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THE G/GI/N QUEUE IN THE HALFIN–WHITT REGIME1

BY JOSH REED

New York University

In this paper, we study the G/GI/N queue in the Halfin–Whitt regime.
Our first result is to obtain a deterministic fluid limit for the properly cen-
tered and scaled number of customers in the system which may be used to
provide a first-order approximation to the queue length process. Our second
result is to obtain a second-order stochastic approximation to the number of
customers in the system in the Halfin–Whitt regime. This is accomplished by
first centering the queue length process by its deterministic fluid limit and
then normalizing by an appropriate factor. We then proceed to obtain an al-
ternative but equivalent characterization of our limiting approximation which
involves the renewal function associated with the service time distribution.
This alternative characterization reduces to the diffusion process obtained by
Halfin and Whitt [Oper. Res. 29 (1981) 567–588] in the case of exponentially
distributed service times.

1. Introduction. In this paper, we study the G/GI/N queue in the Halfin–
Whitt regime. This problem has received considerable attention in the literature
recently, however, to this date it has remained an open problem to extend the pio-
neering work of Halfin and Whitt [6] on the GI/M/N queue to the more general
G/GI/N queue. In this paper and its sequel [18], we resolve this open problem by
providing both fluid and diffusion limit results for the queue length process of the
G/GI/N queue in the Halfin–Whitt regime. In addition to providing these results,
we also hope that the general methodology which is employed here, labeled the
“Infinite Server Queue Systems Equations” approach (see below), will be helpful
in future applications.

Loosely speaking, the Halfin–Whitt regime is achieved by considering a se-
quence of many server queues indexed by the number of servers queues indexed
by the number of servers N where the arrival rate to the system grows large but
the service time distribution remains fixed. Specifically, denoting by λN the arrival
rate to the N th system, we assume that

λN → ∞ as N → ∞.
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In order for the sequence of systems to remain stable, this then requires that the
number of servers be large enough to handle the growing arrival rate. In particular,
assuming without loss of generality that the mean service time is equal to one and
denoting by ρN = λN/N the traffic intensity to the N th system, in the Halfin–
Whitt regime we assume that

√
N(1 − ρN) → β as N → ∞,

where −∞ < β < ∞. Thus, in the Halfin–Whitt regime we assume that the traffic
intensity of the system remains close to 1 while the number of servers grows with-
out bound. Note also by the results of Kiefer and Wolfowitz [13], that, if β > 0,
then, for large enough N , the sequence of systems will be stable in the pre-limit,
while if β < 0, they will not. The case β = 0 is indeterminate.

Halfin and Whitt showed in their seminal paper [8] that in the regime described
above, the properly centered and scaled queue length process will converge to a
limiting diffusion. Unfortunately, they were not able to extend their results be-
yond the assumption of exponential service time distributions. This is mainly due
to the fact that the infinitesimal generator approach to their proof breaks down
when the service times are no longer exponentially distributed. This has naturally
led to much speculation in the literature as to how to approach the situation of
general service time distributions and specifically in such situations what the lim-
iting process of the properly centered and scaled queue length process must be.
In an effort to answer this question, several authors have recently obtained con-
vergence results for carefully selected classes of service time distributions which
are particularly well suited to analysis. Puhalskii and Reiman [17] have demon-
strated convergence of the G/PH/N queue length process in the Halfin and Whitt
regime, where PH stands for phase type service time distributions. Their approach
is to consider a multi-dimensional Markovian process where each dimension cor-
responds to a different phase of the service time distribution. Jelenković, Man-
delbaum and Momčilović [10] have shown convergence of the steady state dis-
tribution of the GI/D/N queue, where D stands for deterministic service times.
Their proof involves focusing on a single server in the system and studying its
queue length behavior as it evolves over time. Whitt in [21] has shown process
level convergence of the G/H ∗

2 /N/M queue, where H ∗
2 stands for a mixture of

an exponential random variable and a point mass at zero. In [16], Mandelbaum
and Momčilović study the virtual waiting time process of G/GI/N in the Halfin–
Whitt regime assuming that the service time distribution possess finite support.
Their approach relies on a combination of combinatorial and probabilistic argu-
ments. Gamarnik and Momčilović [5] analyze the GI/GI/N queue assuming that
the service time distribution is lattice valued with finite support. They analyze the
stationary values of the queue length and waiting time processes and show that
the in the Halfin–Whitt regime, the diffusion scaled stationary value of the queue
length converges to a limiting random variable corresponding to the stationary
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measure of a Markov chain, which, interestingly, may be recovered from our limit
as well. Kaspi and Ramanan [12] consider service time distributions with a den-
sity and provide a fluid limit for the measure-valued process which keeps track of
the amount of time that each customer has spent in the system. Nevertheless, with
the exception of the results of Kapsi and Ramanan [12], it does not appear that
any of the aforementioned approaches may be easily extended to the case of gen-
eral service time distributions, and so to this date there has remained no general
methodology for analyzing the G/GI/N queue in the Halfin–Whitt regime. This
is the main contribution of the present set of papers.

In particular, in this paper and its sequel [18], we provide two separate ap-
proaches for extending the results of Halfin and Whitt [6] to the G/GI/N queue.
Each of these approaches has its own unique set of advantages and disadvantages
and in subsequent work we intend to provide important applications in which
one approach may be more advantageous than the other. For the remainder of the
present paper we focus our attention on the first approach which we label the “Infi-
nite Server Queue System Equations” approach and defer discussion of the second
approach, the “Idle Time System Equations” approach, until the sequel.

The main insight to the “Infinite Server Queue System Equations” approach
is to write the system equations in a manner similar to the system equations for
the G/GI/∞ queue. Proposition 2.1 in Section 2 then provides a crucial link be-
tween our system and the G/GI/∞ queue which allows the asymptotic analysis
to proceed. In an effort to give a quick idea of what our main results, first recall
the heavy traffic results found in Borovkov [2] and Krichagina and Puhalskii [14].
Recall that heavy traffic for the G/GI/∞ queue is defined by letting the arrival
rate to the system grow large while holding the service time distribution fixed. In
such a regime, it can be shown that the properly centered and scaled queue length
processes will converge to a Gaussian process which we denote by Q̃I .

Let us therefore denote by Q̃I the limiting Gaussian process obtained for a
G/GI/∞ queue with the same sequence of arrival processes and an identical ser-
vice time distribution as in our original sequence of G/GI/N queues. Then the
limiting process of Theorem 5.1 of Section 5 for the properly centered and scaled
queue length process in our original sequence of G/GI/N queues is given by the
unique strong solution to

Q̃(t) = M̃Q(t) + Q̃I (t) − βFe(t) +
∫ t

0
Q̃+(t − s) dF (s)(1.1)

for t ≥ 0, where Q̃+ = max(Q̃,0), F is the CDF of the service time distribution,
Fe is the equilibrium distribution associated with F [see (5.4)] and M̃Q is an ad-
ditional process which is related to the initial conditions of the queue. Note that
the additional integral term on the right-hand side of (1.1) is naturally positive as
one would expect more customers in a G/GI/N queue than in a corresponding
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G/GI/∞ queue. Corollary 5.2 in Section 5 also shows that (1.1) may be equiva-
lently expressed as

Q̃(t) = ζ(t) +
∫ t

0
ζ(t − s) dM(s) − βt −

∫ t

0
Q̃−(t − s) dM(s)(1.2)

for t ≥ 0, where ζ = M̃Q + Q̃I , Q̃− = min(0, Q̃) and M is the renewal function
associated with the pure renewal process with interarrival distribution F . From
(1.2), it is then a matter of a few direct calculations to recover Halfin and Whitt’s
original results. We also point out that in Section 4 we develop fluid limit results
which closely resemble (1.1) above.

The methodology of proof used in the present paper is heavily influenced by the
results found in [14]. In particular, the authors in [14] use martingale techniques in
order to show that certain processes associated with the queue length process are
tight. In this paper, many of these same arguments are repeated again but with the
slight modifications necessary in order to account for the finiteness of the number
of servers. We therefore encourage the interested reader to concurrently review the
results found in [14] in order to gain a fuller understanding of the present paper. In
particular, one of the main insights from [14] is to show that the limiting process
of Q̃I in (1.1) may be decomposed into a sum of two processes M̃1 and M̃2,
which represent the randomness arising from the arrival process and service times,
respectively. Furthermore, the process M̃2 may represented as a double integral
against the Kiefer process.

The remainder of this paper is now organized as follows. Section 2 provides the
system equations for the G/GI/N queue. In Section 3, we provide a regulator map
result upon which our weak convergence argument will hinge. Sections 4 and 5
contain our weak convergence results for the queue length process. Specifically, in
Section 4 we study the queue length process under fluid scaling and our main result
in this section is Theorem 4.1. Next, in Section 5, we study the fluid centered queue
length process under diffusion scaling in the Halfin–Whitt regime and our main
result there is Theorem 5.1. Corollary 5.2 of Section 5 also provides an equivalent
characterization of the limiting process obtained in Theorem 5.1. This then serves
as the link between Halfin and Whitt’s results and ours. In Section 6, we conclude
by providing several directions for future research. The Appendix also includes
several proofs which are similar in nature to those found in [14] but are necessary
for our results and so are included here for completeness.

1.1. Notation. In what follows, all random variables are assumed to be defined
on a common probability space (�, F ,P). Stochastic processes are assumed to
measurable maps from (�, F ) to (D[0,∞), D), where D[0,∞) is the space of all
right continuous with left limit (RCLL) functions on [0,∞) and D is the Borel σ -
algebra generated by the Skorohod J1-topology, see Chapter 16 of [1] for further
details.



THE G/GI/N QUEUE IN THE HALFIN–WHITT REGIME 2215

We denote by B(R), the Borel σ -field on R. For any two measure spaces,
(S1, S1) and (S2, S2), we denote by (S1 × S2, S1 × S2), the product measure
space which is endowed with the product σ -field, S1 × S2. Specifically, we define
(Dk[0,∞), Dk) to be the product measure space (D[0,∞) × · · · × D[0,∞), D ×
· · · × D).

We denote by dJ1 , the Skorohod metric on D[0,∞) and by u the uniform met-
ric. For each x ∈ D[0,∞) and T ≥ 0, we denote by

‖x‖T = sup
0≤t≤T

|x(t)|,

the supremum metric on [0, T ]. We also denote by | · |, the Euclidian metric on R.
For any two metric spaces, (S1,m1) and (S2,m2), we denote by (S1 × S2,m1 ×
m2), the product metric space which is endowed with the maximum metric m1 ×
m2 defined by

(m1 × m2)((x1, x2), (y1, y2)) = max{m1(x1, y1),m2(x2, y2)}.
In particular, we define (Dk[0,∞), dk

J1
) to be the product metric space (Dk[0,∞),

dk
J1

) = (D[0,∞) × · · · × D[0,∞), dJ1 × · · · × dJ1) and we set (Dk[0,∞), uk) =
(D[0,∞) × · · · × D[0,∞), u × · · · × u).

2. System equations for the G/GI/N queue. In this section, we provide
the system equation for the G/GI/N queue. One of the key insights from Halfin
and Whitt [6] was that for large N , the GI/M/N queue will, for stretches of time
when the number of customers is low, behave as if it were an GI/M/∞ queue. Our
main results in Sections 4 and 5 show that the same holds true for the G/GI/N
queue as well. Our first step towards showing that this is the case is to write down
the system equations for the G/GI/N queue in a similar way to those for the
G/GI/∞ queue. For the reader’s convenience, we will closely adhere to the no-
tation used in [14] as many of the arguments we use here cite results from that
paper.

Initially, at time 0−, we assume that there are Q0 customers in the system.
The first min(Q0,N) of these customers will be in service and the remain-
der are waiting to be served. Those customers in service at time 0− have al-
ready been in service for some amount of time and we denote by η̃i the resid-
ual service time of the ith customer in service at time 0−. We assume that
{η̃i , i ≥ 1} is an i.i.d. sequence of random variables with common distribution
F0.

Customers next arrive to the system according to the arrival process A =
{A(t), t ≥ 0} and are served on a first come first served (FCFS) basis. The arrival
time of the ith customer is defined to be the quantity

τi = inf{t ≥ 0 :A(t) ≥ i}, i ≥ 1.
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Setting τ0 = 0, we also define

ξi = τi − τi−1, i ≥ 1,(2.1)

to be the interarrival times between the (i − 1)st and ith customers to arrive to the
system.

The ith customer to enter service after time 0− is assigned the service time ηi .
We assume that {ηi, i ≥ 1} is an i.i.d. sequence of mean 1, random variables with
common distribution F whose tail distribution we denote by G = 1 − F . Note that
we impose no assumptions on the service time distribution, other than it have a
finite first moment.

For each i ≥ 1, let wi denote the waiting time of the ith customer to arrive
to the system after time 0− and let w̃i denote the waiting time of the (N + i)th
initial customer in the system at time 0−, if such a customer exists. We begin our
indexing by N + 1 since the first N initial customers in the system will not have
to wait. Using this notation as well as that of the previous paragraphs, the total
number of customers in the system at time t is given by

Q(t) =
min(Q0,N)∑

i=1

1{η̃i > t} +
(Q0−N)+∑

i=1

1{w̃i + ηi > t}
(2.2)

+
A(t)∑
i=1

1
{
τi + wi + η(Q0−N)++i > t

}
.

We henceforth refer to the process Q = {Q(t), t ≥ 0} as the queue length process.
It is important to note that Q does not only count those customers in the queue
waiting to be served but that indeed it counts the total number of customers in the
system. The number of customers waiting to be served may however be recovered
from Q and is given by (Q − N)+. Also note that in general Q0 
= Q(0) since it is
possible for customers to arrive to the system at time zero. One may think of Q0
as being equal to Q(0−), the left-hand limit of Q at time t = 0.

Centering each of the indicator functions in the first summation on the right-
hand side of (2.2) by the means and the indicator functions in the last two sum-
mations by their means conditional on their arrival times and waiting times, we
obtain

Q(t) = min(Q0,N)F̄0(t) + W0(t) + M2(t)
(2.3)

+
(Q0−N)+∑

i=1

G(t − w̃i) +
A(t)∑
i=1

G(t − τi − wi),

where

W0(t) =
min(Q0,N)∑

i=1

(
1{η̃i > t} − F̄0(t)

)
(2.4)
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and

M2(t) =
(Q0−N)+∑

i=1

(
1{w̃i + ηi > t} − G(t − w̃i)

)
(2.5)

+
A(t)∑
i=1

(
1
{
τi + wi + η(Q0−N)++i > t

} − G(t − τi − wi)
)
.

We also set W0 = {W0(t), t ≥ 0} and M2 = {M2(t), t ≥ 0}.
Next, adding in and subtracting out the terms

AG(t) =
∫ t

0
G(t − s) dA(s)(2.6)

and (Q0 − N)+G(t) both to and from the right-hand side of (2.3), we obtain

Q(t) = I (t) + W0(t) + M2(t) + AG(t)

+
(Q0−N)+∑

i=1

(
G(t − w̃i) − G(t)

)
(2.7)

+
A(t)∑
i=1

(
G(t − τi − wi) − G(t − τi)

)
,

where

I (t) = min(Q0,N)F̄0(t) + (Q0 − N)+G(t).

Note that AG(t) as given in (2.6) is the expected number of customers in G/GI/∞
queue at time t with same arrival process and service time distribution as in
our G/GI/N queue conditional on the arrival process A. We also set AG =
{AG(t), t ≥ 0} and I = {I (t), t ≥ 0}.

We now have the following key proposition.

PROPOSITION 2.1. For each t ≥ 0,
A(t)∑
i=1

(
G(t − τi − wi) − G(t − τi)

)

=
∫ t

0

(
Q(t − s) − N

)+
dF(s) −

(Q0−N)+∑
i=1

(
G(t − w̃i) − G(t)

)
.

PROOF. First note that for each time t ≥ 0, we have that the total number of
customers waiting to be served at time t may be written as

(
Q(t) − N

)+ =
(Q0−N)+∑

i=1

1{t < w̃i} +
A(t)∑
i=1

1{τi ≤ t < τi + wi}.
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We therefore have that
A(t)∑
i=1

(
G(t − τi − wi) − G(t − τi)

)

=
A(t)∑
i=1

∫ t−τi

(t−(τi+wi))
+

dF(s)

=
A(t)∑
i=1

∫ ∞
0

1{t − (τi + wi) < s ≤ t − τi}dF(s)

=
A(t)∑
i=1

∫ ∞
0

1{τi ≤ t − s < τi + wi}dF(s)

=
∫ ∞

0

A(t)∑
i=1

1{τi ≤ t − s < τi + wi}dF(s)

=
∫ t

0

((
Q(t − s) − N

)+ −
(Q0−N)+∑

i=1

1{w̃i > t − s}
)

dF(s)

=
∫ t

0

(
Q(t − s) − N

)+
dF(s) −

∫ t

0

(Q0−N)+∑
i=1

1{w̃i > t − s}dF(s).

A reverse argument can now also be used to show that

∫ t

0

(Q0−N)+∑
i=1

1{w̃i > t − s}dF(s) =
(Q0−N)+∑

i=1

(
G(t − w̃i) − G(t)

)
.

This completes the proof. �

Proposition 2.1 now allows us to rewrite equation (2.7) for the queue length at
time t as

Q(t) = I (t) + W0(t) + M2(t) + AG(t)
(2.8)

+
∫ t

0

(
Q(t − s) − N

)+
dF(s).

Equation (2.8) is the starting point for our analysis in Sections 4 and 5. In the
next section, we develop a family of regulator map results which will be useful in
representing the queue length process in (2.8).

3. A family of regulator map results. In this section, a family of regulator
map results are provided which will be relied upon in the proof of our main results.
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In particular, these maps will provide convenient representations for the queue
length processes in Sections 4 and 5.

Let B be a cumulative distribution function on R and let a ∈ R. For each
x ∈ D[0,∞), we would like to find and characterize solutions z ∈ D[0,∞) to
equations of the form

z(t) = x(t) +
∫ t

0

(
z(t − s) + a

)+
dB(s), t ≥ 0.(3.1)

We therefore define the mapping ϕa
B :D[0,∞) �→ D[0,∞) to be such that ϕa

B(x)

is a solution to (3.1) for each x ∈ D[0,∞). The following proposition now shows
that ϕa

B is uniquely defined and provides some regularity results for ϕa
B as well. Its

proof may be found in the Appendix.

PROPOSITION 3.1. For each x ∈ D[0,∞), there exists a unique solution
ϕa

B(x) to (3.1). Moreover, the function ϕa
B :D[0,∞) �→ D[0,∞) is Lipschitz con-

tinuous in the topology of uniform convergence over bounded intervals and mea-
surable with respect to the Borel σ -field generated by the Skorohod J1 topology.

4. Fluid limit results. In this section, we obtain a nonlinear convolution equa-
tion as the fluid limit for the queue length process of the G/GI/N queue in
the Halin–Whitt regime. The limit which we obtain may be seen to be decom-
posed into four separate parts, one of which is the corresponding fluid limit for
a G/GI/∞ queue with the same sequence of arrival processes as our G/GI/N
queue and also with the same service time distribution. Although in many cases
our fluid limit may not be directly solved for, we also present a special case in
which it can which also highlights the rather unconventional behavior which our
fluid limits may display.

Our underlying premise is that we are considering a sequence of G/GI/N
queues which we index by the number of servers N . In general, we will use a
superscript N to denote all processes and quantities associated with N th system.

Initially, at time 0−, there are QN
0 customers in the N th system. The residual

service time distribution of those customers in service in the N th system at time 0−
are i.i.d. with common distribution F0. We denote by {η̃i , i ≥ 1} the i.i.d. sequence
of residual service times.

Customers arrive to the N th system according to the arrival process AN =
{AN(t), t ≥ 0}. We denote by

τN
i = inf{t ≥ 0 :AN(t) ≥ i}, i ≥ 1,

the time of the arrival of the ith customer after time 0− to the N th system. The ith
customer to enter service after time 0− in the N th system is assigned the service
ηi , where {ηi, i ≥ 1} is an i.i.d. sequence of random variables with common dis-
tribution F . Finally, we denote by G = 1 − F the tail distribution of F . Note that
neither the sequence of residual service times or actual service times is changing
with N .
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For the remainder of this section, we study the fluid scaled queue length process
Q̄N = {N−1QN(t), t ≥ 0}. Our high level approach will be similar in spirit to fluid
limit proofs for the queue length process in conventional heavy-traffic in which the
number of servers remains fixed but the service rate is increased. In particular, we
first provide a representation of the queue length process in terms of the regulator
mapping ϕa

F provided by Proposition 3.1 and an associated free process, say X̄.
We then provide several weak convergence results related to X̄ which may be
used in conjunction with the Continuous Mapping theorem and the representation
in terms of ϕa

F in order to establish the main result of the section, Theorem 4.1,
which details the asymptotic behavior of the fluid scaled queue length process.

Let QN = {QN(t), t ≥ 0} be the queue length process in the N th system and
recall that by equation (2.8) of Section 2, we have that

QN(t) = IN(t) + WN
0 (t) + MN

2 (t) + AN
G(t)

(4.1)

+
∫ t

0

(
QN(t − s) − N

)+
dF(s).

If we now define the fluid scaled quantities,

Q̄N(t) = QN(t)

N
,(4.2)

Ī N (t) = IN(t)

N
,

W̄N
0 (t) = WN

0 (t)

N
,

M̄N
2 (t) = MN

2 (t)

N
(4.3)

and

ĀN
G(t) = AN

G(t)

N
,(4.4)

it then follows from (4.1) that

Q̄N(t) = Ī N (t) + W̄N
0 (t) + M̄N

2 (t) + ĀN
G(t)

(4.5)

+
∫ t

0

(
Q̄N(t − s) − 1

)+
dF(s).

Furthermore, since by Proposition 3.1, the mapping ϕa
F is uniquely defined with

a = −1, setting

Q̄N = {Q̄N(t), t ≥ 0},
ĪN = {Ī N (t), t ≥ 0},

W̄N
0 = {W̄N

0 (t), t ≥ 0},
M̄N

2 = {M̄N
2 (t), t ≥ 0}
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and

ĀN
G(t) = {ĀN

G(t), t ≥ 0},
we have from (4.5) that

Q̄N = ϕa
F (ĪN + W̄N

0 + M̄N
2 + ĀN

G),(4.6)

with a = −1. The representation (4.6) above will turn out to be useful when prov-
ing the main result of this section.

We now state several preliminary results in preparation for the statement of the
main result of the section, Theorem 4.1. Our first result shows that W̄N

0 converges
to zero as N goes to ∞.

PROPOSITION 4.1. W̄N
0 ⇒ 0 as N → ∞.

PROOF. First, note that

W̄N
0 (t) = N−1

N min(N−1QN
0 ,1)∑

i=1

(
1{η̃i > t} − F̄0(t)

)
.

Thus, for each T > 0 and δ > 0, we have

P

(
sup

0≤t≤T

∣∣∣∣∣N−1
N min(N−1QN

0 ,1)∑
i=1

(
1{η̃i > t} − F̄0(t)

)∣∣∣∣∣ > δ

)

≤ P

(
sup

0≤x≤1
sup

0≤t≤T

∣∣∣∣∣N−1

xN�∑
i=1

(
1{η̃i > t} − F̄0(t)

)∣∣∣∣∣ > δ

)
.

However, by Lemma 3.1 in [14],

P

(
sup

0≤x≤1
sup

0≤t≤T

∣∣∣∣∣N−1

xN�∑
i=1

(
1{η̃i > t} − F̄0(t)

)∣∣∣∣∣ > δ

)
→ 0 as N → ∞,

which completes the proof. �

We next show that M̄N
2 converges in distribution to zero. The full proof of this

result may be found in the Appendix.

PROPOSITION 4.2. M̄N
2 ⇒ 0 as N → ∞.

PROOF. See the Appendix. �

The following is now the main result of this section. It provides a deterministic
first-order approximation to the queue length process. Later, in Section 5, we use
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this result to center the queue length process and obtain a second-order approxi-
mation.

Let

Q̄N
0 = QN

0

N

be the fluid scaled initial number of customer in the system at time 0− and

ĀN(t) = AN(t)

N

be the fluid scaled number of arrivals by time t ≥ 0. We also set ĀN = {ĀN(t), t ≥
0} to be the fluid scaled arrival process. We then have the following.

THEOREM 4.1. If (Q̄N
0 , ĀN) ⇒ (Q̄0, Ā) in (R×D[0,∞), | · |×dJ1) as N →

∞, where Ā is a stochastic process with P-a.s. continuous sample paths, then
Q̄N ⇒ Q̄ as N → ∞, where Q̄ is the unique strong solution to

Q̄(t) = min(Q̄0,1)F̄0(t) + (Q̄0 − 1)+G(t)
(4.7)

+
∫ t

0
G(t − s) dĀ(s) +

∫ t

0

(
Q̄(t − s) − 1

)+
dF(s)

for t ≥ 0.

PROOF. First, note that by the definition of ĀN
G in (4.4) and the assumption

of the theorem that ĀN ⇒ Ā as N → ∞, where Ā has P-a.s. continuous sample
paths, it follows as in the proof of Theorem 3 of [14] that

ĀN
G =

∫ ·
0

G(· − s) dĀN(s)

(4.8)
⇒

∫ ·
0

G(· − s) dĀ(s)

as N → ∞. Next, setting

M̄N
3 = W̄N

0 + M̄N
2 + ĀN

G,

it follows by Propositions 4.1 and 4.2 and (4.8) that

M̄N
3 ⇒

∫ ·
0

G(· − s) dĀ(s) as N → ∞.

Since, by assumption, (Q̄N
0 , ĀN) ⇒ (Q̄0, Ā) in (R × D[0,∞), | · | × dJ1) as N →

∞, it now follows by Theorem 11.4.5 in [20] that

(M̄N
3 , Q̄N

0 ) ⇒
(∫ ·

0
G(· − s) dĀ(s), Q̄0

)
in

(
R × D[0,∞), | · | × dJ1

)
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as N → ∞. By Theorem 11.4.1 in [20], the space R × D is separable under the
product topology induced by the maximum metric | · | × dJ1 and thus, by the Sko-
rohod representation theorem [20], there exists some alternate probability space,
(�̂, F̂ , P̂ ), on which are defined a sequence of processes

{(M̂N
3 , Q̂N

0 ),N ≥ 1}(4.9)

such that

(M̂N
3 , Q̂N

0 )
d= (M̄N

3 , Q̄N
0 ) for N ≥ 1,(4.10)

and also processes(∫ ·
0

G(· − s) dĀ(s), Q̂0

)
d=

(∫ ·
0

G(· − s) dĀ(s), Q̄0

)
,(4.11)

where

(M̂N
3 , Q̂N

0 ) →
(∫ ·

0
G(· − s) dĀ(s), Q̂0

)
(4.12)

in (R × D, | · | × dJ1) P̂-a.s.

as N → ∞. Furthermore, as the process
∫ ·

0 G(·−s) dĀ(s) on the right-hand side of
(4.12) is, by the assumption of the continuity on Ā, continuous, it follows that the
convergence in (4.12) can also be strengthened to convergence in (R×D, | · |×u).

Now set

Î N = min(Q̂N
0 ,1)F̄0 + (Q̂N

0 − 1)+G

and note that by (4.10), we have

(M̂N
3 , ÎN )

d= (M̄N
3 , ĪN ) for N ≥ 1.(4.13)

Furthermore, letting

Î = min(Q̂0,1)F̄0 + (Q̂0 − 1)+G,

we have for each T ≥ 0, by (4.12),

sup
0≤t≤T

|Î N (t) − Î (t)| = sup
0≤t≤T

∣∣(min(Q̂N
0 ,1) − min(Q̂0,1)

)
F̄0(t)

(4.14)
+ (

(Q̂N
0 − 1)+ − (Q̂0 − 1)+)

G(t)
∣∣

≤ |Q̂N
0 − Q̂0| sup

0≤t≤T

(
F̄0(t) + G(t)

)

≤ 2|Q̂N
0 − Q̂0|

→ 0 P̂-a.s. as N → ∞.(4.15)
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Now let

Q̂N = ϕa
F (ÎN + M̂N

3 ),

where a = −1, and note that by the representation (4.6), (4.9), (4.13) and the mea-
surability of ϕa

F from Proposition 3.1, it follows that

Q̂N d= Q̃N for N ≥ 1.(4.16)

Furthermore, it follows from (4.12), (4.14) and the continuity of ϕa
F with respect

to the topology of uniform convergence over compact sets from Proposition 3.1,
that

Q̂N = ϕa
F (ÎN + M̂N

3 )

→ ϕa
F

(
min(Q̂0,1)F̄0 + (Q̂0 − 1)+G +

∫ ·
0

G(· − s) dĀ(s)

)

in (D[0,∞), u) P̂-a.s. as N → ∞. Thus, since convergence in (D,u) implies con-
vergence in (D,dJ1) and almost sure convergence implies convergence in distrib-
ution, it follows by the measurability of ψa

F : (D[0,∞), D) �→ (D[0,∞), D) from
Proposition 3.1 and (4.16) that

Q̃N ⇒ ϕa
F

(
min(Q̄0,1)F̄0 + (Q̄0 − 1)+G +

∫ ·
0

G(· − s) dĀ(s)

)
as N → ∞,

which completes the proof. �

Note that the fluid limit Q̄ given by (4.7) of Theorem 4.1 may be decomposed
into four separate parts. The first two terms on the right-hand side of (4.7) are
representative of the fluid scaled number of customers in the queue at time 0−.
Specifically, min(Q̄0,1)F̄0(t) is the limiting fluid scaled number of customers who
were in the service at time 0− and still remain in the system at time t and (Q̄0 −
1)+G(t) is representative of those customers who were waiting in the queue to be
served at time 0−. Next, the term

∫ t
0 G(t − s) dĀ(s) may be viewed as the limiting

fluid scaled number of customers in the system at time t in an G/GI/∞ queue
with the same sequence of arrival processes and service time distribution as in our
G/GI/N queue and which starts out empty at time 0−. Finally, the integral term
on the right-hand side of (4.7) may be thought of as an adjustment to the infinite
server term immediately preceding it which takes into account the waiting times
of customers.

In general, the limiting process of Theorem 5.1, Q̄, cannot be directly solved
for. This is mainly due to the presence of the nonlinear ()+ operator in the integral
term. However, under certain special circumstances it can. The following example
now presents one such case in which an explicit solution may be found.

EXAMPLE 1. Consider the case of deterministic service times in which we
have Q̄0 = 1 and Ā = e. Further, we also assume that the residual service times



THE G/GI/N QUEUE IN THE HALFIN–WHITT REGIME 2225

FIG. 1. The graph of {Q̄(t), t ≥ 0} for Q̄0 = 1, Ā = e and F0(t) = F(t) = 1{t ≥ 1}.

are constant with mean equal to 1 so that F0(x) = F(x) = 1{x ≥ 1}, x ≥ 0. In this
case, (4.7) takes the rather simple form

Q̄(t) = 1 + t, 0 ≤ t < 1,(4.17)

and

Q̄(t) = 1 + (
Q̄(t) − 1

)+
, t ≥ 1.(4.18)

Solving this recursion, one finds that

Q̄(t) = 1 + t − 
t�, t ≥ 0.(4.19)

Thus, Q̄ exhibits the sawtooth pattern as shown in Figure 1 above. Note the rather
unconventional nature of the fluid limit in Figure 1. In particular, it is periodic with
a period of 1 and it is also discontinuous. Thus, our limit process may in general
display rather irregular behavior. However, as is shown in Section 5 below, if one
starts out the queue length process under general “equilibrium” conditions, then
much more regular behavior of the fluid limit may be obtained.

5. Diffusion limit results. In this section, we obtain limiting results for the
G/GI/N queue in the Halfin–Whitt regime. Our main result of the section is to
provide a limiting approximation for the diffusion scaled queue length process in
this regime. This limiting approximation may be viewed as the solution to a sto-
chastic nonlinear convolution equation. In order to proceed, we first express the
queue length process for the G/GI/N queue via the regulator map ϕa

F defined in
Section 3. We then provide several useful propositions in preparation for the state-
ment of our main result, Theorem 5.1, which provides a limiting approximation for
the diffusion scaled queue length process. In Corollary 5.2, we provide an alter-
native representation of the limiting process obtained in Theorem 5.1. This repre-
sentation has several desirable properties and we conclude the section by showing
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how in the case of exponentially distributed service times and renewal arrivals it
reduces to the diffusion obtained by Halfin and Whitt [7].

5.1. The Halfin–Whitt regime heavy-traffic regime. In order to proceed, we
must first provide a detailed description of the Halfin–Whitt regime. Our setup is
similar to Section 4 where we obtained our fluid limit results. Again, we consider
a sequence of G/GI/N queues indexed by the number of servers N . Initially,
at time 0−, there are QN

0 customers in the system and the first min(QN
0 ,N) of

these customers have i.i.d. residual service times with common distribution F0.
We denote by η̃i , the residual service time of the ith customer in service at time
0−.

Customers arrive to the N th system according to the arrival process AN =
{AN(t), t ≥ 0} and we denote by

τN
i = inf{t ≥ 0 :AN(t) ≥ i}, i ≥ 1,

the time of the arrival of the ith customer after time 0− to the N th system. We also
assume that there exists a sequence of constants {ρN,N ≥ 1} such that ρn → 1 as
N → ∞, and, where, setting

ÃN(t) = AN(t) − NρNt√
N

, t ≥ 0,(5.1)

and ÃN = {ÃN(t), t ≥ 0}, we have that

ÃN ⇒ ξ̃ as N → ∞,(5.2)

where ξ̃ is a stochastic process with P-a.s. continuous sample paths. Loosely
speaking, one may interpret ρN as the arrival rate of customers to the N th sys-
tem.

Note that assumption (5.2) is flexible from a modeling point of view. In heavy
traffic theory, one often assumes that AN(e) = A(Ne), where A is a renewal
process, in which case, by Donsker’s theorem, the process ξ̃ in (5.2) turns out to be
a Brownian motion. The interpretation this assumption is that customers are ema-
nating from a single source, albeit at a rapid rate. However, in many applications,
with telephone call centers being just one such example, it is perhaps more natural
to assume that customers are emanating from many sources. This then leads to
the assumption that AN is a superposition of many i.i.d. renewal arrival processes,
that is, AN = ∑N

i=1 Ai . Under such an assumption, the process ξ̃ turns out to be
a centered Gaussian process whose covariance structure is inherited from that of
each of the individual Ai ’s. The interested reader is referred to Section 7.2 of [20]
for further details on this remark.

As in Section 4, the service time distribution is held fixed as we index through
N . We therefore denote by ηi the service time of the ith customer to enter service
after time 0−, where {ηi, i ≥ 1} is an i.i.d. sequence of mean 1 random variables
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with common distribution F . We denote by G = 1 − F the tail distribution of F .
Note also that we place no additional restrictions on F beyond a first moment.

It now remains to provide the key relationship characterizing the Halfin–Whitt
regime. As noted above, we have that by (5.1) and (5.2), the quantity NρN may
be loosely interpreted as the arrival rate to the N th system. Next, since there are
N servers in the N th system and it is assumed that the service rate is fixed at
one, it also follows that ρN may also be interpreted as the traffic intensity of the
N th system. The Halfin–Whitt regime is now achieved by specifying the rate at
which the traffic intensity of the system converges to one as N grows to infinity.
Specifically, we assume that

√
N(1 − ρN) → β as N → ∞,(5.3)

where −∞ < β < ∞.

5.2. Initial conditions. In proving our main diffusion limit result, it will be
useful to assume that the limiting fluid scaled number of customers in the system
is constant for all t ≥ 0. Let

Fe(x) =
∫ x

0
G(u)du, x ≥ 0,(5.4)

be the equilibrium distribution associated with F . The following result may now
be seen as a corollary to Theorem 5.1 of Section 4.

COROLLARY 5.1. If F0 = Fe and Q̄N
0 ⇒ 1 as N → ∞, then Q̄N ⇒ 1 as

N → ∞.

PROOF. First note that (5.1), (5.2) and the Halfin–Whitt assumption (5.3) im-
ply the functional weak large of law large numbers result, ĀN ⇒ e as N →
∞, where e = {t, t ≥ 0} is the identity process. Thus, by Theorem 3.9 in [1]
and the assumption Q̄N

0 ⇒ 1 as N → ∞, we have that (Q̄N
0 , ĀN) ⇒ (1, e) in

(R × D, | · | × dJ1) as N → ∞.
It now follows by Theorem 5.1 in Section 4 that Q̄N ⇒ Q̄ as N → ∞, where

Q̄ is given by the unique solution to

Q̄(t) = min(1,1)F̄e(t) + (1 − 1)+G(t) +
∫ t

0
G(t − s) de(s)

+
∫ t

0

(
Q̄(t − s) − 1

)+
dF(s)

= F̄e(t) +
∫ t

0
G(t − s) ds +

∫ t

0

(
Q̄(t − s) − 1

)+
dF(s)

= 1 +
∫ t

0

(
Q̄(t − s) − 1

)+
dF(s)
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for t ≥ 0. By inspection, one sees that Q̄(t) = 1 for t ≥ 0 is the unique solution to
this equation, which completes the proof. �

For the remainder of this section, we assume that the simplifying assumptions
of the above corollary hold. That is, we assume that the initial residual service
time distribution is equal to the equilibrium distribution Fe and that Q̄N ⇒ 1 as
N → ∞. In future papers, we intend to remove these assumptions.

5.3. Weak convergence results. We now proceed to provide our weak conver-
gence results. We begin by providing a convenient representation for the queue
length process in terms of the regulator map of Proposition 3.1. Recall that by
equation (2.8) of Section 2, we have that the queue length at time t may be written
as

QN(t) = IN(t) + WN
0 (t) + MN

2 (t) + AN
G(t)

(5.5)

+
∫ t

0

(
QN(t − s) − N

)+
dF(s).

We would next like to the center the queue length process by its fluid limit, ap-
propriately scaled. By Corollary 5.1 above, we have that the limiting fluid number
of customers in the system, Q̄, is equal to 1 for all t ≥ 0. We therefore choose to
center the queue length process in the N th system by N . Performing such a cen-
tering as well as some algebraic manipulations and recalling the definition of Fe

from (5.4), one then obtains that

QN(t) − N = MN
Q(t) + HN(t) + WN

0 (t) + MN
2 (t) + MN

1 (t)
(5.6)

− N(1 − ρN)Fe(t) +
∫ t

0

(
QN(t − s) − N

)+
dF(s),

where

MN
Q(t) = (QN

0 − N)+(
G(t) − F̄e(t)

)
,

HN(t) = (QN
0 − N)F̄e(t)

and

MN
1 (t) =

∫ t

0
G(t − s) d

(
AN(s) − NρNs

)
.(5.7)

Let MN
Q = {MN

Q(t), t ≥ 0},HN = {HN(t), t ≥ 0} and MN
1 = {MN

1 (t), t ≥ 0}.
If we now define the diffusion scaled quantities,

Q̃N(t) = QN(t) − N√
N

,

M̃N
Q(t) = MN

Q(t)√
N

,(5.8)
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H̃N(t) = HN(t)√
N

,

W̃N
0 (t) = WN

0 (t)√
N

,

M̃N
1 (t) = MN

2 (t)√
N

and

M̃N
2 (t) = MN

1 (t)√
N

,(5.9)

it then follows, dividing (5.6) by
√

N , that

Q̃N(t) = M̃N
Q(t) + Q̃N

I (t) − √
N(1 − ρN)Fe(t)

(5.10)

+
∫ t

0
Q̃N,+(t − s) dF (s),

where

Q̃N
I (t) = H̃N(t) + W̃N

0 (t) + M̃N
1 (t) + M̃N

2 (t).

Letting

Q̃N = {Q̃N(t), t ≥ 0},
M̃N

Q = {M̃N
Q(t), t ≥ 0},

H̃N = {H̃N(t), t ≥ 0},
W̃N

0 = {W̃N
0 (t), t ≥ 0},

M̃N
2 = {M̃N

2 (t), t ≥ 0},
M̃N

1 = {M̃N
1 (t), t ≥ 0}

and

Q̃N
I = H̃N + W̃N

0 + M̃N
1 + M̃N

2 ,

we then have, since the mapping ϕa
F with a = 0 is by Proposition 3.1 uniquely

defined, that (5.10) may also be written as

Q̃N = ϕa
F

(
M̃N

Q + Q̃N
I − √

N(1 − ρN)Fe

)
,(5.11)

with a = 0.
The representation (5.11) will be useful in the proof our main result. However,

before stating this result, we first provide several preliminary propositions and
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lemmas which are interesting in their own right and will be crucial in the proof of
our main result.

The proof of the following result may now be found in the Appendix. It pro-
vides a limiting process which represents the randomness of the service times in
the limit. For further details on the limit process below, the interested reader may
consult [14].

PROPOSITION 5.1. Let

M̂N
2 (t) = N−1/2

Nt∑
i=1

(
1{N−1i + ηi ≥ t} − G(t − N−1i)

)
, t ≥ 0,

and set M̂N
2 = {M̂N

2 (t), t ≥ 0}. Then,

(M̃N
2 , M̂N

2 ) ⇒ (M̃2, M̃2) in (D2[0,∞), d2
J1

) as N → ∞,

where M̃2 is a centered Gaussian process with covariance structure

E[M̃2(t)M̃2(t + δ)] =
∫ t

0
G(t + δ − u)F (t − u)du for t, δ ≥ 0.

PROOF. See the Appendix. �

We next prove a joint convergence result on the diffusion scaled processes de-
fined at the beginning of this section. Let

Q̃N
0 = QN

0 − N√
N

(5.12)

be the diffusion scaled number of customers in the system at time 0−.
Next, let W̃0 = {W̃0(t), t ≥ 0} be a Brownian bridge. In other words, W̃0 is the

unique continuous, centered Gaussian process on [0,1] with covariance function

E[W̃0(s)W̃0(t)] = (s ∧ t) − st, 0 ≤ s ≤ t ≤ 1.

Moreover, set W̃0(Fe) = {W̃0(Fe(t)), t ≥ 0}, where Fe is the equilibrium distribu-
tion associated with F as defined in (5.4). One may view W̃0(Fe) as a time changed
Brownian bridge.

We then have the following result.

PROPOSITION 5.2. If Q̃N
0 ⇒ Q̃0 as N → ∞, then

(Q̃N
0 , W̃N

0 , ÃN , M̃N
2 ) ⇒ (Q̃0, W̃0(Fe), ξ̃ , M̃2) in

(
R × D3[0,∞), | · | × d3

J1

)
as N → ∞, where each of the limiting processes appearing on the right-hand side
above are independent of one another.
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PROOF. We first show convergence of the marginals. The convergence of Q̃N
0

to Q̃0 is clear by assumption (5.12).
Let

ŴN(t) = N−1/2
N∑

i=1

(
1{η̃i > t} − F̄e(t)

)

and set ŴN = {ŴN(t), t ≥ 0}. The convergence

(ŴN
0 , W̃N

0 ) ⇒ (W̃0(Fe), W̃0(Fe)) in (D2[0,∞), d2
J1

) as N → ∞,(5.13)

follows by the representation

W̃N(t) = N−1/2
N min(N−1QN

0 ,1)∑
i=1

(
1{η̃i > t} − F̄e(t)

)
,

the Random Time Change theorem [1] and Lemma 3.1 of [14], since, by the Con-
tinuous Mapping theorem and assumption (5.12),

min(N−1QN
0 ,1) ⇒ 1 as N → ∞.

The convergence of ÃN to ξ̃ follows by assumption (5.2) and the convergence of
M̃N

2 to M̃2 is immediate by Proposition 5.1.
It remains to show the joint convergence as stated in the proposition. The con-

vergence

(Q̃N
0 , ŴN

0 , ÃN , M̂N
2 ) ⇒ (Q̃0, W̃0(Fe), ξ̃ , M̃2) in

(
R × D3[0,∞), | · | × d3

J1

)
as N → ∞, follows by Theorem 11.4.4 in [20] since each of the component
processes appearing in the prelimit above are independent of one another and fur-
ther, they converge to their desired limits as shown in the previous paragraph. Next,
note that

(| · | × d3
J1

)((Q̃N
0 , W̃N

0 , ĂN , M̃N
2 ), (Q̃N

0 , ŴN
0 , ĂN , M̂N

2 ))

≤ dJ1(W̃
N
0 , ŴN

0 ) + dJ1(M̃
N
2 , M̂N

2 )

and thus, if we can show that

dJ1(W̃
N
0 , ŴN

0 ) + dJ1(M̃
N
2 , M̂N

2 ) ⇒ 0 as N → ∞,(5.14)

then by Theorem 11.4.7 in [20] the proof will be complete. However, (5.14) fol-
lows by (5.13), Proposition 5.1 and Theorem 11.4.8 in [20]. The proof is now
complete. �

We are now ready to state the main result of this section. Assume first that
Q̃N

0 ⇒ Q̃0 as N → ∞ and let

H̃ = Q̃0F̄e and M̃Q = Q̃+
0 (G − F̄e).(5.15)
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Next, set

M̃1(t) =
∫ t

0
G(t − s) dξ̃ (s), t ≥ 0,(5.16)

and M̃1 = {M̃1(t), t ≥ 0}, where the process ξ̃ appearing in (5.16) is the limit-
ing process appearing in (5.2) at the beginning of this section. Note also that the
integral above may be interpreted as the result of integration by parts.

Next, let βFe be the process {βFe(t), t ≥ 0}, where we recall the definition of
Fe from (5.4) above.

Finally, let

Q̃I = H̃ + W̃0(Fe) + M̃1 + M̃2.(5.17)

Note that by Theorem 3 of [14], Q̃I is the limiting queue length process asso-
ciated with a sequence of G/GI/∞ queues with identical arrival processes and
service time sequence as our original sequence of G/GI/N queues and with QN

0
customers in service at time zero with residual service time distribution Fe.

The following is now our second main result.

THEOREM 5.1. If the residual service time distribution F0 = Fe and Q̃N
0 ⇒

Q̃0 as N → ∞, then Q̃N ⇒ ϕ0
F (M̃Q + Q̃I − βFe) as N → ∞.

PROOF. Let f : R × D3 �→ R × D3 be the map defined for (x1, x2, x3, x4) ∈
R × D3 by

f ((x1, x2, x3, x4)) = (f1(x1), f2(x2), f3(x3), f4(x4)),(5.18)

where f1(x1) = x1, f2(x2) = x2, f4(x4) = x4 and

f3(x3)(·) =
∫ ·

0
G(· − s) dx3(s),(5.19)

where the above integral above may be interpreted as the result of integration by
parts.

Next, note that since by assumption F0 = Fe and Q̃N
0 ⇒ Q̃0 as N → ∞, it

follows by Proposition 5.2 that

(Q̃N
0 , W̃N

0 , ÃN , M̃N
2 ) ⇒ (Q̃0, W̃0(Fe), ξ̃ , M̃2)(5.20)

in (R × D3[0,∞), | · | × d3
J1

) as N → ∞, where each of the limiting processes
above are independent of one another. Furthermore, we have that each of the
limiting processes above are P-a.s. continuous. Thus, since by Lemma A.9 of
the Appendix, f : (R × D3[0,∞), | · | × d3

J1
) �→ (R × D3[0,∞), | · | × d3

J1
) is

continuous at continuous limit points (x1, x2, x3, x4) ∈ R × D3[0,∞) such that
x2, x3, x4 ∈ C[0,∞), we have that

P
(
(Q̃0, W̃0(Fe), ξ̃ , M̃2) ∈ Disc(f )

) = 0.(5.21)
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Now note by (5.1), (5.7), (5.9) and the definition of f in (5.18) and (5.19), we
have the representation

(Q̃N
0 , W̃N

0 , M̃N
1 , M̃N

2 ) = f ((Q̃N
0 , W̃N

0 , ÃN , M̃N
2 )).

It therefore follows by (5.20), the measurability of f : (R × D3[0,∞), B(R) ×
D3) �→ (R × D3[0,∞), B(R) × D3) by Lemma A.9 in the Appendix, (5.21), the
Continuous Mapping theorem [1] and the definition M̃1 in (5.16) that

(Q̃N
0 , W̃N

0 , M̃N
1 , M̃N

2 ) ⇒ (Q̃0, W̃0(Fe), M̃1, M̃2)

in (R × D3[0,∞), B(R) × D3) as N → ∞, where each of the limiting processes
appearing on the right-hand side above are independent of one another.

Next, since (R,R) and (D, D) are both separable spaces, it follows by Theo-
rem 11.4.1 in [20] that R × D3 is separable under the product topology induced
by the maximum metric | · | × d3

J1
. Thus, by the Skorohod representation theorem

[20], there exists some alternate probability space, (�̂, F̂ , P̂ ), on which are defined
a sequence of processes

{(Q̂N
0 , ŴN

0 , M̂N
1 , M̂N

2 ),N ≥ 1},
where

(Q̂N
0 , ŴN

0 , M̂N
1 , M̂N

2 )
d= (Q̃N

0 , W̃N
0 , M̃N

1 , M̃N
2 ), N ≥ 1,(5.22)

and also processes

(Q̂0, Ŵ0(Fe), M̂1, M̂2)
d= (Q̃0, W̃0(Fe), M̃1, M̃2),(5.23)

such that

(Q̂N
0 , ŴN

0 , M̂N
1 , M̂N

2 ) → (Q̂0, Ŵ0(Fe), M̂1, M̂2)(5.24)

in (R × D3[0,∞), | · | × d3
J1

) P̂-a.s. as N → ∞. Furthermore, since each of the
processes appearing on the right-hand side of (5.24) is continuous, we may assume
that above convergence also occurs in (R × D3[0,∞), | · | × u3).

Now, set

M̂N
Q = Q̂

N,+
0 (G − F̄e)

and

M̂Q = Q̂+
0 (G − F̄e).

It is then clear that

sup
0≤t≤T

|M̂N
Q(t) − M̂Q(t)| ≤ |Q̂N

0 − Q̂0| sup
0≤t≤T

|G(t) − F̄e(t)|

≤ 2|Q̂N
0 − Q̂0|,
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and so it follows by (5.24) that

M̂N
Q → M̂Q in (D[0,∞), u) P̂-a.s. as N → ∞.(5.25)

Next, letting

ĤN = Q̂N
0 F̄e,

a similar augment shows that

ĤN → Ĥ in (D[0,∞), u) P̂-a.s. as N → ∞,(5.26)

where

Ĥ = Q̂0F̄e.

Finally, it is clear by the Halfin–Whitt condition (5.3) and the boundedness of Fe,
that

√
N(1 − ρN)Fe → βFe in (D[0,∞), u) P̂-a.s.(5.27)

as N → ∞.
Thus, letting

Q̂N
I = ĤN + ŴN

0 + M̂N
1 + M̂N

2 ,

we have by (5.24)–(5.27) that

M̂N
Q + Q̂N

I − √
N(1 − ρN)Fe → M̂Q + Q̂I − βFe(5.28)

in (D[0,∞), u) P̂-a.s. as N → ∞, where

Q̂I = Ĥ + Ŵ (Fe) + M̂1 + M̂2.

Furthermore, it follows by (5.23) that

M̂N
Q + Q̂N

I − √
N(1 − ρN)Fe

d= M̃N
Q + Q̃N

I − √
N(1 − ρN)Fe(5.29)

for N ≥ 1.
Now set

Q̂N = ϕ0
F

(
M̂N

Q + Q̂N
I − √

N(1 − ρN)Fe

)
.(5.30)

Since by Proposition 3.1, the map ϕ0
F : (D[0,∞), D) �→ (D[0,∞), D) is measur-

able, it follows by (5.11), (5.29) and (5.30) that

Q̂N d= Q̃N, N ≥ 1.(5.31)

Furthermore, by the continuity portion of Proposition 3.1 and (5.28),

Q̂N = ϕ0
F

(
M̂N

Q + Q̂N
I − √

N(1 − ρN)Fe

) → ϕ0
F (M̂Q + Q̂I − βFe)(5.32)
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in (D[0,∞), u) P̂-a.s. as N → ∞. Since convergence in (D[0,∞), u) implies
convergence in (D[0,∞), dJ1) and almost sure convergence implies convergence
in distribution, it now follows by (5.31), the measurability of ϕ0

F : (D[0,∞), D) �→
(D[0,∞), D) from Proposition 3.1 and (5.32) that Q̃N ⇒ ϕ0

F (M̃Q + Q̃I − βFe)

as N → ∞, which completes the proof. �

Note that the diffusion limit for the queue length process given by Theorem 5.1
may be written out in expanded form as the solution to the stochastic convolution
equation

Q̃F (t) = M̃Q(t) + Q̃I (t) − βFe(t) +
∫ t

0
Q̃+

F (t − s) dF (s), t ≥ 0.(5.33)

In this representation, we see that Q̃F may be decomposed into four separate parts.
The second term on the right-hand side of (5.33), Q̃I , defined by (5.17) above, is
the diffusion limit for the G/GI/∞ queue with the same number of initial cus-
tomers as in our G/GI/N queue and with the same sequence of arrival processes
and identical service time distribution as in our G/GI/N queue. It is the primary
stochastic component which drives the convolution equation above. The third term
on the right-hand side above, βFe(t), arises out of the Halfin–Whitt condition
(5.3). The first term on the right-hand side above, M̃Q, takes into account the
discrepancy between the G/GI/N and G/GI/∞ queue in the initial number of
customers in the system at time 0− who remain in the system at time t . Finally,
similar to as in the fluid limit of Section 4, the integral term on the right-hand side
of (5.33) represents an adjustment term to the infinite server queue limit, Q̃I which
takes into account the waiting times of the customers in the G/GI/N queue. Note
also that the adjustment integral term is positive as one would expect since the
number of customers in the G/GI/N queue will always be stochastically larger
than in a corresponding G/GI/∞ queue. Furthermore, only the positive portion of
the queue length process, Q̃+

F , appears in the limit since it is only when there are
more customers than servers in the system that the finite server approximation to
the infinite server queue will be off.

5.4. The virtual waiting time process. In this subsection, we study the diffu-
sion scaled virtual waiting time process and the diffusion scaled customer waiting
time process for the G/GI/N queue in the Haflin–Whitt regime. For each t ≥ 0,
let V N(t) denote the hypothetical amount of time that a customer arriving to the
N th system at time t would have to wait before being served and, for i ≥ 1, let
V N

i denote the waiting time of the ith customer to arrive the system after time 0−.
Note that denoting by DN(t) the number of departures from the N th system by
time t ≥ 0, we have that

V N(t) + t = inf{s ≥ 0 :DN(s) ≥ AN(t) + QN
0 }
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for t ≥ 0 and V N
i = V N(τN

i −). In this subsection, we obtain asymptotic results
for the diffusion scaled virtual waiting time process Ṽ N(t) = {N1/2V N(t), t ≥
0} and the also for the diffusion scaled customer waiting time process ˜̂

V N(t) =
{N1/2V N
Nt�, t ≥ 0}. Our main approach will be to leverage off of the results of
Section 5.3 on the diffusion scaled queue length process.

The main result of this subsection is the following theorem which provides a
weak limit for the sequences of diffusion scaled virtual waiting time and customer
waiting time processes in the Halfin–Whitt regime. Note that as a byproduct, this
limit implies that waiting times in the Halfin–Whitt regime are of order N−1/2 and
thus decrease as the number of servers become large. Furthermore, we also note
that as expounded upon further below, the limit we obtain is similar in form to
that informally obtained by Mandelbaum and Momčilović in [16] for the diffusion
scaled virtual waiting time process. We then have the following.

PROPOSITION 5.3. If AN(0) = 0 P-a.s. for each N ≥ 1, and the residual ser-
vice time distribution F0 = Fe and Q̃N

0 ⇒ Q̃0 as N → ∞, then Ṽ N ⇒ Ṽ as

N → ∞ and ˜̂
V N ⇒ Ṽ as N → ∞, where Ṽ is given by the unique solution to

the integral equation

Ṽ (t) =
(
M̃Q(t) + Q̃I (t) − βFe(t) +

∫ t

0
Ṽ (t − s) dF (s)

)+
, t ≥ 0.(5.34)

In [16], in the case of renewal arrivals, the diffusion scaled limiting stationary
virtual waiting time process was conjectured to be expressed in terms of the supre-
mum over an infinite weighted full K-ary tree

Ṽ∞(t) = sup
T ⊂F [t]

(WT )+, t ∈ R.(5.35)

Furthermore, it was shown in Lemma 10 of [16] that the process Ṽ∞ = {Ṽ∞(t), t ≥
0} defined by (5.35) satisfies the stochastic integral equation

Ṽ∞(t) =
(
X̃(t) − β +

∫ ∞
0

Ṽ (t − u)dF (u)

)+
, t ∈ R,(5.36)

where X̃ = {X̃(t), t ≥ 0} is a stationary Gaussian process whose covariance func-
tion may be explicitly calculated.

We now show informally by taking the limit as t approaches ∞ on both sides of
(5.34) that (5.36) may actually be viewed as the stationary version of the limiting
diffusion scaled virtual waiting time process. First, note that by the definition of
M̃Q in (5.15), we have that M̃Q(t) → 0 P-a.s. as t → ∞. Next, since Fe is a
distribution function, it follows that βFe(t) → β P-a.s. as t → ∞. Thus, for t

large, we have from (5.34) that

Ṽ (t + s) ≈
(
Q̃I (t + s) − β +

∫ t+s

0
Ṽ (t + s − u)dF (u)

)+
(5.37)
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for s ≥ 0, where the ≈ sign is meant to mean approximately equal. One may next
check that for t large the process {Q̃I (t + s), s ≥ 0} is approximately equal in
law to that of X̃ in (5.37). Finally, for t large, the integral on the right-hand side of
(5.37) may be taken to be an interval over the entire nonnegative portion of the real
line. Thus, setting Ṽt = {Ṽ (t + s), s ≥ 0}, we obtain from (5.37) and the preceding
discussion that

Ṽt (s) ≈
(
X̃(s) − β +

∫ ∞
0

Ṽt (s − u)dF (u)

)+
, s ≥ 0,(5.38)

which is the similar to (5.38). As t approaches ∞, the approximation in (5.38) be-
comes more precise and indeed a completely rigorous argument of the discussion
above may be given but we omit the details here.

In order to prove Proposition 5.3, we must first provide an intermediary result
for the diffusion scaled number of customers waiting to be served. Note that since
the system is operating under a nonidling policy, the total number of customers
waiting to be served at time t is given by the quantity (QN(t) − N)+. We also
define

Q̃N,+(t) = (QN(t) − N)+

N1/2 , t ≥ 0,

to be the diffusion scaled number of customers waiting to be served at time t

and set Q̃N,+ = {N−1/2(QN(t) − N)+, t ≥ 0} to be the diffusion scaled number
of customers waiting to be served process. Note also the relationship Q̃N,+(t) =
(Q̃N(t))+ which will be taken advantage of in the following result.

PROPOSITION 5.4. If the residual service time distribution F0 = Fe and
Q̃N

0 ⇒ Q̃0 as N → ∞, then we have the joint convergence (Q̃N , Q̃N,+) ⇒
(Q̃F , Q̃+

F ) in (D2[0,∞), D2) as N → ∞.

PROOF. Define the function f : (D[0,∞), dJ1) �→ (D2[0,∞), d2
J1

) by

f (x1) = (x1, x
+
1 ) for x1 ∈ D[0,∞), where x+

1 = (max{0, x1(t)}, t ≥ 0). We now
claim that the function f : (D[0,∞), dJ1) �→ (D2[0,∞), d2

J1
) is continuous. As-

sume that xn
1 → x1 in dJ1 . We then have that

d2
J1

(f (xn
1 ), f (x1)) = d2

J1
((xn

1 , x
n,+
1 ), (x1, x

+
1 ))

= max{dJ1(x
n
1 , x1), dJ1(x

n,+
1 , x+

1 )}
≤ dJ1(x

n
1 , x1)

→ 0 as n → ∞,

and thus the claim is proven. The proof now follows by the representation
(Q̃N , Q̃N,+) = f (Q̃N), the Continuous Mapping theorem [20] and Theorem 5.1
above. �
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Using Lemma A.10 in the Appendix, we may now prove the proposition above.

PROOF OF PROPOSITION 5.3. By Proposition 5.4, Q̃N,+ ⇒ Q̃+ as N → ∞
and by assumption we have that ÃN ⇒ ξ̃ as N → ∞. Furthermore, by (5.1) and
the heavy traffic condition (5.3), ρN → 1 as N → ∞. Thus, by Lemma A.10 in
the Appendix, Ṽ N ⇒ Ṽ = Q̃+ as N → ∞, which by the representation (5.33),
completes the proof. �

5.5. An alternative representation. The representation of the limiting diffu-
sion scaled queue length process given by (5.33) provides a convenient expression
for Q̃F in terms of a corresponding infinite server queue limit, Q̃I . However, it is
not evident that the limiting process of (5.33) is equivalent to the diffusion limit of
Theorem 2 of Halfin and Whitt [8] for the specific case of exponentially distrib-
uted service times. The following corollary provides an alternative representation
of the limit of (5.33) which may be used to rigorously verify this equivalency.
Let M = {M(t), t ≥ 0} be the renewal function associated with the pure renewal
process with interarrival distribution given by the service time distribution F . Re-
call that for t ≥ 0, M(t) is by definition equal to the expected number of renewals
by time t . Furthermore, by Exercise 3.4 of [19], M is given by the unique solution
to the renewal equation

M(t) = F(t) +
∫ t

0
M(t − u)dF (u) for t ≥ 0.(5.39)

Let us also set

ζ̃ (t) = M̃Q(t) + Q̃I (t), t ≥ 0,(5.40)

and ζ̃ = {ζ̃ (t), t ≥ 0}. We then have the following result.

COROLLARY 5.2. The limiting process, Q̃F , of Theorem 5.1 may be equiva-
lently expressed as the unique strong solution to

Q̃M(t) = ζ̃ (t) +
∫ t

0
ζ̃ (t − u)dM(u) − βt −

∫ t

0
Q̃−

M(t − u)dM(u)(5.41)

for t ≥ 0, where Q̃−
M(t) = min(Q̃M(t),0).

PROOF. Let F = {F(t), t ≥ 0} be a distribution function and r = {r(t), t ≥ 0}
be an unknown function satisfying the integral equation of renewal type,

r(t) = H(t) +
∫ t

0
r(t) dF (t − u) for t ≥ 0(5.42)

for some H = {H(t), t ≥ 0}. If H is a locally bounded function, then (5.42) has a
unique locally bounded solution [11], which is given by

r(t) = H(t) +
∫ t

0
H(t − u)dM(u),(5.43)
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where M = {M(t), t ≥ 0} is the solution to the renewal equation (5.39).
By the definition of ζ̃ in (5.40) and the representation (5.33), the limiting

process of Theorem 5.1 may be written as

Q̃F (t) = ζ̃ (t) − βFe(t) +
∫ t

0
Q̃+

F (s) dF (t − s) for t ≥ 0.

Next, since Q̃F = Q̃+
F + Q̃−

F , we have

Q̃+
F (t) = ζ̃ (t) − βFe(t) − Q̃F (t)− −

∫ t

0
Q̃+

F (s) dF (t − s).

Furthermore, it follows that ζ̃ − βFe + Q̃−
F is almost surely a locally bounded

function since it is almost surely an element of D[0,∞). It therefore follows from
(5.42) and (5.43) that

Q̃+
F (t) = ζ̃ (t) − βFe(t) − Q̃−

F (t) +
∫ t

0
ζ̃ (t − u)dM(u)

− β

∫ t

0
Fe(t − u)dM(u) −

∫ t

0
Q̃−

F (t − u)dM(u),

or, equivalently,

Q̃F (t) = ζ̃ (t) +
∫ t

0
ζ̃ (t − u)dM(u)

− β

(
Fe(t) +

∫ t

0
Fe(t − s) dM(s)

)
(5.44)

−
∫ t

0
Q̃−

F (t − u)dM(u).

However, since

Fe(t) +
∫ t

0
Fe(t − s) dM(s) = t, t ≥ 0,

if follows by (5.44) that

Q̃F (t) = ζ̃ (t) +
∫ t

0
ζ̃ (t − u)dM(u) − βt −

∫ t

0
Q̃−

F (t − u)dM(u),(5.45)

which completes the proof. �

Note that Corollary 5.2 also implies the convergence Q̃N ⇒ Q̃M as N → ∞,
where Q̃M is the stochastic process given by the unique strong solution to (5.41).
The proof of this result is trivial and essentially proceeds in two stages. First, one
may use Theorem 5.1 to show the weak convergence Q̃N ⇒ Q̃F as N → ∞ and
then use Corollary 2 to show the equivalency in law between Q̃F and Q̃M . In a
sequel [18] to this paper, we provide a more direct proof of the convergence of
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Q̃N to Q̃M . This follows along more traditional line of conventional heavy-traffic
proofs in where the queue length process is modeled by a conservation of flow as
the difference between the number of arrivals and the number of departures. The
integral term on the right-hand side of (5.41) then turns out to representative of the
idle time processes of the servers in the system.

As noted above, in the case of the GI/M/N queue, Corollary 5.2 may be used
to obtain the original diffusion limit result provided by Halfin and Whitt [6]. This
may be seen by first noting that for exponentially distributed service times, the
renewal function M in (5.41) is the renewal function for a rate 1 Poisson process,
which is simply given by M(t) = t . Thus, the limiting process of Corollary 5.2
may be written as

Q̃M(t) = ζ̃ (t) +
∫ t

0
ζ̃ (s) ds − βt −

∫ t

0
Q̃−

M(s) ds, t ≥ 0.(5.46)

Furthermore, using (5.40), (5.15) and (5.17), extensive covariance calculations
show that

B(t) = ζ̃ (t) +
∫ t

0
ζ̃ (s) ds, t ≥ 0,

is a Brownian motion with infinitesimal variance 1 + σ 2, where σ 2 is the variance
of the interarrival times. Therefore, the process (5.46) is a diffusion with infinites-
imal drift m(x) = −β for x ≥ 0 and m(x) = −x − β for x < 0 and infinitesimal
variance 1 + σ 2, which is in agreement with Theorem 3 of Halfin and Whitt [6].

6. Conclusion. In this paper, we have studied the G/GI/N queue in the
Halfin–Whitt regime. In our first main result, we obtained a first-order approxima-
tion to the queue length process. This approximation turned out to be the solution
to a nonlinear convolution equation. Next, after centering the queue length process
by its deterministic fluid limit and scaling by an appropriate constant, we obtained
a second-order stochastic approximation as well. Our limiting stochastic process is
nonlinear, stochastic convolution equation which is driven by a Gaussian process
and includes a drift term which incorporates a time lag. In the case of exponen-
tially distributed service times, it can be shown that this process is equivalent to
the diffusion process obtained by Halfin and Whitt [6].

In the sequel to this paper [18], we provide a direct approach to the proof of
Corollary 5.2. This is based off of a conservation of flow equation where we write
the queue length process as the difference between the number of arrivals and the
number of departures. In this case, central limit theorem type results for sums of
i.i.d. renewal process will have to be invoked.

In the future, it would be nice to have a better understanding of the limiting
process we have obtained. Ideally, one would like to solve for its limiting distribu-
tion. Unfortunately, this in general appears to be a difficult problem. Therefore, if
analytical solutions cannot be found, efficient numerical procedures might perhaps
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be developed. Simulation studies could also be conducted to test the accuracy of
the proposed approximations relative to their actual values. This would be espe-
cially interesting when the system is close to being in the Halfin–Whitt regime.

APPENDIX

In the appendix, we provide the proofs of Propositions 3.1, 4.2 and 5.1 and
Lemmas A.9 and A.10. We begin with the proof of Proposition 3.1.

PROOF OF PROPOSITION 3.1. Suppose first that B is concentrated on the
point c > 0. In this case, it is clear that the solution to (3.1) satisfies the recur-
sion

z(t) = x(t), 0 ≤ t < c,(A.1)

and

z(t) = x(t) + (
z(t − c) + a

)+
, t ≥ c,

in which case it is clearly unique. Furthermore, defining ϕa
B :D[0,∞) �→ D[0,∞)

to be the solution to this recursion, it follows that

‖ϕa
B(x1) − ϕa

B(x2)‖t = ‖x1 − x2‖t

for 0 ≤ t < c. Now suppose that for some integer k, we have

‖ϕa
B(x1) − ϕa

B(x2)‖t ≤ k‖x1 − x2‖t(A.2)

for (k − 1)c ≤ t < kc. It then follows that for k < t ≤ (k + 1)c,

‖ϕa
B(x1) − ϕa

B(x2)‖t ≤ ‖x1 − x2‖t + ‖ϕa
B(x1) − ϕa

B(x2)‖t−c

≤ ‖x1 − x2‖t + k‖x1 − x2‖t

= (k + 1)‖x1 − x2‖t .

By induction, this implies that the relationship (A.2) must hold for all t , which
show that ϕa

B is Lipschitz continuous if B is concentrated on a single point. The
proof of measurability of ϕa

B for the case of B concentrated at a single point will
be included below.

Suppose now that there exists a δ > 0 such that B(y + δ) − B(y) < ε for some
0 < ε < 1 for all y ≥ 0. Such a δ will always exist so long as B is not concentrated
on a single point. We now provide proofs of existence, uniqueness and Lipschitz
continuity for this case.

Existence: We use the method of successive approximations. Let u0 = 0 and
recursively define

un+1(t) = x(t) +
∫ t

0

(
un(t − s) + a

)+
dB(s), t ≥ 0,(A.3)
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for n ≥ 1 and note that

un+1(t) − un(t)
(A.4)

=
∫ t

0

((
un(t − s) + a

)+ − (
un−1(t − s) + a

)+)
dB(s), t ≥ 0.

We now show by induction that for each integer 1 ≤ k ≤ �δ−1T �,

‖un+1 − un‖jδ < jjnj εn‖x‖T for j = 1, . . . , k,(A.5)

for n ≥ 1. For the base case k = 1, observe by (A.4) that

‖un+1 − un‖δ ≤ B(δ)‖un − un−1‖δ < ε‖un − un−1‖δ,

and so, since

‖u1 − u0‖δ = ‖x1 − 0‖δ ≤ ‖x1‖T ,(A.6)

we have the relationship

‖un+1 − un‖δ < εn‖x‖T ≤ nεn‖x‖T(A.7)

for n ≥ 1. We now proceed with the induction step. Assume that (A.5) holds for
some k and we will now show that it holds for (k + 1). Note that by (A.4) and the
induction hypothesis (A.5),

‖un+1 − un‖(k+1)δ(A.8)

≤
k∑

j=1

ε‖un − un−1‖jδ + ε‖un − un−1‖(k+1)δ

≤
k∑

j=1

εjj (n − 1)j εn−1ε‖x‖T + ε‖un − un−1‖(k+1)δ

≤ kk+1nkεn‖x‖T + ε‖un − un−1‖(k+1)δ.(A.9)

Furthermore, since as in (A.6),

‖u1 − u0‖lδ ≤ ‖x‖T

for all l = 1, . . . , �δ−1T �, it follows by repeated iteration of (A.9) that

‖un+1 − un‖(k+1)δ ≤ kk+1

(
n∑

i=0

ik

)
εn‖x‖T

≤ kk+1(nk+1 + 1)εn‖x‖T

≤ (k + 1)k+1nk+1εn‖x‖T ,

and so the induction hypothesis has been proved.
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Thus, since
∞∑

n=1

‖un+1 − un‖T ≤
∞∑

n=1

‖un+1 − un‖�δ−1T �δ

≤
∞∑

n=1

�δ−1T ��δ−1T �n�δ−1T �εn‖x‖T

< ∞,

it follows that {un} is a Cauchy sequence. Furthermore, since the space D[0,∞)

is a Banach space under the supremum metric u, there exists a limit point u� of
{un}. Taking limits on both sides of (A.3), we now see that u� is a solution to (3.1),
which completes the proof of existence for the case of nondegenerate distributions.

Uniqueness: Suppose that u and v both satisfy (3.1) and let

�(t) = u(t) − v(t) =
∫ t

0

((
u(t − s) + a

)+ − (
v(t − s) + a

)+)
dB(s), t ≥ 0.

We then have for 0 ≤ t ≤ δ, that

|�(t)| ≤
∫ t

0

∣∣(u(t − s) + a
)+ − (

v(t − s) + a
)+∣∣dB(s) ≤ ε‖�‖δ,

which implies that �(t) = 0 on [0, δ]. Next, for δ < t ≤ 2δ, we have that

|�(t)| ≤ ε‖�‖δ + ε‖�‖2δ = ε‖�‖2δ,

which implies that �(t) = 0 on [δ,2δ]. Iterating the above argument until we
reach T completes the proof.

Lipschitz continuity: Note that for 0 ≤ t < δ, we have

‖ϕa
B(x2) − ϕa

B(x1)‖δ ≤ ‖x2 − x1‖δ + ε‖ϕa
B(x2) − ϕa

B(x1)‖δ,

which implies that

‖ϕa
B(x2) − ϕa

B(x1)‖δ ≤ (1 − ε)−1‖x2 − x1‖δ.

Next, for δ < t ≤ 2δ, we have

‖ϕa
B(x2) − ϕa

B(x1)‖2δ

≤ ‖x2 − x1‖2δ + ε‖ϕa
B(x2) − ϕa

B(x1)‖δ + ε‖ϕa
B(x2) − ϕa

B(x1)‖2δ

≤ 1

(1 − ε)
‖x1 − x2‖2δ + ε‖ϕa

B(x2) − ϕa
B(x1)‖2δ,

which implies that

‖ϕa
B(x2) − ϕa

B(x1)‖2δ ≤ 1

(1 − ε)2 ‖x1 − x2‖2δ.
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Iterating the above argument for k = �δ−1T � − 2 more time intervals completes
the proof.

Finally, we provide a proof of measurability of ϕa
B for the case of a general B .

Measurability: We begin by defining the function �a
B :D[0,∞) → D : [0,∞)

by

�a
B(u)(t) =

∫ t

0

(
u(t − s) + a

)+
dB(s), t ≥ 0.

We now show that �a
B is measurable with respect to the Borel σ -field D generated

by the Skorohod J1 topology. Note that since D is equal to the Kolmogorov σ -
field, which is generated by the finite-dimensional cylinder sets, it is sufficient to
check that for each n ≥ 1 and A1,A2, . . . ,An ∈ B(R),

{u ∈ D[0,∞) : (�a
B(u)(t1), . . . ,�

a
B(u)(tn)) ∈ (A1, . . . ,An)} ∈ D

for 0 ≤ t1 < t2 < · · · < tn. However, since σ -algebras are closed under finite in-
tersections, it is sufficient to check that for each t ≥ 0,�a

B(·)(t) is measurable. In
order to show this, we first decompose B into its continuous and discrete parts so
that

B(t) = Bc(t) + Bd(t), t ≥ 0,

where we write

Bd(t) =
∞∑

n=1

cnδ(pn)(t)(A.10)

for the discrete part of B . We then show that both �a
Bc

and �a
Bd

are measur-
able functions and so, since the sum of two measurable functions from (D, D)

to (D, D) is measurable, and �a
B = �a

Bc
+ �a

Bd
, we have the desired measurability

of �a
B .

We begin with the proof of measurability for �a
Bc

for which it will be suffi-
cient to show that for each t ≥ 0,�a

Bc
(·)(t) is continuous when viewed as a func-

tion from (D[0,∞), dJ1) to (R, | · |). Let un → u under the metric dJ1 . This then
implies that un(t) → u(t) for all but a countable number of t (see, for instance,
page 247 of [1]). Furthermore, the measure defined by Bc assigns measure 0 to all
countable sets. Thus, since for each t ≥ 0, the sequence {sup0≤s≤t |un(s)|, n ≥ 1}
is bounded, it follows by Theorem 3 of [4] that

|�a
Bc

(un)(t) − �a
Bc

(u)(t)|(A.11)

=
∣∣∣∣
∫ t

0

((
un(t − s) + a

)+ − (
u(t − s) + a

)+)
dB(s)

∣∣∣∣
≤

∫ t

0
|un(t − s) − u(s)|dB(s)

→ 0 as n → ∞.(A.12)
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This completes the proof of the measurability of �a
Bc

.
Now consider �a

Bd
. It is clear from (A.10) that

�a
Bd

(u)(t) =
∞∑

k=1

ϒk(u)(t), t ≥ 0,

where

ϒk(u)(t) = ck1{t ≥ pk}(u(t − pk) + a
)+

.

For each n ≥ 1, define

�
a,n
Bd

(u)(t) =
n∑

k=1

ϒk(u)(t), t ≥ 0.

We then have that for each u ∈ D[0,∞) and t ≥ 0,

sup
0≤s≤t

|�a
Bn

d
(u)(s) − �a

Bd
(u)(s)|

= sup
0≤s≤t

∣∣∣∣∣
∞∑

k=n

ck1{s ≥ pk}(u(s − pk) + a
)+

∣∣∣∣∣
≤ sup

0≤s≤t

|u(s) + a|
∞∑

k=n

ck

→ 0 as n → ∞,

and so it follows that �a
Bd

(u) is the pointwise limit in (D[0,∞), u) of �
a,n
Bd

(u) as
n → ∞. Thus, if each �

a,n
Bd

(u) is measurable, it will follow that �a
Bd

is measur-
able as well. However, in order to show that �

a,n
Bd

is measurable, it will suffice to
show that each ϒk is measurable since the sum of a finite number of measurable
functions is measurable. The fact that ϒk is measurable may been seen by not-
ing that ϒk is first the translation of the function u by a constant pk and then a
multiplication by a constant ck . Both of these functions are easily seen to be mea-
surable functions and so ϒk , being the composition of two measurable functions,
is measurable as well. This completes the proof of the measurability of �a

Bd
.

Now define the map �a
B : (D[0,∞), D) �→ (D[0,∞), D) by

�a
B(u)(t) = x(t) + �a

B(u)(t), t ≥ 0.

It is clear that �a
B is measurable since �a

B is measurable. Furthermore, from the
existence portion of the arguments above, it follows that for each x ∈ D[0,∞),

ϕ(x) = lim
n→∞ �

a,n
B (0),

where �
a,n
B (x) = �

a,n−1
B ◦ �a

B is the n-fold composition of �a
B with itself and the

limit is taken with respect to the metric of uniform convergence over bounded in-
tervals, u. Thus, since the composition of two measurable functions is measurable,
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it follows that �
a,n
B is measurable for each n. But this then implies that ϕa

B , being
the pointwise limit of a sequence of measurable functions, is measurable as well,
and so the proof is now complete. �

The next portion of the Appendix is devoted to the proofs of Propositions 4.2
and 5.1. Our proof of Proposition 4.2 closely parallels the proofs of Lemmas 3.4–
3.8 of [14]. In order to begin, we must first set up the following notation. Let ÂN(t)

be equal to the number of customers in the N th system who entered service after
time 0− but before or at time t . We then define the two parameter process

V N(t, x) =
ÂN (t)∑
i=1

(
1{ηi ≤ x} − F(x)

)
, t ≥ 0, x ≥ 0,(A.13)

where we recall the definition in Section 2 of ηi as the service time of the ith
customer to arrive to the system after time 0−. Note that by setting

UN(t, x) =

Nt�∑
i=1

(
1{F(ηi) ≤ x} − x

)
, t ≥ 0,0 ≤ x ≤ 1,

we have

V N(t, x) = UN(ǍN(t),F (x)),(A.14)

where

ǍN(t) = ÂN(t)

N
, t ≥ 0.(A.15)

It then follows from the definition of MN
2 in (2.5) that

MN
2 (t) =

∫ t

0

∫ t

0
1{s + x ≤ t}dV N(s, x),(A.16)

where the integrals above are taken over the closed intervals [0, t]. We now de-
compose MN

2 in two processes, GN and HN . Let

LN(t, x) =
ÂN (t)∑
i=1

(
1{ηi ≤ x} −

∫ x∧ηi

0

dF(y)

1 − F(y−)

)
, t ≥ 0, x ≥ 0,(A.17)

where F(y−) = limx→y F (x).
By (A.13) and (A.17), we have that

V N(t, x) = −
∫ x

0

V N(t, y−)

1 − F(y−)
dF (y) + LN(t, x).(A.18)

Therefore, by (A.16) and (A.18), we have

MN
2 (t) = GN(t) + HN(t),(A.19)
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where

GN(t) = −
∫ t

0

V N(t − x, x−)

1 − F(x−)
dF (x), t ≥ 0,

and

HN(t) =
∫ t

0

∫ t

0
1{s + x ≤ t}dLN(s, x), t ≥ 0.(A.20)

We set GN = {GN(t), t ≥ 0} and HN = {HN(t), t ≥ 0} and note that (A.19) is the
desired decomposition of MN

2 . It will be useful in proving several results related
to MN

2 such as tightness and weak convergence.
Now, for each k ≥ 1, let

HN
k (t) =

ÂN (t)∧k∑
i=1

(
1{0 < ηi ≤ t − τ̂ N

i } −
∫ ηi∧(t−τ̂N

i )+

0+
dF(u)

1 − F(u−)

)

for t ≥ 0, where

τ̂ N
i = inf{t ≥ 0 : ÂN(t) ≥ i}

is the time at which the ith customer to enter service after time 0− begins being
served. We also set HN

k = {HN
k (t), t ≥ 0}. Furthermore, we define the filtration

HN = (HN
t , t ≥ 0) by

HN
t = σ {QN

0 } ∨ σ {η̃i , i ≥ 1} ∨ σ {ξi, i ≥ 1}
∨ σ

{
1{ηi = 0},1{ηi ≤ s − τ̂ N

i }, s ≤ t, i = 1, . . . , ÂN(t)
}

∨ σ {ÂN(s), s ≤ t} ∨ N ,

where ξi is as defined in (2.1) of Section 2 and N is the P completion of F . It easy
to see that HN satisfies the usual conditions and is actually a filtration.

The following lemma is similar to Lemma 3.5 of [14]. Consequently, the proof
that follows is a straightforward adaptation of that found in [14].

LEMMA A.1. The process HN
k is an HN -square-integrable martingale with

predictable quadratic variation process

〈HN
k 〉(t) =

ÂN (t)∧k∑
i=1

∫ ηi∧(t−τ̂N
i )+

0+
1 − F(u)

(1 − F(u−))2 dF(u), t ≥ 0.

PROOF. We first decompose HN
k by writing

HN
k (t) =

k∑
i=1

HN,i(t),
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where

HN,i(t) = 1{0 < ηi ≤ t − τ̂ N
i } −

∫ ηi∧(t−τ̂N
i )+

0+
dF(u)

1 − F(u−)
.(A.21)

As in [14], the proof now proceeds in three parts. They are:

1. For each i ≥ 1, the process HN,i = (HN,i(t), t ≥ 0) is an HN -square-integrable
martingale.

2. The predictable quadratic covariation process of HN,i is given by

〈HN,i〉(t) =
∫ ηi∧(t−τ̂N

i )+

0+
1 − F(u)

(1 − F(u−))2 dF(u).(A.22)

3. The martingales HN,i and HN,j are orthogonal for i 
= j .

These three statements are then sufficient to imply the conclusion of the lemma.
We begin with the proof of part 1.

First, note that HN,i is HN -adapted and, furthermore, we have that

sup
t≥0

E(HN,i(t))2 < ∞.

We now prove the martingale property for HN,i by showing that for s < t ,

1{τ̂ N
i > s}E[HN,i(t)|HN

s ] = 0(A.23)

and

1{τ̂ N
i ≤ s}E[HN,i(t)|HN

s ] = HN,i(s).(A.24)

We begin with (A.23). First, note that τ̂ N
i is an HN -stopping time since σ(ÂN(s),

s ≤ t) ⊂ HN
t for each t ≥ 0 and so we may define the σ -field HN

τ̂N
i

. Furthermore,

1{τ̂ N
i > s}E[HN,i(t)|HN

s ] = 1{τ̂ N
i > s}E[E(HN,i(t)|HN

τ̂N
i

)|HN
s ].

In order to prove (A.23), we now show that

E(HN,i(t)|HN

τ̂N
i

) = 0.(A.25)

This follows informally since on the event {ηi > 0}, we have

E(HN,i(t)|HN

τ̂N
i

) = 1{ηi > 0}E(HN,i(t)|τ̂ N
i )

P (ηi > 0)
= 0,(A.26)

where the last equality is by (A.21) and the independence of ηi and τ̂ N
i . In order

to rigorously to prove the first equality in (A.26), we make use of Lemma 3.6 of
[14].
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Specifically, we show that

HN

τ̂N
i

∩ {ηi > 0} ⊂ (σ {QN
0 } ∨ σ {η̃i , i ≥ 1}(A.27)

∨ σ {ξr , r ≥ 1, ηp,p ≥ 1,p 
= i} ∨ σ {τ̂ N
i } ∨ N )(A.28)

∩ {ηi > 0}.
Note that it is enough to check (A.27) for sets which generate HN

τ̂N
i

. However, by

the definition of HN
t , it is not difficult to see that

HN

τ̂N
i

= σ {QN
0 } ∨ σ {η̃i , i ≥ 1} ∨ σ {ξr , r ≥ 1}

∨ σ
{
τ̂ N
r ,1{ηr = 0},1{0 < ηr ≤ s ∧ τ̂ N

i − τ̂ N
r },(A.29)

s ≥ 0, r = 1, . . . , ÂN(τ̂N
i )

} ∨ N
(use, for example, the argument of Brémaud [3]). Then, for l = i, i + 1, . . . ,m =
1,2, . . . , n = 1,2, . . . , s1, s2, . . . , sl > 0 and Borel sets A,B1, . . . ,Bm,C1, . . . ,

Cn,D1, . . . ,E1, . . . ,El and F1, . . . ,Fl , we have, since ÂN(τ̂N
i ) ≥ l > i, then

τ̂ N
r = τ̂ N

i , r = i + 1, . . . , l, that

{QN
0 ∈ A} ∩

(
m⋂

r=1

{η̃r ∈ Br}
)

∩
(

n⋂
r=1

{ξr ∈ Cr}
)

∩ {ÂN(τ̂N
i ) ≥ l}

∩
(

l⋂
r=1

{τ̂ N
r ∈ Dr}

)
∩

(
l⋂

r=1

{
1{ηr = 0} ∈ Er

})

∩
(

l⋂
r=1

1{0 < ηr ≤ sr ∧ τ̂ N
i − τ̂ N

r } ∈ Fr

)
∩ {ηi ≥ 0}

= {QN
0 ∈ A} ∩

(
m⋂

r=1

{η̃r ∈ Br}
)

∩
(

n⋂
r=1

{ξr ∈ Cr}
)

(A.30)

∩
(

l⋂
r=i+1

{τ̂ N
i = τ̂ N

r }
)

∩
(

i−1⋂
r=1

{τ̂ N
r ∈ Dr}

)
∩

(
l⋂

r=i

{τ̂ N
r ∈ Dr}

)

∩
(

l⋂
r=1,r 
=i

{
1{ηr = 0} ∈ Er

})

∩
(

i−1⋂
r=1

1{0 < ηr ≤ sr ∧ τ̂ N
i − τ̂ N

r } ∈ Fr

)
∩ {ηi ≥ 0},

when 0 ∈ Ei,0 ∈ Fr, i ≤ r ≤ l, and the left-hand side is ∅ otherwise. We show that
the event on the right-hand side of (A.30) is in (σ {QN

0 } ∨ σ {η̃i , i ≥ 1} ∨ σ {ξr , r ≥
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1, ηp,p ≥ 1,p 
= i} ∨ σ {τ̂ N
i } ∨ N ) ∩ {ηi > 0}. It is enough to prove that this holds

for the event
l⋂

r=i+1

{τ̂ N
i = τ̂ N

r } ∩ {ηi > 0}.

First, note that for i + 1, there exists a Borel function hN
i+1 such that

τ̂ N
i+1 = τi+1 ∨ (

(τ̂N
i + ηi) ∧ hN

i+1(Q
n
0, η̃l, l ≥ 1, ξr , r ≥ 1, ηp,p ≥ 1,p 
= i)

)
.

The random variable hN
i+1(Q

n
0, η̃l, l ≥ 1, ξr , r ≥ 1, ηp,p ≥ 1,p 
= i) is either equal

to τi if a server is idle in the system after the arrival of customer i or, if not, the time
of the next departure from the queue after the arrival of customer i not including
customer i. Since,

{τ̂ N
i+1 = τ̂ N

i } = {τN
i+1 ≤ τ̂ N

i } ∩ {ηi = 0}
∪ {hN

i+1(Q
n
0, η̃l, l ≥ 1, ξr , r ≥ 1, ηp,p ≥ 1,p 
= i) ≤ τ̂ N

i },
we have that

{τ̂ N
i = τ̂ N

r } ∩ {ηi > 0}
= {τN

i+1 ≤ τ̂ N
i } ∩ {hN

i+1(ξr , r ≥ 1, ηp,p ≥ 1,p 
= i) ≤ τ̂ N
i }(A.31)

∩ {ηi > 0}.
A similar argument shows that for r = i + 2, . . . , l

{τ̂ N
r = τ̂ N

i } ∩ {ηi > 0}
(A.32)

= {τN
r ≤ τ̂ N

i } ∩ {hN
r (ξr , r ≥ 1, ηp,p ≥ 1,p 
= i) ≤ τ̂ N

i } ∩ {ηi > 0},
where hN

r is also a Borel function and hN
r (ξr , r ≥ 1, ηp,p ≥ 1,p 
= i) is the time

of the (r − i)th departure from the queue after the arrival of customer i not taking
into account customer i. By (A.31) and (A.32),

l⋂
r=i+1

{τ̂ N
i = τ̂ N

r } ∩ {ηi > 0}

=
l⋂

r=i+1

{τN
r ≤ τ̂ N

i } ∩
l⋂

r=i+1

{hN
r (ξr , r ≥ 1, ηp,p ≥ 1,p 
= i) = τ̂ N

i }

∩ {ηi > 0},
which yields (A.27). By Lemma 3.6 of [14], (A.27) implies the first equality in
(A.26) which show that (A.25) holds and so (A.23) is proved.

We now proceed to show that (A.24) holds. We have

1{τ̂ N
i ≤ s}E[HN,i(t)|HN

s ]
= 1{ηi ≤ s − τ̂ N

i }E[HN,i(t)|HN
s ] + 1{ηi > s − τ̂ N

i ≥ 0}E[HN,i(t)|HN
s ].
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However, since both 1{ηi ≤ s − τ̂ N
i } and 1{ηi > s − τ̂ N

i } are both HN
s -measurable,

and by (A.21) we have that

1{ηi ≤ s − τ̂ N
i }HN,i(t)

= 1{0 < ηi ≤ s − τ̂ N
i }

− 1{ηi ≤ s − τ̂ N
i }

∫ ηi∧(s−τ̂N
i )+

0+
dF(u)

1 − F(u−)
,

where the latter is HN
s -measurable, it follows that

1{τ̂ N
i ≤ s}E[HN,i(t)|HN

s ]
= 1{0 < ηi ≤ s − τ̂ N

i }
(A.33)

− 1{ηi ≤ s − τ̂ N
i }

∫ ηi∧(s−τ̂N
i )+

0+
dF(u)

1 − F(u−)

+ 1{ηi > s − τ̂ N
i ≥ 0}E[HN,i(t)|HN

s ].
We now proceed to evaluate the quantity 1{ηi > s − τ̂ N

i ≥ 0}E[HN,i(t)|HN
s ]. First

observe that on the event that customer i has not completed service by time s,
mathematically, the event {ηi > s − τ̂ N

i ≥ 0}, we have that ηi is independent of the
process ÂN up to time s which keeps track of the number of customers who have
entered service by time s. Also, since ηi is independent of ηl for l 
= i, we conclude
from the definition of HN

t and (A.21) that, on the event {ηi > s − τ̂ N
i ≥ 0},HN,i(t)

is dependent upon HN
s only though ηi and τ̂ N

i . To put it more accurately, let
ǍN(u),u ≥ 0, be the number of arrivals to the servers up until time u that would
have occurred if the customer with service time ηi remained in service forever.
Then, ǍN(u) is a Borel function of ξr , r ≥ 1, ηp,p ≥ 1,p 
= i, on the one hand,
and coincides with ÂN(u) for u ≤ s on the event {τ̂ N

i + ηi > s}, on the other hand.
In analogy with (A.27), this yields by the definition of HN

s ,

HN
s ∩ {ηi > s − τ̂ N

i ≥ 0}
⊂ (σ {ξr , r ≥ 1, ηp,p ≥ 1,p 
= i} ∨ σ {τ̂ N

i } ∨ N )(A.34)

∩ {ηi > s − τ̂ N
i ≥ 0}.

Now noting that 1{ηi > s − τ̂ N
i ≥ 0} is HN

s -measurable and applying Lemma 3.6
of [14], it then follows that

1{ηi > s − τ̂ N
i ≥ 0}E[HN,i(t)|HN

s ]

= 1{ηi > s − τ̂ N
i ≥ 0}E[1{ηi > s − τ̂ N

i }HN,i(t)|τ̂ N
i ]

P(ηi > s − τ̂ N
i |τ̂ N

i )
,
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where 0/0 = 0. Now evaluating the right-hand side of the above using (A.21), it
follows

1{ηi > s − τ̂ N
i ≥ 0}E[HN,i(t)|HN

s ]

= −1{ηi > s − τ̂ N
i ≥ 0}

∫ s−τ̂N
i

0+
dF(u)

1 − F(u−)
,

which, together with (A.33), implies (A.24). We now have that (A.23) and (A.24)
have been proved and so the martingale property of HN,i has been proved.

The proof of part 2 follows identically to the proof of part 2 of Lemma 3.5 of
[14]. In particular, since the second term on the right-hand side of (A.21) is HN -
predictable, the HN -predictable measure of the jumps of the process (1{0 < ηi ≤
t − τ̂ N

i }, t ≥ 0) is (see Liptser and Shiryaev [15], Jacod and Shiryaev [9])

νN,i([0, T ],A) = {1 ∈ A}
∫ t

0
1{τ̂ N

i < u ≤ ηi + τ̂ N
i } dF(u − τ̂ N

i )

1 − F((u − τ̂ N
i )−)

and so the predictable quadratic-variation process of HN,i is (see, e.g., Liptser and
Shiryaev [15], Problem 11, Chapter 4, Section 1)

〈HN,i〉(t) =
∫ t

0

∫
R

x2νN,i(du, dx) − ∑
0<u≤t

(∫
R

xνN,i({u}, dx)

)2

=
∫ t

0
1{τ̂ N

i < u ≤ ηi + τ̂ N
i } dF(u − τ̂ N

i )

1 − F((u − τ̂ N
i )−)

− ∑
0<u≤t

1{τ̂ N
i < u ≤ ηi + τ̂ N

i }
(

�F(u − τ̂ N
i )

1 − F((u − τ̂ N
i )−)

)2

=
∫ ηi∨(t−τ̂N

i )+

0

dF(u)

1 − F(u−)
− ∑

0<u≤ηi∧(t−τ̂N
i )+

(
�F(u)

1 − F(u−)

)2

,

where the sum is over all of the jumps. Since the above is equal to the right-hand
side of (A.22), this then completes the proof of part 2.

We now demonstrate step 3 by proving the martingale property for HN,iHN,j in
a similar to manner to the proof of the martingale property for HN,i . Specifically,
for s < t, j < i, we prove that

1{τ̂ N
i > s}E[HN,i(t)HN,j (t)|HN

s ] = 0(A.35)

and

1{τ̂ N
i ≤ s}E[HN,i(t)HN,j (t)|HN

s ] = HN,i(t)HN,j (t).(A.36)
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For (A.35), we have

1{τ̂ N
i > s}E[HN,i(t)HN,j (t)|HN

s ](A.37)

= 1{τ̂ N
i > s}E[E[HN,i(t)HN,j (t)|HN

τ̂N
i

]|HN
s ].(A.38)

However, since

E[HN,i(t)HN,j (t)|HN

τ̂N
i

]
= 1{ηj ≤ τ̂ N

i − τ̂ N
j }E[HN,i(t)HN,j (t)|HN

τ̂N
i

](A.39)

+ 1{ηj > τ̂N
i − τ̂ N

j }E[HN,i(t)HN,j (t)|HN

τ̂N
i

],

and 1{ηj ≤ τ̂ N
i − τ̂ N

j } and 1{ηj ≤ τ̂ N
i − τ̂ N

j }HN,j (t) = 1{ηj ≤ τ̂ N
i − τ̂ N

j }HN,j (t ∧
τ̂ N
i ) are HN

τ̂N
i

-measurable [use (A.29)], it follows that

1{ηj ≤ τ̂ N
i − τ̂ N

j }E[HN,i(t)HN,j (t)|HN

τ̂N
i

]
= E[1{ηj ≤ τ̂ N

i − τ̂ N
j }HN,i(t)HN,j (t)|HN

τ̂N
i

]
= 1{ηj ≤ τ̂ N

i − τ̂ N
j }HN,j (t)E[HN,i(t)|HN

τ̂N
i

],

and so, since HN,i is a square-integrable martingale, by Doob’s stopping theorem
([9], I.1.19, I.1.42), E[HN,i(t)|HN

τ̂N
i

] = HN,i(τ̂N
i ) = 0 and thus, the first term on

the right-hand side of (A.39) is 0.
Consider now the second term. On the event {ηj > τ̂N

i − τ̂ N
j }, we have that

customer j finishes service after customer i arrives and so customer j ’s ser-
vice time has no no effect on τ̂ N

i , the time at which customer i enters ser-
vice. Thus, ηj and τ̂ N

i are independent on the event {ηj > τ̂N
i − τ̂ N

j }. To put it

more accurately, there exists a random variable τ̌ N
i which is a Borel function of

ξr , r ≥ 1, ηp,p ≥ 1,p 
= i, p 
= j , such that {ηj > τ̂N
i − τ̂ N

j } = {ηj > τ̌N
i − τ̂ N

j }
and τ̂ N

i = τ̌ N
i on either event. One may view τ̌ N

i as the time at which customer i

would enters service if customer j ’s service time were infinitely long. Thus, ap-
plying Lemma 3.6 of [14] and using the fact that ηi and ηj are independent of τ̌ N

i

and τ̂ N
j , we have that

1{ηj > τ̂N
i − τ̂ N

j }E[HN,i(t)HN,j (t)|HN

τ̂N
i

]

= 1{ηj > τ̌N
i − τ̂ N

j }E[1{ηj > τ̌N
i − τ̂ N

j }ȞN,i(t)HN,j (t)|τ̌ N
i , τ̂N

j ]
P(ηj > τ̌N

i − τ̂ N
j |τ̌ N

i , τ̂N
j )

,



2254 J. REED

where ȞN,i denotes HN,i with τ̌ N
i substituted for τ̂ N

i . Furthermore, since ηi is
independent of τ̌ N

i , ηj and τ̂ N
j , we obtain that

E[1{ηj > τ̌N
i − τ̂ N

j }ȞN,i(t)HN,j (t)|τ̌ N
i , τ̂N

j ]
= E[1{ηj > τ̌N

i − τ̂ N
j }HN,j (t)|τ̌ N

i , τ̂N
j ]E[ȞN,i(t)|τ̌ N

i ],
where the last multiplier on the right-hand side is equal to 0 by the definition of
HN,i and the fact that ηi is independent of τ̌ N

i . Thus, the right-hand side of (A.39)
is 0, and so E[HN,i(t)HN,j (t)|HN

τ̂N
i

] = 0 so that (A.35) is proved.

In order to prove (A.36), we proceed similarly to (A.24) and so some of the
details are omitted. First, note that

1{τ̂ N
i ≤ s}E[HN,i(t)HN,j (t)|HN

s ]
= 1{ηi ≤ s − τ̂ N

i }1{ηj ≤ s − τ̂ N
j }E[HN,i(t)HN,j (t)|HN

s ]
+ 1{ηi > s − τ̂ N

i ≥ 0}1{ηj ≤ s − τ̂ N
j }E[HN,i(t)HN,j (t)|HN

s ]
(A.40)

+ 1{ηi > s − τ̂ N
i ≥ 0}1{ηj ≤ s − τ̂ N

j }E[HN,i(t)HN,j (t)|HN
s ]

+ 1{ηi > s − τ̂ N
i ≥ 0}1{ηj > s − τ̂ N

j ≥ 0}
× E[HN,i(t)HN,j (t)|HN

s ]
and, further,

1{ηi ≤ s − τ̂ N
i }1{ηj ≤ s − τ̂ N

j }E[HN,i(t)HN,j (t)|HN
s ]

= 1{ηi ≤ s − τ̂ N
i }1{ηj ≤ s − τ̂ N

j }
(A.41)

× E[1{ηi ≤ s − τ̂ N
i }HN,i(t)1{ηj ≤ s − τ̂ N

j }HN,j (t)|HN
s ]

= 1{ηi ≤ s − τ̂ N
i }1{ηj ≤ s − τ̂ N

j }HN,i(t)HN,j (t),

1{ηi ≤ s − τ̂ N
i }1{ηj > s − τ̂ N

j ≥ 0}E[HN,i(t)HN,j (t)|HN
s ]

= 1{ηi ≤ s − τ̂ N
i }HN,i(s)1{ηj > s − τ̂ N

j ≥ 0}E[HN,j (t)|HN
s ](A.42)

= 1{ηi ≤ s − τ̂ N
i }HN,i(s)1{ηj > s − τ̂ N

j ≥ 0}HN,j (s),

1{ηi > s − τ̂ N
i ≥ 0}1{ηj ≤ s − τ̂ N

j }E[HN,i(t)HN,j (t)|HN
s ]

= 1{ηj ≤ s − τ̂ N
j 0}HN,j (s)1{ηi > s − τ̂ N

i ≥ 0}E[HN,i(t)|HN
s ](A.43)

= 1{ηj ≤ s − τ̂ N
j 0}HN,j (s)1{ηi > s − τ̂ N

i ≥ 0}HN,i(s),

where in (A.42) and (A.43) we use the martingale property of HN,i and HN,j .
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Consider now the last term on the right of (A.40). Since {s − τ̂ N
i ≥ 0, ηj >

s − τ̂ N
j } ⊂ {ηj > τ̂N

i − τ̂ N
j }, it follows as above that {s − τ̂ N

i ≥ 0, ηj > s − τ̂ N
j } =

{s − τ̌ N
i ≥ 0, ηj > s − τ̂ N

j } and τ̂ N
i = τ̌ N

i on either event. Hence,

1{ηi > s − τ̂ N
i ≥ 0}1{ηj > s − τ̂ N

j ≥ 0}E[HN,i(t)HN,j (t)|HN
s ]

= 1{ηi > s − τ̌ N
i ≥ 0}1{ηj > s − τ̂ N

j ≥ 0}E[ȞN,i(t)HN,j (t)|HN
s ],

where ηi and ηj are independent of τ̌ N
i and τ̂ N

j . Also, similar to (A.27) and (A.34),

HN
s ∩ {ηi > s − τ̌ N

i } ∩ {ηj > s − τ̂ N
j }

⊂ (σ {ξr , r ≥ 1, ηp,p ≥ 1,p 
= i, p 
= j} ∨ σ {τ̌ N
i , τ̂N

j } ∨ N )

∩ {ηi > s − τ̌ N
i } ∩ {ηj > s − τ̂ N

j },
and so by Lemma 3.6 of [14],

1{ηi > s − τ̂ N
i ≥ 0}1{ηj > s − τ̂ N

j ≥ 0}E[HN,i(t)HN,j (t)|HN
s ]

= 1{ηi > s − τ̂ N
i ≥ 0}1{ηj > s − τ̂ N

j ≥ 0}
× (

E[1{ηi > s − τ̌ N
i ≥ 0}1{ηj > s − τ̂ N

j ≥ 0}ȞN,i(t)(A.44)

× HN,j (t)|τ̌ N
i , τ̂N

j ])
/
(
P(ηi > s − τ̌ N

i ≥ 0, ηj > s − τ̂ N
j ≥ 0|τ̌ N

i , τ̂N
j )

)
.

However, since ηj and ηi are independent of each other and τ̌ N
i and τ̂ N

j , we have
that

E[1{ηi > s − τ̌ N
i ≥ 0}1{ηj > s − τ̂ N

j ≥ 0}ȞN,i(t)HN,j (t)|τ̌ N
i , τ̂N

j ]
= E[1{ηi > s − τ̌ N

i ≥ 0}ȞN,i(t)|τ̌ N
i ](A.45)

× E[1{ηj > s − τ̂ N
j ≥ 0}HN,j (t)|τ̂ N

j ]
and

P(ηi > s − τ̌ N
i ≥ 0, ηj > s − τ̂ N

j ≥ 0|τ̌ N
i , τ̂N

j )
(A.46)

= P(ηi > s − τ̌ N
i ≥ 0|τ̌ N

i )P (ηj > s − τ̂ N
j ≥ 0|τ̂ N

j ).

Applying Lemma 3.6 of [14] and using analogues of (A.34), we have that

1{ηi > s − τ̌ N
i ≥ 0}E[1{ηi > s − τ̌ N

i ≥ 0}ȞN,i(t)|τ̌ N
i ]

P(ηi > s − τ̌ N
i ≥ 0|τ̌ N

i )

= 1{ηi > s − τ̌ N
i ≥ 0}E[ȞN,i(t)|HN

s ]
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and

1{ηj > s − τ̂ N
j ≥ 0}E[1{ηj > s − τ̂ N

j ≥ 0}HN,j (t)|τ̂ N
j ]

P(ηj > s − τ̂ N
j ≥ 0|τ̂ N

j )

= 1{ηj > s − τ̂ N
j ≥ 0}E[HN,j (t)|HN

s ],
so that dividing (A.45) by (A.46), using (A.44), the fact that τ̂ N

i = τ̌ N
i on {s − τ̂ N

i ≥
0, ηj > s − τ̂ N

j } = {s − τ̌ N
i ≥ 0, ηj > s − τ̂ N

j } and the martingale property of HN,i

and HN,j we get

1{ηi > s − τ̂ N
i ≥ 0}1{ηj > s − τ̂ N

j ≥ 0}E[HN,i(t)HN,j (t)|HN
s ]

= 1{ηi > s − τ̂ N
i ≥ 0}E[HN,i(t)|HN

s ]
(A.47)

× 1{ηj > s − τ̂ N
j ≥ 0}E[HN,j (t)|HN

s ]
= 1{ηi > s − τ̂ N

i ≥ 0}HN,i(s)1{ηj > s − τ̂ N
j ≥ 0}HN,j (s).

Substituting (A.41)–(A.43) and (A.47) into (A.40), we obtain (A.36), which com-
pletes the proof of the lemma. �

Now note that by (4.3) and (A.19), we have

M̄N
2 (t) = ḠN(t) + H̄N(t),(A.48)

where

ḠN = GN

N
(A.49)

and

H̄N = HN

N
.(A.50)

It therefore follows by (A.48) that in order to show M̄N
2 ⇒ 0 as N → ∞, it will be

sufficient to show that ḠN ⇒ 0 and H̄N ⇒ 0 as N → ∞. First, however, we must
provide the following result.

Let

ǍN(t) = ÂN(t)

N
,(A.51)

be the fluid scaled number of customers to enter service by time t . We then have
the following.

LEMMA A.2. For each T ≥ 0, there exists a κ ≥ 0 such that P(ǍN(T ) ≥
κ) → 0 as N → ∞.
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PROOF. In order to show that the result is true, we stochastically bound
{ǍN(T )} by another sequence of random variables for which the result holds. This
will then imply that the result holds for {ǍN(T )} as well.

Let min(QN(T ),N) be the total number of customers in service at time T . We
then have that

min(QN(T ),N) = min(QN
0 ,N) + ÂN(T ) − DN(T ),(A.52)

where DN(T ) is the number of departures from the system by time T . Equa-
tion (A.52) then implies that

ÂN(T ) = min(QN(T ),N) + DN(T ) − min(QN
0 ,N)

≤ min(QN(T ),N) + DN(T )(A.53)

≤ N + DN(T ).

We next bound DN(T ). Let SN
i (t) be the number of departures from server i in

its first t units of processing time for t ≥ 0 and let BN
i (t) be the amount of time

that server i is busy in the first t time units. We then have that

DN(T ) =
N∑

i=1

SN
i (BN

i (T )) ≤
N∑

i=1

SN
i (T ),

since BN
i (T ) ≤ T .

Now note that for each i, SN
i (T ) is either the number of renewals by time T of a

pure renewal process with interarrival distribution F or a delayed renewal process
with delay distribution F0 and interarrival distribution F . Furthermore, for i 
= j ,
we have that SN

i (T ) and SN
j (T ) are independent of one another. Letting {Pi, i ≥ 1}

be an i.i.d. sequence of pure renewal processes with interarrival distribution F and
{Qi, i ≥ 1} an i.i.d. sequence of delayed renewal processes with delay distribution
F0 and interarrival distribution F , it therefore follows that

N−1
N∑

i=1

SN
i (T ) ≤st N−1

N∑
i=1

Pi(T ) + N−1
N∑

i=1

Qi(T )

⇒ M(T ) + MD(T ) as N → ∞,

where M is the renewal function associated with P1 and MD is the renewal func-
tion associated with Q1. This completes the proof. �

We now show that M̄N
2 ⇒ 0 as N → ∞. We begin by showing that ḠN ⇒ 0 as

N → ∞. Let

ŪN = UN

N
.(A.54)

We then have the following.
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LEMMA A.3. ḠN ⇒ 0 as N → ∞.

PROOF. The proof of is nearly identical to the proof of Lemma 3.4 of [14] but
for completeness we will include it here as well.

We first show that for each δ > 0 and T > 0,

lim
ε↓0

lim sup
N

P

(
sup

0≤t≤T

∣∣∣∣
∫ t

0

V̄ N (t − x, x−)

1 − F(x−)

× 1{F(x−) > 1 − ε}dF(x)

∣∣∣∣ > δ

)
(A.55)

= 0,

where V̄ N (t, x) = N−1V N(t, x).
By (A.14) and recalling the definition of ŪN from (A.54), we have that for any

k > 0,

P

(
sup

0≤t≤T

∣∣∣∣
∫ t

0

V̄ N (t − x, x−)

1 − F(x−)
1{F(x−) > 1 − ε}dF(x)

∣∣∣∣ > δ

)

≤ P
(
ǍN(T ) > kT

)
+ P

(∫ ∞
0

1{F(x−) > 1 − ε}
1 − F(x−)

sup
0≤t≤kT

|ŪN(t,F (x−))|dF(x) > δ

)
.

For k sufficiently large, we have by Lemma A.2 that

P
(
ǍN(T ) > kT

) → 0 as N → ∞.

Thus, by applying Chebyshev’s inequality and Fubini’s theorem, we now must
prove that

lim
ε↓0

lim sup
N

∫ ∞
0

1{F(x−) > 1 − ε}
1 − F(x−)

E sup
0≤t≤kT

|ŪN(t,F (x−))|dF(x) = 0.

However, the proof of this proceeds identically to as in Lemma 3.4 of [14], which
completes the proof. �

We next show that H̄N converges to 0 as N goes to ∞. Again, the modifica-
tions to the proof of Lemma 3.7 of [14] are slight but we include a full proof for
completeness.

LEMMA A.4. H̄N ⇒ 0 as N → ∞.

PROOF. Let

ĤN(t) = N−1
ÂN (t)∑
i=1

(
1{0 < ηi ≤ t − τ̂ N

i } −
∫ ηi∧(t−τ̂N

i )+

0+
dF(u)

1 − F(u−)

)
, t ≥ 0,
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and note that by (A.17), (A.20) and (A.50) we have that

H̄N(t) = N−1
ÂN (t)∑
i=1

(
1{ηi = 0} − F(0)

) + ĤN(t).

We first show that the term involving the summation converges to 0. Let T ≥ 0
and δ > 0. We have

P

(
sup

0≤t≤T

∣∣∣∣∣N−1
ÂN (t)∑
i=1

(
1{ηi = 0} − F(0)

)∣∣∣∣∣ > δ

)

≤ P
(
N−1ÂN(T ) > k

) + P

(
sup

0≤t≤1

∣∣∣∣∣N−1

Nkt�∑
i=1

(
1{ηi = 0} − F(0)

)∣∣∣∣∣ > δ

)
.

However, for sufficiently large k, we have by Lemma A.2 that P(N−1ÂN(T ) >

k) → 0 as N → ∞. Furthermore, by the functional strong law of large numbers
and the i.i.d. assumption of {ηi, i ≥ 1}, it follows that

P

(
sup

0≤t≤1

∣∣∣∣∣N−1

Nkt�∑
i=1

(
1{ηi = 0} − F(0)

)∣∣∣∣∣ > δ

)
→ 0 as N → ∞.

It thus remains to show the convergence of ĤN to 0.
Fix T > 0. For each ε > 0, we have

P
(

sup
0≤t≤T

ĤN(t) > ε
)

≤ P
(
N−1ÂN(T ) > k

) + P
(

sup
0≤t≤T

|H̄N
Nk(t)| > ε

)
,

where

H̄N
Nk = HN

Nk

N
.

By definition (A.15) and Lemma A.2, for k sufficiently large,

P
(
N−1ÂN(T ) > k

) → 0 as N → ∞.

Next, recall by Lemma A.1 that H̄N
Nk is an HN -square-integrable martingale with

predictable quadratic variation process

〈H̄N
Nk〉(t)

(A.56)

= N−2
ÂN (t)∧Nk∑

i=1

∫ ηi∧(t−τ̂N
i )+

0+
1 − F(u)

(1 − F(u−))2 dF(u), t ≥ 0.

Thus, by the Lenglart–Rebolledo inequality [15], it follows that for any γ > 0,

P
(

sup
0≤t≤T

|H̄N
Nk(t)| > ε

)
≤ γ

ε2 + P
(〈H̄N

Nk〉(T ) > γ
)
.
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However, by (A.56),

〈H̄N
Nk〉(T ) ≤ N−2

ÂN (T )∑
i=1

∫ ηi

0

dF(u)

1 − F(u−)
.(A.57)

Furthermore, since E[∫ ηi

0 (1 − F(u−))−1 dF(u)] = 1, it follows by the functional
strong law of large numbers that

N−2

N ·�∑
i=1

∫ ηi

0

dF(u)

1 − F(u−)
⇒ 0 as N → ∞.

By (A.57), the Random Time Change theorem [1] and Lemma A.2, this then im-
plies that for any γ > 0,

P
(〈H̄N

Nk〉(T ) > γ
) → 0 as N → ∞,

which completes the proof. �

We are now in a position to give a proof of Proposition 4.2.

PROOF OF PROPOSITION 4.2. The proof follows by the decomposition (A.48)
and Lemmas A.3 and A.4 above. �

We now proceed to proving Proposition 5.1. We first begin with the following
result. Recall the definition of ÂN(t) as the number of customers in the N th system
who entered service after time 0− but before or at time t . Also, recall the definition
of ǍN from (A.51) as the fluid scaled version of ÂN . We then have the following
result.

LEMMA A.5. Under the assumptions of Section 5, ǍN ⇒ e as N → ∞.

PROOF. First, note the relationship

ÂN(t) = AN(t) − (
QN(t) − N

)+ + (
QN(0) − N

)+
, t ≥ 0,

which, dividing by N , may be equivalently expressed as

ǍN(t) = ĀN(t) − (
Q̄N(t) − 1

)+ + (Q̄N
0 − 1)+, t ≥ 0.

By (5.1), (5.2) and the Halfin–Whitt assumption (5.3), it follows that ĀN ⇒ e as
N → ∞. Thus, by Corollary 5.1, the assumption that Q̄N

0 ⇒ 1 as N → ∞ and the
Continuous Mapping theorem [20], it follows that

ǍN = ĀN − (Q̄N − 1)+ + (Q̄N
0 − 1)+ ⇒ e as N → ∞,

which completes the proof. �
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Now, define the processes

G̃N = GN

√
N

and

H̃N = HN

√
N

,

and note that by (5.9) and (A.19) it follows that

M̃N
2 = G̃N + H̃N .(A.58)

Our next result will be to show that the sequence {M̃N
2 } is tight. In order to show

this, it will be sufficient to show that both {G̃N } and {H̃N } are tight. The proofs of
these results are similar to proofs of Lemmas 3.4 and 3.7 of [14], and hence have
not been included. We begin with a proof of the tightness of {G̃N }.

LEMMA A.6. The sequence {G̃N } is tight.

PROOF. By virtue of Lemma A.5 and the fact that the identity process
e(t) = t is a continuous process, the proof now follows identically to the proof
of Lemma 3.4 in [14]. The modifications to this proof are essentially trivial and
the interested reader is referred to Lemma 3.4 of [14] for further details. �

Next, we show that {H̃N } is tight.

LEMMA A.7. The sequence {H̃N } is tight.

PROOF. Since by Lemma A.1, the process HN
k is an HN -square-integrable-

martingale for each N and k, by Lemma A.5 the proof now follows similarly to
the proof of Lemma 3.7 of [14] and will not be included. Again, the interested
reader is referred to [14] for further details. �

We may now state the following result.

PROPOSITION A.1. The sequence {M̃N
2 } is tight.

PROOF. The result follows by the decomposition (A.58) and Lemmas A.6 and
A.7 above. �

We are now ready to give a proof of Proposition 5.1. Before doing so, however,
we must first recall Lemma 5.2 from [14]. The proof of this result is similar in our
case and therefore will not be included for the sake of brevity.
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Let βi(x, y) be bounded real-valued Borel functions such that E[βi(x, ηi) = 0]
and define the processes by RN

m = {RN
m(t), t ≥ 0} and 〈RN

m 〉 = {〈RN
m 〉(t), t ≥ 0},

m = 1,2, . . . , by

RN
m(t) =

ÂN (t)∧m∑
i=1

βi(τ̂
N
i , ηi) and 〈RN

m 〉(t) =
ÂN (t)∧m∑

i=1

β̄i(τ̂
N
i ),(A.59)

where

β̄i(x) = Eβ2
i (x, ηi).

We also set the σ -fields F̂ N
t = σ {τ̂ N

i , ηi,1 ≤ i ≤ 
t�} ∨ N and F N
t = σ {τ̂ N

i ∧
τ̂ N

ÂN (t)+1
, η

i∧ÂN (t)
, i ≥ 1} ∨ N , and define the filtrations F̂N = {F̂ N

t , t ≥ 0} and

FN = {F N
t , t ≥ 0}.

We then have the following result.

LEMMA A.8. 1. The τ̂ N
i , i = 1,2, . . . , are FN -stopping times, and the follow-

ing inclusions hold: F N

τ̂N
i

⊃ F̂ N
i+1, GN

i ⊂ F̂ N
i , where GN

i = σ {B ∩ {τ̂ N
i > t}, t ≥

0, B ∈ F N
t };

2. The process ÂN is F N -predictable;
3. The processes RN

m,m = 1,2, . . . , are FN -square-integrable martingales
with the processes 〈RN

m 〉 as predictable quadratic-variation processes.

PROOF. The proof is identical to the proof of Lemma 5.2 of [14]. �

We are now prepared to give a proof of Proposition 5.1.

PROOF OD PROPOSITION 5.1. Ourproof is similar to the proof of Lemma 5.3
of [14] but we restate it here for the sake of completeness. Our first step is to
show that the finite-dimensional distributions of (M̃N

2 , M̂N
2 ) converge to those of

(M̃2, M̃2). We denote finite-dimensional convergence by f.d.⇒.
Let

ŨN = UN

√
N

and note that by Lemma 3.1 of [14], ŨN ⇒ Ũ in D([0,∞),D[0,1]) as N → ∞,
where Ũ is the Kiefer process. Next, let

M̃N
2,k(t) =

k∑
i=1

�ŨN (
(ÂN(sk

i−1),F (0)),
(
ÂN(sk

i ),F (t − sk
i )

))
,(A.60)
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where the increment

�ŨN((a1, a2), (b1, b2)) = ŨN(b1, b2) − ŨN(a1, b2)

− ŨN(b1, a2) + ŨN(a1, a2),

and the points 0 = sk
0 < sk

1 < · · · < sk
k = t are chosen such that

max
1≤i≤k

|sk
i − sk

i−1| → 0 as k → ∞.

We also define in analogy,

M2,k(t) =
K∑

i=1

(
�Ũ

(
(e(sk

i−1),F (0)),
(
e(sk

i ),F (t − sk
i )

))

+ (
Ũ (e(sk

i ),F (0)) − Ũ (e(sk
i−1),F (0))

))
,

where

�Ũ ((a1, a2), (b1, b2)) = Ũ (b1, b2) − Ũ (a1, b2) − Ũ (b1, a2) + Ũ (a1, a2).

We now show that

(a) M̃N
2,k

f.d.⇒ M2,k,

(b) limk→∞ lim supN→∞ P(|M̃N
2,k(t) − M̃N

2 (t)| > η) = 0 for η > 0, t > 0,

(c) limn→∞ P(|M̂N
2 (t) − M̃N

2 (t)| > η) = 0 for η > 0, t > 0.

Since M2,k(t)
P⇒ M2(t) as k → ∞ by definition, this will prove the finite-

dimensional convergence stated in the paragraph above.
The proofs of (a) and (b) are identical to the proofs in Lemma 5.3 of [14] but

we include them here for the sake of completeness. We proceed as follows.
By the Lemma 3.1 of [14] and the continuity of the Keifer process Ũ , it follows,

setting

M̌N
2,k(t) =

k∑
i=1

�ŨN (
(e(sK

i ),F (0)),
(
e(sk

i ),F (t − sk
i )

))
, t ≥ 0,(A.61)

that

M̌N
2,k ⇒ M2,k as N → ∞.

Next, by Lemma A.5, Lemma 3.1 of [14] and the continuity of Ũ and e, we obtain
from (A.60) and (A.61) that

lim
N→∞ P

(
sup

0≤t≤T

|M̃N
2,k(t) − M̌N

2,k(t)| > ε
)

= 0, T > 0, ε > 0.(A.62)

This then implies that M̃N
2,k ⇒ M2,k as N → ∞, which completes the proof of (a).
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We will next prove (b), making use of Lemma A.8. In the conditions of the
lemma, we take, fixing t and k for the moment,

βi(x, y) =
k∑

p=1

1{sk
p−1 < x ≤ sk

p}(1{t − sk
p < x < t − x}

− (
F(t − x) − F(t − sk

p)
))

.

Then

β̄i(x) = E[βi(x, ηi)
2]

=
k∑

p=1

1{sk
p−1 < x ≤ sk

p}(F(t − x) − F(t − sk
p)

)

× (
1 − F(t − x) − F(t − sk

p)
)

and (A.59) yields, by (A.13), (A.16) and (A.60),

N−1/2RN
m(t) = M̃N

2 (t) − M̃N
2,k(t) on {ÂN(t) ≤ m}.(A.63)

By (A.63) and (A.59),

N−1〈RN
m 〉(t)

≤ N−1
ÂN (t)∑
i=1

k∑
p=1

1{sk
p−1 < τ̂N

i ≤ sk
p}(F(t − sk

p−1) − F(t − sk
p)

)

= N−1
k∑

p=1

(
F(t − sk

p−1) − F(t − sk + p)
)(

ÂN(sk
p) − ÂN(sk

p−1)
)

≤ sup
1≤p≤k

(
N−1ÂN(sk

p) − N−1ÂN(sk
p−1)

)
.

Then, by Lemma A.8, applying the Lenglart–Rebolledo inequality and (A.63), for
η > 0, ε > 0,

P
(|M̃N

2 (t) − M̂N
2,k(t)| > η

)
≤ P

(
ÂN(t) > mN

) + P
(
N−1/2|RN

m(t)| > η
)

≤ P
(
N−1ÂN(t) > m

) + ε

η2

+ P
(

sup
1≤p≤k

(
N−1ÂN(sk

p) − N−1ÂN(sk
p−1)

)
> ε

)
.



THE G/GI/N QUEUE IN THE HALFIN–WHITT REGIME 2265

By Lemma A.5, continuity of the identity function e(t) = t and the fact that
max1≤p≤k(s

k + p − sk
p−1) → 0 as k → ∞,

lim
m→∞ lim sup

N→∞
P

(
N1ÂN(t) > m

) = 0,

lim
k→∞ lim sup

N→∞
P

(
sup

1≤p≤k

(
N−1ÂN(sk

p) − N−1ÂN(sk
p−1)

)
> ε

)
= 0,

ending the proof of (b).
We next prove part (c). The proof proceeds in a similar manner to the proof of

parts (a) and (b). Letting BN(t) = 
Nt�, we first note that

M̂N
2 (t) = N−1/2

∫ t

0

∫ t

0
1{s + x ≤ t}dUN(BN(s), x).

Furthermore, setting B̄N = {N−1BN(t), t ≥ 0}, it is clear that

B̄N ⇒ e as N → ∞.(A.64)

Next, letting

B̌N
2,k(t) =

k∑
i=1

�ŨN (
(B̂N(sk

i−1),0),
(
BN(sk

i ),F (t − sk
i )

))
,

it follows by (A.64), Lemma 3.1 of [14] and the continuity of Ũ and e, that by
(A.60),

lim
N→∞ P

(
sup

0≤t≤T

|B̌N
2,k(t) − M̌N

2,k(t)| > ε
)

= 0, T > 0, ε > 0.(A.65)

A similar proof to that of part (b) above can also be used to show that

lim
k→∞ lim sup

N→∞
P

(|B̌N
2,k(t) − M̂N

2 (t)| > η
) = 0 for η > 0, t > 0.(A.66)

Part (b), (A.62), (A.65) and (A.66) above now imply part (c).
Parts (a)–(c) imply the finite-dimensional convergence (M̃N

2 , M̂N
2 ) ⇒df (M̃2,

M̃2) as N → ∞. It therefore remains to show that the sequence {(M̃N
2 , M̂N

2 )} is
tight in order to complete the proof. However, by Proposition A.1, the sequence
{M̃N

2 } is tight and a similar if not identical proof also shows that {M̂N
2 } is tight.

Thus, the sequence {(M̃N
2 , M̂N

2 )} is tight in (D2[0,∞), d2
J1

), which completes the
proof. �

The remainder of the appendix is now devoted to providing proofs of Lem-
mas A.9 and A.10. We begin with Lemma A.10. Recall first the definition of
f : R × D3[0,∞) �→ R × D3[0,∞) in (5.18) and (5.19) as

f ((x1, x2, x3, x4)) = (f1(x1), f2(x2), f3(x3), f4(x4)),(A.67)
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for (x1, x2, x3, x4) ∈ R × D3[0,∞), where f1(x1) = x1, f2(x2) = x2, f4(x4) = x4
and

f3(x3)(·) =
∫ ·

0
G(· − s) dx3(s),(A.68)

where the above integral above may be interpreted as the result of integration by
parts.

We then have the following result.

LEMMA A.9. The function f defined by (A.67) and (A.68) is measurable as
a map from (R ×D3[0,∞), B(R)× D3) to (R ×D3[0,∞), B(R)× D3). Further-
more, it is continuous at continuous limits points (x1, x2, x3, x4) ∈ R × D3[0,∞)

such that x2, x3, x4 ∈ C[0,∞).

PROOF. We first show that the function f : (R × D3[0,∞), B(R) × D3) �→
(R × D3[0,∞), B(R) × D3) is measurable. It is clear that f1 : (R, B(R)) �→
(R, B(R)), f2 : (D[0,∞), D) �→ (D[0,∞), D) and f4 : (D[0,∞), D) �→ (D[0,
∞), D) are measurable since each of these functions are the identity functions.
Therefore, if we may now show that f3 : (D[0,∞), D) �→ (D[0,∞), D) is mea-
surable, then, by (A.67), we will have shown the measurability of f .

In order to show that f3 : (D[0,∞), D) �→ (D[0,∞), D) is measurable, first
note that, integrating by parts, we have

f3(x3) = a(x3) − b(x3) − c(x3),(A.69)

where a(x3) = G(0)x3, b(x3) = x(0)G and

c(x3)(·) =
∫ ·

0
x3(· − s) dG(s).(A.70)

The functions a(x3) is measurable since it is the identity function multiplied by a
constant and b(x3) is measurable as well since by [1] we have that the projection
map is π0(x3) = x3(0) is a measurable function too. Thus, since the sum of a finit
number of measurable functions is measurable, it remains to show that c(x3) is
measurable from (D[0,∞), D) to (D[0,∞), D) in order to complete the proof
of the measurability of f . However, this may be shown in a manner similar to
the proof of the measurability of �a

B in the measurability portion of the proof of
Proposition 3.1. We omit the details for the sake of brevity. This completes the
proof of the measurability of f .

We now show that f : (R × D3[0,∞), | · | × d3
J1

) �→ (R × D3[0,∞), | · | × d3
J1

)

is continuous at continuous limit points (x1, x2, x3, x4) ∈ R × D3[0,∞) such
that x2, x3, x4 ∈ C[0,∞). First, it is clear that the functions f1 : (R, | · |) �→ (R,

| · |), f2 : (D[0,∞), u) �→ (D[0,∞), u) and f4 : (D[0,∞), u) �→ (D[0,∞), u) are
continuous. This follows easily since each of these functions are the identity func-
tions. We now show that the function f3 : (D[0,∞), u) �→ (D[0,∞), u) is contin-
uous. This then implies that f : (R×D3[0,∞), | · | ×u3) �→ (R×D3[0,∞), | · | ×
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u3) is continuous. However, since converge in (D[0,∞), dJ1) to a continuous limit
point x ∈ C[0,∞) is equivalent to convergence in (D[0,∞), u), this then implies
that f : (R × D3[0,∞), | · | × u3) �→ (R × D3[0,∞),

| · | × d3
J1

) is continuous a continuous limit points (x1, x2, x3, x4) ∈ R × C3[0,∞),
which completes the proof.

Suppose first that xn
3 → x3 in (D[0,∞), u) as n → ∞. It then follows that for

each T ≥ 0,

sup
0≤t≤T

|xn
3 (t) − x(t)| → 0 as n → ∞.

However, recalling the representation of f3(x3) in (A.70), this then implies that

sup
0≤t≤T

|f3(x
n
3 )(t) − f3(x3)(t)|

= sup
0≤t≤T

∣∣(a(xn
3 )(t) − b(xn

3 )(t) − c(xn
3 )(t)

)
− (

a(x3)(t) − b(x3)(t) − c(x3)(t)
)∣∣

= sup
0≤t≤T

∣∣(a(xn
3 )(t) − a(x3)(t)

) − (
b(xn

3 )(t) − b(x3)(t)
)

− (
c(xn

3 )(t) − c(x3)(t)
)∣∣

= sup
0≤t≤T

∣∣∣∣(G(0)xn
3 (t) − G(0)x3(t)

) − (
xn

3 (0)G(t) − x3(0)G(t)
)

−
(∫ t

0
xn

3 (t − s) dG(s) −
∫ t

0
x3(t − s) dG(s)

)∣∣∣∣
= sup

0≤t≤T

∣∣∣∣G(0)
(
xn

3 (t) − x3(t)
) − G(t)

(
xn

3 (0) − x3(0)
)

−
∫ t

0

(
xn

3 (t − s) − x3(t − s)
)
dG(s)

∣∣∣∣
≤ sup

0≤t≤T

∣∣G(0)
(
xn

3 (t) − x3(t)
)∣∣ + sup

0≤t≤T

∣∣G(t)
(
xn

3 (0) − x3(0)
)∣∣

+ sup
0≤t≤T

∣∣∣∣
∫ t

0

(
xn

3 (t − s) − x3(t − s)
)
dG(s)

∣∣∣∣
≤ sup

0≤t≤T

∣∣G(0)
(
xn

3 (t) − x3(t)
)∣∣ + sup

0≤t≤T

∣∣G(t)
(
xn

3 (0) − x3(0)
)∣∣

+ sup
0≤t≤T

∫ t

0
|xn

3 (t − s) − x3(t − s)|dG(s)

≤ G(0) sup
0≤t≤T

|xn
3 (t) − x3(t)| + G(T )|xn

3 (0) − x3(0)|
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+ G(T ) sup
0≤t≤T

|xn
3 (t) − x3(t)|

= (
G(0) + 2G(T )

)
sup

0≤t≤T

|xn
3 (t) − x3(t)|

→ 0 as n → ∞,

and so the function f3 is continuous as a map from (D[0,∞), u) to (D[0,∞), u),
which completes the proof. �

We now provide a proof of Lemma A.10 which is instrumental in the proof of
Proposition 5.3. Our setup is the same as in the proof of Lemma A2 of Puhal-
skii and Reiman [17]. In particular, we consider a sequence of queueing sys-
tems indexed by N , each operating under the FIFO service discipline and each
with a single arrival process AN = {AN(t), t ≥ 0} and a single departure process
DN = {DN(t), t ≥ 0}. We denote by QN(t) the queue length of the N th system at
time t , by V N(t) the virtual waiting time at time t , and by V N

i the waiting time
of the ith customer to arrive to the system. Finally, we set Q̃N(t) = N−1/2QN(t),
ÃN(t) = N−1/2(AN(t) − λNt) where {λN } is a sequence of constants and we as-
sume that AN(0) = DN(0) = 0. We then have the following result.

LEMMA A.10. If Q̃N ⇒ Q̃ and ÃN ⇒ ξ̃ as N → ∞, each on D[0,∞),
and λN/N → λ > 0, then the processes {N1/2V N(t), t ≥ 0} and {N1/2V N
Nt�,

t ≥ 0} converge in distribution on (D[0,∞), dJ1) to the respective processes {Q̃(t)

/λ, t ≥ 0} and {Q̃(t/λ)/λ, t ≥ 0}.
PROOF. First, note that since Q̃N ⇒ Q̃ and ÃN ⇒ ξ̃ as N → ∞, it fol-

lows by Prohorov’s theorem [1] that the sequences {Q̃N,N ≥ 1} and {ÃN ,N ≥
1} are both tight. Thus, we have that sequence {(Q̃N , ÃN),N ≥ 1} is tight in
(D2[0,∞), d2

J1
) and hence, by a second application of Prohorov’s theorem [1],

the sequence {(Q̃N , ÃN),N ≥ 1} is relatively compact. Thus, for any subse-
quence {Nk}, there exists a further subsequence {N ′

k} such that (Q̃N ′
k , ÃN ′

k ) ⇒
(

ˆ̃
Q,

ˆ̃
A) as k → ∞. Thus, by Lemma A2 of Puhalskii and Reiman [17], we have

that {N ′
k

1/2
V N ′

k (t), t ≥ 0} and {N ′
k

1/2
V

N ′
k
Nt�, t ≥ 0} converge in distribution on

(D[0,∞), dJ1) to the respective processes { ˆ̃
Q(t)/λ, t ≥ 0} and { ˆ̃

Q(t/λ)/λ, t ≥ 0}.
However, since it must be the case that ˆ̃

Q
d= Q̃ and the sequence {Nk} was arbi-

trary, this completes the proof. �
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