+α(λ;Xα,θ+α).(2.6)
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We will use (2.5) and (2.6) to more easily establish the next series of results. How-
ever, we note that the expressions in (2.5) and (2.6) are not obvious. We will pro-
vide justification for (2.5) when we discuss Linnik variables in the next section.
Assuming that (2.5) is true, (2.6) then follows from an identity due to Perman,
Pitman and Yor [72],

1

Sα,θ

d= βθ+α,1−α

Sα,θ+α

(2.7)

for θ > −α. (2.7) is another highly relevant component to our exposition and

shows that Xα,θ
d= βθ+α,1−αXα,θ+α .

PROPOSITION 2.1. The random variables Xα,θ are Dirichlet means having
the following properties: for θ > 0,

Xα,θ
d= βθ,1Xα,θ + (1 − βθ,1)Xα

d= Mθ(FXα),(2.8)

and for θ > −α and σ = (θ + α)/(1 + θ),

Xα,θ
d= βθ+α,1−αXα,θ+α

d= β
1/α
((θ+α)/α,(1−α)/α)Xα,1+θ = M1+θ (FXαξσ )(2.9)

with Xα,θ
d= β1+θ,1Xα,θ + (1 − β1+θ,1)Xαξσ . As special cases of (2.9):

(i) Xα,1
d= β1+α,1−αXα,1+α;

(ii) Xα,1−α
d= β1,1−αXα,1

d= β
1/α
(1/α,(1−α)/α)Xα,2−α;

(iii) Xα
d= βα,1−αXα,α

d= β
1/α
(1,(1−α)/α)Xα,1 = M1(FXαξα ) which yields the iden-

tity,

Xα
d= UXα + (1 − U)X′

αξα

for X′
α

d= Xα .

PROOF. In order to establish (2.8), we will calculate the Cauchy–Stieltjes
transform of order θ + 1 of the variables appearing on the two sides of the first
equality. This entails multiplication by an independent γθ+1 variable. Hence (2.8)
is true if

γθ+1Xα,θ
d= γθXα,θ + γ1Xα.

Applications of (2.5) and (2.6) show that, C1+θ (λ;Xα,θ ) = Cθ (λ;Xα,θ )C1(λ;Xα),
concluding the result. We will use similar arguments elsewhere but will omit such
details. For (2.9), we again calculate C1+θ (λ;Xα,θ ). The first equality is easily
checked. For the second we use

C1+θ

(
λ;β1/α

((θ+α)/α,(1−α)/α)Xα,1+θ

) = C(1+θ)/α

(
λα,β((θ+α)/α,(1−α)/α)

)
.(2.10)
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In order to establish the equivalence to M1+θ (FXαξσ ), first note that (2.8) estab-
lishes Xα,θ+α

d= Mθ+α(FXα). The result is then concluded by an application of
(2.4) for τ = 1 + θ , σ = (θ + α)/(1 + θ), and R = Xα . �

The next result establishes results for the larger class of variables defined with
(2.3) and (2.4) in mind, as

X(σ)
α,τ

d= βτσ,τ(1−σ)Xα,τσ .

Equation (2.9) of Proposition 2.1 is an important special case.

PROPOSITION 2.2. For τ > 0 and 0 < σ ≤ 1, the random variables X
(σ)
α,τ

d=
βτσ,τ(1−σ)Xα,τσ satisfy

X(σ)
α,τ

d= βτσ,τ(1−σ)Xα,τσ
d= β

1/α
(τσ/α,(τ (1−σ))/α)Xα,τ

d= Mτ(FXαξσ ).

Which leads to the identity

βτσ,τ(1−σ)

Sα,τσ

d= β
1/α
(τσ/α,(τ (1−σ))/α)

Sα,τ

.(2.11)

PROOF. The result is easily checked by following arguments similar to
those used to establish (2.9). Hence we just note that one uses the calculation,
Cτ (λ;X(σ)

α,τ ) = Cτσ (λ;Xα,τσ ), in place of (2.10). The equality (2.11) follows im-
mediately since stable random variables Sα are simplifiable (see [20], pages 11
and 12). �

Note that Propositions 2.1 and 2.2 show that

− log Cθ (λ;Xα,θ ) = θ

α
log(1 + λα) = θE[log(1 + λXα)].

2.2. Densities and explicit mixture representations. We first describe some
more pertinent features of Xα (see also [13, 41, 44]).

PROPOSITION 2.3. Let Xα
d= Sα/S′

α , having density (1.1). Then:

(i) the cdf of Xα can be represented explicitly as

FXα(x) = 1 − 1

πα
cot−1

(
cot(πα) + xα

sin(πα)

)
;(2.12)

(ii) its inverse is given by

F−1
Xα

(y) =
[

sin(πα(y))

sin(πα(1 − y))

]1/α

;(2.13)
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(iii) equations (2.12) and (2.13) yield the identity

sin(παFXα(y)) = yα sin
(
πα

(
1 − FXα(y)

))
(2.14)

= yα sin(πα)

[y2α + 2yα cos(πα) + 1]1/2 ;

(iv) additionally,

cos(παFXα(y)) = yα cos(πα) + 1

[y2α + 2yα cos(πα) + 1]1/2 .

PROOF. This derivation of the cdf is influenced by arguments in Fujita and
Yor [34] where it becomes clear that it is easier to work with the density of (Xα)α .
Specifically the density of (Xα)α is given by

sin(πα)

πα

1

y2 + 2y cos(πα) + 1
for y > 0.

It it then easy to obtain the form of the cdf of (Xα)α by direct integration. Now
using the fact that this equates with FXα(y

1/α) yields statement (i). Statement (ii)
then follows by using properties of the inverse cotangent. In order to establish (iii),
use (2.13) which yields the identity

y = F−1
Xα

(FXα(y)) =
[

sin(πα(FXα(y)))

sin(πα(1 − FXα(y)))

]1/α

.(2.15)

Hence statement (ii) follows. �

We now focus on obtaining explicit distributional formulae for the pertinent
random variables based on their representations as Dirichlet means. In relation to
this, Proposition 2.3 gives precise details on the pertinent cdf FXα ; it then remains
to obtain a nice expression for the quantity

�α(x) := �Xα(x) = E[log|x − Xα|]
for x > 0. The key to calculating �α(x) is the fact that we showed that Xα is a
mean functional of the type M1(FξαXα), as described in Proposition 2.1. This sets
up an equivalence between the form of the density of Xα obtained by Lamperti
[62] and that of M1(FξαXα), obtained from (2.2). Hence we have the following
calculation:

PROPOSITION 2.4. For 0 < α < 1, and x > 0,

�α(x) = 1

2α
log

(
x2α + 2xα cos(απ) + 1

)
.
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PROOF. Since Xα
d= M1(FXαξα ), it follows by using (2.2) that the density of

Xα satisfies the equivalence

fXα(x) = 1

π
sin

(
πα[1 − FXα(x)])e−α�α(x)xα−1.

Where on the left-hand side we use the expression in (1.1). Now applying the
identity in (2.14) shows that

fXα(x) = 1

π

xα−1 sin(πα)

[x2α + 2xα cos(πα) + 1]1/2 e−α�α(x).

Solving this expression for �α(x) concludes the result. �

Set

ρα,τ (x
α) = τ

α
arctan

(
sin(πα)

cos(πα) + xα

)
= πτ [1 − FXα(x)](2.16)

and define the function

�α,τ (x) = xτ−1

π

sin(ρα,τ (x
α))

[x2α + 2xα cos(απ) + 1]τ/(2α)
.(2.17)

We next obtain density formula for a key class of random variables that includes
the case of Xα , and Xα,1.

PROPOSITION 2.5. For 0 < σ ≤ 1, and x > 0, the densities of the random
variables

X
(σ)
α,1

d= βσ,1−σXα,σ
d= [

β(σ/α,(1−σ)/α)

]1/α
Xα,1

with Xα
d= X

(α)
α,1 and Xα,1

d= X
(1)
α,1, can be expressed as �α,σ (x), given in (2.17).

Furthermore,

(i) X
(σ)
α,1

d= F−1
Xα

(Uα,σ ) where Uα,σ
d= FXα

α
([X(σ)

α,1]α) has density

[
sin(πα)

sin(παu)

](α−σ)/α sin(πσ(1 − u))

sin(πα(1 − u))
, 0 < u < 1.

(ii) If 0 < σ ≤ α, then X
(σ)
α,1

d= [β(σ/α,(α−σ)/α)]1/αXα .

PROOF. The representations of X
(σ)
α,1 is just a special case of Proposition 2.2.

The density is calculated based on Proposition 2.4 and the results discussed in [41]
and [22], as mentioned previously. Statement (i) takes advantage of the properties
of FXα and is otherwise straightforward to obtain. Statement (ii) is just a manipu-
lation of the beta random variables. �
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One important aspect of the previous result is that we can use it to obtain den-
sity/mixture representations for the following Lamperti random variables. This is
facilitated by identity (2.9).

PROPOSITION 2.6. Suppose that 0 ≤ θ ≤ 1−α, then α ≤ σ ∗ = θ +α ≤ 1 and
there is the distributional identity

Xα,θ
d= βθ+α,1−αXα,θ+α

d= β1,θX
(σ ∗)
α,1 .

In particular, Xα,1−α
d= β1,1−αXα,1.

(i) Hence for 0 < θ ≤ 1 − α, the density of Xα,θ can be written as

fXα,θ (x) = θ

∫ 1

0

�α,σ ∗(x/u)

u(1 − u)1−θ
du, x > 0,(2.18)

where �α,σ ∗(x) ≥ 0 is the density of X
(σ ∗)
α,1 . When θ = 0, the density is �α,α(x)

equating with (1.1).

(ii) As a special case, when α ≤ 1/2, Xα,α
d= B1,αX

(2α)
α,1 , where X

(2α)
α,1 has den-

sity

sin(πα)

π

2αx2α−1[cos(πα) + xα]
[x2α + 2xα cos(απ) + 1]2 .(2.19)

PROOF. The result follows from Propositions 2.2 and 2.5 by writing

Xα,θ
d= βθ+α,1−αXα,θ+α

d= β1,θβθ+α,1−(θ+α)Xα,θ+α.

The simplification in (2.19) follows from

sin
(
2πα[1 − FXα(x)]) = sin(2πα) + 2xα sin(πα)

1 + 2xα cos(πα) + x2α
. �

The previous results allow one to obtain simple mixture representations or den-
sities for Xα,θ in the range 0 ≤ θ ≤ 1 − α, and θ = 1. The fact that we obtain such
results for a continuous range of θ is significant, as shown in the next result.

PROPOSITION 2.7. Set θ = ∑k
j=1 θj where θj > 0. Furthermore, let (D1, . . . ,

Dk) denote a Dirichlet random vector having density proportional to
∏k

i=1 x
θi

i .

That is each Di
d= βθi,θ−θi

. Then,

Xα,θ
d=

k∑
j=1

DjXα,θj
,

where Xα,θj
are mutually independent and independent of (D1, . . . ,Dk). When θj

are chosen such that 0 < θj ≤ 1 − α, each Xα,θj
has an explicit density fXα,θj

described in (2.18). When θ = k, one can use θj = 1.
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PROOF. Since we have shown that Xα,θ
d= Mθ(FXα), this result follows di-

rectly as a special case of Hjort and Ongaro ([37], Proposition 9). �

2.3. Positive Linnik variables. For θ > 0,

χα,θ
d= γ

1/α
θ/α Sα(2.20)

denotes the class of generalized Linnik variables as considered in [16, 26, 39, 46,
65, 73]. The results in the previous section depend on the validity of the transforms
in (2.5) and (2.6). It is evident, and known, that (1 + λα)−θ/α appearing in (2.5)
is the Laplace transform of χα,θ for θ > 0. Hence (2.5) is verified if one shows

that χα,θ
d= γθXα,θ , for θ > 0. It is already known, using a result of Devroye [25]

combined with (2.7), that

χα,α
d= γ

1/α
1 Sα = γ1Xα

d= γαXα,α.(2.21)

Furthermore, from Bondesson ([16], page 38), it follows that χα,θ are GGC(θ ,
FXα). In the next result we will verify the usage of (2.5), and use the X

(σ)
α,1 to

obtain explicit density representations. In this regard, it is is important to note that
we do not need explicit results for Xα,θ to get corresponding results for χα,θ . In
addition we obtain some interesting identities.

PROPOSITION 2.8. For all θ > 0, χα,θ is a GGC(θ,FXα) variable that satis-
fies

χα,θ
d= γθXα,θ .

For 0 < θ = σ ≤ 1, χα,σ
d= γ1X

(σ)
α,1 and hence has the density

fχα,σ (x) =
∫ ∞

0
ex/yy−1�α,σ (y) dy.(2.22)

See also (2.25) for θ > 0. Additionally:

(i) For θ > −α,

χα,θ+α
d= γθ+αXα,θ+α

d= γ1+θXα,θ .(2.23)

(ii) Hence, for θ > −α,

γ
1/α
(θ+α)/α = γθ+α

Sα,θ+α

d= γ1+θ

Sα,θ

.(2.24)

(iii) For −α < θ ≤ k, k = 0,1,2, . . . ,

χα,θ+α = γk+1Xα,kβ
1/α
((θ+α)/α,(k−θ)/α).

(iv) For θ = ∑k
i=1 θi > 0, χα,θ

d= ∑k
i=1 χα,θi

, where χα,θi
are independent.
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PROOF. From (2.20) and using the identity

e−xα/sα = E[e−x/sSα ],
it is easy to see that the density can be expressed as

fχα,θ (x) ∝ xθ−1
∫ ∞

0
e−xα/sα

s−θfα(s) ds

∝ xθ−1
∫ ∞

0

∫ ∞
0

e−xv/s(v/s)θv−θfα(v)fα(s) dv ds

yielding the equivalence with γθXα,θ . The expression in (2.22) is due to Propo-
sition 2.5. Statement (i) follows from (2.7). Statement (ii) follows by removing
Sα which is justified since it is a simplifiable variable. For (iii), apply Proposi-
tion 2.2(iv) follows from infinite divisibility. �

REMARK 2.2. It is not difficult to show that a general expression for the den-
sity of χα,θ , for all θ > 0, is obtained by replacing �α,σ by �α,θ as follows:

fχα,θ (z) = 1

π

∫ ∞
0

e−zx sin(πθFXα(x)) dx

[x2α + 2xα cos(απ) + 1]θ/(2α)
.(2.25)

However, �α,θ can take negative values when θ > 1, so this does not in general
yield a mixture representation for χα,θ . Nonetheless, it may not be difficult to
evaluate numerically which is relevant for the Mittag–Leffler functions discussed
in Section 3.

REMARK 2.3. The gamma identity in statement (2.24) of the previous propo-
sition is quite remarkable, and, as we shall see below, has some interesting impli-
cations. We note that although not obvious, our result coincides with a variation
of Bertoin and Yor ([11], Lemma 6). Checking moments one can see that, in their

notation, Js,s/α
d= S−α

α,s for s > 0 and for θ > −α, J
(α)
1+θ,(θ+/α)/α

d= S−α
α,θ . Our work

provides some additional interpretation of their variables (see also [45]). See Kot-
larski [56] for a general characterization of cases where products of variables result
in gamma variables.

2.4. Generalized Pareto laws. Influenced in part by the gamma identity (2.24),
we next look at relationships between the Lamperti laws and a class of generalized
Pareto distributions. We note that the next result also plays an important role in
Section 4 when discussing continuous state branching processes. Define random
variables

W
1/α
α,θ :=

(
Uα/θ

1 − Uα/θ

)1/α

.
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These represent a sub-class of generalized Pareto distributions with cdf and density
given as

F
W

1/α
α,θ

(y) = yθ

(1 + yα)θ/α
; f

W
1/α
α,θ

(y) = θyθ−1

(1 + yα)(θ+α)/α
.

PROPOSITION 2.9. Let U denote a Uniform [0,1] random variable, then for
θ > 0:

(i) There is the identity

W
1/α
α,θ :=

(
Uα/θ

1 − Uα/θ

)1/α
d=

(
γθ/α

γ1

)1/α
d= χα,θ

γ1

d= γθ

γ1
Xα,θ .

(ii) For 0 < σ ≤ 1, the random variable �α,σ
d= γ1/X

(σ)
α,1 has Laplace trans-

form

E[e−λ�α,σ ] = 1 − λσ (1 + λα)
−σ/α

.(2.26)

PROOF. Statement (i) is an application of (2.24). For statement (ii) notice that

P

(
γ1

�α,σ

> λ

)
= E[e−λ�α,σ ],

but this is the survival function of the random variable
γ ′

1

γ1
X

(σ)
α,1

d= γσ

Sα,σ

Sα

γ1

d= W 1/α
α,σ . �

REMARK 2.4. As we shall discuss in Section 4, Statement (ii), (2.26) serves
to identify explicitly the (unknown) limiting distribution obtained by [95] and [85]
corresponding to σ = 1. It is relevant also to note that the density of W

1/α
α,1 is the

only case that corresponds to a Laplace transform. So here we see a distinguishing
feature of Xα,1.

2.5. z-variables and hyperbolic laws. Proposition 2.9, along with the works of
[14, 38, 82, 93], motivate us to consider several questions related to z-distributions
which are distributed as the logarithm of of the ratio of independent gamma vari-
ables. We also believe that some of the variables we discuss will be of interest in
terms of applications along the lines discussed in [4] and [38]. In fact, [38] sug-
gests the use of a class of variables that turn out to be equivalent in distribution to
log(Xα). Naturally we do this in the spirit of highlighting what one can do with
Lamperti laws. We also obtain additional information about these variables.

In particular, for illustration, we consider the following generic type of prob-
lem. Suppose for generic variables X,Y,Z with Z and Y independent there is the
following relation:

X
d= Y + Z.
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One natural question is to ask, given explicit information about X and Y , what
Z satisfies the above equation? In addition, does Z have an explicit density or
mixture representation? Notice also that if the characteristic function of Z is not
known then we can use X and Y to obtain this. We will consider Z that are variants
of Lamperti laws.

We first give a brief discussion on z-distributions. Following [93], the class of
z-distributions are defined as π−1 log(γθ1/γθ2), having characteristic function

E
[
eiλ/π log(γθ1/γθ2 )] = 
(θ1 + iλ/π)
(θ2 − iλ/π)


(θ1)
(θ2)
.

As special cases, the variables, for 0 < σ < 1, Mσ
d= π−1 log(γσ /γ1−σ ), have

Meixner distributions with characteristic function

E[e−iλMσ ] = cos(εσ )

cosh(λ − iεσ )
,(2.27)

where εσ = π(σ −1/2). Note that a Meixner distributed random variable is usually

defined as (1/2)Mσ . S1
d= π−1 log(U/(1 − U)) has a logistic distribution with the

characteristic function

E[eiλS1] = λ

sinh(λ)

and C1
d= π−1 log(γ ′

1/2/γ1/2) has the hyperbolic distribution with characteristic
function

E[eiλC1] = 1

cosh(λ)
.

It is known that the variables S1 and C1 satisfy

C1
d= S1 + T1,(2.28)

where T1 is an independent variable having characteristic function

E[eiλT1] = tanh(λ)

λ
.

Biane and Yor [15] showed that the density of T1 is

fT1(x) = 1

π
log

(
coth

(
4

π
|x|

))
, −∞ < x < ∞.

REMARK 2.5. Note that the characteristic function of απ−1 log(Xα) is equiv-
alent to

E
[
eiαλ/π log(Xα)] = sinh(αλ)

α sinh(λ)
.
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This expression can be found in Chaumont and Yor ([20], page 147). In addition
we see that this characteristic function agrees with the class of generalized secant
hyperbolic distributions discussed, for instance, in [38]. See also [78] for more on
the variables C1,T1 and S1.

In the next result we obtain a description of the characteristic function of
log(Xα,θ ) and log(X

(σ)
α,1).

PROPOSITION 2.10. From Proposition 2.9, it follows that:

(i) For θ > 0,

1

α
log

(
γθ/α

γ1

)
d= log

(
γθ

γ1

)
+ log(Xα,θ ).

(ii) For θ > −α

E
[
eiλπ−1 log(Xα,θ )] = 
((θ + α)/α + iλ/(απ))
(1 − iλ/(απ))
(1 + θ)


(1 + θ + iλ/π)
(1 − iλ/π)
((θ + α)/α)
.

(iii) For 0 < σ ≤ 1,

1

α
log

(
γσ/α

γ1

)
d= log

(
γ ′

1

γ1

)
+ log

(
X

(σ)
α,1

)
,

where log(X
(σ)
α,1) has density

1

π

sin(ρα,σ (ezα))

[e−2zα + 2e−zα cos(απ) + 1]σ/(2α)
, −∞ < z < ∞,

and characteristic function

E
[
e
iλ log(X

(σ)
α,1)] = sinh(λπ)

λπ


(σ/α + iλ/α)
(1 − iλ/α)


(σ/α)
.

PROOF. This follows as a simple consequence of our previous results and the
characteristic functions of z-distributions. �

The next result identifies some variables that have characteristic functions based
on hyperbolic functions and also have explicit densities. Define

Hα,σ
d= X

(ασ)
α,1

β
1/α
1−σ,σ

d= β
1/α
σ,1−σ

β
1/α
1−σ,σ

Xα,

where the equality follows from (2.11). In addition for αδ ≤ θ ≤ α(1 − δ), for
δ ≤ 1/2, define

L
(δ)
α,θ

d=
(

β(δ,(θ−αδ)/α)

β((1−α(1−δ))/α,(α(1−δ)−θ)/α)

)1/α Sα,1−θ

Sα,θ

,
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where one can easily check that the density of Sα,1−θ /Sα,θ , denoted as f1−θ,θ ,
satisfies

f1−θ,θ (x) = cα,θx
−(1−θ)fXα,1(x) = cα,θx

−(1−θ)�α,1(x)

for

cα,θ = 
(1/α + 1)
(θ + 1)
(2 − θ)


(θ/α + 1)
((1 − θ)/α + 1)
.

PROPOSITION 2.11. For 0 < σ < 1, δ ≤ 1/2 and αδ ≤ θ ≤ α(1 − δ), there
are the following relationships:

(i) 1
α

log (
γσ

γ1−σ
)

d= log(
γ ′

1
γ1

) + log(Hα,σ ). Hence,

E
[
eiαλ/π log(Hα,σ )] = cos(εσ ) sinh(λα)

λα cosh(λ − iεσ )
= sinh(αλ)

α sinh(λ)

cos(εσ ) sinh(λ)

λ cosh(λ − iεσ )
,

where εσ = π(σ − 1/2).

(ii) 1
α

log (
γδ

γ1−δ
)

d= log(
γθ

γ1−θ
) + log(L

(δ)
α,θ ). With

E
[
eiαλ/π log(L

(δ)
α,θ )] = cos(εδ) cosh(λα − iεθ )

cos(εθ ) cosh(λ − iεδ)
.

(iii) When δ = 1/2, then θ = α/2, and L
(1/2)
α,α/2

d= Sα,1−α/2/Sα,α/2 where

log(L
(1/2)
α,α/2), has density

cα,α/2

π

ezα/2 sin(ρα,1(e
zα))

[e2zα + 2ezα cos(απ) + 1]1/(2α)
, −∞ < z < ∞,

and characteristic function

E
[
e
iλ/π log(L

(1/2)
α,α/2)

] = cosh(λ − iεα/2)

cos(εα/2) cosh(λ/α)
.

PROOF. All the characteristic functions follow from that of S1 and the
Meixner distributions (2.27). In order to establish (i) we use the identity γ1/Sα =
γ

1/α
1 and apply this to the second definition of Hα,σ . Statement (ii) follows from

a manipulation of (2.24) to force the form of the first two variables. The choice of
1 − θ and θ in the definition of L

(δ)
α,θ was deliberately made so that we could get an

explicit expression of the density of the relevant ratios of stable variables. �

3. Mittag–Leffler functions. In this section we obtain integral representa-
tions and other identities for a generalization of the Mittag–Leffler function given
by

E(θ/α+1)
α,1+θ (−λ) =

∞∑
k=0

(−λ)k

k!
(θ/α + 1)k


(αk + θ + 1)
for θ > −α,(3.1)
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where

(θ/α + 1)k = 
(θ/α + 1 + k)


(θ/α + 1)
.

So when θ = 0, one recovers the Mittag–Leffler function as

Eα,1(−λ) = E(1)
α,1(−λ) = E(0)

α,0(−λ).

Note that using simple cancelations involving gamma functions it is easy to
show that for θ > 0,

E(θ/α+1)
α,1+θ (−z) = 
(θ)


(1 + θ)
E(θ/α)

α,θ (−z).(3.2)

Recall that the Mittag–Leffler function can be expressed as the Laplace trans-
form of S−α

α . One can show that by taking a Taylor expansion and calculating
moments that, for θ > −α,

E[e−z/Sα
α,θ ] = E[e−z1/αXα,θ ] = 
(1 + θ)E(θ/α+1)

α,1+θ (−z).(3.3)

One consequence of this observation is that one can use a Monte Carlo method
based on Sα,θ to evaluate this quantity. The next result develops more connections
with Xα,θ and χα,θ .

PROPOSITION 3.1. For θ > −α:

(i) f1/Xα,θ (x) = x−θfXα,θ (x);
(ii) fγ1/Xα,θ (x) = 
(θ + 1)x−θfχα,θ+α (x);

(iii) for θ > 0,

P

(
γ1

Xα,θ

> x

)
= E[e−xXα,θ ] = 
(θ)E(θ/α)

α,θ (−xα) = 
(θ)x1−θfχα,θ (x).

Hence if θ = σ then these expressions are explicitly determined by (2.22), other-
wise one might use (2.25).

(iv) Applying Proposition 2.7, it follows that for
∑k

i=1 θi = θ , where θi > 0,

E(θ/α)
α,θ (−z) =

∫
Sk

k∏
i=1

E(θi/α)
α,θi

(−zxα
i )x

θi−1
i dxi,

where Sk = {(x1, . . . , xk) : 0 <
∑k

i=1 xi ≤ 1}.

The result is fairly straightforward using the basic definitions as ratios of stable
variables and the identities in Proposition 2.5. We omit the details.

REMARK 3.1. Recall that for α = 1/2, X1/2,θ
d= γθ+1/2/γ1/2. Using the nota-

tion in Pitman [76], equations (88), (98) and Lemma 15, and noting [76], equation
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(104), the conditional moments of the meander length (1 − G1), of Brownian mo-
tion on [0,1] conditioned on its local time L1 is related to the generalized Mittag–
Leffler function as follows:

E1/2,0
[
(1 − G1)

θ+1/2|L1 = √
2λ

] = E[e−(λ2/2)X1/2,θ ]
= E[|B1|θ+1/2]h−(2θ+1)(λ)

= 
(1 + θ)E(2θ+1)
1/2,θ+1

(
− λ√

2

)

= μ(θ + 1/2‖λ), for θ > −1/2,

which corresponds to the moments of the structural distribution of the Brownian
excursion partition. h−2q(λ) is a Hermite function, here q = θ + 1/2.

REMARK 3.2. Equation (3.1) is a special case of the function introduced by
Prabhakar [84],

Eγ
ρ,μ(−λ) =

∞∑
k=0

(−λ)k

k!
(γ )k


(ρk + μ)
,(3.4)

where (ρ,μ,γ ∈ C,Re(ρ) > 0). Equation (3.1) is the case where γ = (θ + α)/α

and μ = θ + 1. Additionally, quantity (3.1) represents a special sub-class of yet
more general Mittag–Leffler-type functions which are discussed, for instance, in
Kilbas, Saigo and Megumi [51]. See also [2, 5, 7, 19, 28, 36, 53, 54, 58].

4. The explicit Lévy density of Stable CSBPs and the Zolotarev–Slack dis-
tribution. We now show how our results lead to an explicit identification of the
Lévy density of the semigroup of stable continuous state branching processes of
index 1 < δ < 2, that is, δ = 1 + α and the limiting distributions first obtained
by Zolotarev [95] and Slack [85]. We also mention briefly its connection to the
work of [6, 9] on beta coalescents. From Lamperti, [61] continuous state branch-
ing processes (CSBP) are Markov processes that can be characterized as limits
of Galton–Watson branching processes when the population size grows to infinity.
A (1+α)-stable (CSBP) process (Yt , t > 0) is a Markov process whose semigroup
is specified by

Ea[e−λYt ] = E[e−λYt |Y0 = a] = e−aυt (λ),(4.1)

where

υt =
∫ ∞

0
(1 − e−sλ)νt (ds) = λ(αt + λα)

−1/α
.

Furthermore (see, for instance, [6, 9]), there exists a process (Y (t, a); t > 0, a > 0)

such that for each t , Y(t, ·) is a compound Poisson process with intensity νt . Re-
lated to this result, Kawazu and Watanabe [49] show that all continuous state
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branching processes with immigration arise as limits of Galton–Watson processes
with immigration. Analogous to (4.1), Theorem 2.3 of their work yields the limit-
ing (1 + α)-stable (CSBP) with immigration (Ŷ (t), t > 0) satisfying

Ea[e−Ŷt ] = (1 + αλαt)−d/(αc)
Ea[e−Yt ].(4.2)

It is evident from (4.2) that the entrance laws of Ŷ are positive Linnik distributions.
However, the intensity νt , which plays a fundamental role in [6, 9], is only known
up to its Laplace transform. It is known that this Laplace transform coincides, up to
some scaling factors, with the Laplace transforms of the limiting distributions ob-
tained by Zolotarev [95] and Slack [85]. Before identifying these expressions we
recount the limiting distributions obtained by Slack [85] and Berestycki, Beresty-
cki and Schweinsberg [6]. As described, for instance, in [6], Slack’s result de-
scribes the limiting distribution, say μα , of the number of offspring in generation
n of a critical Galton–Watson process, re-scaled to have mean 1 and conditioned
to be positive, when the offspring distribution is in the domain of attraction of a
stable law of index 1 < δ < 2. This result complements Yaglom’s [90] well-known
result for the case where the offspring distribution has finite variance. In that case
the limiting distribution is exponential with mean 1. Precisely, following the expo-
sition in [69], we state a variation of Slack’s result.

PROPOSITION 4.1 (Slack (1968) [85]). Let Z = (Zn,n > 0) denote a super-
critical Galton–Watson process initiated by a single process. Furthermore, sup-
pose the nonextinction probability Qn = P(Zn > 0), satisfies

Qn = n−1/αL(n),

where L(x) is a slowly varying function. Then,

lim
n→∞ P(QnZn ≤ x|Zn > 0) = μα([0, x]),(4.3)

where for each 0 < α < 1, μα is the distribution of a random variable �α satisfy-
ing ∫ ∞

0
e−λwμα(dw) = E[e−λ�α ] = 1 − λ(1 + λα)

−1/α
.(4.4)

Zolotarev ([95], Theorem 7) also obtained this limit in the case of a class of
continuous parameter regular branching processes. However, prior to our work,
an explicit description of its density or corresponding random variable was not

known. It is now evident from (4.4) that �α
d= �α,1 in Proposition 2.9, as we

mentioned previously. These limits and or discussions related to (4.1), (4.2) appear
more recently in, for instance, [6, 9, 31, 59, 60, 71]. Before we summarize our
results we shall say a bit more about the context of [6]. Random variables with law
μα arise in the work of Berestycki, Berestycki and Schweinsberg [6] (see also [9])
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in connection with Beta(2 − δ, δ) coalescents for 1 < δ < 2. See in particular ([6],
Theorem 1.2). Equivalently these are Beta(1 − α,1 + α) coalescents.

In addition, there is a related result of Berestycki, Berestycki and Schweinsberg
[6] that, with some work, would have otherwise allowed us describe the law μα .
We quote their result below.

PROPOSITION 4.2 (Berestycki, Berestycki and Schweinsberg [6], Proposi-
tion 1.5). Let (�(t), t > 0) denote a Beta(1 − α,1 + α) coalescent where 0 <

α < 1, and let K(t) denote the asymptotic frequency of the block of �(t) contain-
ing 1. Then (


(α + 2)t−1)1/α
K(t)→

d
ζα as t ↓ 0,(4.5)

where ζα is a random variable satisfying

E[e−λζα ] = (1 + λα)
−(1+α)/α

.(4.6)

Furthermore, as noted in [6], ζα has the size biased distribution

P(ζα ∈ dx) = xμα(dx).(4.7)

We now summarize our result which again demonstrates the relevance of the ran-

dom variable Xα,1
d= Sα/Sα,1, which has explicit density

�α,1(x) = 1

π

sin(1/α arctan(sin(πα)/(cos(πα) + xα)))

[x2α + 2xα cos(απ) + 1]1/(2α)
.(4.8)

PROPOSITION 4.3. For 0 < α < 1, and �α,1(x) defined in (4.8), there are the
following results.

(i) The random variable described in (4.5) and (4.6), ζα , satisfies

ζα
d= γ2Xα,1 = χα,1+α.

(ii) Let �α and μα be as in (4.3) and (4.4), then

�α
d= γ1

Xα,1

d= �α,1.

(iii) Furthermore, for each x > 0,

P(�α > x) = μα([x,∞)) = E(1/α)
α,1 (−xα) = fγ1Xα,1(x).

(iv) The Lévy density νt corresponding to the (1+α) (CSBP) specified by (4.1)
is

νt (x) = (αt)−(1+α)/αxα−1E(1+α)/α
α,1+α

(
−xα

αt

)

= (αt)−2/α
∫ ∞

0
e−xy/(αt)1/α

y�α,1(y) dy.
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PROOF. Statements (i) and (ii) are now quite obvious from Propositions 2.8
and 2.9. Statement (iii) is deduced from Propositions 2.5 and 3.1. Statement (iv)
follows from these facts and the specifications for νt , described in [6], Lemma 2.2,
that is,

νt (x) = (αt)−1/αμα,t (x),

where μα,t (x) is the density of the random variable (αt)1/α�α . �

5. Occupation times of generalized Bessel bridges. We now show how our
results for Xα,θ can be used to obtain new results related to A+

1 , which is equiva-

lent in distribution to Pα,θ (p), under P
(p)
α,θ . This can be seen as a continuation of a

subset of the work of James, Lijoi and Prünster [43], who looked at more general
PD(α, θ) mean functionals, where, with the exception of α = 1/2, the best results
for describing the density of Pα,θ (p) were obtained for θ = 1, and θ = 1 − α. The
results for α = 1/2 are classic. For α = 1/2, and p = 1/2, Lévy [63] showed that
A+

1 under (1/2,0) and (1/2,1/2), follow the Arcsine and Uniform[0,1] distribu-
tions, respectively. A general formula for (1/2, θ), for all θ > −1/2 can be found
in Carlton [18], equation (3.4) (see also [50]) and is given by

P
(p)
1/2,θ (A

+
1 ∈ dy)/dy = 
(θ + 1)


(1/2)
(θ + 1/2)

pqyθ−1/2(1 − y)θ−1/2

(p2(1 − y) + q2y)
1+θ

for 0 < y < 1. We also obtain results for time spent positive on certain random sub-
sets of [0,1], and also develop some interesting stochastic equations. As a high-
light, we obtain explicit results for the case of θ = α, corresponding to the the
time spent positive of a Bessel bridge on [0,1]. In this case the best previous ex-
pressions were obtained independently in [43, 91] (see also [64]). For some other
related works see [12, 47, 48, 55, 88, 92].

Consider now the following stochastic equations and Cauchy–Stieltjes trans-
forms that can be found in [43] with further references; for θ > 0,

Pα,θ (p) = βθ,1Pα,θ (p) + (1 − βθ,1)Pα,0(p)(5.1)

and for θ > −α,

Pα,θ (p) = βθ+α,1−αPα,θ+α(p) + (1 − βθ+α,1−α)ξp.(5.2)

Additionally there are the Cauchy–Stieltjes transforms for θ > 0,

Cθ (λ;Pα,θ (p)) = (
q + (1 + λ)αp

)−θ/α = e
−θψ

(p)
α,0 (λ)

,(5.3)

where

ψ
(p)
α,0 (λ) = E

[
log

(
1 + λPα,0(p)

)] = E
(p)
α,0[log(1 + λA+

1 )]
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and for θ > −α,

C1+θ (λ;Pα,θ (p)) = (1 + λ)α−1p + (1 − p)

(q + (1 + λ)αp)(θ+α)/α

(5.4)
= Cθ+α(λ;Pα,θ+α(p))C1−α(λ; ξp).

The first equation (5.1) shows that Pα,θ (p)
d= Mθ(FPα,0(p)) for θ > 0. The sec-

ond equation (5.2) (see, for instance, [10, 27, 40, 77] for some other interpreta-
tions and applications) can be traced to Pitman and Yor ([79], Theorem 1.3.1)
and Perman, Pitman and Yor ([72], Theorem 3.8, Lemma 3.11) as follows; Let
A+

G1
= ∫ G1

0 I(Bs>0) ds denote the time spent positive of B up till time G1 which is

the time of the last zero of B before time 1. Then under P
(p)
α,θ , there is the equiva-

lence

(A+
G1

,G1)
d= (

G1A
(br)
1 ,G1

) d= (βθ+α,1−αPα,θ+α(p),βθ+α,1−α).

This shows that (5.2) can be rewritten in terms of the following decomposition:

A+
1

d= A+
G1

+ (1 − G1)ξp
d= G1A

(br)
1 + (1 − G1)ξp.

See, for example, Enriquez, Lucas and Simenhaus [29] for an interesting recent
application of this expression.

We now show that the density of Pα,θ (p) can be expressed in terms of the
density of Xα,θ . Hereafter, define

rp(y) = y

(c(1 − y))

for cα = p/(1 − p).

PROPOSITION 5.1. For θ > −α, let Rα,θ = cXα,θ/(cXα,θ + 1). Then

P
(p)
α,θ (A

+
1 ∈ dy) = (1 − y)θ

(1 − p)θ/α
P(Rα,θ ∈ dy),

where A+
1

d= Pα,θ (p). Hence as special cases, using Propositions 2.5 and 2.6:

(i) P
(p)
α,1(A

+
1 ∈ dy)/dy = (1 − y)−1p−1/α�α,1(rp(y)) = �α,1(y).

(ii) For 0 < θ ≤ 1 − α, and σ ∗ = θ + α,

P
(p)
α,θ (A

+
1 ∈ dy)/dy = θ(1 − y)θ−2

(1 − p)(θ−1)/αp1/α

∫ 1

0

�α,σ ∗(rp(y)/u)

u(1 − u)1−θ
du,

where �α,σ ∗(x) ≥ 0 is the density of X
(σ ∗)
α,1 .
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PROOF. From (1.3) it follows that, for measurable functions g,

E[g(cXα,θ )] = (1 − p)θ/α

E[S−θ
α ] E

(p)
α,0

[
g

(
A+

τ1

A−
τ1

)
(A−

τ1
)−θ

]
.

The result is concluded by showing that

E
(p)
α,θ [g(A+

1 )] := 1

E[S−θ
α ]E

(p)
α,0[g(A+

τ1
/τ1)τ

−θ
1 ]

is equal to (1 − p)−θ/α
E[g(Rα,θ )(1 + Xα,θ )

−θ ]. But this follows from τ1 = (A+
τ1

/

A−
τ1

+ 1)A−
τ1

. �

Pitman and Yor ([81], Proposition 15) establish an interesting relationship be-
tween the densities of A+

1 and A+
G1

under the law P
(p)
α,0. Making no changes to the

essence of their clever argument, one can easily extend this result to all (α, θ).
Combining this with Proposition 5.1 yields the relationships, for 0 < p < 1,

P
(p)
α,θ (A

+
G1

∈ dy) = 1 − y

(1 − p)
P

(p)
α,θ (A

+
1 ∈ dy)

(5.5)

= (1 − y)1+θ

(1 − p)(θ+α)/α
P(Rα,θ ∈ dy).

Recall that under P
(p)
α,θ , A+

G1

d= βθ+α,1−αPα,θ+α(p). The next result describes in-
teresting properties of generalizations of this variable.

PROPOSITION 5.2. For τ > 0 and 0 < σ ≤ 1, let V
d= β(τσ/α,τ(1−σ)/α) and

hence is a Dirichlet mean satisfying the stochastic equation

V
d= βτ/α,1V

′ + (1 − βτ/α,1)ξσ

for V
d= V ′. Then for 0 < p ≤ 1,

βτσ,τ(1−σ)Pα,τσ (p)
d= Pα,τ (pV ) = Mτ

(
FPα,0(pξσ )

)
.(5.6)

This leads to the stochastic equations, for 0 < p ≤ 1,

Pα,τ (pV )
d= βτ,1P

′
α,τ (pV ′) + (1 − βτ,1)Pα,0(pξσ )

(5.7)
d= βτ,1P

′
α,τ (pV ) + (1 − βτ,1)Pα,0(pV ).

In the first expression P ′
α,τ (pV ′) denotes a random variable equivalent only in

distribution to Pα,τ (pV ). However in the second equation V is the same variable.
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PROOF. First note that βτσ,τ(1−σ)Pα,τσ (p)
d= Mτ(FPα,0(pξσ )), follows from

(2.4). Note also by the definition of Pα,0(p) it is easy to see that Pα,0(p)ξσ
d=

Pα,0(pξσ ). In order to establish the rest of (5.6) we can check Cauchy–Stieltjes
transforms of order τ using (5.3). For the variable appearing on the left of (5.6)
this is easy to calculate. Applying this to Pα,τ (pV ) conditioned on V , its final
evaluation rests on the simple equality(

1 − pV + (1 + λ)αpV
) = 1 + [(1 + λ)α − 1]pV.

Taking the Cauchy–Stieltjes transform of order τ/α for V yields the result. The
second equality in (5.7) is then due to (5.1). �

Next is one of our main distributional results which is an analogue of Proposi-
tion 2.6 but also highlights the role of various randomly skewed processes.

PROPOSITION 5.3. For 0 < σ ≤ 1, set R
(σ)
α,1 = cX

(σ)
α,1/(cX

(σ)
α,1 + 1), then the

density of

βσ,(1−σ)Pα,σ (p)
d= Pα,1

(
pβ(σ/α,(1−σ)/α)

)
is for 0 < y < 1, equivalent to (1 − p)−σ/α(1 − y)P(R

(σ)
α,1 ∈ dy)/dy, and is given

explicitly as

�α,σ (y) = 1

π

yσ−1 sin(ρα,σ ([rp(y)]α))

[y2αq2 + 2qpyα(1 − y)α cos(απ) + (1 − y)2αp2]σ/(2α)
,(5.8)

where ρα,σ is defined in (2.16). In particular �α,1(y) is the density of Pα,1(p) and
�α,α(y) is the density of βα,1−αPα,α(p). In addition:

(i) if 0 ≤ θ ≤ 1 − α, then for σ ∗ = θ + α,

βθ+α,1−αPα,θ+α(p)
d= Pα,1+θ

(
pβ(σ ∗/α,(1−α)/α)

) d= β1,θPα,1
(
pβ(σ ∗/α,(1−σ ∗)/α)

)
and, using (5.5), there is the explicit formula determining the densities of A+

1 and
A+

G1
,

P
(p)
α,θ (A

+
G1

∈ dy)/dy = 1 − y

(1 − p)
P

(p)
α,θ (A

+
1 ∈ dy)/dy

(5.9)

=
∫ 1

0

θ�α,σ ∗(y/u)

u(1 − u)1−θ
du.

When θ = 0, (5.9) is �α,α(y) which agrees with Pitman and Yor ([81], Proposi-
tion 15).
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(ii) As in Proposition 2.7, for any θ > 0, set θ = ∑k
j=1 θj for some integer k

and θj > 0. This leads to the representation

Pα,θ (p)
d=

k∑
j=1

DjPα,θj
(p)

for independent variables Pα,θj
(p) and (D1, . . . ,Dk) a Dirichlet vector as in

Proposition 2.7. When θj are chosen such that 0 < θj ≤ 1 − α each variable has

P
(p)
α,θj

(A+
1 ∈ dy) given by (5.9) with σ ∗ = θj + α. It suffices to choose θj = θ/k,

for 0 < θ ≤ k(1 − α). If θ = k, one may set θj = 1 and use �α,1.

PROOF. The various representations of the random variables are due to Propo-
sition 5.2 and otherwise an application of the beta/gamma calculus. The density
�α,σ is obtained from �α,σ , which is justified by the exponential tilting relation-
ships discussed in James ([41], Section 3; see also [42]). �

REMARK 5.1. The random variable Pα,τ (pV ) described in Proposition 5.2
has law,

P
(
Pα,τ (pV ) ∈ dx

) = P
(pV )
α,τ (A+

1 ∈ dx) :=
∫ 1

0
P

(pu)
α,τ (A+

1 ∈ dx)fV (u)du.

That is, it may be read as the time spent positive up till one of a process B whose
excursion lengths, conditional on V , follow a PD(α, τ ) distribution and is other-
wise randomly skewed by pV . See also Aldous and Pitman ([1], Section 5.1) for
connections with T -partitions. This is made clear, as follows; For (Lt ;0 ≤ t ≤ 1)

governed by PD(α, θ), and letting L̄t = Lt/L1, there is the equivalence

Pα,θ (u)
d= inf{t : L̄t ≥ u}, 0 ≤ u ≤ 1.

In other words, letting P
(−1)
α,θ (·) denote the random quantile function of Pα,θ , it

follows that L̄t
d= P

(−1)
α,θ (t),0 ≤ t ≤ 1. See the next section, Section 6, for more

general V .

REMARK 5.2. In reference to Propositions 5.2 and 5.3, setting Qα,τ (σ,p) =
βτσ,τ(1−σ)Pα,τσ (p) leads to a well-defined bivariate process (Qα,τ (σ,p) : 0 ≤ p ≤
1,0 < σ ≤ 1), that has some natural connections to the coagulation operations
discussed in Pitman [75]. This observation may be deduced from the subordina-
tor representation given in Pitman and Yor ([80], Proposition 21). When p = 1,
Qα,τ (σ,1) is a Dirichlet process which corresponds to the operation of coagulat-
ing PD(α, τ ) by PD(0, τ/α). In general one may write

Qα,τ (σ,p)
d= P0,τ (σ )Pα,τσ (p)

d= Pα,τ (pP0, τ
α
(σ )).
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We will not elaborate on this here except to note that in connection with results
for the standard U -coalescent, setting τ = α, p = 1 one recovers ([75], Corol-
lary 33, and Proposition 32). In a distributional sense, that is, without the nice
interpretation, one also recovers ([75], Corollary 16) by setting σ = α = e−t and
τ = 1,p = 1. When p �= 1, we expect that one can obtain new, but related, inter-
pretations of Qα,τ (σ,p).

5.1. Some special cases. Note that, as in [43] (combined with Proposi-
tion 5.2), one can rewrite (5.2) as

Pα,θ (p)
d= βθ+α,1−αPα,θ+α(p)(1 − ξp) + (

1 − βθ+α,1−αPα,θ+α(q)
)
ξp

d= Pα,1+θ

(
pβ((θ+α)/α,(1−α)/α)

)
(1 − ξp)

+ (
1 − Pα,1+θ

(
qβ((θ+α)/α,(1−α)/α)

))
ξp.

Besides giving an alternate mixture representation in terms of easily interpreted
random variables, this also suggests that one can obtain the density of Pα,θ (p) if
one knows the density of Pα,θ+α(p). In [43], it was noted that this could be applied
for θ + α = 1, which yields an expression for the density of Pα,1−α(p). In view of
Proposition 5.3 we see that such a density representation can be extended to any
0 ≤ θ ≤ 1 − α. Of course in terms of a density representation this is not as good
as the expression one can obtain from (5.9), since it would have to be used twice.
In this section we look at some specific cases of random variables that have either
appeared in the literature or we anticipate might be of some interest.

EXAMPLE 5.1 [(α,1 − α) a distribution relevant to phylogenetic models]. As
noted in [43] the case of Pα,1−α(p) equates in distribution to the limit of a phylo-
genetic tree model appearing in ([35], Proposition 20). Here using Proposition 5.3
we obtain a slight improvement over the density given in ([43], Corollary 6.1).

Since under P
(p)
α,1−α , A+

G1

d= β1,1−αPα,1(p), we have

P
(p)
α,1−α(A+

G1
∈ dy)/dy = 1 − y

(1 − p)
P

(p)
α,1−α(A+

1 ∈ dy)/dy

(5.10)

=
∫ 1

0

(1 − α)�α,1(y/u)

u(1 − u)α
du.

EXAMPLE 5.2 [The case of β1+α,1−αPα,1+α(p)]. Under P
(p)
α,1,

A+
G1

d= β1+α,1−αPα,1+α(p)
d= Pα,2

(
pβ((1+α)/α,(1−α)/α)

)
.

Hence its density is given by

P
(p)
α,1(A

+
G1

∈ dy)/dy = (1 − y)

(1 − p)
�α,1(y).
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In view of the literature related to Section 4 we believe this variable will be of
interest.

We now address some harder cases.

EXAMPLE 5.3 [(α,α) occupation time of a Bessel bridge]. Obtaining density
expressions for the general case of A+

1 when B is a Bessel bridge has been difficult,
except for the case of α = 1/2. Due to the importance of the PD(α,α) family
this quantity arises in many contexts (see, for instance, Aldous and Pitman [1]).
The best results were obtained independently by Yano [91] and James, Lijoi and
Prünster [43], who give expressions in terms of Abel-type transforms, that is to say,
integrals of possibly nonnegative functions. Hence this does not yield a mixture

representation for Pα,α(p)
d= A+

1 . Here we show how our results in the previous

section can be used to achieve this. Under P
(p)
α,α ,

A+
G1

d= β2α,1−αPα,2α(p)
d= Pα,1+α

(
pβ(2,(1−α)/α)

)
.

Hence for α ≤ 1/2, we can apply statement (i) of Proposition 5.3 writing

A+
G1

d= β1,αPα,1
(
pβ(2,(1−2α)/α)

)
to get

P
(p)
α,α(A+

G1
∈ dy)/dy = 1 − y

(1 − p)
P

(p)
α,α(A+

1 ∈ dy)/dy

(5.11)

=
∫ 1

0

α�α,2α(y/u)

u(1 − u)1−α
du,

where

�α,2α(y) = 2 sin(πα)

π

py2α−1(1 − y)α[qyα + cos(πα)p(1 − y)α]
[y2αq2 + 2qpyα(1 − y)α cos(πα) + (1 − y)2αp2]2

is the density of Pα,1(pβ(2,(1−2α)/α)).
When α > 1/2, we, at present, need to resort to statement (ii) of Proposition 5.3.

So, for instance, for α ≤ 2/3, it follows that

Pα,α(p)
d= βα/2,α/2Pα,α/2(p) + (1 − βα/2,α/2)P

′
α,α/2(p),

where Pα,α/2(p) and P ′
α,α/2(p) are i.i.d. variables having distribution P

(p)
α,α/2(A

+
1 ∈

dy) obtainable from (5.9).

EXAMPLE 5.4 [(α,α−1), and fragmentation equations]. Suppose that we are

interested in the case of θ = α − 1, that under P
(p)
α,α−1, Pα,α−1(p)

d= A+
1 . Of course

this only makes sense for α > 1/2. Notice that

A+
G1

d= β2α−1,1−αPα,2α−1(p),
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so we can apply (5.9) directly if α ≤ 2/3. It is then interesting to note what other
quantities we can obtain. We can use another stochastic equation that takes the
form

Pα,θ (p)
d= βθ+αδ,1−αδPα,θ+αδ(p) + (1 − βθ+αδ,1−αδ)Pα,−αδ(p)

for θ > −αδ, 0 < δ ≤ 1. Note that this equation is not well known but it is simple to
check. Furthermore, a close inspection shows that it is a nice way to code Pitman’s
[75] fragmentation. As as special case, set δ = (1 − α)/α and θ = α to obtain

Pα,α(p)
d= β1,αPα,1(p) + (1 − β1,α)Pα,α−1(p).

6. Power scaling property and randomly skewed processes. We saw that
in the previous section the random quantity Pα,τ (pV ), where V is a beta variable,
occurs naturally and plays an interesting role. An interpretation in terms of occu-
pation times of randomly skewed processes is mentioned in Remark 5.1, and an
interpretation via coagulation processes is hinted at in Remark 5.2. Also there is
the surprising stochastic equation in (5.7). There is also a related result given in
Proposition 2.2. One may wonder if properties of this sort only hold for beta ran-
dom variables. We show in the next result, which was first obtained in [42], that
there is a considerable generalization.

PROPOSITION 6.1. Let R d= Mτ/α(FR) and Q d= Mτ/α(FQ) denote Dirichlet
means with parameters (τ/α,R) and (τ/α,Q) where R is a nonnegative random
variable, and Q is a random variable taking values in [0,1]. Equivalently,

R d= β(τ/α,1)R + (
1 − β(τ/α,1)

)
R and

(6.1)
Q d= β(τ/α,1)Q + (

1 − β(τ/α,1)

)
Q,

which implies that Q d= Mτ/α(FQ) takes it values in [0,1]. If Q is a constant, then
Mτ/α(FQ) = Q. Then the following results hold:

(i) R1/αXα,τ
d= Mτ(FXαR1/α ), that is,

R1/αXα,τ
d= βτ,1R1/αXα,τ + (1 − βτ,1)R

1/αXα.

(ii) Pα,τ (Q) is a Dirichlet mean with parameters (τ,Pα,0(Q)), and satisfies,

Pα,τ (Q)
d= βτ,1P

′
α,τ (Q′) + (1 − βτ,1)Pα,0(Q)

(6.2)
d= βτ,1P

′
α,τ (Q) + (1 − βτ,1)Pα,0(Q),

where P ′
α,τ (Q′) is equivalent only in distribution to Pα,τ (Q), but Q is the same

variable.
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PROOF. The first result follows by noting

τE[log(1 + λXαR1/α)] = (τ/α)E[log(1 + λαR)],
which gives the negative logarithm of Cτ (λ; R1/αXα,τ ) = Cτ/α(λα; R). For the
second, evaluate Cτ (λ,Pα,τ (Q)) conditional on Q and then notice similar to
Proposition 5.2, that the transform of order τ coincides with the exponential of

log Cτ/α

(
(1 + λ)α − 1; Q

) = − τ

α
E

[
ψ

(Q)
α,0

]
.

It remains then to apply (5.1) to get the second equality in (6.2). �

REMARK 6.1. Notice that setting R = ξσ and Q = pξσ we recover Proposi-

tions 2.2 and 5.2. Setting R = Xδ for 0 < δ < 1 leads to the identity X
1/α
δ,τ/αXα,τ

d=
Xαδ,τ , since it follows from known properties of stable random variables that

X
1/α
δ Xα

d= Xαδ . Furthermore, if one chooses Q := Q(u) such for each fixed u

it satisfies (6.1), and for 0 < u < 1 it is an exchangeable bridge, that is a random
cumulative distribution function, then Pα,τ (Q(u)) identifies a coagulation opera-
tion as described in Pitman ([77], Lemma 5.18) (see also Bertoin [8]). In particular,
one recovers Pitman’s [75] coagulation as follows. Setting Q = Pβ,τ/α(u), means

that Q = Pδ,0(u), leading easily to, Pα,0(Pδ,0(u))
d= Pαδ,0(u), which implies

Pα,τ (Pδ,τ/α(u))
d= Pαδ,τ (u).

We shall discuss other applications of Proposition 6.1 and related identities else-
where.

7. Subordinators and symmetric generalized Linnik laws and processes.
Using Proposition 6.1, we define processes (Tα(τ ), τ ≥ 0) and (T̂α(τ ), τ ≥ 0),
such that for each fixed τ > 0,

Tα(τ )
d= γτ R1/αXα,τ

d= χα,τ R1/α d= γτMτ (FXαR1/α )

and

T̂α(τ )
d= γτPα,τ (Q)

are GGC(τ,XαR1/α) and GGC(τ,Pα,0(Q)) variables, respectively. Where we are
suppressing the fact that both R and Q depend on (α, τ ). In fact Tα(τ ) and T̂α(τ )

are GGC subordinators varying in τ > 0. Let Sα(t) denote a positive stable subor-

dinator such that Sα(1)
d= Sα , and let Ŝα(t) denote the subordinator with

− log E
[
e−λŜα(t)] = t[(1 + λ)α − 1],

so that Ŝα(1)
d= Ŝα is a random variable with density e−(t−1)fα(t). It follows that

Sα(γτ/α R)
d= Tα(τ ) and Ŝα(γτ/α Q)

d= T̂α(τ ).
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However, an important aspect of our results in Proposition 6.1 is that usage of
Tα(τ ) and T̂α(τ ) does not require working directly with the processes Sα and Ŝα .
These Lévy processes are attractive in terms of potential applications arising for
instance in finance, financial econometrics or Bayesian statistics. With applica-
tions to finance in mind, it is quite natural to use these processes as Brownian time
changes creating process B(Tα(·)) and B(T̂α(·)), for B(·) an independent Brown-
ian motion, we take to have log characteristic function −λ2. The characteristic
functions of B(Tα(τ )) and B(T̂α(τ )) can be expressed as

Cτ/α(λ2α; R) = e−τ/αψR(λ2α)

and

Cτ/α

(
(1 + λ2)

α − 1; Q
) = e−τ/αψQ((1+λ2)

α−1).

Recall that B(Sα(·)) is a symmetric stable process of index (0,2] and B(Ŝα(·)) is
a process that includes the NIG process when α = 1/2. When α = 0 and Q = p,
B(T̂0(·)), is a variance-gamma (VG) process. The case of B(χα,θ ), corresponds to
generalized Linnik processes considered by Pakes [70] (see also [25, 57]). We will
focus on this case.

It suffices to examine the random variables

B(χα,θ )
d= N

√
2γ

1/α
θ/α Sα = N

√
χα,θ ,

where N is a standard Normal random variable. For general α and θ > 0 the extra
randomization by N does not add much beyond our results for χα,θ .

However, when α ≤ 1/2 we are able to obtain some interesting results which
we describe below. In this case, we will use a result of Devroye [24] which yields
a tractable mixture representation for symmetric stable random variables of index
between 0 and 1. Devroye’s [24] result is not well known but as we shall show can
be used to obtain a nice description of the density of Bα(Tα(θ)) for all fixed θ > 0.
We do, however, stress that there are many applications requiring α > 1/2.

7.1. α ≤ 12, results based on Fejer-de la Vallee Poussin mixtures. For sym-
metric stable random variables N

√
2Sα for 0 < α ≤ 1/2, Devroye [24] shows that

N
√

2Sα
d= Y/Z1/(2α),

where Y has a Fejer-de la Vallee Poussin density

ω(x) = 1

2π

(
sin(x/2)

x/2

)2

, −∞ < x < ∞,

and Z
d= γ1(1 − ξ2α) + γ2ξ2α . It follows that the density of a symmetric stable of

index between [0,1] is

2α

∫ ∞
0

ω(xy)y2αe−y2α [(1 − 2α) + 2αy2α]dy.
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Hence as a mild extension of Devroye ([24], Example B), that is, the simple sym-
metric Linnik variable corresponding to θ = α, we have for all θ > 0

N
√

2χα,θ
d= Y/W 1/(2α) where W

d= γ1

γθ/α

(1 − ξ2α) + γ2

γθ/α

ξ2α,

is a mixture of Pareto variables, having density for 0 < α ≤ 1/2

θ [(1 + 2θ)w + (1 − 2α)]
α(1 + w)2+θ/α

, w > 0.

Naturally this representation extends to all B(Tα(·)), provided that α ≤ 1/2. In
particular,

B(Tα(θ))
d= Y/W̃ 1/(2α) where now W̃

d= γ1

γθ/α R (1 − ξ2α) + γ2

γθ/α R ξ2α,

for R d= Mθ/α(FR). Quite interestingly the density of W̃ only requires information

about the Laplace transform of γθ/α R. Let ψ
(1)
R (x) and ψ

(2)
R (x) denote the first

and second derivatives of ψR(x). Then the density of W̃ is given by

ηα,θ (x) = θ

α
e−θ/αψR(x)

[
ψ

(1)
R (x)(1 − 2α) + x2α

[(
ψ

(1)
R (x)

)2 θ

α
− ψ

(2)
R (x)

]]
.

From this, we close with an interesting identity.

PROPOSITION 7.1. For 0 < α ≤ 1/2, and θ > 0, let V
d= β1/2,1/2, then for

−∞ < x < ∞
�α,θ (x) = E

[ |x|
2V χα,θ

e−x2/(4V χα,θ )

]

=
√

2

π
E

[
1

|√2χα,θ |e
−x2/(4χα,θ )

]

=
∫ ∞

0

ω(xy)2θy2α[(1 + 2θ)y2α + (1 − 2α)]
(1 + y2α)

2+θ/α
dy,

which is just the density of N
√

2χα,θ . Additionally, for all fixed θ > 0, the density

of B(Tα(θ))
d= N

√
2χα,θ R1/(2α), satisfies

E

[
�α,θ

(
x

R1/(2α)

)
1

R1/(2α)

]
= 2α

∫ ∞
0

ω(xy)y2αηα,θ (y
2α) dy

for R d= Mθ/α(FR).

PROOF. The result follows from the derivation of the density described above

using ω, in combination with a derivation of the density based on N2 d= 2γ1V and
additionally Pitman and Yor ([83], equation (29)). �
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8. General remark about rational case. When α is rational it is known (see
[20, 89, 94]) that Sα is equivalent in distribution to a product of independent beta
and gamma variables. Extending an argument in Chaumont and Yor ([20], pages
143 and 144) using the gamma duplication formula, it follows that for α = m/n

for integers, m,n, such that m < n, and all θ > −m/n,

(Xm/n,θ )
m d=

(
Sm/n

Sm/n,θ

)m
d=

(
m−1∏
k=1

βθ/m+k/n,k(1/m−1/n)

βk/n,k(1/m−1/n)

)(
n−1∏
k=m

γθ/m+k/n

γk/n

)
,

where all random variables are independent. Additionally,
(

m

Sm/n,θ

)m
d= nn

(
m−1∏
k=1

βθ/m+k/n,k(1/m−1/n)

)(
n−1∏
k=m

γθ/m+k/n

)
.

An implication of these relationships is that one may use the result of Springer and
Thompson [86] to express their densities in terms of Meijer-G functions. In many
cases these are equivalent to expressions in terms of generalized Gauss hyperge-
ometric functions. Furthermore, it is known that Laplace transforms of Meijer-G
functions are also Meijer-G functions, with known arguments. Hence, Proposi-
tions 3.1 and 5.1 show that in the rational case of α = m/n, one may express the
generalized Mittag–Leffler functions and densities for Pα,θ (p) in terms of Meijer-
G functions. Such representations are not entirely appealing in many respects; for
instance, the density �m/n,σ is a much more desirable expression than its Meijer-
G counterpart. However, from a computational viewpoint they are significant. This
is due to the fact that Meijer-G functions, which constitute many special functions,
are available as built-in functions in mathematical computational packages such as
Mathematica or Maple. Naturally many of the quantities we discussed for general
α can be expressed as the more general Fox-H functions [33, 51–54, 67]. How-
ever, in general, computations for these expressions are not yet available. Hence
another contribution of our work is to give new explicit identities for a class of
Meijer-G and Fox-H functions. That is to say quantities such as �α,σ give an ex-
plicit form to their corresponding Fox-H representation. We omit details of this
representation, but it is not difficult to obtain.
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