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OPTIMAL DETECTION OF A CHANGE-SET IN
A SPATIAL POISSON PROCESS

BY B. GAIL IVANOFF1 AND ELY MERZBACH

University of Ottawa and Bar-Ilan University

We generalize the classic change-point problem to a “change-set” frame-
work: a spatial Poisson process changes its intensity on an unobservable ran-
dom set. Optimal detection of the set is defined by maximizing the expected
value of a gain function. In the case that the unknown change-set is defined by
a locally finite set of incomparable points, we present a sufficient condition
for optimal detection of the set using multiparameter martingale techniques.
Two examples are discussed.

1. Introduction. In this paper, we consider the multiparameter version of the
classic optimal detection problem; the goal is to detect the occurrence of a random
set on which an observable Poisson process changes its intensity. To be precise,
we let N = {Nt, t ∈ R2+} be a nonexplosive point process defined on the positive
quadrant of the plane and let {τn} be its jump points, numbered in some arbitrary
way. Then Nt = ∑∞

n=1 I{τn≤t} (cf. [6]). Here, “≤” denotes the usual partial order
on R2+ : s = (s1, s2) ≤ t = (t1, t2) ⇔ s1 ≤ t1, s2 ≤ t2. On some random set ξ , the
intensity of N changes from μ0 to μ1, where 0 < μ0 < μ1: specifically, given ξ ,
N is a Poisson process with intensity

μ0I{t /∈ξ} + μ1I{t∈ξ} = μ0 + (μ1 − μ0)I{t∈ξ}.
The problem is that the “change-set” ξ is unobservable and we must detect ξ as
well as possible, given our observation of the point process N . In particular, our
goal is to find a random set ξ̂ that maximizes the expected value of a specified
valuation or gain function. The random set ξ̂ must be adapted to the underlying
information structure: if the information available to us at t ∈ R2+ is represented by
the σ -field Ft , then we must have {t ∈ ξ̂} ∈ Ft .

There are many potential areas of application. For example:

• Environment: The increased occurrence of polluted wells in a rural area could
indicate a geographic region that has been subjected to industrial waste.

• Population health: Unusually frequent outbreaks of a disease such as leukemia
near a nuclear power plant could signal a region of possible air or ground con-
tamination.
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• Astronomy: A cluster of black holes could be the result of an unobservable
phenomenon affecting a region in space.

• Quality control: An increased rate of breakdowns in a certain type of equipment
might follow the failure of one or more components.

• Archaeology: An increased number of archaeological items such as ancient
coins found in a particular region could indicate the location of an event of
historical interest.

• Forestry: The spread of an airborne disease through a forest would occur at a
higher rate on ξ , the set of points to the northeast of the (unobserved) point (σ )
of initial infection if the prevailing winds are from the southwest.

It is this final type of example, illustrated in Figure 1, that motivates the model to
be studied in this paper.

As will be discussed in the conclusion, this paper represents only a first step in
the solution of what we call the “optimal set-detection problem.” Here, we consider
the case in which the change-set ξ is a random upper layer (cf. Section 2) generated
by a locally finite set of incomparable points. In general, the optimal solution ξ̂ will
be a random upper layer which is adapted to the available information structure.
This means that the solution is exact in the sense that it is explicitly defined by the
observed data points. This problem cannot be solved by one-parameter methods.
Indeed, even if the random set is characterized by a single change-point, it will be
seen that the optimal solution does not necessarily correspond to a point.

FIG. 1. A change-set ξ generated by a single point σ .
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In the one-parameter case, the optimal detection of an exponential change time
in a Poisson process was thoroughly studied in [5] using martingale techniques
combined with Bayesian arguments (see also [13] for a different approach to the
same problem). In the general set-indexed framework, we found only a very few
papers addressing the problem of a change-point or a change-set (cf. [4], [10] and
[11]). However, none of these papers deal with the question of the existence of an
optimal solution to the detection problem. Our approach, inspired by that of [5],
makes use of the general theory of set-indexed martingales as developed in [6]. We
are then able to solve the problem with a Bayes-type formula.

The paper is structured as follows. In the next section, the model is presented
and the optimal detection problem is formally defined. In Section 3, we give the
necessary background for the multiparameter martingale approach that is the key
for proving the existence of an optimal solution, and develop a semimartingale
representation of the gain function. In Section 4, sufficient conditions for the ex-
istence of an optimal solution are developed, and then applied to two examples in
Section 5. Finally, in Section 6, we discuss possible extensions and directions for
further research.

2. The model. In order to better understand the two-dimensional model, we
review the change-point problem on R+ considered in [5]. We have a nonexplosive
point process N = {Nt, t ∈ R+} on R+, and a random time σ ≥ 0. Given σ , N is
a Poisson process with intensity μ0 on [0, σ ) and intensity μ1 on ξ = [σ,∞)

(μ1 > μ0 > 0). Modifying the notation of [5] slightly, the gain function at t is
defined by

Zt = c0(t ∧ σ) − c1(t − σ)+ + k0 + k1I{t≥σ },(1)

where c0 ≥ 0, c1 > 0 and k1 ≥ 0. The parameters can be interpreted as follows: the
gain function is piecewise linear, increasing at rate c0 before the jump point and
decreasing at rate c1 after. When k1 > 0, a penalty equivalent to −k1 is incurred
for stopping the process before the change has occurred. The gain is maximized
when t = σ .

Let F = (Ft , t ∈ R+) denote the filtration which characterizes the underlying
information available (in [5], the process N is always F -adapted). For various
filtrations, it is shown in [5] that Zt has a smooth semimartingale (SSM) represen-
tation with respect to F :

Zt = Z0 +
∫ t

0
Us ds + Mt,(2)

where M is an F -martingale and U is F -progressive (i.e., observable). If U is
monotone in the sense that Ut ≤ 0 ⇒ Ut+h ≤ 0∀h > 0, then it is straightforward
to see that (cf. [5], Theorem 1) σ̂ := inf{t :Ut ≤ 0} is an optimal F -stopping rule
for Z in terms of expected values: we have

E[Zσ̂ ] = sup{E[Zτ ] : τ an F -stopping time}.(3)
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To motivate the model on R2+, we will rewrite (1) in terms of the single jump point
process Lt = I{σ≤t} and the random set ξ = [σ,∞) = {t : Lt > 0}:

Zt = c0|At ∩ ξc| − c1|At ∩ ξ | + k0 + k1Lt

(4)
= k0 +

∫
At

(−c1 + (c0 + c1)Xu

)
du + k1Lt,

where At = [0, t], | · | denotes Lebesgue measure and Xt = 1 − I{t∈ξ} = I{Lt=0}.
We are now ready to describe the two-dimensional model. We are given a ran-

dom Borel set ξ ⊂ (0,∞)2. N is a nonexplosive point process on R2 such that
given ξ , N is Poisson with intensity μ0 on ξc and μ1 on ξ . It is always assumed
that μ1 > μ0 > 0. (The case μ0 = 0 will be briefly discussed at the end of Sec-
tion 4.) We will assume that the set ξ is generated by a single line point process L:
that is, L is a nonexplosive point process whose jump points are all incompara-
ble (s, t ∈ R2+ are incomparable if both s �≤ t and t �≤ s). It is noted in [7] that in
two or more dimensions, the single line process is the natural generalization of
the single jump process, and in analogy with the change-point model on R+, we
define ξ := {t :Lt > 0}. We observe that ξ is an upper layer (ξ is an upper layer
if t ∈ ξ ⇒ s ∈ ξ ∀s ≥ t). When L has only one jump point σ , we observe that ξ

consists of the points to the northeast of σ . This is illustrated in Figure 1. The more
general situation in which L is a single line process is illustrated in Figure 2. In
this case, ξ consists of all the points to the northeast of one or more jump points
of L.

FIG. 2. A change-set ξ generated by a single line process L.



644 B. G. IVANOFF AND E. MERZBACH

Using notation similar to that used for the one-dimensional problem, for t ∈ R2+
let At = {s ∈ R2+ : s ≤ t} and Xt = 1 − I{t∈ξ} = I{Lt=0}. The definition of the gain
function at t ∈ R2+ is exactly the same is in (4):

Zt = c0|At ∩ ξc| − c1|At ∩ ξ | + k0 + k1Lt

(5)
= k0 +

∫
At

(−c1 + (c0 + c1)Xu

)
du + k1Lt .

Once again, we assume that c0 ≥ 0, c1 > 0 and k1 ≥ 0, and that | · | denotes
Lebesgue measure on R2+.

Any point process N can be indexed by the Borel sets in R2+. As in the Introduc-
tion, if {τn} denotes the jump points of N numbered in some arbitrary way, then
for any Borel set B , N(B) := ∑∞

n=1 I (τn ∈ B). [Therefore, we have Nt = N(At).]
Consequently, we can define the gain function more generally over the class of
lower layers L: a set B ⊆ R2+ is a lower layer if t ∈ B ⇒ At ⊆ B ∀t ∈ R2+. The
gain function at B ∈ L is defined as

Z(B) = c0|B ∩ ξc| − c1|B ∩ ξ | + k0 + k1L(B)
(6)

= k0 +
∫
B

(−c1 + (c0 + c1)Xu

)
du + k1L(B).

A lower layer B and the change-set ξ are illustrated in Figure 3; we observe that
L(B) = 2 in this case.

FIG. 3. A lower layer B and the change-set ξ .
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We see that the gain function defined in (6) is a natural generalization of the one-
dimensional gain function (1). The gain evaluated at B increases in proportion to
the area of B outside of the change-set ξ , and decreases in proportion to the area
inside of ξ . When k1 > 0, there is a penalty incurred that is equivalent to −k1 times
the number of points in L that lie outside of (or “after”) B . The gain is maximized
when B = ξc.

We would like to find a random lower layer that maximizes the expected value
of the gain function. The lower layer will depend on the available information, or
more precisely, the underlying filtration.

A class of σ -fields F = {Ft , t ∈ R2+} is a filtration if:

• F is increasing: s ≤ t ⇒ Fs ⊆ Ft , and
• F is outer-continuous: Ft = ⋂

n Ftn for every decreasing sequence (tn) ⊂ R2+
with tn ↓ t .

DEFINITION 2.1 (Cf. [6]). A closed random lower layer ρ is an F -stopping
set if

{t ∈ ρ} ∈ Ft ∀t ∈ R2+.

The general optimal set-detection problem in two dimensions can now be stated
as follows: for a given filtration F , our goal is to maximize E[Zρ], where ρ is
an F -stopping set. If it can be shown that a stopping set ρ̂ exists that satisfies the
condition

E[Z(ρ̂)] = sup{E[Z(ρ)] :ρ an F -stopping set},(7)

then our optimal estimate of ξ is ξ̂ = ρ̂c [(·) denotes set closure]. It is trivial that
ξ̂ is an upper layer, and by outer continuity of F , it is easily seen that ξ̂ is also an
adapted random set (i.e., {t ∈ ξ̂} ∈ Ft ∀t ∈ R2+).

In this paper, we will be focussing on the sequential estimation problem: that
is, we will be assuming that Ft = F N

t = σ {Ns : s ≤ t}. If ρ is an F N -stopping set,
then I (t ∈ ρ) is a function of the number and locations of jump points of N in the
set At . For technical reasons, we shall see that in general it is necessary to restrict
the detection problem to a bounded rectangle R = [0, r]2. The goal is to find a
stopping set ρ̂ ⊆ R that is optimal in the following sense:

DEFINITION 2.2. An F N -stopping set ρ̂ is called an optimal solution to the
sequential detection problem on R provided that ρ̂ satisfies the following equation:

E[Z(ρ̂)] = sup{E[Z(ρ)] :ρ ⊆ R an F N -stopping set}.(8)

Restricting our attention to R ensures that ρ̂ is bounded and so E[Z(ρ̂)] is
always well defined. In this case, we have an optimal estimate ξ̂R of ξ ∩R, defined
by ξ̂R = R \ ρ̂.
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3. Mathematical preliminaries. In this section we present the mathematical
tools needed in the sequel. In [5], Herberts and Jensen make use of martingale
techniques to provide a simple and elegant method of finding sufficient conditions
for the existence of an optimal solution to the detection problem on R+. Martin-
gale methods have been extended to more general spaces in [6], and we are able to
exploit this theory in a similar way. To motivate the necessary technical details that
follow, we first describe our overall plan of attack. Recall that F N denotes the fil-
tration representing the data that can be observed, and below G will denote a larger
filtration containing additional information, some of which cannot be observed.

Plan of attack:

• The gain function Z can be rewritten as a (two-parameter) semimartingale (De-
finition 3.7):

ZB = k0 +
∫
B

Ut dt + k1MB,

where M is a weak martingale (Definition 3.1) with respect to a filtration G and
U is G -adapted but not necessarily observable (cf. Lemma 3.14).

• For the observable filtration F N and ρ an F N -stopping set, we have E[Mρ] = 0
(Lemma 3.6) and if Vt = E[Ut |F N

t ] (observable), then (Lemma 3.10)

E[Zρ] = k0 + E

[∫
ρ
Ut dt

]
= k0 + E

[∫
ρ
Vt dt

]
.

• If V satisfies a monotonicity property on R (cf. Definition 3.8 and Lemma 3.10),
then there exists an optimal solution ρ̂ to the sequential detection problem on R,
and the optimal estimate of ξ ∩ R is

ξ̂R = {t ∈ R :Vt ≤ 0}.
Keeping this outline of our approach in mind, we continue with the necessary

mathematical details.

3.1. Martingale preliminaries. Martingales on R2+ can be defined in various
ways (cf. [6]), but here we need only the weakest definition. In what follows, T de-
notes either R2+ or a bounded region R = [0, r]2, and (�, F ,P ) is a complete
probability space equipped with a T -indexed filtration F = {Ft : t ∈ T } (without
loss of generality, assume that Ft contains all the P -null sets ∀t ∈ T ). A T -indexed
process X = {Xt : t ∈ T } is adapted to F if Xt is Ft -measurable, for all t ∈ T . For
any T -indexed process X = {Xt : t ∈ T }, for s = (s1, s2) ≤ (t1, t2) = t ∈ T , define
the increment of X over the rectangle (s, t] = (s1, t1] × (s2, t2] in the usual way:

X(s, t] = X(t1,t2) − X(s1,t2) − X(t1,s2) + X(s1,s2).
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DEFINITION 3.1. Let M = {Mt : t ∈ T } be an integrable process on T ,
adapted to a filtration F = {Ft : t ∈ T }. M is a weak F -(sub)martingale if M is
equal to 0 on the axes, and for every s ≤ t ∈ T ,

E[M(s, t]|Fs] = (≥)0.

(A process X is integrable if E[|Xt |] < ∞∀t ∈ T .)

DEFINITION 3.2. Let v = {vt : t ∈ T } be a function on T . We say that v is
increasing (decreasing) if:

• v is 0 on the axes,
• v is outer continuous with inner limits: that is, v is continuous from above and

with limits from the other three quadrants at each t ∈ T , and
• for every s ≤ t ∈ T , v(s, t] ≥ (≤)0.

A process V = {Vt : t ∈ T } is increasing (decreasing) if for each ω ∈ �, the func-
tion V·(ω) is increasing (decreasing).

COMMENT 3.3. An increasing function v can be regarded as the distribution
of a measure on R2+. Therefore, v(B) is well defined for any Borel set B , where
we use v· and v(·) to denote, respectively, the function and the generated measure.
Likewise, a decreasing function generates a negative measure, and we will use
similar notation.

DEFINITION 3.4. Let L be a weak F -submartingale. An increasing process
� is a compensator for L if � is F -adapted and M = L−� is a weak martingale.

COMMENT 3.5. As defined above, the compensator of a submartingale need
not be unique (any increasing process is trivially a compensator for itself). A type
of predictability is required for uniqueness (cf. [6]), but this point is not of impor-
tance here.

In light of Comment 3.3, the following lemma is a special case of of
Lemma 3.3.5 of [6].

LEMMA 3.6. If M is a weak martingale which can be expressed as the dif-
ference of two increasing integrable processes, and ρ is a stopping set such that
ρ ⊆ R = [0, r]2, then M(ρ) is well defined and E[M(ρ)] = 0.

DEFINITION 3.7. Let Z = {Zt : t ∈ T } be a process on T , adapted to a filtra-
tion F = {Ft : t ∈ T }. Z is a smooth semimartingale with respect to F (F -SSM) if
it satisfies a decomposition of the form

Zt = Z(0,0) +
∫ t1

0

∫ t2

0
U(s1,s2) ds2 ds1 + Mt(9)



648 B. G. IVANOFF AND E. MERZBACH

for each t = (t1, t2) ∈ T , where U is an outer continuous process with inner
limits adapted to F and M is a weak F -martingale. We denote the F -SSM as
Z = (U,M).

In order to show that an optimal solution exists to the sequential detection prob-
lem, we will require a monotonicity property.

DEFINITION 3.8. A function v = {vt : t ∈ T } is monotone on T if vs ≤ 0 ⇒
vt ≤ 0∀t ≥ s ∈ T . A process V is monotone if V·(ω) is monotone for each ω ∈ �.

COMMENT 3.9.

1. Note that any decreasing function is monotone, but the converse is not true.
2. If a process V is decreasing in each parameter separately on T , then V is

monotone on T but not necessarily decreasing in the sense of Definition 3.2.
3. Note that if V is monotone, then Vt > 0 ⇒ Vs > 0∀s ≤ t .
4. If V is monotone and adapted to a filtration F , the set

ρ̂ = {t ∈ T :Vs > 0∀s � t}(10)

is an F -stopping set (cf. Definition 2.1). [s = (s1, s2) � (t1, t2) = t ⇔ si < ti if
ti > 0, and si = 0 if ti = 0, i = 1,2.] Clearly, ρ̂ is a random closed lower layer,
and the fact that V is adapted ensures that {t ∈ ρ̂} ∈ Ft : taking any sequence
(tn) ↑ t with tn � t , by monotonicity it follows that

{t ∈ ρ̂} = ⋂
n

{Vtn > 0} ∈ ⋃
n

Ftn ⊆ Ft .

In [5], the solution to the optimal stopping problem is based on a SSM represen-
tation of the form (2), which in turn is based on a projection theorem. The question
of the existence of optional and predictable projections in higher dimensions is a
delicate one, usually requiring a strong assumption of conditional independence
on the underlying filtration [denoted (F4) in the two-dimensional literature]. For
details, see [12], for example. In practice, one can generally show directly that a
suitable projection exists without relying on a general existence theorem, and for
our purposes the following lemma will be adequate.

LEMMA 3.10. Let U be a bounded T -indexed process adapted to a filtration
G such that U is outer-continuous with inner limits. If F is a subfiltration of G
(i.e., Ft ⊆ Gt ∀t), and if a version of Vt = E[Ut |Ft ] exists that is outer-continuous
with inner limits, then for any F -stopping set ρ ⊆ R = [0, r]2,

E

[∫
ρ
Ut dt

]
= E

[∫
ρ
Vt dt

]
.(11)
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In addition, if V is monotone on R, then the F -stopping set ρ̂ ⊆ R defined by

ρ̂ = {t ∈ R :Vs > 0∀s � t}(12)

is optimal in the sense that

E

[∫
ρ̂
Ut dt

]
= sup

{
E

[∫
ρ
Ut dt

]
:ρ ⊆ R,ρ an F -stopping set

}
.

PROOF. First, the assumption that U and V have sample paths that are regular
(outer-continuous with inner limits) and that U (and hence V ) is bounded ensures
that the integrals and expectations in (11) are well defined.

Next, let Tn := {( i
2n r,

j
2n r) : 0 ≤ i, j ≤ 2n} denote the “dyadics” of order n in R.

The class of rectangles Cn partitions R, where C ∈ Cn if C is of the form C =
At \ (

⋃
s∈Tn,s �≥t As) for some t ∈ Tn. Let tC− = inf{t ∈ C} denote the lower left

corner of C. We now define the “discrete” approximation ρn of ρ by

ρn = ⋃
C∈Cn:tC−∈ρ

C.

It is straightforward that ρn ⊆ R is an F -stopping set, that (ρn) is decreasing in n

and ρ = ⋂
n ρn. Boundedness and uniform integrability ensure that E[∫ρ Ut dt] =

limn E[∫ρn
Ut dt] and E[∫ρ Vt dt] = limn E[∫ρn

Vt dt]. To complete the proof of
the first statement in the theorem, observe that by boundedness of U ,

E

[∫
ρn

Ut dt

]
= E

[ ∑
C∈Cn

I{tC−∈ρ}
∫
C

Ut dt

]

= E

[ ∑
C∈Cn

I{tC−∈ρ}E
[∫

C
Ut dt

∣∣∣FtC−

]]

= E

[ ∑
C∈Cn

I{tC−∈ρ}E
[∫

C
E[Ut |Ft ]dt

∣∣∣FtC−

]]

= E

[ ∑
C∈Cn

I{tC−∈ρ}E
[∫

C
Vt dt

∣∣∣FtC−

]]

= E

[ ∑
C∈Cn

I{tC−∈ρ}
∫
C

Vt dt

]
= E

[∫
ρn

Vt dt

]
.

The third equality above follows by Fubini and the assumption that V has regular
sample paths, and since t ∈ C ⇒ t ≥ tC−. [The assumption that V has a version
with regular sample paths ensures that V is jointly F × B(R2+)-measurable, where

B(R2+) denotes the Borel sets in R.]
Next, assume that V is monotone. To prove optimality of ρ̂, let ρ ⊆ R be any

other stopping set in R. We have

E

[∫
ρ̂
Ut dt −

∫
ρ
Ut dt

]
= E

[∫
ρ̂\ρ

Vt dt −
∫
ρ\ρ̂

Vt dt

]
≥ 0,
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since V > 0 on ρ̂o (the interior of ρ̂) and V ≤ 0 on ρ̂c. �

3.2. Smooth semimartingale representation of the gain function. We begin
this section with an analysis of the single line process Lt : L is a nonexplosive point
process whose jump points are all incomparable. Single line processes and their
compensators were discussed in [7], to which the reader may refer for more detail.
Heuristically, if F L

s = σ(Lu :u ≤ s), then a process � will be an F L-compensator
of L if

�((s1, s2), (s1 + ds1, s2 + ds2)])
≈ I{Ls=0}E

[
L((s1, s2), (s1 + ds1, s2 + ds2)])|Ls = 0

]
,

since L cannot have any jump points in ((s1, s2), (s1 + ds1, s2 + ds2)]) if Ls > 0
and {Ls = 0} is an atom of F L

s . Define the (deterministic) increasing function
�

(s)
t := E[L(s, t]|Ls = 0], for t ≥ s, and when it exists, let

λs = lim
t1↓s1,t2↓s2

�
(s)
t

(t1 − s1)(t2 − s2)
.

In particular, if λs exists for every s ∈ T and is Lebesgue measurable, then

�t =
∫
At

λuI{Lu=0} du.(13)

In what follows (and as will be seen to be the case in our examples), we will
assume that a representation of the form (13) exists for the compensator � of L,
and we will refer to the deterministic function λ as the weak hazard function of L.
It will always be assumed that λ is continuous.

To better understand the weak hazard, we observe that if E[L] of L is absolutely
continuous with respect to Lebesgue measure with Radon–Nikodym derivative λ̃,
then for every u ∈ T with P(Lu = 0) > 0, λu = λ̃u/P (Lu = 0). To see this, simply
observe that for each t ∈ T ,∫

At

λ̃u du = E[Lt ] = E[�t ] =
∫
At

λuP (Lu = 0) du.(14)

Returning to the gain function (6), let M denote the weak martingale L−� and
recall that Xu = I{Lu=0}. For any lower layer B ⊆ T ,

Z(B) = k0 +
∫
B

(−c1 + (c0 + c1)Xu

)
du + k1L(B)

(15)
= k0 +

∫
B

(−c1 + (c0 + c1 + k1λu)Xu

)
du + k1M(B).

We note that X is outer-continuous with inner limits by definition and that λ is
assumed to be continuous, and so we now have an F L-SSM representation of the
gain function: Z = (U,M), where Ut := −c1 + (c0 + c1 + k1λt )Xt .
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COMMENT 3.11. As a simple illustration, if the point process L and the set
ξ = {t :Lt > 0} are unobservable and no other information is available (i.e., N is
not observed and Ft = {∅,�} ∀t ∈ T ), then for R = [0, r]2, we are looking for a
deterministic set B̂ ⊆ R that maximizes

E[Z(B)] = E

[
k0 +

∫
B

(−c1 + (c0 + c1 + k1λu)Xu

)
du + k1M(B)

]
(16)

= k0 +
∫
B

(−c1 + (c0 + c1 + k1λu)P (Lu = 0)
)
du.

Letting Vu = [−c1 + (c0 + c1 + k1λu)P (Lu = 0)], it is easily seen that V is deter-
ministic and an optimal solution for the detection problem exists if V is monotone,
in which case

B̂ = {t ∈ R :Vu > 0∀u � t}
(17)

=
{
t ∈ R :P(Lu = 0) >

c1

(c0 + c1 + k1λu)
∀u � t

}
.

The optimal estimate of ξ ∩ R is

ξ̂R =
{
t ∈ R :P(Lt = 0) ≤ c1

(c0 + c1 + k1λt )

}
.

EXAMPLE 3.12 (The single jump process). Suppose Lt = I{Y∈At }, where Y

is a T -valued random variable with distribution F and continuous density f . Then
we have λu = fu

1−Fu
. To verify that the representation (13) is satisfied with this

definition, observe first that E[L(s, t]|F L
s ] = F(s,t]

1−Fs
I{Ls=0}. Next,

E

[∫
(s,t]

fu

1 − Fu

I{Lu=0} du
∣∣∣Fs

]
=

∫
(s,t]

fu

1 − Fu

P (Lu = 0|Fs) du

=
∫
(s,t]

fu

1 − Fu

· 1 − Fu

1 − Fs

I{Ls=0} du

= F(s, t]
1 − Fs

I{Ls=0}.

Thus, the increasing process �t = ∫
At

λsI (Ls = 0) ds is a F L-compensator for L,
verifying (13).

It should be noted that in the literature on bivariate survival analysis, the defin-
ition of the hazard function is fu

Su
where Su = P(Y ≥ u). For this reason, we refer

to our hazard λ = f
1−F

as the “weak” hazard.
Returning to Comment 3.11, when no information is available, V is decreas-

ing and (17) defines an optimal deterministic solution if f is decreasing in each
parameter.
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EXAMPLE 3.13 (First line of a Poisson process). Consider a homogeneous
Poisson process J on T with rate γ . If �J denotes the set of jump points of J ,
then the first line of J is the single line point process L with (incomparable) jump
points

�L = min(�J ) = {τ ∈ �J : τ ′ �≤ τ ∀τ ′ ∈ �J such that τ ′ �= τ }.
In this case, ξ = {t :Lt > 0} = {t :Jt > 0}. As is shown in [7], the weak hazard of
L is γ .

Considering the situation in Comment 3.11 when no information is available,
we have Vu = −c1 + (c0 + c1 + k1γ )e−γ u1u2 , which is clearly monotone. In this
case, the optimal solution given in (17) becomes

B̂ =
{
t ∈ R : e−γ t1t2 ≥ c1

(c0 + c1 + k1γ )

}

=
{
t ∈ R : t1t2 ≤ ln(c0 + c1 + k1γ ) − ln(c1)

γ

}

and

ξ̂R =
{
t ∈ R : t1t2 ≥ ln(c0 + c1 + k1γ ) − ln(c1)

γ

}
.

We are now ready to return to the sequential detection problem, and consider the
case in which the process N is observed (recall that N is a Poisson process with
rate μ0 on ξc and μ1 on ξ ). We denote the full filtration F L,N = {F L,N

t : t ∈ T },
where F L,N

t = σ {Ls,Ns, s ≤ t}, and (as before) the subfiltrations F L = {F L
t : t ∈

T } and F N = {F N
t : t ∈ T } where F L

t = σ {Ls : s ≤ t} and F N
t = σ {Ns : s ≤ t}.

Although we defined the weak hazard of L with respect to F L, it is easy to see
that given the full filtration F L,N , L − � is still a weak F L,N -martingale. This
follows because on {Ls = 0} = {s ∈ ξc}, N is a Poisson process with rate μ0 on
As and so N |As (N restricted to As ) adds no additional information about the
behavior of Lt for t > s. Formally, we have

E[L(s, t]|F L,N
s ] = I{Ls=0}�(s)

t = E[L(s, t]|F L
s ].

Therefore, from this discussion we have the following lemma and we are ready to
proceed with finding an optimal solution to the sequential detection problem.

LEMMA 3.14. Equation (15) defines an F L,N -SSM representation of the gain
function Z: Z = (U,M) where Ut := −c1 + (c0 + c1 + k1λt )Xt .

4. Optimal solution to the sequential detection problem. We consider the
F L,N -SSM representation of the gain function (15):

Z(B) = k0 +
∫
B

(−c1 + (c0 + c1 + k1λu)Xu

)
du + k1M(B).
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In order to find sufficient conditions for the existence of an optimal solution in the
sequential case, we will be appealing to Lemma 3.10, with G = F L,N , F = F N

and Ut = −c1 + (c0 + c1 + k1λt )Xt . In order to find Vt = E[Ut |F N
t ], it is enough

to determine

E[Xt |F N
t ] = P(Lt = 0|F N

t ).

As in [5], we use a Bayesian argument. The first step is to determine the conditional
likelihood �N |L(t) of N |At given L and use this to find the likelihood �N(t) of
N |At . Next we find the conditional likelihood �N |Lt=0(t) of N |At on the set {Lt =
0}. Finally, we have

E[Xt |F N
t ] = P(Lt = 0|F N

t )
(18)

= �N |Lt=0(t) × P(Lt = 0)

�N(t)
.

When computing the likelihood �N |L, in fact it is equivalent to condition on the
random upper layer ξ = {u :Lu > 0}. To see this, let (U , dH ) denote the collection
of closed upper layers in T endowed with the Hausdorff metric. It is shown in [8]
that (U , dH ) is a complete separable metric space and that ξ can be regarded as
the unique jump point in a single jump process L̃ on U ; in addition, L determines
and is determined by L̃. In particular, Lt > 0 ⇔ t ∈ ξ ⇔ Et ⊆ ξ , where Et = {s ∈
T : s ≥ t}. Let μξ denote the measure induced by ξ on U .

Given L, or equivalently ξ , N is a Poisson process with rate μ0 on ξc and μ1
on ξ . Using the well-known likelihood for the Poisson process (cf. [3], page 22),
we have

�N |L(t) = �N |ξ (t)

= e−μ0|At\ξ |μN(At\ξ)
0 e−μ1|At∩ξ |μN(At∩ξ)

1(19)

= e−μ0|At |μNt

0 e−(μ1−μ0)|At∩ξ |
(

μ1

μ0

)N(At∩ξ)

.

By considering separately the events {Lt = 0} = {t /∈ ξ} = {Et �⊆ ξ} = {At ∩ ξ =
∅} and {Lt > 0} = {t ∈ ξ} = {Et ⊆ ξ}, we use (19) obtain

�N(t) = P(Lt = 0)e−μ0|At |μNt

0

+e−μ0|At |μNt

0

∫
{D∈U :Et⊆D}

e−(μ1−μ0)|At∩D|
(

μ1

μ0

)N(At∩D)

dμξ (D)(20)

= e−μ0|At |μNt

0

[
P(Lt = 0) + e−(μ1−μ0)|At |Qt

]
,

where

Qt =
∫
{D∈U :Et⊆D}

e(μ1−μ0)|At\D|
(

μ1

μ0

)N(At∩D)

dμξ (D).(21)
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Before continuing, we observe that since μ1 > μ0, Q is increasing in each pa-
rameter separately because each term in the integrand is increasing in each com-
ponent for D fixed, and the range of integration is increasing since the set Et

decreases with each component.
Next, if Lt = 0, then N |At is Poisson with rate μ0, and so

�N |Lt=0 = e−μ0|At |μNt

0 .(22)

Substituting (20) and (22) in (18), we obtain

E[Xt |F N
t ] = e−μ0|At |μNt

0 P(Lt = 0)

e−μ0|At |μNt

0 [P(Lt = 0) + e−(μ1−μ0)|At |Qt ]
(23)

= 1

1 + qtQt

,

where qt = e−(μ1−μ0)|At |
P(Lt=0)

. [If P(Lt = 0) = 0, (23) remains formally valid since

E[Xt |F N
t ] = 0 and qt = ∞.] We are now ready to state our main result:

THEOREM 4.1. Let L be a single line process with continuous weak hazard λ,
and define the function q by

qt = e−(μ1−μ0)t1t2

P(Lt = 0)
for t = (t1, t2) ∈ R2+.

An optimal solution to the sequential detection problem on R = [0, r]2 exists if λ

and q are decreasing and increasing, respectively, in each component on R. In this
case V is monotone on R, and the optimal solution is given by (12):

ρ̂ = {t ∈ R :Vs > 0∀s � t},
where

Vt = −c1 + (c0 + c1 + k1λt )
1

1 + qtQt

.

PROOF. We review our results so far. We have the F L,N -SSM representation
of the gain function Z(B) = k0 + ∫

B Ut dt + k1M(B), where Ut = −c1 + (c0 +
c1 + k1λt )Xt . U is bounded since λ is decreasing in each component and X is an
indicator function. By the argument immediately preceding the theorem, we have
that

Vt = E[Ut |F N
t ] = −c1 + (c0 + c1 + k1λt )

1

1 + qtQt

.(24)

To see that V has a version which is outer-continuous with inner limits (o.c.i.l.),
recall that λ is assumed to be continuous and observe that q is o.c.i.l. by definition.
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Turning next to Q, we see that the integrand in (21) is o.c.i.l. and increasing in
each component in t , as is

μξ({D ∈ U :Et ⊆ D}) = P(Lt > 0).

Therefore, it follows that Q, and hence V are o.c.i.l. Therefore, Lemmas 3.6
and 3.10 imply that for any F N -stopping set ρ ⊆ R,

E[Z(ρ)] = k0 + E

[∫
ρ
Ut dt

]
= k0 + E

[∫
ρ
Vt dt

]
.(25)

To show that an optimal solution ρ̂ exists [as in (12)], it is sufficient to show that
V is monotone (again, by Lemma 3.10). Since we have already seen that Q is
increasing in each component on R, the assumption that λ and q are decreasing
and increasing, respectively, in each component imply that V is monotone on R.
This completes the proof. �

COMMENT 4.2. It has been pointed out by an anonymous referee that the case
μ0 = 0 relates to a so-called support estimation problem. In this case, the random
set ξ denotes the support of a Poisson process with rate μ1. The gain function can
be defined exactly as before, and the analysis proceeds in very much the same way.
Now we know that Nt > 0 ⇒ t ∈ ξ ⇒ Lt > 0, and equation (18) becomes

E[Xt |F N
t ] = P(Lt = 0|F N

t )

= P(Lt = 0|Nt = 0)I (Nt = 0)(26)

= P(Lt = 0)

P (Nt = 0)
I (Nt = 0).

Continuing with the same sort of arguments used previously, if μ0 = 0, equa-
tion (23) becomes

E[Xt |F N
t ] = 1

1 + qtQ̇t

I (Nt = 0),(27)

where qt is defined as before with μ0 = 0, and

Q̇t =
∫
{D∈U :Et⊆D}

eμ1|At\D| dμξ (D).(28)

It is easy now to see that the statement of Theorem 4.1 is still valid in this case,
with V replaced by V̇ , where

V̇t = −c1 + (c0 + c1 + k1λt )
1

1 + qtQ̇t

I (Nt = 0).
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5. Examples. In this section, we apply Theorem 4.1 to our two examples. We
will see that in some sense they are are both analogous to the univariate model of
[5], in which the change-point is exponentially distributed. There are two natural
generalizations in R2+: first, L is the single jump process in which the components
of the jump are independent univariate exponential random variables, and second,
L is the first line of a Poisson process, noting that an exponential random variable
can be regarded as the “first line” of a Poisson process on R+. Although at first
glance the single jump process looks more straightforward, we shall see that in
fact the analysis is far more complex than in the case of the first line of a Poisson
process.

EXAMPLE 5.1 (The single jump process). Referring to Example 3.12, we

have λt = ft

1−Ft
and qt = e−(μ1−μ0)t1t2

1−Ft
. Here we will consider the case in which

the components (Y1, Y2) of the jump Y are independent identically distributed ex-
ponential random variables with parameter γ . In this case,

λt = ft

1 − Ft

= γ e−γ t1γ e−γ t2

1 − (1 − e−γ t1)(1 − e−γ t2)
= γ 2

eγ t1 + eγ t2 − 1
,

and is decreasing in each component. Next, we consider qt :

qt = e−(μ1−μ0)t1t2

1 − (1 − e−γ t1)(1 − e−γ t2)
= e−(μ1−μ0)t1t2

e−γ t1 + e−γ t2 − e−γ (t1+t2)
.

To find sufficient conditions to ensure that q is increasing in t1 and t2 on some
set R = [0, r]2, we will assume that γ > μ1 − μ0 and to simplify the discussion
(without loss of generality, by suitably rescaling the time parameters if necessary)
that μ1 − μ0 = 1. Now rewrite qt = 1/gt where

gt = g(t1,t2) = e−t1(γ−t2)(1 − e−γ t2) + et1t2e−γ t2 .

We will show that if r ≤ lnγ
γ

, then d
dt1

g(t1,t2) ≤ 0 for (t1, t2) ∈ R = [0, r]2. By

symmetry, the same is true for d
dt2

g(t1,t2) for t ∈ R. Therefore, g is decreasing and
q = 1/g is increasing in each component on R, and an optimal solution exists for
the sequential detection model.

To complete the example, we observe that

d

dt1
g(t1,t2) = e−t1(γ−t2)

(−(γ − t2)(1 − e−γ t2) + t2e
γ (t1−t2)

) ≤ 0

if and only if

(γ − t2)(1 − e−γ t2) ≥ t2e
γ (t1−t2)
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or equivalently,

eγ t1 ≤ γ − t2

t2
(eγ t2 − 1).(29)

The left-hand side of (29) is bounded above by γ since t1 ≤ r ≤ lnγ
γ

. The right-

hand side of (29) is bounded below by γ since t2 ≤ r ≤ lnγ
γ

≤ γ − 1 when γ ≥ 1,

and so γ−t2
t2

(eγ t2 − 1) = eγ t2−1
t2

(γ − t2) ≥ γ (γ − t2) ≥ γ . Therefore, it is sufficient

that t1, t2 ≤ r ≤ lnγ
γ

.

EXAMPLE 5.2 (First line of a Poisson process). From the discussion in Ex-
ample 3.13, if L is the first line of a Poisson process with rate γ , then λ ≡ γ ,

and so trivially is decreasing in each component. We have qt = e−(μ1−μ0)t1t2

e−γ t1t2
=

e(γ−(μ1−μ0))t1t2 , which is increasing in each component if γ ≥ μ1 − μ0. There-
fore, an optimal solution to the sequential detection problem exists on any bounded
set R = [0, r]2 if γ ≥ μ1 − μ0, and is defined by (12). In fact, this is exactly the
same as the sufficient condition for the univariate detection problem proven in [5]
and [9].

6. Conclusion. As indicated in the Introduction, the sequential detection
model considered here is only one of many scenarios that should be analyzed in
the general context of the “optimal set-detection problem.” Indeed, the model can
be extended in many possible ways.

• The information structure: In addition to the sequential information model, Her-
berts and Jensen [5] consider what they call the “ex-post” analysis. This would
correspond to observing N on all of R, and then trying to optimize the expecta-
tion of the valuation function. (Formally, this corresponds to Ft = F(r,r) ∀t ∈ R.)
Several variants or combinations of the ex-post and sequential schemes can be
studied.

• The underlying space: We worked here on a bounded subset of R2+. It would be
of interest to consider change-point problems on higher-dimensional Euclidean
spaces or more general partially ordered sets as in [8].

• The change mechanism: Here the change occurs at either a single random point
or at the first line of a more general point process. The example involving the
first line of a Poisson process turned out to be (perhaps surprisingly) the more
natural analog of the one-dimensional exponential change-point problem. Con-
sideration should be given to more general single jump and first line processes,
as well as to more general random sets (not necessarily upper layers). For exam-
ple, the case in which L is the first line of an inhomogeneous Poisson process
with intensity γ (·) is considered in [2] where it is proven that an optimal solu-
tion exists if infu∈R γ (u) ≥ μ1 − μ0.
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• The observed process: On R+, the process subject to the change can be a more
general process, such as the Brownian motion process (cf. [1]). Here too, we
can consider more general processes such as the set-indexed Brownian motion
(cf. [6]).

• The parameters: In our analysis, it is implicitly assumed that the parameters of
the various processes are all known. How does one approach the problem when
one or more parameters must be estimated?

• The gain function: Different valuation functions can be chosen, thereby chang-
ing the notion of optimality. For example, with a change generated by a single
jump at Y , instead of two cost parameters c0 and c1 associated respectively with
Ec

Y and EY , we could have different costs in each of the four quadrants defined
by Y . Another variation considered in [2] is to replace Lt in (5) with I (Lt > 0).
Although this does not change the valuation when the change is generated by a
single jump, the analysis becomes more complex when L is the first line of a
Poisson process.

• Number of changes: Here we deal with only one change-set. However, we
can imagine that several changes occur on a decreasing sequence of random
upper layers, for example. This would correspond to multiple change points
on R+.
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