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A CAUTIONARY TALE ON THE EFFICIENCY OF SOME
ADAPTIVE MONTE CARLO SCHEMES

BY YVES F. ATCHADÉ

University of Michigan

There is a growing interest in the literature for adaptive Markov chain
Monte Carlo methods based on sequences of random transition kernels {Pn}
where the kernel Pn is allowed to have an invariant distribution πn not nec-
essarily equal to the distribution of interest π (target distribution). These al-
gorithms are designed such that as n → ∞, Pn converges to P , a kernel that
has the correct invariant distribution π . Typically, P is a kernel with good
convergence properties, but one that cannot be directly implemented. It is
then expected that the algorithm will inherit the good convergence properties
of P . The equi-energy sampler of [Ann. Statist. 34 (2006) 1581–1619] is an
example of this type of adaptive MCMC. We show in this paper that the as-
ymptotic variance of this type of adaptive MCMC is always at least as large
as the asymptotic variance of the Markov chain with transition kernel P . We
also show by simulation that the difference can be substantial.

1. Introduction. Adaptive Markov chain Monte Carlo (AMCMC) is an ap-
proach to Markov chain Monte Carlo (MCMC) simulation where the transition
kernel of the algorithm is allowed to change over time as an attempt to improve
efficiency. It grows out of the seminal works of [11, 12]. Let π be the distribu-
tion of interest. The problem is to sample efficiently from π given a family of
Markov kernels {Pθ , θ ∈ �}. This can be solved adaptively using a joint process
{(Xn, θn), n ≥ 0} such that the conditional distribution of Xn+1 given the infor-
mation available up to time n is Pθn and where θn is adaptively tuned over time.
Some general sufficient conditions for the convergence of such algorithms can be
found in [6, 18]. It is also shown in [1] that under some regularity conditions, if a
“best” limiting kernel Pθ∗ exists, the marginal chain {Xn,n ≥ 0} in the joint adap-
tive process behaves in many ways like a standard Markov chain with transition
kernel Pθ∗ . In all the above-mentioned papers, the assumption that each Pθ has
invariant distribution π plays an important role.

More recently, interest has emerged in building Monte Carlo algorithms where
the transition kernel Pn used at time n has invariant distribution πn not necessarily
equal to π . These algorithms are designed such that as n → ∞, Pn converges to a
transition kernel P which is invariant with respect to π . This limiting kernel P is
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typically a very efficient kernel that would be difficult to implement otherwise. The
interest of this approach is that as n → ∞, Pn approaches P and one expects the
algorithm to inherit the good convergence properties of P . The equi-energy (EE)
sampler of [15] is an example. Another example based on importance resampling
appeared independently in [3] and [5].

This paper provides a detailed analysis of the law of large numbers and central
limit theorem for the EE sampler. It is also an attempt to address the question
of whether such algorithms can deliver the same performance as their limiting
kernel P . We give a negative answer. We show, in the case of the EE sampler, that
its asymptotic variance is always at least as large as the asymptotic variance of the
limiting transition kernel P . The difference can be substantial and we illustrate this
with a simulation example.

On the related literature, the law of large numbers for of the EE sampler has been
studied in [3] but using different techniques than those in this work. We also men-
tion a new class of interacting MCMC algorithms proposed by [8, 10] for solving
numerically some discrete-time measure-valued equations. These algorithms share
the same framework with the EE sampler. In these two papers, the authors develop
a number of asymptotic results for interacting MCMC including a strong law of
large numbers and a central limit theorem.

The paper is organized as follows. In Section 2 we present the EE sampler and
IR-MCMC in a slightly more general framework. The limit theorems are devel-
oped in Section 3 and proved in Section 4. The main ingredient of the proofs is the
martingale approximation method. We present a simulation example in Section 3.5
comparing these algorithms to a Random Walk Metropolis algorithm.

2. A class of adaptive Monte Carlo algorithms. Let (X , B, λ) be a reference
Polish space equipped with its Borel σ -algebra B and a σ -finite measure λ and
K ≥ 1 an integer. We denote by M the set of all probability measure on (X , B).
Let {π(l), l = 0, . . . ,K} be probability measures on (X , B) such that

π(l)(dx) = 1

Zl

e−El(x)λ(dx)(1)

for some measurable functions El : (X , B) → R. Zl := ∫
X e−El(x)λ(dx) (assumed

finite) is the normalizing constant. We study a class of Monte Carlo algorithms to
sample from the family {π(l)}. These algorithms will generated an ergodic random
process {(X(0)

n , . . . ,X
(K)
n ), n ≥ 0} on X K+1 with limiting distribution π(0) ×· · ·×

π(K).
We introduce some notation in order to describe the algorithm. Whenever nec-

essary and without further notice, any subset of R
d will be equipped with its Borel

σ -algebra. If (Y, E ) and (Z, F ) are two measurable spaces, a kernel from (Y, E )

to (Z, F ) is any function P : Y × F → [0,1] such that P(y, ·) is a probability
measure on (Z, F ) for all y ∈ Y and P(·,A) is a measurable map for all A ∈ F .
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If (Y, E ) = (Z, F ), we call P a kernel on (Z, F ). If P is a kernel from (Y, E ) to
(Z, F ), f : (Z, F ) → R a measurable function and y ∈ Y , we shall use the nota-
tion P(y,f ) or Pf (y) to denote the integral

∫
Z P(y, dz)f (z) whenever it is well

defined.

2.1. A general algorithm. Let {P (l), l = 0, . . . ,K} be kernels on (X , B) such
that π(l) is the invariant distribution of P (l). Let {T (l), l = 1, . . . ,K} be kernels
from (X 2, B2) to (X , B), {ω(l), l = 1, . . . ,K} positive real-valued measurable
functions defined on (X 2, B2) and θl ∈ (0,1) for l = 1, . . . ,K . For μ ∈ M and
l = 1, . . . ,K , we define the following kernel on (X , B):

P (l)
μ (x,A) = θlP

(l)(x,A)
(2)

+ (1 − θl)

∫
μ(dy)ω(l)(y, x)T (l)(y, x,A)∫

μ(dy)ω(l)(y, x)
, x ∈ X ,A ∈ B.

For n ≥ 1, we introduce the maps Hn : M × X → M defined as Hn(μ,x) =
μ + n−1(δx − μ), where δx is the Dirac measure. Let {(X(0)

n , . . . ,X
(K)
n ,μ

(0)
n , . . . ,

μ
(K−1)
n ), n ≥ 0} be the nonhomogeneous Markov chain on X K+1 × MK [de-

fined on some probability space (	, F ) that can be taken as the canonical space
(X K+1 × MK)∞] with sequence of transition kernels P̄n given by

P̄n

((
x(0), . . . , x(K),μ(0), . . . ,μ(K−1));(
dy(0), . . . , dy(K), dν(0), . . . , dν(K−1)))(3)

= P (0)(x(0), dy(0)) K∏
l=1

P
(l)

μ(l−1)

(
x(l), dy(l)) K−1∏

l=0

δHn(μ(l),y(l))

(
dν(l)).

Throughout, we denote {Fn, n ≥ 0} the natural filtration of the process. We will
assume that the initial value of the process is fixed. For simplicity we take μ

(l)
0 = 0.

Finally, we call P and E the probability distribution and expectation of the process.
Algorithmically, {(X(0)

n , . . . ,X
(K)
n ,μ

(0)
n , . . . ,μ

(K−1)
n ), n ≥ 0} can be described

as follows.

ALGORITHM 2.1. At time n and given {(X(0)
k , . . . ,X

(K)
k ,μ

(0)
k , . . . ,μ

(K−1)
k ),

k ≤ n − 1}:
1. Generate X

(0)
n ∼ P (0)(X

(0)
n−1, ·).

2. For l = 1, . . . ,K , generate independently X
(l)
n from P

(l)

μ
(l−1)
n−1

(X
(l)
n−1, ·) as given

by (2).
3. For l = 0, . . . ,K − 1, set μ

(l)
n = Hn(μ

(l)
n−1,X

(l)
n ) = μ

(l)
n−1 + n−1(δ

X
(l)
n

− μ
(l)
n−1).
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The heuristic of the algorithm is the following. By construction, {X(0)
n , Fn} is

a Markov chain with kernel P (0) and invariant distribution π(0). If this chain is
ergodic, then as n → ∞, P(X

(1)
n ∈ A|Fn−1) = P

(1)

μ
(l−1)
n−1

(X
(l)
n−1,A), will converge to

K(1) where K(l) is given by

K(l)(x,A) = θlP
(l)(x,A)

(4)

+ (1 − θl)
1

z(l)(x)

∫
X

π(l−1)(dy)ω(l)(x, y)T (l)(y, x,A),

where z(l)(x) = ∫
X π(l−1)(dy)ω(l)(x, y). We will discuss below two ways of

choosing ω(l) and T (l) so that K(l) has invariant distribution π(l). With these
choices we can reasonably expect {X(1)

n } to be ergodic with limiting distribution
π(1). The same argument can then be repeated. In other words, with appropriate
choice of ω(l) and T (l), the marginal process {X(l)

n , n ≥ 0} can be used for Monte
Carlo simulation from π(l).

2.2. Importance-resampling MCMC. For l = 1, . . . ,K define the importance
function

r(l)(x) = exp
(
El−1(x) − El(x)

)
.

In Algorithm 2.1 we can take ω(l)(x, y) = r(l)(y) and T (l)(y, x,A) = T
(l)
0 (y,A),

where T
(l)

0 is some kernel on (X , B) with invariant distribution π(l). This leads
to the IR-MCMC algorithm ([3, 5]). In this case, step 2 of Algorithm 2.1 can be
described as follows: with probability θl we sample X

(l)
n from P (l)(X

(l)
n−1, ·) and

with probability 1 − θl , we obtain Y (l) by resampling from {X(l−1)
0 , . . . ,X

(l−1)
n−1 }

with weights {r(l)(X
(l−1)
0 ), . . . , r(l)(X

(l−1)
n−1 )} and then propose X

(l)
n ∼ T

(l)
0 (Y (l), ·).

The lth limiting kernel here takes the form

K(l)(x,A) = θlP
(l)(x,A) + (1 − θl)π

(l)(A)

has invariant distribution π(l) and has better mixing than P (l). But direct sampling
from K(l) is impossible as it requires that we be able to sample from π(l) which is
the problem that we are trying to solve in the first place.

2.3. The EE sampler. Taking ω(l)(x, y) ≡ 1 and

T (l)(y, x,A) = min
(

1,
rl(y)

rl(x)

)
1A(y) +

(
1 − min

(
1,

rl(y)

rl(x)

))
1A(x),(5)

in (2), we get the EE sampler ([15]). In this case the limiting kernel becomes

K(l)(x,A) = θlP
(l)(x,A) + (1 − θl)

∫
X

π(l−1)(dy)T (l)(y, x,A)

(6)
= θlP

(l)(x,A) + (1 − θl)R
(l)(x,A),
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where R(l) is the kernel of the Metropolis–Hastings algorithm with proposal π(l−1)

and target distribution π(l):

R(l)(x,A) =
∫
A

min
(

1,
r(l)(y)

r(l)(x)

)
π(l−1)(dy)

+
[
1 −

∫
X

min
(

1,
r(l)(y)

r(l)(x)

)
π(l−1)(dy)

]
1A(x).

Clearly, K(l) has invariant distribution π(l). In general K(l) will converge faster
than P (l). For example if El − El−1 is bounded from below it is easy to show that
K(l) is always uniformly ergodic, independently of P (l).

For the EE sampler, step 2 of Algorithm 2.1 can now be described as follows.
With probability θl we sample X

(l)
n from P (l)(X

(l)
n−1, ·) and with probability 1 −

θl , we obtain Y (l) by resampling uniformly from {X(l−1)
k :k ≤ n − 1}. Then Y (l)

is accepted with probability min(1, r(l)(Y (l))

r(l)(X
(l)
n−1)

) in which case we set X
(l)
n = Y (l);

otherwise Y (l) is rejected and we set X
(l)
n = X

(l)
n−1.

Actually the EE sampler described above is a simplified version of [15]. Their
original algorithm uses an idea of partitioning. Let {Xi , i = 1, . . . , d} be a partition
of X (in [15], El(x) = E(x)/tl and they take Xi = {x ∈ X :Ei−1 < E(x) ≤ Ei}
for some predefined valuse E0 < E1 < · · · < Ed ). Define the function I (x) = i

if x ∈ Xi ; so XI (x) represents the component of the partition to which x belongs.
Now set ω(l)(x, y) = 1XI (x)

(y) and T (l) as in (5) and we get the EE sampler of [15].
In this general case, the limiting kernel has the same form as in (6) but where R(l)

is now a Metropolis–Hastings algorithm with target distribution π(l) and proposal
kernel Q(l)(x, dy) ∝ π(l−1)(y)1XI (x)

(y)λ(dy). Partitioning the state space and us-

ing the proposal Q(l)(x, dy) ∝ π(l−1)(y)1XI (x)
(y)λ(dy) works well in practice as

it can allow large jumps in the state space to be accepted. But it does not add any
significant feature to the algorithm from the theoretical standpoint. Therefore and
to simplify the analysis, we only consider the case where no partitioning is used
(XI (x) = X for all x ∈ X ).

3. Asymptotics of the EE sampler. For the remaining of the paper, we re-
strict our attention to the EE sampler. In other words, we consider the process
defined in Section 2 with ω(l)(x, y) ≡ 1 and T (l) as defined in (5).

3.1. Notation and assumptions. We start with some notation. If P1,P2 are
kernels on (X , B), the product P1P2 is the kernel P1P2(x,A) = ∫

X P1(x, dy)P2(y,

A). If μ is a signed measure on (X , B), we write μ(f ) to denote the integral∫
μ(dx)f (x) and we will also use μ to denote the linear functional on the space of

R-valued functions on (X , B) thus induced. Similarly, we will write μP1(A) for∫
μ(dx)P1(x,A). Let V : X → [1,∞) be given. For f : (X , B) → R, we define its
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V -norm as |f |V := supx∈X
|f (x)|
V (x)

and we introduce the space L∞
V of measurable

real-valued functions defined on X such that |f |V < ∞. For a signed measure μ on
(X , B) we define by ‖μ‖V := sup{|μ(f )|, f ∈ L∞

V , |f |V ≤ 1}. We equip M, the
set of all probability measures on (X , B), with the metric ‖μ − ν‖V and the Borel
σ -algebra B M(V ) induced by ‖ · ‖V . Whenever V is understood, we will write
(M, B M) instead of (M, B M(V )). For a linear operator T from (L∞

V , | · |V ) into
itself, we define its operator norm by |||T |||V := sup{|Tf |V , f ∈ L∞

V , |f |V ≤ 1}.
We assume that π(l) is of the form

π(l)(dx) = 1

Zl

e−E(x)/tl λ(dx)(7)

for some continuous function E : (X , B) → R that is bounded from below and
t1 > · · · > tK = 1 is a decreasing sequence of positive numbers (temperatures). In
addition, we make the following assumption.

ASSUMPTION (A1). For l = 1, . . . ,K , there exist a set Cl ⊂ X , a probability
measure φl such that φl(Cl) > 0 an integer n0 > 0 and constants λl ∈ (0,1), bl ∈
[0,∞), εl ∈ (0,1] such that for x ∈ X and A ∈ B,

[
P (l)]n0(x,A) ≥ εlφl(A)1Cl

(x)(8)

and

P (l)V (x) ≤ λlV (x) + bl1Cl
(x),(9)

where V (x) = ceκE(x) ≥ 1 for some finite constants c > 0 and κ ∈ (0,1) and 0 <

κ < ( 1
tl

− 1
tl−1

). Moreover

1

1 + (1 − λl)(κ−1(t−1
l − t−1

l−1) − 1)
< θl ≤ 1, l = 1, . . . ,K.(10)

REMARK 3.1.

(1) The drift and minorization conditions (8)–(9) of Assumption (A1) can be
checked for many practical examples. If each P (l) is a Random Walk Metropolis
kernel or a Metropolis Adjusted Langevin kernel then (8) and (9) are known to hold
under some regularity conditions on the energy function E (see [4, 13]). In these
cases, it is always possible to choose κ small enough to satisfy 0 < κ < ( 1

tl
− 1

tl−1
).

(2) The condition (10) is a technical condition that quantifies the idea that the
rate of resampling 1 − θl should not be too large. It is needed to guarantee that the
geometric drift condition (9) on P (l) transfers to kernels of the type P

(l)
μ that drive

the EE sampler.
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3.2. Law of large numbers. We consider an arbitrary pair {(X(l−1)
n ,X

(l)
n ), n ≥

0}. We will show that under Assumption (A1), if {X(l−1)
n , n ≥ 0} satisfies a strong

law of large numbers, then so does {X(l)
n , n ≥ 0}. Then we use the fact that

{X(0)
n , n ≥ 0} is an ergodic Markov chain to derive a law of large numbers for

any {X(l)
n , n ≥ 0}.

THEOREM 3.1. Assume Assumption (A1) holds and let β ∈ [0,1). Let
f : (M, B M) × (X , B) → R be a measurable function such that

sup
ν∈M

|fν |V β < ∞.(11)

Suppose that there exists a finite constant C such that for any ν,μ ∈ M,

|fν − fμ|V β ≤ C‖ν − μ‖V β .(12)

Suppose also that for any h ∈ L∞
V β ,

1

n

n∑
k=1

h
(
X

(l−1)
k

) −→ π(l−1)(h), P-a.s. as n → ∞,(13)

and that there exists D ∈ F , P(D) = 1 such that for each sample path ω ∈ D,
f

μ
(l−1)
n

(x)(ω) converges to fπ(l−1) (x) as n → ∞ for all x ∈ X . Then

1

n

n∑
k=1

f
μ

(l−1)
k−1

(
X

(l)
k

) −→ π(l)(fπ(l−1)

)
, P-a.s. as n → ∞.(14)

PROOF. See Section 4.3. �

The following corollary is then immediate.

COROLLARY 3.1. Assume Assumption (A1) holds and suppose that {X(0)
n ,

n ≥ 0} is a φ-irreducible aperiodic Markov chain with invariant distribution π(0)

and π(0)(V ) < ∞. Let f ∈ L∞
V β , β ∈ [0,1). Then for any l ∈ {1, . . . ,K},

1

n

n∑
i=1

f
(
X

(l)
i

) −→ π(l)(f ), P-a.s. as n → ∞.(15)

3.3. Central limit with a random centering. We now turn to central limit the-
orems. It can be shown that the kernel P

(l)
μ admits a unique invariant distribution

π
(l)
μ . Since the conditional distribution of X

(l)
n given Fn−1 is P

(l)

μ
(l−1)
n−1

, it is natural

to consider a central limit theorem for
∑n

k=1 f (X
(l)
k ) in which f (X

(l)
k ) is centered

around π
(l)

μ
(l−1)
n−1

(f ). This is done in the next theorem. ⇒ denotes weak conver-

gence and N (μ,σ 2) denotes the Gaussian distribution on R with mean μ and
variance σ 2.
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THEOREM 3.2. Assume Assumption (A1) holds. Let f ∈ L∞
V β , β ∈ [0,1/2) be

such that π(l)(f ) = 0. Define

σ 2
l (f ) := π(l)(f 2) + 2

∞∑
k=1

∫
X

π(l)(dx)f (x)
[
K(l)]kf (x),(16)

where K(l) is given by (6). Assume that σ 2
l (f ) > 0. Then there exists a random

sequence {π(l)
n (f )}, π

(l)
n (f ) → π(l)(f ) (almost surely) as n → ∞ such that

1√
nσl(f )

n∑
k=1

[
f (X

(l)
k ) − π

(l)
k (f )

] ⇒ N (0,1) as n → ∞.(17)

PROOF. See Section 4.4. �

3.4. Central limit theorem with a deterministic centering. We now derive a
central limit theorem for

∑n
k=1 f (X

(l)
k ) around π(l)(f ) which gives more in-

sight in the efficiency of the method as a Monte Carlo sampler from π(l). We
restrict ourselves to the case where l = 1; that is, we only consider the pair
{(X(0)

n ,X
(1)
n ), n ≥ 0}. Moreover, we assume in this section that X is a compact

subset of R
d (equipped with its Euclidean metric). More precisely:

ASSUMPTION (A1′). X is a compact subset of R
d . For l = 0,1, there exist an

integer n0 > 0, a constant εl ∈ (0,1] a probability measure φl such that for x ∈ X
and A ∈ B, [

P (l)]n0(x,A) ≥ εlφl(A).(18)

Let C(X ,R) be the space of all continuous functions from X → R. We en-
dowed C(X ,R) with the uniform metric |f |∞ := supx∈X |f (x)| and its Borel σ -
algebra. Let Lip(X ,R) be the subset of Lipschitz functions of C(X ,R) [we say
that f : X → R is Lipschitz if there exists C < ∞ such that for any x, y ∈ X ,
|f (x) − f (y)| ≤ C|x − y|].

For f : X → R bounded measurable, define the function

U(x) = Uf (x) := ∑
j≥0

(
P

(1)

π(0)

)j
f (x),

the solution to the Poisson equation for f and P
(1)

π(0) . To simplify the notations,

we omit the dependence of U on f . Notice that P
(1)

π(0) is the limiting kernel in the

EE sampler, denoted K(1) in (6). Clearly, Assumption (A1′) implies as shown in
Lemma 4.1 below that the kernel P

(1)
μ is also uniformly ergodic, uniformly in μ.
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In particular |U |∞ < ∞. We assume that the function U is Lipschitz whenever f

is Lipschitz:

f ∈ Lip(X ,R) implies that
∑
j≥0

(
P

(1)

π(0)

)j
f ∈ Lip(X ,R).(19)

We comment on (19) below. Let f ∈ C(X ,R) such that π(1)(f ) = 0. Consider
the partial sum Sn = ∑n

k=1 f (X
(1)
k ). Since U satisfies the Poisson equation U −

P
(1)

π(0)U = f , we can rewrite Sn as

Sn =
n∑

k=1

U
(
X

(1)
k

) − P
(1)

π(0)U
(
X

(1)
k

)

= Mn +
n∑

k=1

P
(1)

μ
(0)
k

U
(
X

(1)
k

) − P
(1)

π(0)U
(
X

(1)
k

) + ε(1)
n ,

where Mn = ∑n
k=1 U(X

(1)
k ) − P

(1)

μ
(0)
k−1

U(X
(1)
k−1) is a martingale and ε

(1)
n = P

(1)

μ
(0)
0

×
U(X

(1)
0 ) − P

(1)

μ
(0)
n

U(X
(1)
n ).

We introduce the function

Hx(y) := T (1)(y, x,U) − R(1)(x,U)
(20)

=
∫

T (1)(y, x, dz)U(z) −
∫

π(0)(dy)

∫
T (1)(y, x, dz)U(z).

Since P
(1)
μ (x, dz) = θ1P

(1)(x, dz) + (1 − θ1)
∫

μ(dy)
∫

T (1)(y, x, dz), we have

P (1)
μ U(x) − P

(1)

π(0)U(x) = (1 − θ1)

∫
μ(dy)Hx(y),

so that we can rewrite Sn as

Sn = Mn + (1 − θ1)

n∑
k=1

1

k

k∑
j=1

H
X

(1)
k

(
X

(0)
j

) + ε(1)
n

= Mn + (1 − θ1)

n∑
k=1

1√
k
ηk

(
X

(1)
k

) + ε(1)
n ,

where ηn is the random field

ηn(x) := n−1/2
n∑

k=1

Hx

(
X

(0)
k

)
.

We will see that ηn is a C(X ,R)-valued random element. To describe its asymp-
totic behavior we introduce the function

U(0)
x (y) = ∑

j≥0

[
P (0)]jHx(y),
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where for a kernel Q, QHx(y) = ∫
Q(y,dz)Hx(z) and the covariance function

�(x, y) =
∫ [

U(0)
x (z)U(0)

y (z) − (
P (0)U(0)

x (z)
)(

P (0)U(0)
y (z)

)]
π(0)(dz).(21)

If f,g ∈ C(X ,R), with an abuse of notation we will also write �(f,g) for the
quantity

�(f,g) =
∫ [

U
(0)
f (z)U(0)

g (z) − (
P (0)U

(0)
f (z)

)(
P (0)U(0)

g (z)
)]

π(0)(dz),

where U
(0)
f (x) = ∑

j≥0[P (0)]jf (x).

THEOREM 3.3. Assume Assumption (A1′) and (19) hold and suppose that
E ∈ Lip(X ,R). Let f ∈ Lip(X ,R) such that π(1)(f ) = 0. Then

1√
n

n∑
k=1

f
(
X

(1)
k

) ⇒ N
(
0, σ 2

� (f ) + 4(1 − θ1)
2�(ḡ, ḡ)

)
as n → ∞,(22)

where ḡ(·) := ∫
π(1)(dx)Hx(·) and

σ 2
� (f ) := π(1)(f 2) + 2

∞∑
k=1

∫
X

π(1)(dx)f (x)
(
P

(1)

π(0)

)k
f (x).(23)

PROOF. See Section 4.5. �

Notice from (20) that ḡ(·) = ∫
π(1)(dx)T (1)(·, x,U) − ∫

π(0)(dz)
∫

π(1)(dx) ×
T (1)(z, x,U). Thus Theorem 3.3 shows that the asymptotic variance of the EE
sampler is the sum of the asymptotic variance in estimating π(1)(f ) as if the
limiting kernel P

(1)

π(0)
is known [the term σ 2

� (f )] plus the asymptotic in using

the chain {X(0)
n , n ≥ 0} to estimate the expectation under π(0) of the function∫

π(1)(dx)T (1)(·, x,U). In their analysis [8] arrive at a similar CLT for interact-
ing MCMC algorithms. Notice also that U(x) = ∑

j≥0(P
(1)

π(0) )
j f (x). Thus in most

cases, the function
∫

π(1)(dx)T (1)(·, x,U) will typically take large values and the
asymptotic variance in estimating its expectation will also tend to be large partic-
ularly if the kernel P (0) mixes poorly. Theorem 3.3 thus suggests that for the EE
sampler to be effective in practice it is important that the initial chain {X(0)

n , n ≥ 0}
enjoys a very fast mixing.

A remaining question is to know whether n−1
E[(∑n

k=1 f (X
(1)
k ))2] converges to

σ 2
� (f )+ 4(1 − θ1)

2�(ḡ, ḡ). Unfortunately the answer is no in general as shown by
the following example:
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PROPOSITION 3.1. Assume Assumption (A1′) holds. Suppose that P (0) =
P (1) = P and π(0) = π(1) = π . Let f : X → R be a bounded measurable func-
tion such that π(f ) = 0. Then

lim
n→∞n−1

E

[(
n∑

k=1

f
(
X

(1)
k

))2]
= σ 2

� (f ) + 2(1 − θ1)
2�(ḡ, ḡ).

In the present case ḡ(x) = U(x) = ∑
j≥0 θ

j
1 P jf (x) and

σ 2
� (f ) = π(|f |2) + 2

∞∑
k=1

θk
1

∫
π(dx)f (x)P kf (x).

PROOF. See Section 4.6. �

REMARK 3.2. Assumption (19) can often be easily checked. Indeed, we
have U(x) = f (x) + P

(1)

π(0)U(x), where P
(1)

π(0) = θ1P
(1) + (1 − θ1)R

(1), where

R(1) is the independent Metropolis–Hastings algorithm with target π(1) and pro-
posal π(0). Let us assume that P (1) is also a Metropolis–Hastings kernel with
target π(1) and proposal q(x, y). Denote α(x, y) [resp. ᾱ(x, y)] the acceptance
probability of P (1) [resp. R(1)], and denote a(x) := ∫

α(x, y)q(x, y) dy [resp.
a(x) := ∫

α(x, y)π(0)(y) dy] the average acceptance probability at x for P (1)

[resp. for R(1)]. Then we have

U(x)
(
1 − θ1

(
1 − a(x)

) − (1 − θ1)
(
1 − ā(x)

))
= f (x) + θ1

∫
α(x, y)q(x, y)U(y)dy + (1 − θ1)

∫
ᾱ(x, y)π(0)(y)U(y) dy.

Thus if π(0), π(1) and q such that a and ā remains bounded away from 0 and the
integral operators h → ∫

α(x, y)q(x, y)h(y) dy and h → ∫
ᾱ(x, y)π(0)(y)h(y) dy

transform bounded measurable functions into Lipschitz functions, then (19) hold.
For example, if π(0), π(1) and q are all positive on X and of class C 1 then (19)
hold.

REMARK 3.3. The result developed above relies heavily on the Lipschitz con-
tinuity assumption. Under that assumption, we show that the stochastic process
{ηn,n ≥ 0} lives in the Polish space C(X ,R) which allows us to use the standard
machinery of weak convergence in Polish spaces. If f is only assumed measurable
the theorem above no longer hold. But a similar result can still be obtained using
weak convergence techniques in nonseparable metric spaces. But we do not pursue
this here.
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3.5. An illustrative example. Consider the following example. Suppose that
we want to sample from the bivariate normal distribution N (0,�), with covariance
matrix

� =
[

0.96 2.44
2.44 7.04

]
.

For this problem, we compare a Random Walk Metropolis (RWM) algorithm, the
EE sampler, the MCMC algorithm based on the limiting kernel of EE sampler (call
it limit EE sampler), IR-MCMC and the MCMC algorithm based on the limiting
kernel of IR-MCMC (limit IR-MCMC sampler).

For the RWM sampler, the proposal kernel is N (0, I2), where I2 is the 2-
dimensional identity matrix. For the adaptive chains, we use four chains with
π(0) = π1/10, π(1) = π1/5, π(2) = π1/2 and π(3) = π . We take θl = θ = 0.5 and
P (l) is taken to be a RWM algorithm with target π(l) and proposal N (0, I2). It can
be checked that Assumption (A1) holds for this problem. We simulate each of the
five samplers for N = 10,000 iterations. We compare the samplers on their mean
square errors (MSE) in estimating the first two moments of the two components of
the distribution π . We calculate the MSEs by repeating the simulations 100 times.
The results are reported in Table 1.

From these results we see (as expected) that the limit EE sampler is 3 to 25 times
more efficient than the RWM sampler, and the limit IR-MCMC sampler is 15 to
50 more efficient than the RWM sampler. But IR-MCMC itself is hardly more
efficient than the RWM sampler. If we take the computation times into account, it
becomes hard to make the case that any of these adaptive sampler is better than the
plain RWM. Similar conclusions can be drawn for the EE sampler.

TABLE 1
Mean square error and ratios (with respect to the RWM sampler) for IR-MCMC, limit IR-MCMC,

EE and limit EE. Based on 100 replications of 10,000 iterations of each sampler

E(X1) E(X2) E(X2
1) E(X2

2)

RWM MSE 0.0099 0.0803 0.0091 0.5525
Ratios 1.0 1.0 1.0 1.0

IR-MCMC MSE 0.0098 0.0774 0.0047 0.2962
Ratios 1.00 1.04 1.95 1.87

Limit IR-MCMC MSE 0.0002 0.0017 0.0006 0.0296
Ratios 48.43 46.20 14.18 18.66

EE MSE 0.0057 0.0435 0.0045 0.2810
Ratios 1.74 1.84 2.02 1.97

Limit EE MSE 0.0004 0.0030 0.0034 0.1966
Ratios 25.99 26.36 2.67 2.81
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4. Proofs.

4.1. Preliminary results on kernels of the form P
(l)
ν . For a probability mea-

sure ν and l = 1, . . . ,K , let P
(l)
ν as in (2) with ω(l) ≡ 1 and T (l) as in (5). The

following lemma shows that P
(l)
ν satisfies a drift and a minorization conditions

with constant that actually do not depend on ν.

LEMMA 4.1. Assume Assumption (A1) holds. Then there exists λ′
l ∈ (0,1)

that does not depend on ν such that for x ∈ X and A ∈ B:[
P (l)

ν

]n0(x,A) ≥ θlεlφl(A)1Cl
(x)(24)

and

P (l)
ν V (x) ≤ λ′

lV (x) + bl1Cl
(x),(25)

where Cl , φl , bl , εl and V are as in Assumption (A1).

PROOF. We have P
(l)
ν ≥ θlP

(l). Therefore (24) follows from the minorization
condition (8).

Define δl = (κ−1(t−1
l − t−1

l−1) − 1)−1. We will show that∫
ν(dy)T (l)(y, x,V ) ≤ (1 + δl)V (x).(26)

Given the drift condition (9), this will imply

P (l)
ν V (x) ≤ (

θlλ + (1 − θl)(1 + δl)
)
V (x) + bl1Cl

(x)

≤ λ′
lV (x) + bl1Cl

(x),

where λ′
l = θlλ + (1 − θl)(1 + δl) ∈ (0,1) by the condition on κ in Assump-

tion (A1).

Observe that r(l)(x) = e−E(x)(t−1
l −t−1

l−1), t−1
l − t−1

l−1 > 0 and V (x) = ceκE(x) ≥ 1,
κ ∈ (0,1). This implies that r(l)(y)/r(l)(x) ≥ 1 if and only if E(y) ≤ E(x). Denote
A(x) = {y ∈ X :E(y) ≤ E(x)} and R(x) = {y ∈ X :E(y) > E(x)}. Then we have∫

ν(dy)T (l)(y, x,V )

=
∫

A(x)
ν(dy)T (l)(y, x,V ) +

∫
R(x)

ν(dy)T (l)(y, x,V )

=
∫

A(x)
ν(dy)V (y) +

∫
R(x)

ν(dy)
r(l)(y)

r(l)(x)
V (y)

+ V (x)

∫
R(x)

ν(dy)

(
1 − r(l)(y)

r(l)(x)

)
,
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=
∫

A(x)
ν(dy)V (y) + V (x)

∫
R(x)

ν(dy)

+
∫

R(x)
ν(dy)

r(l)(y)

r(l)(x)

(
V (y) − V (x)

)

≤ V (x) + V (x)

∫
R(x)

ν(dy)
r(l)(y)

r(l)(x)

(
V (y)

V (x)
− 1

)

= V (x)

[
1 +

∫
R(x)

e−(E(y)−E(x))(1/tl−1/tl−1)

× (
eκ(E(y)−E(x)) − 1

)
ν(dy)

]

≤ V (x)
κ

1/tl − 1/tl−1 − κ
.

In the last line we use the following inequality: for 0 < x < y: e−y(ex − 1) ≤
x/(y − x). �

From Lemma 4.1, we deduce that for any probability measure ν, P
(l)
ν has an

invariant distribution π
(l)
ν such that

π(l)
ν (V ) ≤ bl.(27)

See [17], Theorems 15.0.1 and 14.3.7. The lemma also implies that for any β ∈
(0,1], there exist constants Cβ < ∞ and ρβ ∈ (0,1) that does not depend on ν

such that ∥∥[
P (l)

ν

]k
(x, ·) − π(l)

ν (·)∥∥V β ≤ Cβρk
βV β(x), k ≥ 0, x ∈ X .(28)

See, for example, [7] for a proof. The following lemma holds.

LEMMA 4.2. Fix β ∈ [0,1] and μ and ν two probability measures on (X , B)∣∣∣∣∣∣P (l)
μ − P (l)

ν

∣∣∣∣∣∣
V β ≤ 2‖μ − ν‖V β .(29)

PROOF. For f ∈ L∞
V β such that |f |V β ≤ 1, we have

P (l)
μ f (x) − P (l)

ν f (x) = (1 − θl)

∫
T (l)(y, x, f )

(
μ(dy) − ν(dy)

)
,

where T (l)(y, x, f ) = min(1,
rl(y)
rl(x)

)(f (y) − f (x)) + f (x). Therefore

P
(l)
μ f (x) − P

(l)
ν f (x)

(1 − θl)V β(x)

=
∫ min(1, r(l)(y)/r(l)(x))(f (y) − f (x))

V β(x)V β(y)
V β(y)

(
μ(dy) − ν(dy)

)
.
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Now for |f |V β ≤ 1, |min(1,r(l)(·)/r(l)(x))(f (·)−f (x))

V β(x)V β(·) V β(·)|V β ≤ 2 for all x ∈ X .
Therefore∣∣∣∣

∫ min(1, r(l)(y)/r(l)(x))(f (y) − f (x))

V β(x)V β(y)
V β(y)

(
μ(dy) − ν(dy)

)∣∣∣∣
≤ 2 sup

|f |
V β ≤1

∣∣∣∣
∫

f (y)
(
μ(dy) − ν(dy)

)∣∣∣∣
= 2‖μ − ν‖V β . �

For l ∈ {1, . . . ,K}, define the kernel

N(l)
μ f (x) =

∫
μ(dy)f (y)min

(
1,

r(l)(y)

r(l)(x)

)
, x ∈ X .

LEMMA 4.3. Let μ be a probability measure on (X , B). For x1, x2 ∈ X , and
f ∈ L∞

V β , β ∈ [0,1]
∣∣N(l)

μ f (x1) − N(l)
μ f (x2)

∣∣
(30)

≤ |f |V β

∣∣eτE(x1) − eτE(x2)
∣∣∣∣∣∣

∫
μ(dy)e−(τ−κβ)E(y)

∣∣∣∣
with τ = 1/tl − 1/tl−1 and κ as in Assumption (A1).

PROOF. Fix x1 and x2 and define �(y) = V β(y)|min(1,
r(l)(y)

r(l)(x1)
) − min(1,

r(l)(y)

r(l)(x2)
)|. On r(l)(y) ≥ max(r(l)(x1), r

(l)(x2)), �(y) = 0. On r(l)(x1) ≤ r(l)(y) ≤
r(l)(x2),

�(y) = V β(y)

(
1 − r(l)(y)

r(l)(x2)

)

= eκβE(y)(1 − e−τ(E(y)−E(x2))
)

= e−(τ−κβ)E(y)(eτE(y) − eτE(x2)
)

≤ (
eτ(E(x1) − eτE(x2))

)
e−(τ−κβ)E(y).

Similarly, on r(l)(y) ≤ min(r(l)(x1), r
(l)(x2)),

�(y) ≤ ∣∣eτE(x1) − eτE(x2)
∣∣V β(y)r(l)(y)

= ∣∣eτE(x1) − eτE(x2)
∣∣e−(τ−κβ)E(y).

Putting the three parts together yields the lemma. �
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REMARK 4.1. Lemma 4.3 will be useful in deriving a uniform law of large
numbers for {X(l)

n }. Actually, this lemma shows that if the function E is continuous
then the kernel N

(l)
μ is a strong Feller kernel that transforms a bounded function f

into a continuous bounded function N
(l)
μ (uniformly in μ). We will use this later.

4.2. Poisson equation. A straightforward consequence of Section 4.1 is that
for any f ∈ L∞

V β , β ∈ (0,1] the function

U(l)
ν f (x) :=

∞∑
k=0

[
P (l)

ν − π(l)
ν

]k
f (x)(31)

is well defined and ∣∣U(l)
ν f

∣∣
V β + ∣∣P (l)

ν U(l)
ν f

∣∣
V β ≤ C|f |V β ,(32)

where C is finite and does not depend on ν nor f . U
(l)
ν f satisfies the (Poisson)

equation

U(l)
ν f (x) − PνU

(l)
ν f (x) = f (x) − π(l)

ν (f ), x ∈ X .(33)

Lemmas 4.1 and 4.2 implie that for all β ∈ (0,1], and μ,ν probability measures
on (X , B): ∥∥π(l)

μ − π(l)
ν

∥∥
V β ≤ C‖μ − ν‖V β ;(34)

for f ∈ L∞
V β , ∣∣U(l)

μ f − U(l)
ν f

∣∣
V β ≤ C|f |V β‖μ − ν‖V β(35)

and ∣∣P (l)
μ U(l)

μ f − P (l)
ν U(l)

ν f
∣∣
V β ≤ C|f |V β‖μ − ν‖V β .(36)

The inequalities (34), (35) and (36) can be derived, for example, by adapting the
proofs of Proposition 3 of [2]. We omit the details. An important point is the fact
that the constant C (whose actual value can change from one equation to the other)
does not depend on f nor ν,μ.

4.3. Proof of Theorem 3.1. Let f : (M, B M) × (X , B) → R be a measurable
function. We will use the notation fμ(x) when evaluating f . We introduce the

partial sum associated to {X(l)
n , n ≥ 0}:

S(l)
n (f ) :=

n∑
k=1

f
μ

(l−1)
k−1

(
X

(l)
k

)

=
n∑

k=1

π
(l)

μ
(l−1)
k−1

(
f

μ
(l−1)
k−1

)

+
n∑

k=1

(
f

μ
(l−1)
k−1

(
X

(l)
k

) − π
(l)

μ
(l−1)
k−1

(
f

μ
(l−1)
k−1

))
.
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Using the Poisson equation (33), we have the decomposition

S(l)
n (f ) =

n∑
k=1

π
(l)

μ
(l−1)
n−1

(
f

μ
(l−1)
k−1

) + M(l)
n (f ) + R

(l)
n,1(f ) + R

(l)
n,2(f ),

(37)

M(l)
n (f ) =

n∑
k=1

D
(l)
k (f ),

where

D
(l)
k (f ) = U

(l)

μ
(l−1)
k−1

f
μ

(l−1)
k−1

(
X

(l)
k

) − P
(l)

μ
(l−1)
k−1

U
(l)

μ
(l−1)
k−1

f
μ

(l−1)
k−1

(
X

(l)
k−1

)
,

R
(l)
n,1(f ) = P (l)U

(l)
0 f0

(
X

(l)
0

) − P
(l)

μ
(l−1)
n

U
(l)

μ
(l−1)
n

f
μ

(l−1)
n

(
X(l)

n

)
and

R
(l)
n,2(f ) =

n∑
k=1

P
(l)

μ
(l−1)
k

U
(l)

μ
(l−1)
k

f
μ

(l−1)
k

(
X

(l)
k

) − P
(l)

μ
(l−1)
k−1

U
(l)

μ
(l−1)
k−1

f
μ

(l−1)
k−1

(
X

(l)
k

)
.

LEMMA 4.4.

sup
1≤l≤K

sup
k,k′≥0

E
(
V

(
X

(l−1)
k′

)
V

(
X

(l)
k

))
< ∞.

PROOF. This is a straightforward consequence of the (uniform in ν) drift con-
dition on P

(l)
ν . �

LEMMA 4.5. Let p > 1 such that pβ ≤ 1. There exists a finite constant C such
that

E
[∣∣R(l)

n,2(f )
∣∣p] ≤ C(logn)p.

Moreover n−1R
(l)
n,2(f ) converges P-almost surely to 0.

PROOF. We use (36), (32) and (11) to obtain∣∣P (l)

μ
(l−1)
k

U
(l)

μ
(l−1)
k

f
μ

(l−1)
k

(
X

(l)
k

) − P
(l)

μ
(l−1)
k−1

U
(l)

μ
(l−1)
k−1

f
μ

(l−1)
k−1

(
X

(l)
k

)∣∣p
(38)

≤ C sup
ν∈M

|fν |pV β

∥∥μ(l−1)
n − μ

(l−1)
n−1

∥∥p

V βV βp(
X

(l)
k

)
.

But μ
(l−1)
n = μ

(l−1)
n−1 + n−1(δ

X
(l−1)
n

− μ
(l−1)
n−1 ) and we get

∥∥μ(l−1)
n − μ

(l−1)
n−1

∥∥
V β = sup

|f |
V β ≤1

∣∣(μ(l−1)
n − μ

(l−1)
n−1

)
(f )

∣∣

≤ 1

n + 1

(
V β(

X(l−1)
n

) + 1

n

n−1∑
k=0

V β(
X

(l−1)
k

))
.
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In view of Lemma 4.4 and since pβ ≤ 1, E[V pβ(X
(l)
k )(V β(X

(l−1)
n ) + 1

n
×∑n−1

k=0 V β(X
(l−1)
k ))p] ≤ C for some finite constant C that does not depend on n.

Therefore, given (38) and (11), we can use Minkowski’s inequality to conclude the
first part of the lemma.

For the second part, by Kronecker’s lemma, it is enough to show that the series∑
k≥1

k−1(
P

(l)

μ
(l−1)
k

U
(l)

μ
(l−1)
k

f
μ

(l−1)
k

(
X

(l)
k

) − P
(l)

μ
(l−1)
k−1

U
(l)

μ
(l−1)
k−1

f
μ

(l−1)
k−1

(
X

(l)
k

))

converges almost surely. This will follow if we show that∑
k≥1

k−1
E

(∣∣P (l)

μ
(l−1)
k

U
(l)

μ
(l−1)
k

f
μ

(l−1)
k

(
X

(l)
k

) − P
(l)

μ
(l−1)
k−1

U
(l)

μ
(l−1)
k−1

f
μ

(l−1)
k−1

(
X

(l)
k

)∣∣)

is finite. But from the above calculations, we have seen that

E
(∣∣P (l)

μ
(l−1)
k

U
(l)

μ
(l−1)
k

f
μ

(l−1)
k

(
X

(l)
k

) − P
(l)

μ
(l−1)
k−1

U
(l)

μ
(l−1)
k−1

f
μ

(l−1)
k−1

(
X

(l)
k

)∣∣) ≤ Ck−1.

The lemma thus follows. �

LEMMA 4.6. Let p > 1 such that βp ≤ 1. Then

sup
n

E
[∣∣R(l)

n,1(f )
∣∣p]

< ∞.

Moreover for any δ > 0,

Pr
[

sup
m≥n

∣∣m−1R
(l)
m,1(f )

∣∣ > δ
]
→ 0 as n → ∞.

PROOF. The first part is a direct consequence of (11) and (32). For the second
part, by Markov’s inequality, we see that

Pr
[

sup
m≥n

∣∣m−1R
(l)
m,1(f )

∣∣ > δ
]
≤ δ−p

E

[ ∑
m≥n

m−p
∣∣R(l)

m,1(f )
∣∣p]

≤ Cδ−p
∑
m≥n

m−p → 0 as n → ∞.
�

LEMMA 4.7. Let p > 1 such that pβ ≤ 1. There exists a finite constant C such
that

E
[∣∣M(l)

n (f )
∣∣p] ≤ Cnmax(1,p/2).

PROOF. By Burkeholder’s inequality applied to the martingale {M(l)
n (f )}, we

get

E
[∣∣M(l)

n (f )
∣∣p] ≤ CE

[(
n∑

k=1

∣∣D(l)
k−1(f )

∣∣2)p/2]
.
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If p ≥ 2, we apply Minkowski’s inequality and use (32) to conclude that

E
[∣∣M(l)

n (f )
∣∣p] ≤ C

{
E

[
n∑

k=1

E
2/p(

V pβ(
X

(l)
k−1

))]}p/2

≤ Cnp/2.

If 1 < p ≤ 2, we use the inequality (a + b)α ≤ aα + bα valid for all a, b ≥ 0,
α ∈ [0,1] to write

E
[∣∣M(l)

n (f )
∣∣p] ≤ CE

(
n∑

k=1

∣∣D(l)
k (f )

∣∣p)

≤ C

n∑
k=1

E
(
V pβ(

X
(l)
k−1

)) ≤ Cn.
�

To deal with the remaining term, we will rely on the following result which is
also of some independent interest.

LEMMA 4.8. Let μ,μ1, . . . be a sequence of probability measures on a mea-
surable space (X , B) such that μn(A) → μ(A) for all A ∈ B and let f,f1, . . .

be a sequence of measurable real-valued functions defined on (X , B) such that
supn |fn|V < ∞ and fn(x) → f (x) for all x ∈ X for some measurable function
V : (X , B) → (0,∞) such that μ(V ) < ∞ and supn μn(V

α) < ∞ for some α > 1.
Then

lim
n→∞μn(fn) = μ(f ).

PROOF. By [19], Chapter 11, Proposition 18, we only need to prove that
μn(V ) → μ(V ). By [19], Chapter 11, Proposition 17, we already have μ(V ) ≤
lim infn→∞ μn(V ). Now we show that lim supn→∞μn(V ) ≤ μ(V ) which will
prove the lemma.

Since V > 0, there exists a sequence of nonnegative simple measurable func-
tions {Vn} that converges increasingly to V μ-a.s. For k ≥ 1, N ≥ 1, define
Ek,N = {x ∈ X :V (x) − Vp(x) ≥ 1

k
, for some p ≥ N}. Clearly, Ek,N ∈ B and

μ(Ek,N) → 0 as N → ∞ for any k ≥ 1. Fix k,N ≥ 1. Then for any n ≥ 1 and any
p ≥ N , we have

μn(V ) = μn(Vp) + μn(V − Vp)

= μn(Vp) +
∫
Ek,N

μn(dx)
(
V (x) − Vp(x)

)

+
∫
Ec

k,N

μn(dx)
(
V (x) − Vp(x)

)
(39)

≤ μn(Vp) +
∫
Ek,N

μn(dx)V (x) + 1

k

≤ μn(Vp) + C(μn(Ek,N))q + 1

k
,
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with q = 1−1/α for some finite constant C. The last inequality uses the inequality
of Holder and the assumption that supn μn(V

α) < ∞ for some α > 1. Since Vk

is simple, μn(Vk) → μ(Vk). Also μn(Ek,N) → μ(Ek,N). With these and letting
n → ∞ and p → ∞ in (39), we have by monotone convergence

lim supn→∞μn(V ) ≤ μ(V ) + C(μ(Ek,N))q + 1

k
.

Letting N → ∞ and then k → ∞, we get lim supn→∞μn(V ) ≤ μ(V ). �

LEMMA 4.9. π
(l)

μ
(l−1)
n

(f
μ

(l−1)
n

) → 0 as n → ∞ with P probability one.

PROOF. To simplify the notations, we write π
(l)
n , P

(l)
n and fn instead of

π
(l)

μ
(l−1)
n

, P
(l)

μ
(l−1)
n

and f
μ

(l−1)
n

respectively. For x ∈ X , and n,m ≥ 1, we have

∣∣π(l)
n (fn) − π(l)(fπ(l−1)

)∣∣ ≤ ∣∣π(l)
n (fn) − (

P (l)
n

)m
fn(x)

∣∣
+ ∣∣(P (l)

n

)m
fn(x) − (

K(l))mfπ(l−1) (x)
∣∣

+ ∣∣(K(l))mfπ(l−1) (x) − π(l)(fπ(l−1)

)∣∣(40)

≤ 2 sup
ν∈M

|fν |V βCβV β(x)ρm
β

+ ∣∣(P (l)
n

)m
fn(x) − (

K(l))mfπ(l−1) (x)
∣∣,

using (28). We will show next that there exists D0 ∈ F , with Pr(D0) = 1 such that
for each path ω ∈ D0, (P

(l)
n )mfn(x)(ω) converges to (K(l))mfπ(l−1) (x) as n → ∞

for all x ∈ X , all m ≥ 0. Then, going back to (40), we can conclude that for each
ω ∈ D0,

lim supn→∞
∣∣π(l)

n (fn) − π(l)(fπ(l−1)

)∣∣(ω) ≤ 2CβV β(x)ρm
β

and the proof will be finished by letting m → ∞.
We can rewrite P

(l)
n (x,A) as

P (l)
n (x,A) = θlP

(l)(x,A) + (1 − θl)N
(l)
n (x,A) + (1 − θl)1A(x)

(
1 − N(l)

n (x, I)
)
,

where N
(l)
n (x,A) = ∫

μn(dy)1A(y)min(1,
r(l)(y)

r(l)(x)
) and N

(l)
n (x, I) = ∫

μn(dy) ×
min(1,

r(l)(y)

r(l)(x)
).

By the law of large numbers assumed for {X(l−1)
n , n ≥ 0}, and since (X , B) is

Polish, there exists a dense countable subset C in X , a countable generating algebra
B0 of B and D ∈ F , P(D) = 1 such that for all x ∈ C and all A ∈ B0:

N(l)
n (x,A) → N(l)(x,A) as n → ∞,(41)

N(l)
n (x, I) → N(l)(x, I) as n → ∞.(42)
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We can also choose D such that the convergence of fn(x)(ω) to fπ(l−1) (x) for
all x ∈ X which is assumed in the theorem hold for all ω ∈ D. If we fix a sample
path ω ∈ D, and we fix x ∈ C , the convergence in (41) can actually be extended
to all A ∈ B by a classical measure theory argument. Also, again for ω ∈ D and
A ∈ B fixed, we can extend the convergence in (41)–(42) to hold for all x ∈ X .
To see why, take x ∈ X arbitrary. Lemma 4.3 and the continuity of E implies that
Nμ(x,A) is a continuous function of x uniformly in μ. Since C is dense, for all
k ≥ 1, there is xk ∈ C such that

∣∣N(l)
μ (x,A) − N(l)

μ (xk,A)
∣∣ ≤ 1

k

for all μ. In particular, N
(l)
n (x,A) ≥ N

(l)
n (xk,A) − 1/k for all n ≥ 1. As n → ∞,

it follows that lim infn→∞ N
(l)
n (x,A) ≥ N

(l)

π(l−1) (xk,A) − 1/k. As k → ∞, by

the continuity of N
(l)

π(l−1)f (·) (Lemma 4.3), we see that lim infn→∞ N
(l)
n (x,A) ≥

N
(l)

π(l−1) (x,A). Similarly, we obtain lim supn→∞N
(l)
n (x,A) ≤ N

(l)

π(l−1) (x,A). So that

limn→∞ N
(l)
n (x,A) = N

(l)

π(l−1) (x,A). Similarly, limn→∞ N
(l)
n (x, I ) = N

(l)

π(l−1) (x,

I ).
This shows that for each sample path ω ∈ D, P (l)

n (x,A) converges to K(l)(x,A)

for all x ∈ X all A ∈ B. By a successive application of Lemma 4.8 (with V ≡ 1),
we can therefore conclude that for each sample path ω ∈ D(

P (l)
n

)m
(x,A) → (

K(l))m(x,A),
(43)

as n → ∞ for all x ∈ X ,A ∈ B,m ≥ 0.

Since supn |fn|V β < ∞ (β ∈ [0,1)) and (P
(l)
μ )mV (x) is uniformly bounded

in μ and m, we can apply Lemma 4.8 again to conclude that for each ω ∈ D,
(P

(l)
n )mfn(x) converges to (K(l))mfπ(l−1) (x) for all x ∈ X , all m ≥ 0, which ends

the proof. �

PROOF OF THEOREM 3.1. We are now in position to prove Theorem 3.1.
Since β ∈ [0,1), we can take p = 1/β in Lemmas 4.5 and 4.6 to conclude that
R

(l)
i,n(f )/n → 0, P-a.s. for i = 1,2 and by the strong law of large numbers for

martingales [9], we conclude that M
(l)
n (f )/n → 0, P-a.s. We finish the proof using

Lemma 4.9. �

4.4. Proof of Theorem 3.2. Take p = 1/β > 2 (since β ∈ [0,1/2)). By the
martingale approximation (37),

S(l)
n (f ) −

n∑
k=1

π
(l)

μ
(l−1)
k−1

(
f

μ
(l−1)
k−1

) = M(l)
n (f ) + R(l)

n (f ).
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As above, we will simplify the notations by writing π
(l)
n (fn) instead of

π
(l)

μ
(l−1)
k−1

(f
μ

(l−1)
k−1

) and similarly for U
(l)
n ,P

(l)
n , etc.

By Lemmas 4.5–4.6, E[|R(l)
n (f )|p] = O((log(n))p). We then deduce that

R
(l)
n (f )/

√
n

P→ 0 and it remains to show that a central limit theorem hold for the
martingale {M(l)

n (f ), Fn}. We need to show that the Lindeberg condition holds:

1

n

n∑
k=1

E
[(

D
(l)
k

)2
(f )1{|D(l)

k (f )|>ε
√

n}
] P→ 0 for all ε > 0 as n → ∞(44)

and that

1

n

n∑
k=1

E
[(

D
(l)
k

)2
(f )|Fk−1

] P→ σ 2(f ),(45)

where σ 2(f ) = π(f 2) + 2
∑∞

i=1 π(l)[f (K(l))if ]. Since supn E(|D(l)
n (f )|p) < ∞

for p > 2, it follows that the Lindeberg condition (44) holds.
For the law of large numbers, we need some notations. Let U(l) denote the fun-

damental kernel of the limiting kernel K(l) and define the functions �
(1)
n (x) =

P
(l)
n (U

(l)
n )2f (x) and �

(2)
n (x) = [P (l)

n U
(l)
n f (x)]2. Simularly, define �(1)(x) =

K(l)(U(l))2f (x) and �(2)(x) = [K(l)U(l)f (x)]2. Then we can rewrite

1

n

n∑
k=1

E
((

D
(l)
k

)2
(f )|Fk−1

)

= 1

n

n∑
k=1

P
(l)
k−1

(
U

(l)
k−1

)2
f

(
X

(l)
k−1

) − [
P

(l)
k−1U

(l)
k−1f

(
X

(l)
k−1

)]2

= 1

n

n∑
k=1

�
(1)
k−1

(
X

(l)
k−1

) + �
(2)
k−1

(
X

(l)
k−1

)
.

Fix f ∈ L∞
V β . We have seen in the proof of Theorem 3.1 that π

(l)
n (f ) con-

verges almost surely to π(l)(f ). Combined with (43) and using dominated con-
vergence it follows that there is D ∈ F , Pr(D) = 1 such that for all sam-
ple path ω ∈ D, U

(l)
n f (x) converges to U(l)f (x) for all x ∈ X . By virtue of

Lemma 4.8, it follows that for all ω ∈ D, �
(j)
n (x) converges to �(j)(x) for all

x ∈ X , j = 1,2. Then the strong law of large numbers (Theorem 3.1), implies
that 1

n

∑n
k=1 E((D

(l)
k )2(f )|Fk−1) converges almost surely to π(l)(K(l)(U(l))2f −

[K(l)U(l)f ]2) which is equal to σ 2(f ) = π(l)(f 2) + 2
∑∞

i=1 π(l)[f (K(l))if ].
4.5. Proof of Theorem 3.3. We continue with the notations of Section 3.4.

LEMMA 4.10. Under the assumptions of Theorem 3.3, there exists a finite
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constant c0 such that

|�(x1, x) − �(x, x)| ≤ c0|x1 − x| for all x, x1 ∈ X .

PROOF. Given the expression of � in (21), it is enough to show that |U(0)
x (y)−

U
(0)
x1 (y)| ≤ c0|x − x1|. But since

∣∣U(0)
x (y) − U(0)

x1
(y)

∣∣ =
∣∣∣∣ ∑
j≥0

[
P̄ (0)]j (

Hx(y) − Hx1(y)
)∣∣∣∣ ≤ C|Hx − Hx1 |∞

(where for a kernel P with invariant distribution π , P̄ = P −π ), the lemma follows
if we show that there exists a finite constant c0 such that for any x1, x2, y ∈ X ,

|Hx1(y) − Hx2(y)| ≤ c0|x1 − x2|.
It is easy to check as in Lemma 4.3 that for any x1, x2, y ∈ X ,

|Hx1(y) − Hx2(y)| ≤ 2|U(x1) − U(x2)|
+ |U |∞

(
e−τE(y) +

∫
e−τE(y)π(0)(dy)

)∣∣eτE(x1) − eτE(x2)
∣∣.

Now the result follow from (19), the Lipschitz assumption on E and the compact-
ness of X . �

PROPOSITION 4.1. Under the assumptions of Theorem 3.3, ηn converges
weakly in C(X ,R) to a mean zero Gaussian process G with covariance function �

and sample paths in C(X ,R) and

E

(
sup
x∈X

|G(x)|
)

< ∞.(46)

PROOF. The existence of G and the bound (46) follows from Lemma 4.10
and Dudley’s Theorem on the existence of Gaussian processes with continuous
sample paths (see, e.g., [16], Theorem 6.1.2). Indeed, if d�(x, y) := (�(x, x) +
�(y, y) − 2�(x, y))1/2 denotes the pseudo-metric associated to �, Lemma 4.10
implies that d�(x, y) ≤ √

2c0|x−y|1/2 and since X is compact, this in turn implies
that N (X , d�, ε) ≤ (Kε−1)d/2 for some finite constant K , where N (X , d�, ·) is
the metric entropy of X under d� .

We now show that ηn converges weakly in C(X ,R) to a mean zero Gaussian
process with continuous sample path and covariance function �. Indeed, the con-
vergence of the finite-dimensional distribution is given by the standard central limit
for uniformly ergodic Markov chains. We use a moment criterion to check that the
family {ηn,n ≥ 0} is tight ([14], Corollary 16.9). It suffices to check that:

(i) For some x0 ∈ X , {ηn(x0), n ≥ 0} is tight.
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(ii) For some positive finite constant a, b, c0,

E[|ηn(x1) − ηn(x2)|a] ≤ c0|x1 − x2|d+b for all x1, x2 ∈ X , n ≥ 0.

The condition (i) is trivially true. To check (ii), we use the resolvent U
(0)
x to write

Hx1(y)−Hx2(y) = (U
(0)
x1 (y)−U

(0)
x2 (y))− (P (0)U

(0)
x1 (y)−P (0)U

(0)
x2 (y)). It follows

that

ηn(x1) − ηn(x2) = Mn(x1, x2) + εn(x1, x2),

where Mn(x1, x2) = ∑n
k=1(U

(0)
x1 (X

(0)
k ) − U

(0)
x2 (X

(0)
k )) − (P (0)U

(0)
x1 (X

(0)
k−1) −

P (0)U
(0)
x2 (X

(0)
k−1)) and εn(x1, x2) = P (0)U

(0)
x1 (X

(0)
0 ) − P (0)U

(0)
x2 (X

(0)
0 ) −

P (0)U
(0)
x1 (X

(0)
n ) − P (0)U

(0)
x2 (X

(0)
n ).

The term Mn(x1, x2) is a martingale and εn(x1, x2) is bounded in n by a con-
stant. By Burkholder’s inequality and some additional straightforward arguments
it follows that for any a ≥ 2

E[|ηn(x1) − ηn(x2)|a] ≤ C
∣∣U(0)

x1
− U(0)

x2

∣∣a∞ ≤ C|x1 − x2|a.
Then it suffices to take a > d . �

We will also need the following simple result.

LEMMA 4.11. If {xk} is a sequence of real numbers such that xn → 0 as
n → ∞ then n−1/2 ∑n

k=1 k−1/2xk → 0 as → ∞.

PROOF. Take ε > 0. Let n0 ≥ 1 s.t. n ≥ n0 implies |xn| ≤ ε. Then for
n ≥ n0, n−1/2|∑n

k=1 k−1/2xk| ≤ n−1/2 ∑n0
k=1 k−1/2|xk|+n−1/2 ∑n

k=n0+1 k−1/2ε ≤
n−1/2 ∑n0

k=1 k−1/2|xk| + 2ε. Letting n → ∞ and ε → 0 yields the result. �

PROOF OF THEOREM 3.3. For the rest of the proof, let G be a mean zero
Gaussian process on X with covariance function � and almost surely continuous
sample paths. We take G independent from the process {(X(0)

n ,X
(1)
n ), n ≥ 0}. From

the Gaussian process G, we define π(G) := ∫
G(x)π(1)(dx) as follows. For each

sample path ω ∈ 	, if Gω(·) is continuous then π(G)(ω) = ∫
π(1)(dx)Gω(x).

Otherwise, we set π(G)(ω) = 0. Since f → π(1)(f ) is a continuous map from
C(X ,R) → R, π(1)(G) is a well-defined random variable.

Back to the partial sum Sn, we have seen that

Sn = Mn + (1 − θ1)

n∑
k=1

k−1/2ηk

(
X

(1)
k

) + ε(1)
n ,

where Mn := ∑n
k=1 U(X

(1)
k )−P

μ
(0)
k−1

U(X
(1)
k−1) and ε

(1)
n = (P

μ
(0)
0

U(X
(1)
0 )−P

μ
(0)
n

×
U(X

(1)
n )). Clearly

sup
n≥1

∣∣(P
μ

(0)
0

U
(
X

(1)
0

) − P
μ

(0)
n

U
(
X(1)

n

))∣∣ ≤ C,



ON THE EFFICIENCY OF SOME ADAPTIVE MONTE CARLO SCHEMES 865

thus the term ε
(1)
n is negligible. That is,

Sn = Mn + (1 − θ1)

n∑
k=1

k−1/2ηk

(
X

(1)
k

) + oP

(√
n
)
,

= Mn + (1 − θ1)

n∑
k=1

1√
k
G

(
X

(1)
k

)

+ (1 − θ1)

n∑
k=1

k−1/2(
ηk

(
X

(1)
k

) − G
(
X

(1)
k

)) + oP

(√
n
)
.

In the above, we denote oP (nr) any random variable Xn such that n−rXn con-
verges in probability to zero. To deal with the term

∑n
k=1 k−1/2(ηn(X

(1)
k ) −

G(X
(1)
k )), we use the Skorohod representation of weak convergence. First note

that ∣∣∣∣∣n−1/2
n∑

k=1

k−1/2(
ηn

(
X

(1)
k

) − G
(
X

(1)
k

))∣∣∣∣∣
≤ n−1/2

n∑
k=1

k−1/2 sup
x∈X

|ηn(x) − G(x)|.

By the Skorohod representation theorem, there exists a version G̃ of G and a
version {η̃n, n ≥ 0} of the random process {ηn,n ≥ 0} such that supx∈X |η̃n(x) −
G̃(x)| → 0 a.s. Therefore, by Lemma 4.11, n−1/2 ∑n

k=1 k−1/2 supx∈X |η̃n(x) −
G̃(x)| converges almost surely and thus in probability to zero. It follows that
n−1/2 ∑n

k=1 k−1/2(ηn(X
(1)
k ) − G(X

(1)
k )) converges also in probability to zero. We

thus arrive at

Sn = Mn + (1 − θ1)

n∑
k=1

1√
k
G

(
X

(1)
k

) + oP

(√
n
)
.

To deal with the term
∑n

k=1
1√
k
G(X

(1)
k ), we introduce V0 = 0 and Vk =∑k

j=1(G(X
(1)
j ) − π(1)(G)):

n∑
k=1

1√
k

(
G

(
X

(1)
k

) − π(1)(G)
)

=
n∑

k=1

1√
k
(Vk − Vk−1)

=
n∑

k=1

1√
k
Vk −

n∑
k=2

(
1√
k

− 1√
k − 1

)
Vk−1 −

n∑
k=2

1√
k − 1

Vk−1
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= 1√
n
Vn +

n∑
k=2

1√
k(k − 1)(

√
k + √

k − 1)
Vk−1

= 1√
n
Vn +

n∑
k=2

(
1√

k(1 + √
1 + 1/(k − 1))

)
1

k − 1
Vk−1.

We deduce that

n−1/2Sn = n−1/2Mn + (1 − θ1)π
(1)(G)n−1/2

n∑
k=1

k−1/2 + n−1Vn

+ 1√
n

n∑
k=2

(
1√

k(1 + √
1 + 1/(k − 1))

)
1

k − 1
Vk−1 + oP (1).

For almost every path ω ∈ 	, Gω(·) is a continuous function from X → R. There-
fore, by the independence assumption and the law of large numbers of Theo-
rem 3.1, n−1 ∑k

j=1 G(X
(1)
j )−π(1)(G) converges in L1 to zero. Using Lemma 4.11

again, we conclude that 1√
n

∑n
k=2(

1√
k(1+√

1+1/(k−1))
) 1
k−1Vk−1 converges also in

L1 to zero. The term 1√
n

∑n
k=1 k−1/2 converges to 2. We thus arrive at

n−1/2Sn = n−1/2Mn + 2(1 − θ1)π
(1)(G) + oP (1).

Proceeding as in the proof of Theorem 3.2, we see that 1√
n
Mn converges weakly

to Z, where Z ∼ N(0, σ 2
� (f )) and is independent from G. We thus conclude

that n−1/2Sn converges weakly to Z + 2(1 − θ1)
∫

π(1)(dx)G(x), where Z and∫
π(1)(dx)G(x) are independent.
Since f → π(1)(f ) is a continuous bounded function from C(X ,R) → R, it fol-

lows from the above that π(1)(ηn) converges weakly to π(1)(G). But π(1)(ηn) =
n−1/2 ∑n

k=1
∫

π(1)(dx)Hx(X
(0)
k ). By the central limit theorem for the uniformly

ergodic chain {X(0)
n , n ≥ 0}, the latter term n−1/2 ∑n

k=1
∫

π(1)(dx)Hx(X
(0)
k ) con-

verges weakly to N(0,�(ḡ, ḡ)), where ḡ(·) = ∫
π(1)(dx)Hx(·) and we are fin-

ished. �

4.6. Proof of Proposition 3.1. In the present case, one can check that
U(x) = ∑

j≥0(P
(1)

π(0) )
j f (x) = ∑

j≥0 θ
j
1 P jf (x) and Hx(y) = U(y). Then the re-

solvent function U
(0)
x becomes U

(0)
x (y) = U(0)(y) = ∑

j≥0 P jU(y) which allows

use to write
∑k

j=1 Hx(X
(0)
j ) = M

(0)
k + ε

(0)
k , where M

(0)
k = ∑k

j=1 U(0)(X
(0)
k ) −

PU(0)(X
(0)
k−1) and ε

(0)
k = PU(0)(X

(0)
0 ) − PU(0)(X

(0)
k ). Thus we have

Sn = Mn + (1 − θ1)

n∑
k=1

k−1M
(0)
k + εn,
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where εn = ε
(1)
n + ∑n

k=1 k−1ε
(0)
k . The term εn is negligible and is suffices to study

the limit of

E

[(
Mn + (1 − θ1)

n∑
k=1

k−1M
(0)
k

)2]
= E(M2

n) + (1 − θ1)
2
E

[(
n∑

k=1

k−1M
(0)
k

)2]

+ 2(1 − θ1)E

[
Mn

n∑
k=1

k−1M
(0)
k

]
.

Define D(0)(x, y) = U(0)(y) − PU(0)(x) and D(1)(x, y) = U(y) − PU(x). It is
easy to see that for any i, j ≥ 1, E(D(0)(X

(0)
i−1,X

(0)
i )D(1)(X

(1)
j−1,X

(1)
j )) = 0. From

which we deduce that E[Mn

∑n
k=1 k−1M

(0)
k ] = 0.

We write
∑n

k=1 k−1M
(0)
k = ∑n

j=1
∑n

k=j k−1D(0)(X
(0)
j−1,X

(0)
j ) and since the

terms D(0)(X
(0)
j−1,X

(0)
j ) are martingale differences, we get

E

[(
n∑

k=1

k−1M
(0)
k

)2]

= E

[(
n∑

j=1

(
n∑

k=j

k−1

)
D(0)(X(0)

j−1,X
(0)
j

))2]

=
n∑

j=1

(
n∑

k=j

k−1

)2

E
[(

D(0)(X(0)
j−1,X

(0)
j

))2]

=
∫

π(dx)

∫
P(x, dy)

(
D(0)(x, y)

)2
n∑

j=1

(
n∑

k=j

k−1

)2

+
n∑

j=1

(
n∑

k=j

k−1

)2(
E

[(
D(0)(X(0)

j−1,X
(0)
j

))2]

−
∫

π(dx)

∫
P(x, dy)

(
D(0)(x, y)

)2
)
.

Since D(0) is a bounded continuous function and {X(0)
n } is uniformly ergodic,

the second term on the r.h.s. divided by n converges to zero. Then we notice that
limn→∞ n−1 ∑n

i=1(
∑n

k=j k−1)2 = 2 and we conclude that

lim
n→∞ E(n−1S2

n) =
∫

π(dx)

∫
P(x, dy)

{(
D(1)(x, y)

)2 + 2(1 − θ1)
2(

D(0)(x, y)
)2}

.
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