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THE PALM MEASURE AND THE VORONOI TESSELLATION
FOR THE GINIBRE PROCESS
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Université Claude Bernard Lyon 1

We prove that the Palm measure of the Ginibre process is obtained by
removing a Gaussian distributed point from the process and adding the ori-
gin. We obtain also precise formulas describing the law of the typical cell
of Ginibre–Voronoi tessellation. We show that near the germs of the cells a
more important part of the area is captured in the Ginibre–Voronoi tessella-
tion than in the Poisson–Voronoi tessellation. Moment areas of corresponding
subdomains of the cells are explicitly evaluated.

1. Introduction and statement of the main results. The Poisson–Voronoi
tessellation is a very popular model of stochastic geometry. This is mainly due to
its large range of applicability: crystallography [7], astrophysics [32] and telecom-
munications [1], to mention only a few. This is also due to the simplicity of the
simulation procedures [11, 13, 31], and to the fact that several theoretical results
related to its geometrical characteristics are available [4, 9, 10, 21, 22]. An exten-
sive list of the areas in which these tessellations have been used can be found in
[23, 29]. Nevertheless, the other side of the picture is that the comparative triviality
of this model makes it inappropriate to describe precisely some natural phenom-
ena. Hence, it seems both interesting and useful to explore other random point
processes and their Voronoi tessellations. For instance, Le Caer and Ho [16] de-
scribe, by means of Monte Carlo simulations, statistical properties of the Voronoi
tessellation associated to the Ginibre process of eigenvalues of random complex
Gaussian matrices [8] (see also [26]). The idea behind their study is that the repul-
sive character of the distribution of random points makes the cells more regular.
Consequently, the associated tessellation fits better than the Poisson–Voronoi one,
as in, for example, the structure of the cells of biological tissues. We recall that
the Ginibre process [20, 28], is a determinantal process φ ⊂ R2, both isotropic
and ergodic with respect to the translations of the plane R2 = C, with the integral
kernel,

K(z1, z2) = (1/π)ez1z2 exp
(−(1/2)(|z1|2 + |z2|2)), (z1, z2) ∈ C2.(1)

It is also pertinent to consider the full class of determinantal processes φ�α re-
lated to the kernels, K�α(z1, z2) = (1/π)e(1/α)z1z2 exp(−(1/2α)(|z1|2 + |z2|2)),
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(z1, z2) ∈ C2, with 0 < α < 1. The process φ�α can be obtained by deleting, inde-
pendently and with probability 1−α, each point of the Ginibre process φ and then
applying the homothety of ratio

√
α to the remaining points in order to restore the

intensity of the process φ. Besides, it is easy to verify that φ�α converges in law
when α → 0 to the Poisson process. In other words, the processes φ�α constitute
an intermediate class between a Poisson process and a Ginibre process. In order
to challenge the classical Poisson–Voronoi model, it is necessary to have some
theoretical knowledge about geometric characteristics of Ginibre–Voronoi tessel-
lations. The main tool for this is the notion of a typical cell in the Palm sense [22].
To explain this notion, we introduce, for a general stationary process ψ , the nota-
tion,

ψ0 = (ψ | 0 ∈ ψ) \ {0}.
The typical cell of ψ is

C = {z ∈ C; ∀u ∈ ψ0, |z| ≤ |z − u|}.
When ψ is ergodic, the laws of the geometric characteristics of the typical cell
coincide (see [3, 5, 6]) with the empirical distributions of the corresponding char-
acteristics associated to the Voronoi tessellation, {C(u,ψ);u ∈ ψ}, whose cells
are

C(u,ψ) = {z ∈ C; ∀v ∈ ψ, |z − u| ≤ |z − v|}, u ∈ ψ.

If ψ is a Poisson stationary process, then the Slivnyak formula [22] states that, for
every finite set S ⊂ C,

(ψ | S ⊂ ψ) \ S
law= ψ.

Hence, in this case, the Palm measure of ψ is the law of the process ψ ∪ {0}
obtained by adding the origin to ψ . For every determinantal process ψ , a result
obtained by Shirai and Takahashi [27] states that ψ0 is determinantal as well. It
follows that in the Ginibre case the process φ0 is determinantal with the kernel,

K0(z1, z2) = (1/π)(ez1z2 − 1) exp
(−(1/2)(|z1|2 + |z2|2)),

(2)
(z1, z2) ∈ C2,

and that

C law= C(0, φ0).

Note that the process φ0 is nonstationary.
Our first main result is that φ0 can be obtained from φ, simply by deleting one

point. A more precise statement follows.
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THEOREM 1. There exists a Gaussian-centered random variable Z, such that
E|Z|2 = 1 and

φ
law= φ0 ∪ {Z}, φ0 ∩ {Z} = ∅.

Theorem 1 tells us that there exists a version of the Ginibre process φ such that
the Palm measure of φ is the law of the process obtained by removing from φ a
Gaussian-distributed point and then adding the origin. As an intermediate step on
our way to further results, consider a locally compact Hausdorff space E with a
countable basis and a reference Radon measure λ, and a general stationary deter-
minantal process ψ ⊂ E with kernel K defined on E2. We introduce the following
conditions.

CONDITION I. The measure λ has full support, that is, for every open set
U ⊂ E, λ(U) is positive.

CONDITION A. The kernel K is a continuous function on E2.

CONDITION B. For every bounded Borel set A ⊂ E, all the eigenvalues of the
operator KA, acting on L2(A,λ), lie in the interval [0,1[.

Our intermediate result is the following.

THEOREM 2. Assume that E and ψ satisfy Conditions I, A and B. Then the
process ψ0 is stochastically dominated by the process ψ .

More generally we prove that:

THEOREM 3. Assume that E satisfies Condition I and consider two kernels
K and L satisfying Conditions A and B above. Denote by ψ the determinantal
process associated to the kernel K and by ϕ the process associated to the ker-
nel L. Suppose that K ≥ L in the Loewner order. Then the process ψ dominates
stochastically the process ϕ.

Recall that K ≥ L in the Loewner order if K − L is a positive semidefinite
operator. For the kernels K and K0 defined by formulas (1) and (2), we have,
obviously, K ≥ K0 thus Theorem 3 implies Theorem 2.

The proof of Theorem 3 rests on an explicit description of the marginal laws
of the process ψ , obtained in Section 1, which allows us to use a similar result
proved by Lyons [19] (for commuting operators) and for Borcea, Branden and
Liggett [2] (without this restriction) in the discrete determinantal process setting
(see also errata to [19] on Russel Lyon’s website).
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Thanks to the characterization of the Palm measure, we obtain, following [4],
precise formulas (see Section 5) which describe the law of the typical cell of
the Ginibre–Voronoi tessellation. The integrals involved are rather awkward; this
should not be a surprise, since this is already the case for the Poisson–Voronoi
typical cell [4].

In the last part of this work we compare the moments of the areas of Poisson–
Voronoi and Ginibre–Voronoi cells. We show that near the germs of the cells,
a more important part of the area is captured in the Ginibre case; farther from
the germs of the cells, the situation is reversed. That is, roughly speaking, Ginibre
cells are more stocky than Poisson cells.

To be more precise, we introduce some notation. Let Cp denote the typical cell
of the Voronoi tessellation associated to a stationary Poisson process in C with
the same intensity as the process φ. For every positive r and every z ∈ C, let
B(z, r) ⊂ C denote the disc centered at z with radius r , and B(r) = B(0, r). For
every finite set S ⊂ C,

D(S) =⋃
z∈S

B(z, |z|).

Let V (S) denote the area of D(S). For every Borel set A ⊂ C, and every positive
integer k introduce

V k(A) =
[∫

A
dz

]k
,

where, for z = x + iy in C with (x, y) ∈ R2, one sets dz = dx dy. Finally, for
z = (z1, . . . , zk) ∈ Ck , one sets dz = dz1 · · ·dzk .

THEOREM 4. Let k denote a positive integer.
(a) When r → 0,

EV k(C ∩ B(r)
)= EV k(Cp ∩ B(r)

)(
1 + r2Wk + o(r2)

)
(3)

with

Wk = 1

πk+1

∫
B(1)k

V (z) dz.

(b) For every positive R,

EV k(C \ B(R)
)≤ EV k(Cp \ B(R)

) · e(3/2)−J (R)(4)

with

J (R) = 1

2π2

∫
B(R)2

e−|z1−z2|2 dz1 dz2.

Hence, there exists a positive constant c such that, for every positive R,

EV k(C \ B(R)
)≤ EV k(Cp \ B(R)

) · e(3/2)−cR2
.
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We are also interested in the location of the point Z in Theorem 1 with respect
to the process φ0. To describe this, let N (φ) denote the set of points z ∈ φ such that
the bisecting line of the segment [0, z] intersects the boundary of the cell C(0, φ)

where we recall that

C(0, φ) = {z ∈ C; ∀u ∈ φ, |z| ≤ |z − u|}.
For every set S ⊂ C, let

H(S) = (πRD(S)(0,0) − 1
) ∏
n≥0

(
1 − αn(S)

)
,(5)

where RD(S) is the resolvent kernel, and αn(S) for n ≥ 0, are the eigenvalues of
the integral operator K acting on the space L2(D(S), dz).

THEOREM 5. For every positive integer k,

P {Z ∈ N (φ)} ≥
[ ∫

Ck H(z) dz∫
Ck

√
H(z)dz

]2

.(6)

Taking k = 1, Theorem 5 yields

P {Z ∈ N (φ)}
(7)

≥
( 1 − ∫+∞

0
∏

n≥0(	(n + 1, t)/n!) dt∫+∞
0

√
(
∑

n≥1(t
ne−t /	(n + 1, t)))

∏
n≥0(	(n + 1, t)/n!) dt

)2

,

where 	(n, t) denotes the incomplete gamma function, defined as

	(n, t) =
∫ +∞
t

e−uun−1 du.

This implies the simpler bound,

P {Z ∈ N (φ)} ≥ 1
16 .

Section 2 contains the necessary background; the key results are Propositions 3
and 12. In Section 3 we prove Theorem 3. Theorem 1 is proved in Section 4 as a
consequence of Theorem 2, Strassen’s classical result and because of the fact that
the radial processes |φ| and |φ0| are explicitly known. Unfortunately, the correla-
tion between the process φ0 and the random point Z is still unknown. Neverthe-
less, Theorem 5 gives some partial insight in this direction. Finally, we mention
that we state our results for the Ginibre process, but that it is easy to deduce the
corresponding formulations for the processes φ�α with 0 < α < 1.
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2. Preliminaries. Let ψ denote a point process [28] on a locally compact
Hausdorff space E with a countable basis. For every integer k ≥ 1, let ψ(k) = {z̃ ⊂
ψ; |z̃| = k}, ψ(1) = ψ , be the associated k-dimensional process. Let μk denote
the corresponding intensity measure. This measure is defined as follows. Fix a set
z̃ ∈ ψ(k) and consider an arbitrary order z̃ = {z1, . . . , zk}. For every permutation
σ ∈ ℘k of the index set {1, . . . , k}, denote

zσ = (zσ(1), . . . , zσ(k)

) ∈ Ek.

For every Borel set A ∈ B(Ek) of the space Ek , the sum
∑

σ∈℘k
1A(zσ ) does not

depend on the particular ordering of the set z̃. By summing for z̃ ∈ ψk and taking
the expectation, we obtain

μk(A) = 1

k!E
∑

z̃∈ψ(k)

∑
σ∈℘k

1A(zσ ).

Consider the space Mσ (E) of the counting measures ξ on E such that ξ(A) is finite
for all bounded (relatively compact) Borel sets A ⊂ E, and let F be the smallest σ -
algebra on Mσ (E) for which the map ξ �→ ξ(A) is measurable for every bounded
Borel set A ⊂ E.

The point process ψ can be thought of as the random measure

ξ =∑
z∈ψ

δz

with values in the measurable space (Mσ (E), F ). Note that the space Mσ (E)

endowed with vague topology is a Polish space and that the associated Borel σ -
algebra coincides with the σ -algebra F (see [17] and [18]).

For every k ≥ 1, the Campbell measure Ck on Ek × Mσ (E) is

Ck(M) = 1

k!E
∑

z̃∈ψ(k)

∑
σ∈℘k

1M(zσ ,ψ), M ∈ B(Ek) ⊗ F ,

where, as above, the sum
∑

σ∈℘k
1M(zσ ,ψ), zσ = (zσ(1), . . . , zσ(k)), does not de-

pend on the particular ordering z̃ = {z1, . . . , zk} of the set z̃.
The disintegration of Ck with respect to the measure μk gives, for μk al-

most every z = (z1, . . . , zk) ∈ Ek , the law of the conditioned process (ψ | z̃ =
{z1, . . . , zk} ∈ ψ(k)) (see [14]). Campbell formula reads as follows (see [14]). As-
sume that f is a measurable positive function defined on Ek × Mσ (E), such that
f (z, ·) = f (zσ , ·) for every permutation σ ∈ ℘k and for μk almost every z ∈ Ek ,
thus f defines a function acting on sets z̃ ∈ ψ(k) by f (z̃, ·) = f ((z1, . . . , zk), ·)
where z̃ = {z1, . . . , zk} is an arbitrary ordering. Then,

E
∑

z̃∈ψ(k)

f (z̃,ψ)

(8)
=
∫

Ef
(
(z1, . . . , zk), (ψ | {z1, . . . , zk} ⊂ ψ)

)
dμk(z1, . . . , zk).
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Let λ denote a Radon measure on E, that is, a Borel measure such that λ(A) is
finite for every compact set A ⊂ E. In this paper λ will be the Lebesgue measure
on C = R2 or the standard counting measure on a finite discrete set. The point
process ψ is determinantal if the following properties hold.

1. For every k ≥ 1, μk is absolutely continuous with respect to the product mea-
sure λk on Ek , that is, there exists a density ρk such that

dμk = ρk dλk.

The density ρk is called the correlation function.
2. There exists a kernel K : E × E → C which defines a self-adjoint, locally trace-

class operator, such that, for every z = (z1, . . . , zk) in Ek ,

ρk(z) = 1

k! det(K(zi, zj ))1≤i,j≤k.(9)

We use Fredholm notation; hence for every k ≥ 1 and every u = (u1, . . . , uk)

and v = (v1, . . . , vk) in Ek ,

K

(
u1, . . . , uk

v1, . . . , vk

)
= det(K(ui, vj ))1≤i,j≤k.

Furthermore,

K

(
u

v

)
= K

(
u1, . . . , uk

v1, . . . , vk

)
.

Assume that ψ is determinantal. For every k ≥ 1 and every z ∈ Ek such that K
(z
z

)
is positive, let ψz denote the determinantal process with kernel

Kz(u, v) = K
(u,z
v,z

)
K
(z
z

) , (u, v) ∈ E2.(10)

With this notation, for every positive integer k and p and every z ∈ Ek and v ∈ Ep ,

Kz

(
v

v

)
= K

(z,v
z,v

)
K
(z
z

) .(11)

Note that, if K
(z,v
z,v

)
is positive, then K

(z
z

)
is positive and ψz,v = (ψz)v .

A result of Shirai and Takahashi [27] (see also [19]) ensures that for μk almost
every z = (z1, . . . , zk) ∈ Ek ,

ψz = (ψ | {z1, . . . , zk} ⊂ ψ) \ {z1, . . . , zk}.(12)

Recall from [22], that if E is a vector space and ψ is a process, stationary with re-
spect to the translations of E, then the associated Palm measure Q on (Mσ (E), F )

is defined by

Q(M) = 1

μ1(A)
E
∑

z∈ψ∩A

1M

(∑
z′∈ψ

δz′−z

)
, M ∈ F ,
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where A ⊂ E is an arbitrary Borel set such that μ1(A) is positive and finite. It
follows from (8) (see [27]) that the Palm measure of a determinantal stationary
process ψ with kernel K is the law of the process ψ0 ∪ {0} where ψ0 = (ψ | 0 ∈
ψ) \ {0} is determinantal with the kernel,

K0(z1, z2) = K(z1, z2)K(0,0) − K(z1,0)K(0, z2)

K(0,0)
, (z1, z2) ∈ C2.(13)

If P {ψ �= ∅} is positive, then K(0,0) is positive. Applying this to the Ginibre
kernel, one gets (2).

Note that if ψ is a stationary Poisson process, that is, a point process with cor-
relation functions ρk ≡ 1/k! satisfying equality (9) for the degenerate, nonlocally
trace-class kernel K(z1, z2) = δz1(z2), then applying formally the result by Shirai
and Takahashi mentioned above, we obtain Slivnyak’s formula [22], namely the

fact that ψz1,...,zk

law= ψ for every positive k and every distinct zj ∈ C.
For every Borel set A, let NA(ψ) denote the number of points of ψ in A, that

is,

NA(ψ) =∑
z∈ψ

1A(z).

In the following, we assume that Conditions A and B below hold.

CONDITION A. The kernel K(z1, z2) is a continuous function of (z1, z2) ∈
E2.

CONDITION B. For every bounded Borel set A ⊂ E, the eigenvalues of the
operator KA [acting on L2(A)] are in the interval [0,1[.

For every bounded Borel set A ⊂ E, one sets

K
(2)
A (z1, z2) =

∫
A

K(z1, v)K(v, z2) dλ(v), (z1, z2) ∈ E2.

For every n ≥ 3, K
(n)
A denotes the iterated kernel of KA, defined as

K
(n)
A (z1, z2) =

∫
A

K(z1, v)K
(n−1)
A (v, z2) dλ(v), (z1, z2) ∈ E2.

Conditions A and B above imply that the resolvent kernel,

RA(z1, z2) = K(z1, z2) +∑
n≥2

K
(n)
A (z1, z2), (z1, z2) ∈ E2,

is a well-defined continuous function on E2.

REMARK 1. Note that the resolvent kernel is a continuous function of the
domain in the sense that if (An)n≥1 is a monotonous sequence of bounded Borel
sets An ⊂ E such that An ↑ A (and A is bounded) or An ↓ A, then RAn(z1, z2) →
RA(z1, z2) λ2 almost surely.
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It is well known that, for every Borel set A ⊂ E, the probability of the event
{NA(ψ) = 0} is a Fredholm determinant, namely,

P {NA(ψ) = 0} = det(I − KA).(14)

More generally Let n ≥ 1 and (Ai)1≤i≤n denote n disjoint, bounded Borel sets of
positive measures λ(Ai). Introduce

A =
n⋃

i=1

Ai.

The Laplace transform of the joint law of random variables NAi
, i = 1, . . . , n, is

given by the formula

E exp

(
−

n∑
i=1

tiNAi

)
= det(I − Kt̄,A), ti ∈ R+, i = 1, . . . , n,(15)

where Kt̄,A designates the integral operator K acting on the space L2(A,dν) with
dν(z) =∑n

i=1(1 − e−ti )1Ai
(z) dλ(z). Now, (14) implies

P {NA(ψ) = 0} = exp
{
−
∫
A

K(z, z) dλ(z) −∑
n≥2

1

n

∫
A

K
(n)
A (z, z) dλ(z)

}
(16)

and

P {NA(ψ) = 0} = 1 +∑
n≥1

(−1)n

n!
∫
An

K

(
v

v

)
dλn(v).(17)

The derivation of formulas (14)–(17) can be found in [27].
On the other hand, let us recall (see [25]) C. Platrier’s classical formula from

1937 (established also by I. Fredholm for k = 1), that is, for every positive integer
k and every z ∈ Ek , the relation,

K

(
z

z

)
+∑

n≥1

(−1)n

n!
∫
An

K

(
z, v

z, v

)
dλn(v)

(18)

=
[
1 +∑

n≥1

(−1)n

n!
∫
An

K

(
v

v

)
dλn(v)

]
RA

(
z

z

)
.

From (11), (17) and (18), we deduce that, for every positive k and every z ∈ Ek

such that K
(z
z

)
is positive, for every bounded Borel set A ⊂ E,

P {NA(ψz) = 0} = P {NA(ψ) = 0} × RA

(z
z

)
K
(z
z

) .(19)

REMARK 2. The kernel RA − K on E2 is obviously nonnegative. This fact,
together with relation (19), implies that, for every positive integer k and every
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z ∈ Ek ,

P {NA(ψz) = 0} ≥ P {NA(ψ) = 0}.(20)

We now establish some useful results. Let n ≥ 1 and (Ai)1≤i≤n denote n disjoint
bounded Borel sets of positive measures λ(Ai). Introduce

A =
n⋃

i=1

Ai.

The following proposition gives the joint law of random variables (NAi
)1≤i≤n.

PROPOSITION 3. Consider n ≥ 1 nonnegative integers ki such that their sum
k = k1 + · · · + kn is positive. Introduce

B =
n∏

i=1

A
ki

i , M = {(NAi
(ψ))1≤i≤n = (ki)1≤i≤n}.

Then

P {M} = P {NA(ψ) = 0}∏n
i=1 ki !

∫
B

RA

(
z

z

)
dλk(z).(21)

PROOF. Observe that

P {M} = E
∑

z̃∈ψ(k)

f (z̃,ψ),(22)

where the function f is defined as follows:

f (z̃,ψ) = 1
(
NA(ψ \ z̃) = 0

)∑
(z̃i )i

n∏
i=1

1(z̃i ⊂ Ai), |z̃| = k,

where the sums run above the following sets:
n⋃

i=1

z̃i = z̃ ∀1 ≤ i ≤ n, |z̃i | = ki.

Now apply Campbell’s formula (8). We obtain

P {M} = E
∑

z̃∈ψ(k)

f (z̃,ψ)

=
∫

Ef
({z1, . . . , zk}, (ψ | {z1, . . . , zk} ⊂ ψ)

)
dμk(z1, . . . , zk)

(23)
=
∫

P
{
NA

(
(ψ | {z1, . . . , zk} ⊂ ψ) \ {z1, . . . , zk})= 0

}
×∑

(z̃i )i

n∏
i=1

1(z̃i ⊂ Ai) dμk(z1, . . . , zk).
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From property (12) we get

P {M} =
∫

P {NA(ψz) = 0}∑
(z̃i )i

n∏
i=1

1(z̃i ⊂ Ai) dμk(z1, . . . , zk)

(24)

= k!∏n
i=1 ki !

∫
B

P {NA(ψz) = 0}dμk(z1, . . . , zk),

where B =∏n
i=1 A

ki

i .
The last equality above is obtained by counting partitions, noticing that

P {NA(ψz) = 0} depends on the set {z1, . . . , zk} and that the measure dμk(z1, . . . ,

zk) is permutation invariant, that is, we have∫
1D(z1, . . . , zk) dμk(z1, . . . , zk) =

∫
1D

(
zσ(1), . . . , zσ(k)

)
dμk(z1, . . . , zk)

for every Borel set D ⊂ Ek and for every permutation σ ∈ ℘k .
Now, inserting formula (9) in (24) above we get

P {M} = 1∏n
i=1 ki !

∫
B

P {NA(ψz) = 0}K
(

z

z

)
dλn(z).

It remains to apply formula (19) to obtain Proposition 3. �

REMARK 4. Formula (23) works for any process ψ . In particular if we take
for ψ a Poisson process with intensity measure μ then, by Slivniak’s formula,

ψ
law= (ψ | {z1, . . . , zk} ⊂ ψ) \ {z1, . . . , zk}, the kth-order associated intensity mea-

sure is dμk(z1, . . . , zk) = (1/k!) dμ(z1) · · ·dμ(zk). Consequently, for a Poisson
process ψ , formula (23) above gives the well-known expression

P {(NAi
(ψ))1≤i≤n = (ki)1≤i≤n}

= k!∏
ki !P {NA(ψ) = 0}

∫
B

dμk(z1, . . . , zk)(25)

= exp(−μ(A))∏
ki !

n∏
i=1

μ(Ai)
ki .

Consider now u ∈ E such that K(u,u) is positive. The process ψu with kernel
Ku(z1, z2) = (1/K(u,u))[K(z1, z2)K(u,u) − K(z1, u)K(u, z2)], (z1, z2) ∈ E2,
fulfills similar Conditions A and B. Indeed, if K(z1, z2) is a continuous function
of (z1, z2) ∈ E2, then Ku(z1, z2) is a continuous function too. For every bounded
Borel set A ⊂ E, denote by αA,M (resp. αu,A,M ) the largest eigenvalue of the op-
erator KA acting on L2(A) [resp. of the operator Ku,A acting on L2(A)]. Notice
that the kernel

K(z1, z2) − Ku(z1, z2) = (1/K(u,u)
)
K(z1, u)K(u, z2)
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defines clearly a nonnegative operator, and thus K ≥ Ku in the Loewner order
which implies inequality αu,A,M ≤ αA,M . Consequently, if Condition B is satisfied
by K then it is satisfied by Ku as well.

Denote by Ru,A the associated resolvent kernel. Applying the relation (18) to
the kernel Ku, one obtains that, for every z ∈ Ek ,

Ku

(
z

z

)
+∑

n≥1

(−1)n

n!
∫
An

Ku

(
z, v

z, v

)
dλn(v)

(26)

=
[
1 +∑

n≥1

(−1)n

n!
∫
An

Ku

(
v

v

)
dλn(v)

]
Ru,A

(
z

z

)
.

On the other hand,

K

(
u, z

u, z

)
+∑

n≥1

(−1)n

n!
∫
An

K

(
u, z, v

u, z, v

)
dλn(v)

(27)

=
[
1 +∑

n≥1

(−1)n

n!
∫
An

K

(
v

v

)
dλn(v)

]
RA

(
u, z

u, z

)
.

From (10), (17), (26) and (27), we deduce that

RA

(
u, z

u, z

)
P {NA(ψ) = 0} = K(u,u)Ru,A

(
z

z

)
P {NA(ψu) = 0}.(28)

Applying formula (21) to the process ψu and using (28) we obtain the proposition
below.

PROPOSITION 5. Consider n nonnegative integers ki such that k = k1 +· · ·+
kn is positive. Introduce the set B and the event Mu defined as

B =
n∏

i=1

A
ki

i , Mu = {(NAi
(ψu))1≤i≤n = (ki)1≤i≤n}.

Then,

P {Mu} = P {NA(ψ) = 0}
K(u,u)

∏n
i=1 ki !

∫
B

RA

(
u, z

u, z

)
dλk(z).(29)

REMARK 6. Our notation for vectors of indices are such that equation (29)
holds more generally, for every positive integer p and every u ∈ Ep such that K

(u
u

)
is positive, if only one replaces the factor K(u,u) in the denominator by K

(u
u

)
.

We now state some simple consequences of Propositions 3 and 5. Denote, re-
spectively, by 0 < βn < 1 and hn, n ≥ 1, the eigenvalues and the eigenfunctions of
operator KA. We recall that the eigenfunctions,

hn(z) = 1

βn

∫
A

K(z, v)hn(v) dλ(v), ‖hn‖L2(A,dλ) = 1,(30)
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are well defined and continuous on E and that

det(I − KA) = ∏
n≥1

(1 − βn).(31)

In what follows, we shall always suppose that the eigenfunctions of operators are
normalized [as in (30)].

Assume now that U ⊂ E is a bounded open set and that λ(V ) is positive for
every open subset V ⊂ U . Let 0 < αn < 1 and fn, n ≥ 1, be the eigenvalues and
the eigenfunctions of the operator KU . A standard result (see, e.g., Theorem 2 of
[30]) asserts the following.

LEMMA 7. For every (z1, z2) ∈ U × U ,

K(z1, z2) =∑
n≥1

αnfn(z1)fn(z2), RU(z1, z2) =∑
n≥1

αn

1 − αn

fn(z1)fn(z2),

and the series are absolutely and uniformly convergent for z1 and z2 in every
compact subset of U .

REMARK 8. When the kernel K has the form,

K(z1, z2) =
M∑

n=1

βnhn(z1)hn(z2), (z1, z2) ∈ E2,

with functions hn that are continuous on E and orthonormal on a bounded Borel
set A, then trivially,

RA(z1, z2) =
M∑

n=1

βn

1 − βn

hn(z1)hn(z2), (z1, z2) ∈ E2.

Consider the case n = 1 in Propositions 3 and 5. It was proved by Hough et al.
([12], Theorem 7) that the random variable NU(ψ) has the distribution of a sum of
independent Bernoulli (αi) random variables. Explicitly,

P {NU(ψ) = k} = ∑
(ni)i

∏
n/∈(ni)i

(1 − αn)

k∏
i=1

αni
,(32)

where the sum runs over the indices (ni)1≤i≤k such that n1 < · · · < nk . Now, by
(14) and (31),

P {NU(ψ) = 0} = det(I − KU) = ∏
n≥1

(1 − αn)

and thus formula above can be written in the following form:

P {NU(ψ) = k} = P {NU(ψ) = 0}∑
(ni)i

k∏
1

αni

1 − αni

.(33)
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Assume that u ∈ U and that K(u,u) is positive. Using (29) we get

P {NU(ψu) = k} = P {NU(ψ) = 0}
K(u,u)

�k,(34)

where we introduce

�k =∑
n≥1

|fn(u)|2 αn

1 − αn

∑
(ni)i

k∏
1

αni

1 − αni

,

and where each last sum runs over the indices (ni)1≤i≤k such that n1 < · · · < nk

and ni �= n for every 1 ≤ i ≤ k.
Indeed, fix M ≥ 2 and consider the kernels

KU,M(z1, z2) =
M∑

n=1

αnfn(z1)fn(z2)

and

RU,M(z1, z2) =
M∑

n=1

αn

1 − αn

fn(z1)fn(z2), (z1, z2) ∈ U × U,

where the functions fn are orthonormal on U . We have∫
Uk

RU,M

(
u, z

u, z

)
dλk(z)

=
M∑

n=1

fn(u)
αn

1 − αn

∑
(ni)i

k∏
1

αni

1 − αni

(35)

× ∑
σ∈℘k

∫
Uk

k∏
j=1

fnσ(j)
(zj )det

⎛⎜⎜⎜⎝
fn(u) · · ·fn(zk)

fnσ(1)
(u) · · ·fnσ(1)

(zk)

· · ·
fnσ(k)

(u) · · ·fnσ(k)
(zk)

⎞⎟⎟⎟⎠ dλk(z),

where sums run over the indices (ni)1≤i≤k such that 1 ≤ n1 < · · · < nk ≤ M and
ni �= n for every 1 ≤ i ≤ k.

Observe that

∫
Uk

k∏
j=1

fnσ(j)
(zj )det

⎛⎜⎜⎜⎝
fn(u) · · ·fn(zk)

fnσ(1)
(u) · · ·fnσ(1)

(zk)

· · ·
fnσ(k)

(u) · · ·fnσ(k)
(zk)

⎞⎟⎟⎟⎠ dλk(z) = fn(u)

due to the fact that the functions fn are orthonormal on U (and ni �= n for every
1 ≤ i ≤ k).

Letting M → +∞ and applying Lemma 7, (29) and (35), we obtain formula
(34).

Now, by elementary (but somewhat lengthy) computations, which we will not
detail, we obtain the following proposition.



104 A. GOLDMAN

PROPOSITION 9. With the assumptions above,

P {NU(ψu) ≤ k} − P {NU(ψ) ≤ k} = P {NU(ψ) = 0}
K(u,u)

�̃k,

where

�̃k =∑
n≥1

|fn(u)|2 (αn)
2

1 − αn

∑
(ni)i

k∏
1

αni

1 − αni

,

and where each last sum runs over the indices (ni)1≤i≤k such that n1 < · · · < nk

and ni �= n for every 1 ≤ i ≤ k.

Proposition 9 implies the result below.

COROLLARY 10. Let U be a bounded open set and let 0 < αM < 1 denote the
largest eigenvalue of the operator KU . Then for every nonnegative integer k, every
positive integer p and every u ∈ Up such that K

(u
u

)
is positive,

P {NU(ψu) ≤ k} ≤ (1 − αM)−pP {NU(ψ) ≤ k}.

PROOF. By induction, if u ∈ U , then Proposition 9 and formula (34) imply

P {NU(ψu) ≤ k} − P {NU(ψ) ≤ k} ≤ αMP {NU(ψu) = k}.
Therefore,

P {NU(ψu) ≤ k} ≤ (1 − αM)−1P {NU(ψ) ≤ k}.
Consider now u = (v,w) ∈ U × Up . Recall that ψu = (ψw)v and that K ≥ Kw in
the Loewner order which implies inequality αw,M ≤ αM where αw,M denote the
largest eigenvalue of the operator Kw,A. Thus

P {NU(ψu) ≤ k} ≤ (1 − αM)−1P {NU(ψw) ≤ k}
from which we obtain the announced result. �

REMARK 11. If u ∈ E and z = (zi)1≤i≤N ∈ EN , write RK
A

(u,z
u,z

)
for the deter-

minant RA

(u,z
u,z

)
in which one replaces the terms RA(u,u) and RA(zi, u) of the first

column by RA(u,u) − K(u,u) and RA(zi, u) − K(zi, u), respectively. Then,

P {NA(ψu) ≤ k} = P {NA(ψ) ≤ k} + P {NA(ψ) = 0}
k!K(u,u)

∫
Ak

RK
A

(
u, z

u, z

)
dλk(z).

One can prove this formula, from Propositions 3 and 5, by induction.
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A further simple consequence of Proposition 3 and Remark 8 is the following.
Consider another locally compact Hausdorff space E′ with reference measure λ′,
some bounded Borel nonintersecting sets Bi ⊂ E′ of positive measures λ′(Bi) and
a point process ψ ′ ⊂ E′ with kernel

LB(z1, z2) =
M∑

n=1

αngn(z1)gn(z2), (z1, z2) ∈ E′ × E′,

where 0 < αn < 1 and the functions gn for 1 ≤ n ≤ M are defined on E′ and are
orthonormal on

B =
N⋃

i=1

Bi.

Now, let ψ ⊂ E be a point process with kernel

KA(z1, z2) =
M∑

n=1

αnfn(z1)fn(z2), (z1, z2) ∈ E2,

where the functions fn for 1 ≤ n ≤ M are continuous on E and are orthonormal
on

A =
N⋃

i=1

Ai.

Assume that the following holds.
For every 1 ≤ i ≤ N and 1 ≤ n,m ≤ M ,∫

Ai

fn(z)fm(z) dλ(z) =
∫
Bi

gn(z)gm(z) dλ′(z).(36)

Then the following proposition holds.

PROPOSITION 12. With the assumptions above, for every (ki)i ,

P {(NAi
(ψ))1≤i≤N = (ki)1≤i≤N } = P {(NBi

(ψ ′))1≤i≤N = (ki)1≤i≤N }.

PROOF. Let k = k1 + · · · + kN . When k = 0, the result follows from formulas
(14) and (31). Suppose now that k is positive. By Remark 8 we have

RA(z1, z2) =
M∑

n=1

αn

1 − αn

fn(z1)fn(z2), (z1, z2) ∈ A × A,

and

RB(z1, z2) =
M∑

n=1

αn

1 − αn

gn(z1)gn(z2), (z1, z2) ∈ B × B.
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Thus, for σ ∈ ℘k we obtain

k∏
j=1

RA

(
zj , zσ(j)

)= M∑
n1,...,nk=1

k∏
j=1

αnj

1 − αnj

fnj
(zj )fn

σ−1(j)
(zj )

and

k∏
j=1

RB

(
zj , zσ(j)

)= M∑
n1,...,nk=1

k∏
j=1

αnj

1 − αnj

gnj
(zj )gn

σ−1(j)
(zj ).

Denote C =∏n
i=1 A

ki

i and C′ =∏n
i=1 B

ki

i . Formula (36) implies that∫
C

k∏
j=1

fnj
(zj )fn

σ−1(j)
(zj ) dλ(z1) · · ·dλ(zk)

(37)

=
∫
C′

k∏
j=1

gnj
(zj )gn

σ−1(j)
(zj ) dλ′(z1) · · ·dλ′(zk).

Then, expanding the determinants appearing below and using the point (37) above,
one gets the equality∫

C
RA

(
z

z

)
dλk(z) =

∫
C′

RB

(
z

z

)
dλ′k(z).(38)

This and (21) give the result. �

3. Stochastic domination, proof of Theorem 3. In this section, we assume
that Condition I stated in the Introduction is satisfied.

Recall that a point process α ∈ Mσ (E) stochastically dominates a point process
β ∈ Mσ (E) if Ef (α) ≥ Ef (β) for every bounded increasing measurable function
f defined on the space (Mσ (E), F ). It is is well known [17] that the point process
α ∈ Mσ (E) stochastically dominates the point process β ∈ Mσ (E) if and only if
P {α ∈ A} ≤ P {β ∈ A} for every decreasing event A ∈ F . Consider elementary
decreasing events of the form {∀1 ≤ i ≤ M,NAi

≤ ki} ∈ F where M is a positive
integer, ki , 1 ≤ i ≤ M , are nonnegative integers and Ai ⊂ E are disjoint, bounded,
Borel sets.

Denote by Fd ⊂ F the collection of sets which are a finite union of such ele-
mentary decreasing events. The following lemma provides a useful tool in order to
investigate stochastic domination properties of point processes.

LEMMA 13. The process β is stochastically dominated by the process α if and
only if, for every A ∈ Fd ,

P {α ∈ A} ≤ P {β ∈ A}.
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REMARK 14. The proof of Lemma 13 is standard. Similar characterizations
are described, for example, in [17]; however, as pointed out by Yogeshwaran Dhan-
dapani at ENS-DI-TREC (France), this result is not explicitly enunciaded in [17].
For completeness we sketch the proof of it in the Appendix.

We will now prove Theorem 3. Consider two kernels K and L, satisfying Con-
ditions A and B stated in the Introduction, such that L ≤ K in the Loewner order.
Denote by ϕ the process with kernels L and by ψ the process with kernel K . The
idea of the proof is the following. By Lemma 13 we need to show that for every

A ∈ Fd ,

P {ψ ∈ A} ≤ P {ϕ ∈ A}.(39)

Fix the set A ∈ Fd . Applying the inclusion–exclusion principle it is easy to see
that there exist nonintersecting, bounded Borel sets Bi ⊂ E, 1 ≤ i ≤ N , such that
P {ψ ∈ A} (resp. P {ϕ ∈ A}) can be expressed as a finite sum, up to the sign, of
terms of the form,

P {∀i ∈ S,NBi
(ψ) = ki} (

resp. P {∀i ∈ S,NBi
(ϕ) = ki}),

where S ⊂ {1, . . . ,N}. Let U be an open bounded set such that

U ⊃
N⋃

i=1

Bi;

denote also, B0 = U \⋃N
i=1 Bi .

By Lemma 7 we have the spectral decomposition,

LU(z1, z2) =∑
n≥1

βngn(z1)gn(z2),

KU(z1, z2) =∑
n≥1

αnfn(z1)fn(z2), (z1, z2) ∈ U.

The fact that K ≥ L in the Loewner order reads.
For all f ∈ L2(U),

∑
n≥1

αn

∣∣∣∣∫
U

fn(z)f (z) dλ(z)

∣∣∣∣2 ≥∑
n≥1

βn

∣∣∣∣∫
U

gn(z)f (z) dλ(z)

∣∣∣∣2.(40)

The inequality above implies that for every n ≥ 1, the function gn is of the form
gn =∑k≥1 an

k fk ∈ L2(U). Denote gn,M =∑M
k=1 an

k fk and consider the nonnega-
tive kernels,

KU,M =
M∑

n=1

αnfn(z1)fn(z2)
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and

LU,M =
M∑

n=1

βngn,M(z1)gn,M(z2), (z1, z2) ∈ U,

acting on L2(U).
Note that‖KU,M‖ ≤ ‖KU‖ < 1 and ‖LU,M‖ ≤ ‖LU‖ < 1 where ‖ · ‖ denotes

the supremum (operator) norm. Furthermore, if V (M) is the subspace of L2(U)

spanned by the functions fn with 1 ≤ n ≤ M , then by (40), for each function
f ∈ V (M),

M∑
n=1

βn

∣∣∣∣∫
U

gn,M(z)f (z) dλ(z)

∣∣∣∣2 =
M∑

n=1

βn

∣∣∣∣∫
U

gn(z)f (z) dλ(z)

∣∣∣∣2
(41)

≤
M∑

n=1

αn

∣∣∣∣∫
U

fn(z)f (z) dλ(z)

∣∣∣∣2.
Denote by γn and and hn the eigenvalues and the normalized eigenvectors of the
operator LU,M [acting on L2(U)]. The properties above imply that

0 ≤ γn < 1 and hn =
M∑

k=1

bn
kfk ∈ V (M), 1 ≤ n ≤ M.(42)

At last,

LU,M =
M∑

n=1

βngn,M(z1)gn,M(z2) =
M∑

n=1

γnhn(z1)hn(z2), (z1, z2) ∈ U.

Let ϕ(M) ⊂ U and ψ(M) ⊂ U be the processes associated, respectively, to the
kernels LU,M and KU,M .

LEMMA 15. When M → ∞,

P
{∀i ∈ S,NBi

(
ψ(M))= ki

}→ P {∀i ∈ S,NBi
(ψ) = ki},

P
{∀i ∈ S,NBi

(
ϕ(M))= ki

}→ P {∀i ∈ S,NBi
(ϕ) = ki}.

PROOF. The straightforward consequence of (21), (31) and Lemma 7. �

It follows from Lemmas 13 and 15 that in order to prove that the process ψ

dominates the process ϕ it suffices to show that, for every M ≥ 1 inequality (39)
is unchanged if we replace the terms of the form

P {∀i ∈ S,NBi
(ψ) = ki} (

resp. P {∀i ∈ S,NBi
(ϕ) = ki}),

by the terms

P
{∀i ∈ S,NBi

(
ψ(M))= ki

} (
resp. P

{∀i ∈ S,NBi

(
ϕ(M))= ki

})
.



PALM MEASURE 109

To obtain this result we use the fact that the stochastic domination occurs in the
finite discrete determinantal process setting. See Theorem 6.2 and Paragraph 8
of [19], errata to [19] on Russel Lyon’s website, and [2]. The link between our
situation and a discrete determinantal process is given by the following lemma.

LEMMA 16. Let Bi denote nonintersecting Borel bounded subsets of E, and
let

U =
N⋃

i=0

Bi.

Consider an orthonormal set of functions {ln, n = 1, . . . ,M} ⊂ L2(U). Let Ni

denote the dimension of the subspace Vi ⊂ L2(U) spanned by the functions ln1Bi

with 1 ≤ n ≤ M .
Then, there exists orthonormal vectors zn = (zn

(0), . . . , zn
(N)), z

n ∈∏N
i=0 CNi , for

1 ≤ n ≤ M , such that the following property holds.
For every 0 ≤ i ≤ N and every 1 ≤ n,m ≤ M ,

Ni∑
j=1

zn
(i)(j)zm

(i)(j) =
∫
Bi

ln(z)lm(z) dz.(43)

PROOF. Since the sequence (ln)n is orthonormal, property (43) implies that
the sequence (zn)n is orthonormal as well. Introduce an orthonormal basis
(ei

j )1≤j≤Ni
of the vector space Vi ⊂ L2(U). Then,

ln1Bi
=

Ni∑
j=1

λn
i,j e

j
i .

The sequence defined by zn
(i)(j) = λn

i,j fulfills property (43). �

Consider now the vectors zn, n = 1, . . . ,N , associated with Lemma 15, to the
eigenvectors fn,n = 1, . . . ,M , of the kernel KU,M , and introduce the vectors,

vn = (vn
(0), . . . ,vn

(N)

)= M∑
k=1

bn
k zk ∈

N∏
i=0

CNi , n = 1, . . . ,M,

related to functions hn,n = 1, . . . ,M , of (42). Notice that for every 0 ≤ i ≤ N and
every 1 ≤ n,m ≤ M ,

Ni∑
j=1

vn
(i)(j)vm

(i)(j) =
∫
Bi

hn(z)hm(z) dλ(z).(44)

Consequently, (vn)n is a set of orthonormal vectors.
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Consider now the sets

Ej = {(i, j);1 ≤ i ≤ Nj }, 0 ≤ j ≤ N,E =
N⋃

j=0

Ej ,

and the discrete kernels defined on E by,

KM((i1, j1), (i2, j2)) =
M∑

n=1

αnzn
(i1)

(j1)zn
(i2)

(j2)

and

LM((i1, j1), (i2, j2)) =
M∑

n=1

γnvn
(i1)

(j1)vn
(i2)

(j2).

Inequality (41) implies that LM ≤ KM in the Loewner order. Introduce the deter-
minantal process χ ⊂ E with kernel LM , and the process ζ ⊂ E with kernel KM .
Proposition 12 and formulas (43), (44) imply that

P
{∀i ∈ S,NBi

(
ψ(M))= ki

}= P {∀i ∈ S,NEi
(ζ ) = ki}

and

P
{∀i ∈ S,NBi

(
ϕ(M))= ki

}= P {∀i ∈ S,NEi
(χ) = ki}.

Consequently if we replace in formula (39), the terms of the form

P {∀i ∈ S,NBi
(ϕ) = ki} (

resp. P {∀i ∈ S,NBi
(ψ) = ki})

by the terms

P
{∀i ∈ S,NBi

(
ϕ(M))= ki

} (
resp. P

{∀i ∈ S,NBi

(
ψ(M))= ki

})
,

we obtain inequality

P {ζ ∈ A′} ≤ P {χ ∈ A′}
for a suitable decreasing event A′ ∈ Fd(E). The above mentioned result of [2] and
[19] asserts that this inequality is indeed true and thus the proof of Theorem 3 is
finished.

We are now in position to apply the celebrated Strassen’s theorem. This follows
from the fact that the space Mσ (E) of counting measures endowed with the vague
topology is a Polish space and its associated Borel σ -algebra coincides precisely
with the σ -algebra F (see [17] and [18]).

THEOREM 6. With the hypothesis of Theorem 3, there exists a point process η

such that

ψ
law= ϕ ∪ η, ϕ ∩ η = ∅.
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Theorem 3 implies Theorem 2. More generally we have:

THEOREM 7. Let ψ be a point process satisfying Conditions A and B of the
Introduction. For all points u such that K(u,u) is positive, the process ψ domi-
nates stochastically the process ψu.

PROOF. It is obvious that K ≥ Ku in the Loewner order. �

PROBLEM 1. Prove Theorem 7 directly from (21) and (29).

4. Palm measure of the Ginibre process, proof of Theorem 1. Recall that
the Ginibre process φ ⊂ R2 = C is a stationary, isotropic point process satisfying
Conditions A and B of the Introduction. The reference measure λ is the area mea-
sure of R2, and Condition I is trivially satisfied. Moreover, for every integer k ≥ 1
and every set of distinct points {z1, . . . , zk} included in C, respectively, in C \ {0},
K
(z1,...,zk

z1,...,zk

)
is positive, respectively, K0

(z1,...,zk

z1,...,zk

)
is positive.

From formula (13) it follows that the process φ0 = (φ | 0 ∈ φ) \ {0} is determi-
nantal with the kernel K0 such that

K0(z1, z2) = (1/π)(ez1z2 − 1) exp
(−(1/2)(|z1|2 + |z2|2)), (z1, z2) ∈ C2.

The intensity measure μ0,1 is absolutely continuous with respect to the measure λ

and has for density the correlation function

K0(z, z) = (1/π)
(
1 − e−|z|2).(45)

In particular, the process φ0 is not stationary.

REMARK 17. The stationarity of the Ginibre process φ is expressed by the
fact that for each fixed a ∈ C the determinantal point process with kernel K̂ such
that K̂(z1, z2) = K(z1 − a, z2 − a), that is,

K̂(z1, z2) = (1/π)e(z1−a)(z2−a)−(1/2)(|z1−a|2+|z2−a|2), (z1, z2) ∈ C2,

coincides (in law) with φ. Note that K �= K̂ .

Consider now the radial processes |φ| and |φ0|. The result below is well known
[12, 15].

THEOREM 8 (Kostlan). Let Xn,m with n ≥ 1 and m ≥ 1 denote i.i.d. random
variables with exponential distribution e−x dx on x ≥ 0. For every n ≥ 1, let

Rn =
√√√√ n∑

m=1

Xn,m.
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Then, the collection of moduli of the points of φ has the same distribution as the
collection of random variables {Rn,n ≥ 1}.

|φ| law= {Rn,n ≥ 1}.(46)

REMARK 18. Note that Theorem 8 implies that, almost surely, there exists no
(z1, z2) ∈ φ × φ such that z1 �= z2 and |z1| = |z2|.

We will shown that result (46) can be deduced from formula (15). Indeed, let us
fix 0 < r1 < · · · < rn = r and consider the sets A1 = B(r1), Ai = {z ∈ C; ri−1 <

|z| ≤ ri} for i = 2, . . . , n, B(r) =⋃n
i=1 Ai . Also, let us fix ti > 0, i = 1, . . . , n.

Observe that the functions,

fn(z) = (1/
√

πn!)e−(1/2)|z|2zn, z ∈ B(r), n ≥ 1,

are orthogonal on B(r) with respect to the measure,

dν(z) =
n∑

i=1

(1 − e−ti )1Ai
(z) dλ(z).

Denote αn = ∫B(r) |fn|2 dν(z) then normalizing, we obtain

K(z1, z2) = (1/π)ez1z2−(1/2)(|z1|2+|z2|2) =∑
n≥1

αnf̂n(z1)f̂n(z2)

with f̂n(z) = (1/
√

αn)fn. Consider now the radial process |φ| and the intervals
I1 = [0, r1], . . . , In =]rn−1, rn]. Formulas (15) and (31) imply that

E exp

(
−

n∑
i=1

tiNIi
(|φ|)

)
= E exp

(
−

n∑
i=1

tiNAi
(φ)

)
(47)

= det(I − Kt̄,A) = ∏
n≥1

(1 − αn).

Computing (what is an elementary exercise) the Laplace transform
E exp(−∑n

i=1 tiNIi
(R)) for the point process R = {Rn,n ≥ 1} gives exactly the

same value. Thus |φ| law= {Rn,n ≥ 1}. More generally, if ψ(F), F ⊂ N, F �= ∅, is
the point process related to the kernel

K(F)(z1, z2) = ∑
n∈F

αnf̂n(z1)f̂n(z2),

then

|φ(F )| law= {Rn,n ∈ F }.(48)

In particular,

|φ0| law= {Rn,n ≥ 2}
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and

{Rn,n ≥ 1} = {Rn,n ≥ 2} ∪ {R1}
provide a disjoint coupling of |φ0| and {R1} with union marginal |φ|.

Consider now, for M ≥ 1, the kernels

1. KM(z1, z2) = (1/π)
∑M

n=0((z1z2)
n/n!) exp(−(1/2)(|z1|2 + |z2|2)),

2. K0,M(z1, z2) = (1/π)
∑M

n=1((z1z2)
n/n!) exp(−(1/2)(|z1|2 + |z2|2)),

and denote by φ(M) the point process associated with the kernel KM and by φ
(M)
0

the point process associated with the kernel K0,M .
Observe that on one hand we have

E card
{
φ(M)}=

∫
C

KM(z, z) dz = M,

E card
{
φ

(M)
0

}=
∫

C
K0,M(z, z) dz = M − 1,

and on the other hand, by (9), the correlation function of order M + 1 (resp. M)
for the process φ(M) (resp. φ

(M)
0 ) is equal to zero which implies that card{φ(M)} ≤

M and card{φ(M)
0 } ≤ M − 1, almost surely. Therefore, card{φ(M)} = M and

card{φ(M)
0 } = M − 1, almost surely. Moreover, we have K0,M ≤ KM in the

Loewner order. Formula (48) implies also∣∣φ(M)
∣∣ law= {Rn,1 ≤ n ≤ M + 1}, |φM

0 | law= {Rn,2 ≤ n ≤ M + 1}.(49)

It follows from the properties above and from Theorem 6 that there exists a disjoint
coupling,

φ(M) = φ
(M)
0 ∪ η(M), φ

(M)
0 ∩ η(M) = ∅,(50)

such that the point process η(M) is a single random variable, η(M) = {ZM}.
By equation (49) and the fact that Remark 18 also applies to the process φ(M),

we deduce that |ZM | law= R1.

LEMMA 19. The random variable ZM is centered Gaussian, and

E|ZM |2 = 1.

PROOF. The random variable |ZM |2 has exponential distribution e−x dx,
x ≥ 0, thus it suffices to show that the law of ZM is invariant by rotations O with
its center at the origin, that is, P {ZM ∈ A} = P {ZM ∈ O(A)}, for every such O .
Simple computation gives

P {ZM ∈ A} = ∑
0≤k≤M+1

[
P
{
NA

(
φ

(M)
0

)≤ k
}− P

{
NA

(
φ(M))≤ k

}]
.(51)
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The processes φ(M) and φ
(M)
0 are isotropic, hence formula (51) implies the result.

Consider now the laws P (M), M ≥ 1, of random elements (ZM,φ
(M)
0 ) with

values in the product space C × Mσ (C) [the space Mσ (C) being endowed with
the vague topology].

Denote, respectively, by Q, Q(M), Q0 and Q
(M)
0 , the laws of the processes φ,

φ(M), φ0 and φ
(M)
0 . Finally, let I : C × Mσ (C) −→ Mσ (C) be the continuous

application defined by I (x, ζ ) = {x} ∪ ζ . �

LEMMA 20. The following properties hold:

1. The sequences (Q(M))M and (Q
(M)
0 )M are tight.

2. Q(M) D−→
M→+∞Q and Q

(M)
0

D−→
M→+∞Q0.

3. The sequence (P (M))M is tight.

4. Consider the probability P (M) on (C × Mσ (C), B(C) ⊗ F ), then I
D= Q(M).

PROOF. Property 1 is obvious from the characterization of tightness for ran-
dom measures (see [14], page 33). Property 2 follows from property 1 and Propo-
sition 3. Property 3 is a consequence of property 1 and the fact that, by Lemma 19,
the standard normal law coincides with the marginal law on C of the probability
P (M). Finally, property 4 is nothing but the equality in law (50). �

It is well known that a suitable subsequence of (P (M))M converges in distri-
bution to a probability P ∗ on C × Mσ (C). Lemma 20 implies that P ∗ has, for
marginal laws, the standard normal law and Q0 and that with P ∗ on C × Mσ (C),

we obtain I
D= Q. Consequently, a random element with distribution P ∗ provides

a disjoint coupling (Z,φ0) of φ. The proof of Theorem 1 is then finished.
One can notice also that we have

P {Z ∈ A} =∑
k≥0

[P {NA(φ0) ≤ k} − P {NA(φ) ≤ k}];(52)

thus, if U is an open set containing the origin, then by inserting the formula of
Proposition 9 in (52), we obtain

P {Z ∈ U} = P {NU(φ) = 0}
K(0,0)

∑
n≥1

|fn(0)|2 (αn)
2

1 − αn

[
1 +∑

k≥1

∑
(ni)i

k∏
1

αni

1 − αni

]
,

where the last sum is over the integers (ni)1≤i≤k such that ni < ni+1 and ni �= n

for every i. Hence,

P {Z ∈ U} = P {NU(φ) = 0}
K(0,0)

×∑
n≥1

(αn)
2|fn(0)|2 ×∏

i≥1

1

1 − αi

,
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and, finally,

P {Z ∈ U} = K
(2)
U (0,0)

K(0,0)
= 1

π

∫
U

e−|z|2 dz.

Thus we find again that the law of Z is Gaussian. Notice also the formula,

P {Z ∈ A | NA(φ0) = 0} = 1 − K(0,0)

RA(0,0)
,(53)

which follows from (19) via the identities,

P {Z ∈ A,NA(φ0) = 0} = P {NA(φ0) = 0} − P {NA(φ) = 0}
and

P {NA(φ) = 0} = K(0,0)

RA(0,0)
P {NA(φ0) = 0}.

PROBLEM 2. This is an open problem, that is, to know how the random vari-
able Z is correlated with the point process φ0. A similar unsolved problem arises
in the framework of finite discrete determinantal processes (see question (10.1) in
[19]).

REMARK 21. The method we used to prove Theorem 1, that is, a coupling
result [formula (50)] in a finite-dimensional case associated with a “tightness ar-
gument” (Lemma 20) is very similar to that used by R. Lyons, in the discrete
determinantal process setting, to prove Proposition 10.3 in [19].

REMARK 22. Theorem 6 can be applied to the processes φ and φ0 and thus
provides a disjoint coupling φ = ψ0 ∪ {η}. However, there is a difficulty to deduce
Theorem 1 directly from this (due to the fact that it is unclear that the process η

could be taken as being a single random variable).

REMARK 23. The random variables R2
n, n ≥ 1, are Gamma(n,1) distributed

and independent. They are stochastically increasing but not almost surely increas-

ing. It is interesting to note that if R̃n =
√∑n

m=1 X1,m, n ≥ 1, is the radial process
of a Poisson stationary process which has the same intensity (1/π)dz as the
process φ, then the random variables R̃2

n, n ≥ 1, are Gamma(n,1) distributed as
well; they are almost surely increasing and (of course) is not independent.

PROBLEM 3. Construct explicitly random variables Zn, n ≥ 1, such that:

1. φ
law= {Zn,n ≥ 1};

2. ∀n ≥ 1, |Zn| law= Rn;

3. φ0
law= {Zn,n ≥ 2}.
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REMARK 24. The Palm measure of φ�α is obtained by adding the origin and
deleting the point

√
αZ if the latest belongs (which occurs with probability α) to

the process φ�α .

REMARK 25. Similar results could be proved for the point process in the unit
disk of C related to the Bergman kernel and studied in [24].

5. Ginibre–Voronoi tessellation, proof of Theorems 3 and 4. Consider now
the space K of compact convex sets of R2 = C endowed with the usual Hausdorff
metric. For every point process ψ , let

C(u,ψ) = {z ∈ C; ∀v ∈ ψ, |z − u| ≤ |z − v|},
and let {C(u,φ);u ∈ φ} denote the Voronoi tessellation generated by the Ginibre
process φ. Recall that its statistical properties, namely its empirical distributions
(the process being ergodic), are described [3, 5, 6] by the typical cell C defined by
means of the identity,

Eh(C) = π

λ(B)
E
∑

z∈B∩ψ

h
(
C(z) − z

)
,

where h runs through the space of positive measurable functions on K, and B ⊂ C
is an arbitrary Borel set with the finite positive area λ(B). Consider now the cell

C(0, φ0) = {z ∈ C; ∀u ∈ φ0, |z| ≤ |z − u|}.
Campbell’s formula (8) gives the identity,

Eh(C) = π

λ(B)
E
∑

z∈B∩ψ

h
(
C(0, φ − z)

)= Eh(C(0, φ0)).

Hence,

C law= C(0, φ0).(54)

In what follows, we shall use the notation C(0, φ0) = C(0). The law of the random
set C(0) can be obtained by means of the method described in [4]. Let us introduce
some notation. Fix k ≥ 1.

• For every u ∈ C, let H(u) = {z ∈ C; 〈z − u,u〉 ≤ 0}.
• For every z ∈ Ck with z = (z1, . . . , zk), let H(z) denote the intersection of half-

spaces,

H(z) =
k⋂

i=1

H(zi/2).

• For every z ∈ Ck , let F (z) =⋃u∈H(z) B(u, |u|) where B(u, r) denotes the disk
centered at u and of radius r ≥ 0.
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• Let A ⊂ Ck denote the set of z ∈ Ck such that H(z) is a bounded polygon with
k sides.

THEOREM 9. For every k ≥ 3,

P {C has k sides} = 1

k!
∫
A

P
{
NF (z)(φ0) = 0

}
R0,F (z)

(
z

z

)
dz.

PROOF. Observe that

P {C(0) has k sides} = E
∑

z̃∈φ
(k)
0

1A(z̃) × 1{0}
(
NF (z1,...,zk)(φ0 \ z̃)

)
.

With Campbell’s formula (8) applied to the process φ0, one gets

P {C has k sides} = P {C(0) has k sides} =
∫
A

P
{
NF (z)(φ0,z) = 0

}
dμ0,k(z)

and hence by formulas, (9) and (19), we obtain

P {C(0) has k sides} = 1

k!
∫
A

P
{
NF (z)(φ0,z) = 0

}
K0

(
z

z

)
dz

= 1

k!
∫
A

P
{
NF (z)(φ0) = 0

}
R0,F (z)

(
z

z

)
dz. �

In the same way, one can compute, conditionally on the fact that the cell has k

sides, the expectation of an arbitrary, measurable, positive functional of C which
is expressed through a function f acting on points {z1, . . . , zk} = N (φ0) ⊂ φ0 for
which the bisecting line of the interval [0, zi] intersects the cell C(0). The resulting
integral will have the form

1

k!
∫
A

f (z)P
{
NF (z)(φ0) = 0

}
R0,F (z)

(
z

z

)
dz.(55)

Deconditioning, one can obtain analytical formulas of the laws of the geomet-
ric characteristics of the typical cell C . Note that formula (17) gives an analytical
expression of the probability P {NF (z)(φ0) = 0} which appears in (55). Unfortu-
nately, these integrals are complicated and numerical computations are difficult.
This drawback appears already in [4] for the typical cell of the Poisson–Voronoi
tessellation.

A general result asserts [22] that the first-order moment of the area V (C) of
the cell C is equal to EV (C) = π . The moments EV k(C) of higher orders can be
expressed in terms of integrals more tractable than (55). Recall our notation

D(z1, . . . , zk) =
k⋃

i=1

B(zi, |zi |) ⊂ C.
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We use the fact that

z ∈ C(0)k ⇐⇒ ND(z)(φ0) = 0.(56)

Let A ⊂ C be a Borel set. From (54), (56) and (19),

E[V k(C ∩ A)] =
∫
Ak

P
{
ND(z)(φ0) = 0

}
dz

(57)

=
∫
Ak

RD(z)(0,0)

K(0,0)
P
{
ND(z)(φ) = 0

}
dz

and hence by (16), we obtain

E[V k(C ∩ A)] =
∫
Ak

exp
{
−
∫
D(z)

K0(u,u) du

(58)

−∑
n≥2

1

n

∫
D(z)

K
(n)
0,D(z)(u,u) du

}
dz

and

E[V k(C ∩ A)] =
∫
Ak

RD(z)(0,0)

K(0,0)
exp
{
− 1

π
V (z)

(59)

−∑
n≥2

1

n

∫
D(z)

K
(n)
D(z)(u,u) du

}
dz,

where V (z) denote the area of the set D(z) = D(z1, . . . , zk).
We will now use formulas (58) and (59) in order to compare the area of C

with the area of the typical cell Cp of the Voronoi tessellation associated with a
stationary Poisson process which has the same intensity measure (1/π)dz as the
process φ. For every Borel set A,

E[V k(Cp ∩ A)] =
∫
Ak

e−V (z)/π dz.(60)

Hence by (58), (45) and the fact that for every z = (z1, . . . , zk) ∈ B(r)k , D(z) =
D(z1, . . . , zk) ⊂ B(2r), one has

E
[
V k(C ∩ B(r)

)]≤ E
[
V k(Cp ∩ B(r)

)]
exp
(

1

π

∫
B(2r)

e−|z|2 dz

)
.(61)

5.1. Proof of Theorem 4, part (a). Formula (60) implies that

E
[
V k(Cp ∩ B(r)

)]= ∫
B(r)k

e−V (z)/π dz = r2k
∫
B(1)k

e−r2V (z)/π dz.(62)
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For z ∈ Ck , let α0,n, n ≥ 1, denote the eigenvalues of K0 acting on D(z) where
α0,1 is the largest eigenvalue, then∑

m≥2

1

m

∫
D(z)

K
(m)
0,D(z)(u,u) du = ∑

m≥2

1

m

∑
n≥1

(α0,n)
m

(63)

≤ 1

2(1 − α0,1)

∑
n≥1

(α0,n)
2.

Furthermore,∑
n≥1

(α0,n)
2 =
∫
D(z)

K
(2)
0,D(z)(u,u) du = (1/π2)

∫
D(z)2

|1 − euv|2e−|u|2−|v|2 dudv.

If z ∈ B(r)k , then D(z) ⊂ B(2r), and hence∑
n≥1

(α0,n)
2 ≤ (1/π2)

∫
B(2r)2

|1 − euv|2e−|u|2−|v|2 dudv = O(r8).

This and (63) imply (since α0,1 decrease when domain decrease)∑
m≥2

1

m

∫
D(z)

K
(m)
0,D(z)(u,u) du = O(r8).(64)

Therefore, by (58) we obtain

E
[
V k(C ∩ B(r)

)]= ∫
B(r)k

exp
{
−
∫
D(z)

K0(u,u) du

− ∑
m≥2

1

m

∫
D(z)

K
(m)
0,D(z)(u,u) du

}
dz(65)

= (1 + O(r8)
) ∫

B(r)k
exp
{
−
∫
D(z)

K0(u,u) du

}
dz.

Moreover,∫
B(r)k

exp
{
−
∫
D(z)

K0(u,u) du

}
dz

= r2k
∫
B(1)k

exp
{
−
∫
rD(z)

K0(u,u) du

}
dz

(66)

= r2k
∫
B(1)k

exp
{
−r2 1

π
V (z) + r2

π

∫
D(z)

e−|ru|2 du

}
dz

= r2k
∫
B(1)k

[
1 + r2

π
V (z) + O(r4)

]
exp
{
−r2 1

π
V (z)

}
dz.
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Formula (3) is a straightforward consequence of (62), (65), (66) and the asymp-
totic equality,∫

B(1)k V (z) exp{−r2(1/π)V (z)}dz∫
B(1)k exp{−r2(1/π)V (z)}dz

= 1

πk

∫
B(1)k

V (z) dz + O(r2).(67)

5.2. Proof of Theorem 4, part (b). For z ∈ (C \ B(R))k , let αn, fn, n ≥ 1,

denote the eigenvalues and the eigenfunctions of the operator K on D(z) where
α1 is the largest eigenvalue.

By Lemma 7,

RD(z)(0,0)

K(0,0)
=
∑

n≥1(αn/(1 − αn))|fn(0)|2∑
n≥1 αn|fn(0)|2 ≤ 1

1 − α1
.(68)

One has ∑
n≥1

αn = (1/π)V (z).(69)

Note also that when z ∈ (C \B(R))k , there exists a ∈ C, |a| = R such that D(z) ⊃
B(a,R). Thus∑

n≥2

(αn)
2 =
∫
D(z)

K
(2)
D(z)(u,u) du = 1

π2

∫
D(z)2

e−|u−v|2 dudv

(70)

≥ 1

π2

∫
B(a,R)2

e−|u−v|2 dudv = 1

π2

∫
B(R)2

e−|u−v|2 dudv.

Introduce

(∗) = RD(z)(0,0)

K(0,0)
P {ND(z)(φ) = 0}.

Thus, by (14), (31), (68) and (69),

(∗) ≤ exp
{∑

n≥2

log(1 − αn)

}
≤ exp

[
−V (z)

π
+ α1 + (α1)

2

2
− 1

2

∑
n≥1

(αn)
2
]
,

and hence by (70), we obtain

(∗) ≤ exp
[
−V (z)

π
+ 3

2
− 1

2π2

∫
B(R)2

e−|u−v|2 dudv

]
.(71)

From (57), (71), notation of Theorem 4 and (60), it follows that

E
[
V k(C \ B(R)

)]= ∫
(C\B(R))k

RD(z)(0,0)

K(0,0)
P
{
ND(z)(φ) = 0

}
dz

≤ e(3/2)−J (R)
∫
(C\B(R))k

exp
[
−V (z)

π

]
dz(72)

= EV k(Cp \ B(R)
) · e(3/2)−J (R),

which proves part (b) of Theorem 4.
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PROBLEM 4. The facts that EV (C) = EV (Cp) = π and that the Ginibre–
Voronoi tessellation is more regular than the Poisson–Voronoi tessellation suggest
the conjecture (which seems to be confirmed by Monte Carlo simulation [16]) that
the inequality,

EV 2(C) ≤ EV 2(Cp),

holds. It would be interesting to provide a rigourous proof of this property.

5.3. Proof of Theorem 5. By Theorem 1 and formula (54), the typical cell C
coincides in law with the cell C(0) related to the process φ0 which is obtained by
removing from φ the point Z. If we consider the cell,

C0 = {z ∈ C; ∀v ∈ φ, |z| ≤ |z − v|} ⊂ C,

that is, if we do not remove the point Z, then for every Borel set A ⊂ C and k ≥ 1,

E[V k(C0 ∩ A)] =
∫
Ak

P
{
ND(z)(φ) = 0

}
dz

=
∫
Ak

exp
{
−V (z)

π
−∑

n≥2

1

n

∫
K

(n)
D(z)(u,u) du

}
dz(73)

≤
∫
Ak

exp{−V (z)/π}dz = E[V k(Cp ∩ A)].
Say that a point u ∈ φ is a neighbor of the origin if the bisecting line of the segment
[0, u] intersects the boundary of the cell C0.

Denote by N = N (φ) the set of neighbours of the origin. Recall property (56),
that is,

z ∈ C(0)k ⇐⇒ D(z) ∩ φ0 = ∅.

By Theorem 1, we have also

z ∈ Ck
0 ⇐⇒ D(z) ∩ φ = ∅

(74)
⇐⇒ D(z) ∩ φ0 = ∅ and Z /∈ D(z).

Moreover, if Z /∈ N then obviously C(0) = C0. Consequently, we obtain

E[V k(C(0)) − V k(C0)]
= E
[{V k(C(0)) − V k(C0)} × 1{Z∈N }

]
=
∫

Ck
[P {D(z) ∩ φ0 = ∅,Z ∈ N }

(75)
− P {D(z) ∩ φ0 = ∅,Z /∈ D(z),Z ∈ N }]dz

=
∫

Ck
P {D(z) ∩ φ0 = ∅,Z ∈ D(z),Z ∈ N }dz

≤ P {Z ∈ N }1/2
∫

Ck
P {D(z) ∩ φ0 = ∅,Z ∈ D(z)}1/2 dz.
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Now by (53), (19), (31) and notation (5),

P {D(z) ∩ φ0 = ∅,Z ∈ D(z)}
=
(

1 − K(0,0)

RD(z)(0,0)

)
P
{
ND(z)(φ0) = 0

}
(76)

= (πRD(z)(0,0) − 1
)
P
{
ND(z)(φ) = 0

}
= H(z).

Moreover, by (19),

E[V k(C(0)) − V k(C0)]
=
∫

Ck

(
P
{
ND(z)(φ0) = 0

}− P
{
ND(z)(φ) = 0

})
dz(77)

=
∫

Ck
H(z) dz.

Relations (75)–(77) imply (6).

5.4. Theorem 5, case k = 1. Fix a ∈ C and consider the kernel K̂(z1, z2) =
K(z1 − a, z2 − a); hence

K̂(z1, z2) =∑
n≥0

e−(1/2)|z1−a|2(z1 − a)n√
πn!

(78)

× e−(1/2)|z2−a|2(z2 − a)n√
πn! .

Observe that the functions

fn(z) = e−(1/2)|z−a|2(z − a)n, z ∈ D(a),n ≥ 1,

are orthogonal on D(a) = B(a, r) with r = |a| and that∫
D(a)

|fn(z)|2 dz = πγ (n + 1, r2),

where

γ (n,u) =
∫ u

0
e−t tn−1 dt

is the incomplete gamma function.
Denote

αn = γ (n + 1, r2)

n! , n ≥ 0,(79)
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and

f̂n = (πγ (n + 1, r2)
)−1/2

fn,

then

K̂(z1, z2) =∑
n≥0

αnf̂n(z1)f̂n(z2).(80)

It follows from (80) that αn, n ≥ 0, are the eigenvalues of the integral kernel K̂ on
D(a) = B(a, r) with r = |a| and that for the resolvent kernel R̂D(a), we have

R̂D(a)(0,0) =∑
n≥0

αn

1 − αn

f̂n(0)f̂n(0)

(81)

= 1

π

∑
n≥0

r2ne−r2

	(n + 1, r2)
,

where

	(n,u) = 	(n) − γ (n,u) =
∫ +∞
u

e−t tn−1 dt.

By Remark 17 and formulas (14), (31) and (79),

P
{
ND(a)(φ) = 0

}= ∏
n≥0

	(n + 1, r2)

n! , r = |a|.(82)

Therefore, by (81) and (82),

EV (C) =
∫

C
P
{
ND(z)(φ0) = 0

}
dz

=
∫

C
P
{
ND(z)(φ) = 0

} R̂D(z)(0,0)

K̂D(z)(0,0)
dz

= π

∫ +∞
0

∏
n≥0

	(n + 1, t)

n! ×∑
n≥0

tne−t

	(n + 1, t)
dt

= π

[
−∏

n≥0

	(n + 1, t)

n!
]t=+∞

t=0
= π.

This is the expected result. Now, we have also

EV (C0) =
∫

C
P
{
ND(z)(φ) = 0

}
dz

= π

∫ +∞
0

∏
n≥0

	(n + 1, t)

n! dt.
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In [20] [formula (15.1.27)], M. L. Mehta showed that, for every t ≥ 0,∏
n≥0

	(n + 1, t)

n! ≤ (1 + t)e−2t .(83)

This implies

EV (C0) ≤ 3π

4
.

From (79), (81), and with the notation (5), we obtain

H(a) = (πR̂D(a)(0,0) − 1
) ∏
n≥0

(1 − αn)

= ∏
n≥0

	(n + 1, r2)

n! ×∑
n≥0

r2ne−r2

	(n + 1, r2)

(84)

− ∏
n≥0

	(n + 1, r2)

n!

= ∏
n≥0

	(n + 1, r2)

n! ×∑
n≥1

r2ne−r2

	(n + 1, r2)
.

Consequently, ∫
C

H(z)dz = 2π

(
1 −
∫ +∞

0

∏
n≥0

	(n + 1, t)

n! dt

)
(85)

and inserting (84) and (85) in (6), we obtain (7). Now, applying the Hölder in-
equality, we get(∫ +∞

0

√√√√(∑
n≥1

tne−t

	(n + 1, t)

)∏
n≥0

	(n + 1, t)

n! dt

)2

≤
∫ +∞

0

(∑
n≥1

tne−t

	(n + 1, t)

)∏
n≥1

	(n + 1, t)

n! dt

×
∫ +∞

0
e−t dt = 1.

This and inequality (7) give

P {Z ∈ N (φ)} ≥
[
1 −
∫ +∞

0

∏
n≥0

	(n + 1, t)

n! dt

]2

and by (83) we obtain

P {Z ∈ N (φ)} ≥ 1
16 .
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PROBLEM 5. It would be interesting to investigate other geometric character-
istics of C , among others, the number of sides, the perimeter, and the radius of the
smaller disc containing C(0).

APPENDIX: PROOF OF LEMMA 13

Let α, β be point processes on E such that for every decreasing event A ∈
Fd(E),

P {α ∈ A} ≤ P {β ∈ A}.(86)

Recall that Fd ⊂ F is the collection of sets which are a finite union of elementary
decreasing events. We want to prove that point process α ∈ Mσ (E) stochastically
dominates the point process β ∈ Mσ (E) which is equivalent to the fact that in-
equality (86) above is satisfied for every decreasing event A ∈ F (E).

A.1. Step I. It suffices to prove that (86) is satisfied for every decreasing event
A ∈ F (E) by assuming that A ∈ F (E) is a closed subset of Mσ (E). Moreover, if
E is compact then we may assume that A ∈ F (E) is compact as well.

Indeed, denote by Q the law of point process α and by Q’ the law of the
process β . We want to show that Q(A) ≤ Q′(A) for all A ∈ F (E). Recall that
Mσ (E) is a Polish space. Then, by the Lusin theorem, Q(A) = sup{Q(A);A ⊆ A
and A is compact} and Q′(A) = sup{Q′(A);A ⊆ A and A is compact}. Consider
now a compact set A ⊆ A and denote

Ã = {ξ ∈ Mσ (E); ∃ζ ∈ A such that ξ ⊆ ζ }.
The set Ã is decreasing and A ⊆ Ã ⊆ A. Consequently the result follows from the
lemma below.

LEMMA 26. (i) The set Ã above is closed.
(ii) If E is compact then the set Ã is compact as well.

PROOF. For property (i), consider a sequence (ξn)n ⊂ Ã such that ξn → ξ ∈
Mσ (E) [the space Mσ (E) being endowed with the vague topology]. We want to
show that ξ ∈ Ã. For every n ≥ 1 there exists ζn ∈ A such that ξn ⊆ ζn. With the set
A being compact, there exists a convergent subsequence ζnk

→ ζ ∈ A. We claim
that ξ ⊆ ζ (and thus ξ ∈ Ã). Indeed, suppose that there exists x ∈ ξ such that x /∈ ζ .
Let fi : E → R, i = 1,2, be continuous functions with compact supports, respec-
tively, Ki , i = 1,2, such that K1 ⊂ K2, ξ ∩ K1 = x, K2 ∩ ζ = ∅, 0 ≤ f1, f2 ≤ 1,
f1(x) = 1 and f2 ≡ 1 on K1. Denote V (ξ) = {η; |1 −∑z∈η f1(z)| ≤ 1/2} and
V (ζ ) = {η; |∑z∈ηf2(z)| ≤ 1/2}. For large nk we have ξnk

∈ V (ξ) and ζnk
∈ V (ζ )

from which follows that ξnk
∩K1 �= ∅ and ζnk

∩K1 = ∅ which implies in turn the
contradiction ξnk

� ζnk
. Property (i) is then proved. To prove property (ii) notice

(see [14]) that the compactness of the sets E and A implies that there exists A > 0
such that A ⊂ {NE ≤ A}. Obviously Ã is included in {NE ≤ A}, the later being
compact (see [14], page 33); the result follows from property (i). �
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A.2. Step II. We may suppose that E is a compact separable metric space.
Indeed, we have E = ⋃n≥1 Kn where the sets Kn ↑ E are compact with count-
able bases. Denote αn = α ∩ Kn and βn = β ∩ Kn. Condition (86) implies that
P {αn ∈ A} ≤ P {βn ∈ A} is satisfied for every decreasing event A ∈ Fd(Kn). Thus
if condition (86) implies stochastic domination for E compact, then the process
βn is stochastically dominated by the process αn, and we have P {αn ∈ A} ≤
P {βn ∈ A} for A ∈ F (E). This and the fact that αn ↑ α and βn ↑ β implies that
P {α ∈ A} ≤ P {β ∈ A} for closed decreasing sets A ∈ F (E).

A.3. Step III. We suppose that E is compact with a metric d . Fix a compact
decreasing set A ∈ F (E). We can suppose that there exists ε > 0 such that for each
A ∈ A and each x, y ∈ A, we have d(x, y) > ε. Indeed, denote by An ⊂ A the set
where the elements are the finite sets A ∈ A such that for every x, y ∈ A, we have
d(x, y) > 1/n. Then the sets An are decreasing as well and when n → +∞, we
have Q(An) → Q(A) and Q′(An) → Q′(A).

A.4. Step IV. For each A ∈ A (note that A is finite) and n > 1/ε consider the
set

On,A = {φ ∈ Mσ (E);NB0(x,1/n)(φ) ≤ 1 for each x ∈ A
(87)

and NE\⋃x∈A B0(x,1/n)(φ) = 0
}
,

where B0(x,1/n) is the open ball.
Denote Kn =⋃A∈A On,A.
In order to finish it suffices to note that:

– The sets On,A are open (see [14]);
– We have Kn+1 ⊂ Kn;
–
⋂

Kn = A;
– Kn is a covering of A by open sets, A being compact there exists a covering of

A by a finite number of sets On,A.

Consequently, in order to obtain Q(A) ≤ Q′(A) it suffices to have
Q(
⋃

i=1,...,N On,Ai
) ≤ Q′(⋃i=1,...,N On,Ai

). Naturally,
⋃

i=1,...,N On,Ai
∈ Fd

which completes the proof.
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