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A NOTE ON THE ENUMERATION OF DIRECTED ANIMALS VIA
GAS CONSIDERATIONS

BY MARIE ALBENQUE

Université Paris Diderot—Paris 7

In the literature, most of the results about the enumeration of directed
animals on lattices via gas considerations are obtained by a formal passage
to the limit of enumeration of directed animals on cyclical versions of the
lattice.

Here we provide a new point of view on this phenomenon. Using the gas
construction given in [Electron. J. Combin. (2007) 14 R71], we describe the
gas process on the cyclical versions of the lattices as a cyclical Markov chain
(roughly speaking, Markov chains conditioned to come back to their starting
point). Then we introduce a notion of convergence of graphs, such that if
(Gn) → G then the gas process built on Gn converges in distribution to the
gas process on G. That gives a general tool to show that gas processes related
to animals enumeration are often Markovian on lines extracted from lattices.

We provide examples and computations of new generating functions for
directed animals with various sources on the triangular lattice, on the Tn lat-
tices introduced in [Ann. Comb. 4 (2000) 269–284] and on a generalization
of the Ln lattices introduced in [J. Phys. A 29 (1996) 3357–3365].

1. Introduction. Let G = (V ,E) be a directed graph with set of vertices V

and set of oriented edges E. Let A and S be two subsets of V , with S ⊂ A. We
say that A is a directed animal (DA) with source S if and only if any vertex of A

can be reached from an element of S through a directed path having all its vertices
in A (see Figure 1). The vertices of A are called cells and the number of cells,
denoted |A|, is the area of A. We denote GG

S the generating function (GF) for DA
on G with source S counted according to their area

GG
S (t) = ∑

A, DA
with source S

t |A| = ∑
k≥|S|

akt
k,

where ak is the number of DA on G with source S and area k.
In the following, we will always assume that the cells of S form an independent

set on the directed graph G—we say that S is a free set—the formal definition
follows.
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FIG. 1. Example of a DA with area 6. The cells of the DA are dark and the vertices of the source
double circled.

DEFINITION 1. Let G = (V ,E) be an oriented graph and x and y be two
vertices of G. We say that x is a father of y or equivalently that y is a child of x if
there is an edge from x to y.

More generally, x is called an ancestor of y if there exists a directed path from x

to y.
Let now S be a subset of V ; we say that S is a free set of vertices of G if and

only if for every x, y ∈ S such that x �= y, x is not an ancestor of y.

In this article we focus on the link between enumeration of DA and hard particle
gas models.

DEFINITION 2. Let G = (V ,E) be a graph, a gas occupation or gas configu-
ration on G is a map X from V to {0,1}. The vertices v ∈ V such that X(v) = 1
are said to be occupied, the others are said to be empty.

A hard particle gas occupation of a graph is a gas occupation with the additional
constraint that two occupied vertices cannot be neighbors (the occupied cells form
then an independent set).

A gas model is a probability law on gas occupations. For a given gas model, we
call density in a vertex v the probability for v to be occupied, that is P(X(v) = 1).

Since the pioneering work of Dhar [7], the connection between DA and gas
models have been widely exploited. We shall now give a short overview of the
different contributions on this subject (we refer the reader to [4] and [10] for more
exhaustive references). In Dhar [7], using some statistical mechanics shows that
computing the area generating function for DA on the square lattice is equivalent
to computing the density of a hard particle gas model. This result was obtained
after Nadal, Derrida and Vannimenus [11] and Hakim and Nadal [9] obtained the
generating function of DA on some “cylindric” square lattices.

Those “cylindric” lattices are defined as follows: Let G be an oriented lattice—
that is, an oriented translation-invariant graph—with its vertices indexed by a sub-
set of Z

2. If we consider that the abscissa of the vertices of G are labeled by
elements of [N ] := Z/NZ instead of Z, we obtain the width-bounded variant of G

with cyclic boundary conditions (see Figure 2). We denote it G(N) and call it the
cyclic or cylindric version of G of width N .
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FIG. 2. The same DA on two representations of the cylindric version of the square lattice with a
width of 6.

Bousquet-Mélou [4] extends Dhar’s correspondence between the hard particle
gas models and enumeration of DA on cyclic square lattices. Particularly, she
shows that gas models allow the enumeration of DA not only according to their
area but also for instance according to their left perimeter or their number of loops.
Those results were then generalized to a family of lattices in a joint work with
Conway [5]. In Conway [5] and Bousquet-Mélou [4], the gas models studied are
defined on the cylindric versions of graphs and the GF for DA is obtained as the
formal limit of the density of the gas when the width grows to infinity. Since com-
puting the density of the gas model is not always tractable, the former result does
not necessarily lead to effective results about enumeration of DA. However, that
new link establishes gas models as a powerful and polyvalent tool for the counting
of DA.

In the latter works, the link between DA and gas is formal and appears because
DA and gas models are shown to verify the same recursive decomposition along
with the layers of the graph. It notably implies that that approach is only valid for
graphs that can be decomposed nicely into layers.

Le Borgne and Marckert [10] give a new insight into the connection between gas
and DA. They construct a coupling between random DA and random gas models
and give a combinatorial proof that for a free set S the GF of DA with source S

is equal to the probability for the vertices of S to be occupied (a construction of
that coupling is sketched in Section 2). Contrary to the construction on cylinders,
in [10] the gas model is well defined on any acyclic graph and in particular on the
whole lattice, where some of its stochastic properties can be studied. On the square
lattice for instance, its restriction to a line is shown to be Markovian, which allows
to compute explicitly the GF for DA with any source included in a line.

We must mention that there exist other fruitful approaches to the combinatorics
of DA. Some results have been obtained by establishing links with heaps of pieces
introduced by Viennot in [12] (see for instance [2, 3, 6, 13]) or with paths in the
plane [8] or via the ECO method [1].

We now describe the content of this paper and its organization. Our aim here
is to give a general framework that allows to reduce the enumeration of DA with
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various sources on a graph G to the same enumeration on “simpler” versions of G.
As mentioned above, simplifying the graphs we work on is a classical idea. Here,
the difference with the works cited above relies on the fact that thanks to the gas
construction given in [10], we can now study the convergence of the gas models
as stochastic processes and not only the formal convergence of their density. This
leads both to a better understanding of the gas models and to new results about
enumeration of DA with various sources.

The first point is to make the notion of “simpler” versions of G accurate; in
Section 3.1 we provide a distance on the set of graphs with marked vertices, cor-
responding to sources [see equation (3.1)]. Roughly speaking, Gn converges to G

for the notion of convergence of graphs induced by that distance (which corre-
sponds roughly to the convergence of the neighborhood of sources) implies that
GGn

S converges to GG
S . In terms of probability, that means the convergence of the

finite-dimensional laws of the gas under additional assumptions (Theorem 2).
Then we need to compute the law of the limiting gas process obtained thanks

to that convergence. That is possible on some lattices. The multiplicative formula
obtained for the distribution of gas restricted to a line on the cylinder in [4] and [5]
leads to the intuition that that multiplicative structure may be preserved when the
width of the cylinder goes to infinity and that the limiting process obtained above
should be Markovian. For that reason, in Section 3.2 we define a cyclic Markov
chain as a Markov chain conditioned to come back to its initial state after a fixed
number of steps (Definition 6). We then give a representation of the gas on the
cylinder as a cyclic Markov chain. Then in broad terms when the width of the
cylinder grows, the conditioning induced by the cyclic condition is less and less
constraining. At the limit, it eventually disappears which therefore yields that the
limiting process is Markovian. We provide in Theorem 3 a formal statement of
those two ideas; that provides a frame in which the gas process on a line is Markov-
ian.

We define in Section 4.1 the family of lattices (LR)R⊂N, which extends the
family of lattices (Ln)n≥2 introduced in [5]. We apply Theorem 2 and Theorem 3
to it, to the triangular lattice and to the family of Tn lattices introduced in [6]. In
Section 4, we show that for those three examples, the restriction of the gas process
to a line is Markovian. Thanks to the link between gas models and GF of DA,
that allows us to obtain some GF for DA with various sources; see, for example,
Proposition 1 for some results on the triangular lattice.

2. Definition of the gas model. We sketch the construction of the gas model
given in [10] and its link with enumeration of DA according to their area. Let
G = (V ,E) be a directed graph without multiple edges nor directed cycles and
such that the number of children of each node is finite.

The probability space we work on is � = {a, b}V endowed with the σ -field
generated by the finite subsets of vertices. We equip that space with the product
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FIG. 3. The gas occupation (on the left) and the DA AS on L3, obtained from the same coloring of
the vertices. Cells colored with a (respectively b) are dark (respectively white) and the vertices of S

are double circled.

probability Pp = (pδa + (1 − p)δb)
⊗V , where δa is the standard Dirac measure

on {a}. In other terms, ω ∈ � is a coloring of G and under Pp each vertex has,
independently of the others, color a or b with respective probabilities p and 1 −p.
For x ∈ V , ω(x) gives the color of x. From that random coloring we construct
DA and a model of gas. Notice that the DA and gas process defined below are
deterministic functions of the random coloring.

DEFINITION 3. Let S be a subset of V and ω be a random coloring of G.
We denote by S•(ω) = {x ∈ S,ω(x) = a}, the (random) subset of S with color a.
We then define the random variable AS as the maximal DA for the inclusion partial
order with source S•(ω) and set of cells the a-colored vertices x that can be reached
from S•(ω) by an a-colored path (see Figure 3).

For a set S such that |S| ≥ 1, the random DA AS may be infinite with posi-
tive probability. Let pG

crit be the threshold for the existence of an infinite DA with
positive probability (it corresponds to the critical probability for the oriented per-
colation on G)

pG
crit := sup{p,S : Pp(|AS | < ∞) = 1 and |S| < ∞}.(2.1)

For a general graph G, pG
crit is difficult to compute and can even be equal to

zero. In the examples given in Section 4, the outdegree of any vertex is bounded
and in that case pcrit > 0 (see, e.g., Proposition 2.2 of [10]). For any p < pG

crit a gas
occupation XG on G is defined from a random coloring ω = (ω(v))v∈V as follows
(see Figure 3 for an example):

XG(v) =
⎧⎨⎩

0, if ω(v) = b,∏
v′children of v

(
1 − XG(v′)

)
, if ω(v) = a.(2.2)

The definition of pG
crit ensures that the gas process is almost surely well defined

as its recursive computation ends within a finite number of steps for any p < pG
crit
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(see Proposition 2.4 of [10] for details). From now on we always assume that
p < pG

crit and that the gas model considered is the probability law denoted P
G
p

induced by that construction.
The link between enumeration of DA and that gas model is given by the follow-

ing result:

THEOREM 1 (Le Borgne and Marckert [10]). Let G = (V ,E) be a directed
graph and S be a free set of G. For any p in [0,RG

S ), we have

P
G
p

(
XG(v) = 1, v ∈ S

) = (−1)|S|GG
S (−p),(2.3)

where RG
S is the radius of convergence of GG

S .

With that theorem, the computation of the generating function for DA comes
down to the computation of the probability for some vertices to be occupied for
the gas model P

G
p . That explains why in the next section we focus only on the

study of the gas model and resume the enumeration of DA in Section 4.

3. Convergence of graphs, gas models and DA. We develop in that section
some tools allowing us to reduce to simpler graphs the study of the stochastic
properties of a gas model on a graph.

3.1. Convergence of graphs. As recalled in the Introduction, most of the re-
sults obtained about the enumeration of DA on a lattice G via the study of gas
models have been proved by a passage to the limit. More precisely, the gas models
are studied on G(N), the cylindric version of G (see the Introduction). For a fixed
size n, the set of DA with size n coincide on G and G(N) when say N 
 n. It
amounts to saying that

GG(N)

{x} −→
N

GG{x}

or equivalently in the gas model’s point of view that the density of the gas
converges formally (in the sense that

∑
an,kx

k −→n

∑
akx

k if and only if
an,k −→n ak for every n ∈ N).

The aim of this section is to make clear a notion of convergence of graphs
(i.e., a topology on the set of graphs) which induces the convergence of the finite-
dimensional laws of the gas process and hence the convergence of the generating
function of DA. That convergence is no longer seen only as a formal convergence
of generating functions but as the convergence of the distribution of a stochastic
process.

In the following, we always assume that the graphs considered are directed,
without directed cycles nor multiple edges and that the number of children of each
node is finite (a node can, though, have an infinite number of parents) so that the
gas model given in Section 2 is defined.
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DEFINITION 4. We call marked directed graph, a pair (G = (V ,E),Z)

where Z is a subset of V . We denote by VZ the subset of V of nodes having at
least one ancestor in Z, and by G(Z) the subgraph of G having as set of nodes VZ

(and set of edges the edges of E linking them).

To see Z as a source and G(Z) as the maximal DA on G with source Z may
help to understand better Theorem 2.

DEFINITION 5. Two directed marked graphs (G = (V ,E),Z) and (G′ =
(V ′,E′),Z′) are said to be isomorphic—we write (G,Z) ∼ (G′,Z′)—if G(Z)

and G′(Z′) are equal up to a relabeling of the vertices, in other words, if there
exists a bijective application φ from VZ onto V ′

Z′ such that for any x, y in VZ ,
(x, y) ∈ E is equivalent to (φ(x),φ(y)) ∈ E′.

The relation ∼ is an equivalence relation on the set of marked directed graphs.
We denote by O the set of directed graph quotiented by that relation. For any
marked graph (G,Z) we denote by (G,Z) its class in O.

We denote AG
Z the set of DA on G with source Z. The graph (G,Z) is the

right (or minimal) structure that provides all the knowledge necessary to study the
gas configuration on Z and the DA with source Z in G [that depends also on the
coloring on (G,Z)]. From the construction of the gas model and random DA given
in Section 2, it is clear that if (G,Z) ∼ (G′,Z′) then |Z| = |Z′| and GG

Z = GG′
Z′ and

the application φ provides a probability isomorphism between the gas occupations
on Z and Z′, which implies that P

G
p (XG

s = 1, s ∈ Z) = P
G′
p (XG′

s = 1, s ∈ Z′).
For any r ≥ 0, we define Br(G,Z) as the subgraph of (G,Z) containing only

the vertices v of (G,Z) such that d(v,Z) = infu∈Z d(u, v) ≤ r , where the distance
must be understood as a directed distance on graphs, that is,

d(u, v) = inf{|w|, where w is an oriented path from u to v}.
As announced above, we now define a distance dO on O which gives a suitable

notion of convergence of graphs: For any O and O ′ in O, we set

dO(O,O ′) = inf
{

1

r + 1
, r such that Br(G,Z) ∼ Br(G

′,Z′)
}
,(3.1)

where (G,Z) ∈ O and (G′,Z′) ∈ O ′ [we let the reader check that that is indeed a
distance in O and, in particular, that it does not depend on the choices of (G,Z)

and (G′,Z′)].

THEOREM 2. Let (Gn = (Vn,En),Zn) be a sequence of directed marked
graphs, and (G = (V ,E),Z) be a directed marked graph. Let an,k = #{A ∈
AGn

Zn
, |A| = k} be the number of DA with source Zn in Gn having k cells, and

denote by ak = #{A ∈ AG
Z, |A| = k}.
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If dO((Gn,Zn), (G,Z)) → 0 then:

1. GGn

Zn
(p) = ∑

k≥|Zn| an,kp
k −→n→∞ GG

Z (p) = ∑
k≥|Z| akp

k where the conver-
gence holds formally in the set of formal series with coefficient in N (i.e., for
any k, an,k → ak when n → ∞).

2. If there exists c, d ≥ 0 such that for any n large enough,

an,k ≤ cdk for any k ≥ 1,(3.2)

then for any p < 1/d , the finite-dimensional laws of the gas occupation on Zn

according to P
Gn
p converge towards those on Z distributed according to P

G
p ,

that is,

P
Gn
p (XGn

s = 1, s ∈ Zn) →
n

P
G
p (XG

s = 1, s ∈ Z).

PROOF. 1. First, if dO((Gn,Zn), (G,Z)) → 0, then for any r , when n is large
enough, the two graphs Br(Gn,Zn) and Br(G,Z) are isomorphic. That implies
that the coefficients of GGn

Zn
and GG

Z coincide at least up to the r th.

2. First, condition (3.2) implies that p
Gn

crit ≥ 1/d , therefore the gas model P
Gn
p is

well defined for any p < 1/d .
From the construction of the gas model, we can notice that the event {XG

s =
1, s ∈ Z} does not depend on the coloring of all the vertices of G but only on
vertices of AZ (see Definition 3). Since we assume p < 1/d , AZ is almost surely
finite according to P

G
p ; that implies that for any ε > 0, there exists mε such that

P
G
p (|AZ| ≥ mε) < ε.
As when n is large enough, the two graphs Bmε(Gn,Zn) and Bmε(G,Z) are

isomorphic, there exists an application φ that maps Bmε(Gn,Zn) onto Bmε(G,Z).
Thus φ induces a probability isomorphism between the coloring of Bmε(Gn,Zn)

and of Bmε(G,Z). Therefore, conditionally on the event {|AZ| < mε}, the image
of AZn by φ is AZ and we get

P
Gn
p (XGn

s = 1, s ∈ Zn||AZ| < mε) = P
G
p (XG

s = 1, s ∈ Z||AZ| < mε).

This concludes the proof, since P
G
p (|AZ| < mε) ≥ 1 − ε by definition of mε . �

REMARK 1. Even if in the applications of the latter theorem in Section 4, we
always assume that Zn and Z are free sets. There is no such assumption in the
theorem and Zn and Z can be any sets.

3.2. A variation on Markov processes. The spirit of this section is guided by
the results obtained for enumeration of DA in [4] and [5]. It often happens that
the probability distribution of the gas has a multiplicative form on cylinders. That
leads to the intuition that the limiting process obtained when the width goes to
infinity is Markovian. We give here an appropriate frame to make that intuition
rigorous.
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In this section, we always assume that E is a finite state space, ν a probabil-
ity measure on E and M a stochastic matrix on E. We say that Y = (Yi)i∈N is
a (ν,M)-MC if it is a Markov chain with ν as initial law and M as transition
matrix.

DEFINITION 6. For any nonnegative N , we call cyclic Markov chain of length
N on E with initial law ν and transition matrix M, a process (Xi)i∈{0,...,N−1} which
is a Markov chain conditioned to come back to its starting point after N steps and
we say that X is a (ν,M,N)-cyclic MC.

Let Y be a (ν,M)-MC, for any x0, . . . , xN−1 ∈ E, the law of (Xi)i∈{0,...,N−1} is
equal to

P(X0 = x0, . . . ,XN−1 = xN−1)
(3.3)

= P(Y0 = x0, . . . , YN−1 = xN−1|Y0 = YN).

In other words,

P(X0 = x0, . . . ,XN−1 = xN−1) = ν(x0)
∏N−1

i=0 Mxi ,xi+1

Z̃N

,(3.4)

where xN = x0 and Z̃N = ∑
x′

0,...,x
′
N−1

ν(x′
0)

∏N−1
i=0 Mx′

i ,x
′
i+1

.

Note that if X is a (ν,M,N)-cyclic MC, the distribution of X0 is given by

P(X0 = x) = ν(x)(MN)x,x

Z̃N

for any x ∈ E(3.5)

and the distribution of X1 by

P(X1 = x1) =
(∑

x0

ν(x0)Mx0,x1(M
N−1)x1,x0

)
(Z̃N)−1.(3.6)

Equation (3.5) implies that the distribution of X0 is not ν except for exceptional
cases. Combining equations (3.5) and (3.6) implies that if ν = UE , the uniform law
on E, then the cyclic MC is stationary, that is, for any x ∈ E, P(Xi = x) = P(X0 =
x).

On the other hand, assume that the initial law ν is an invariant law for M,
then a (ν,M,N)-cyclic MC is not necessarily stationary. Roughly speaking, the
term (MN−1)x1,x0 which appears in (3.6) prevents that probability from simplify-
ing even if ν is an invariant measure associated with M.

We now give the main result about the convergence of cyclic Markov chains.

THEOREM 3. Let E be a finite state space and V be a square nonnegative
matrix indexed by the elements of E such that V admits a simple real eigenvalue λ
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greatest in modulus than every other eigenvalues. Let (X(N))N≥1 be a family of
stochastic processes such that for every N , X(N) is indexed by {0, . . . ,N − 1} and

P
(
X

(N)
0 = x0, . . . ,X

(N)
N−1 = xN−1

) =
∏N−1

i=0 Vxi ,xi+1

trace(VN)
,(3.7)

with the convention xN = x0.
Let R = (Ri)i∈E and L = (Li)i∈E be respectively a right and a left eigenvector

associated with λ such that their dot product is equal to one, that is,
∑

LiRi = 1.

(i) For each N ≥ 1, X(N) is a (UE,M,N)-cyclic MC, where M is equal to

Mi,j = Vi,j

Rj

λ · Ri

for i, j ∈ E.(3.8)

(ii) Let now X = (Xi)i∈N be a (well-defined) stochastic process and its finite-
dimensional laws are given, for any k ∈ N, by

μ({x0, . . . , xk}) = lim
N→∞ P

(
X

(N)
0 = x0, . . . ,X

(N)
k = xk

)
.(3.9)

Under μ, X is a (ν,M)-MC, where M is defined as in equation (3.8) and ν is the
invariant probability measure for M and is given by ν(x) = LxRx , for x ∈ E.

PROOF. We begin with (ii) and show that the limit in (3.9) exists. Let k ∈ N

and x0, . . . , xk ∈ E, for any N > k we have

P
(
X

(N)
0 = x0, . . . ,X

(N)
k = xk

) =
(

k−1∏
i=0

Vxi ,xi+1

)
(VN−k)xk,x0

trace(VN)
.(3.10)

When N goes to infinity, the only significant terms of (VN−k)xk,x0 and trace(VN)

are those in λN . More precisely,

(VN−k)xk,x0 = Rxk
Lx0λ

N−k + ∑
λ′eigenvalue of V�=λ

aλ′λ′N−k(3.11)

= Rxk
Lx0λ

N−k + o(λN−k)(3.12)

as λ > |λ′|, besides trace(V N) = λN + o(λN) which leads to

lim
N

P
(
X

(N)
0 = x0, . . . ,X

(N)
k = xk

) = Rxk
Lx0

λk

k−1∏
i=0

Vxi ,xi+1 .(3.13)

Let μ({x0, . . . , xk}) = Rxk
Lx0

λk

∏k−1
i=0 Vxi ,xi+1 , we can check that ν is a probability

distribution. Indeed, from equations (3.10) and (3.13)∑
x∈E

ν(x) = ∑
x∈E

RxLx = ∑
x∈E

lim
N

(VN)x,x

trace(VN)
= lim

N

∑
x∈E

(VN)x,x

trace(VN)
= 1,
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where the inversion of the sum and the limit is immediate since E is finite. We
check similarly that the matrix M defined in (3.8) is stochastic.

Now it is easy to see that the finite-dimensional laws given in (3.9) are con-
sistent, the Kolmogorov extension theorem applies and ensures that the stochastic
process X is well defined.

Point (i) follows directly from the definition of a cyclic Markov chain. �

4. Examples of graphs. We give in this section some examples of results that
can be obtained by the application of Theorems 2 and 3. In the following examples,
we only consider oriented lattices with vertices indexed by a subset of Z

2. The j th
line of the graph is the set of vertices with second coordinate equal to j . We will
see why the restriction of the gas model “to a line” of the graph is Markovian. The
general approach used is widely inspired by the method developed in [4] and [5].
For a given graph G, we first show that the assumptions of Theorem 2 are verified
for G and the sequence of lattices (G(N))n, that implies that the gas process on
G(N) converges in distribution to the gas process on G. We then compute the
distribution of the gas on a line of G(N) and interpret it as a cyclic MC by checking
that its distribution can be written in a multiplicative form as in equation (3.7).
Theorem 2 and Theorem 3 imply then that the gas process restricted to a line is
Markovian. We explain fully the first example and sketch the others.

4.1. The family of lattices (LR)R⊂N. We define in this section a new family
of lattices. For any finite subset R of N such that |R| ≥ 2, we define LR as the
lattice with set of vertices indexed by Z

2 and from each vertex (i, j), there are |R|
emerging edges from (i, j) to (i + r, j + 1) for r ∈ R. In the following, we always
assume that inf(R) = 0 without loss of generality. We set R̄ = sup(R).

Note that L{0,1} corresponds to the square lattice. If R = {0, . . . , n − 1}, then
LR = Ln, which corresponds to the family of lattices introduced in [5] and detailed
in the following. Another example is given in Figure 4.

REMARK 2. For any finite subset R of N, the lattice LR verifies the assump-
tion of Section 2 so the gas model is well defined for any p < p

LR

crit and since the

outdegree of any vertex is equal to |R|, pLR

crit > 1/|R| > 0. For N > n+ R̄, the balls

FIG. 4. Example of a DA of size 10 on lattice LR, when R = {0,1,4}.
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or radius n of L(N)
R and of LR are isomorphic, moreover assumption 2 of Theo-

rem 2 holds true with d = |R|, thus the finite-dimensional laws of the gas model
on LR converge to the ones on L(N)

R .

We denote X
(N)
j the N -tuple that gives the occupation of the gas on the j th line

of L(N)
R and compute its distribution. The construction of the gas model given in

Section 2 implies that, when j decreases, (X
(N)
j )j∈Z is a “vertical” Markov chain

(with 2N states) under its stationary distribution. Markov chain theory implies that
such a distribution is unique (that one of the main tool in [5] and [4]).

For C ⊂ [N ], let F
(N)
C be the probability that the occupied vertices of a line of

the graph are exactly those with first coordinate lying in C. In other words, for
a gas occupation XLR distributed according to the gas model given in Section 2:

F
(N)
C = P

L(N)
R

p

(
XL(N)

R (i, j) = 1 if and only if i ∈ C
)
.(4.1)

Note that the construction of the gas model implies that F
(N)
C does not depend on

a particular choice of j .
We traduce the fact that (X

(N)
j )j∈Z,j↓ is Markovian into recurrence relations for

F
(N)
C . To that purpose, we define for any subset C of N

N (C) = ⋃
i∈C

{i + r | r ∈ R}

and

N̄ (C) = ⋃
i∈C

{i − r | r ∈ R},

where the addition is taken in [N ]. Notice that {N (C) × {1}} and {N̄ (C) × {−1}}
correspond respectively to the set of children and of fathers of the set {C × {0}}
and that |N (C)| = |N̄ (C)|. We thus obtain the following equations:

F
(N)
C =

(
p

1 − p

)|C| ∑
D⊂(N (C))c

(1 − p)N−|N̄ (D)|F (N)
D .(4.2)

Following Bousquet-Mélou and Conway [5], we check that the probability distri-
bution defined by

F
(N)
C = 1

ZN

(
p

1 − p

)|C|
(1 − p)|N (C)|,

where

ZN = ∑
C⊂[N]

p|C|(1 − p)N (C)−|C|

is stationary for equation (4.2).
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To obtain a matrix formulation of that distribution, we consider the matrix V
indexed by the elements of {0,1}R̄ and defined by, for σ = (s0, . . . , sR̄−1) and
τ = (t1, . . . , tR̄),

Vσ,τ = 0 if (s1, . . . , sR̄−1) �= (t1, . . . , tR̄−1);
and otherwise,

Vσ,τ =
⎧⎨⎩

p, if tR̄ = 1,

1 − p, if tR̄ = 0 and there exists r such that sr = 1 and R̄ − r ∈ R,

1, otherwise.

The quantity F
(N)
C can then be rewritten as

F
(N)
C = 1

ZN

N−1∏
i=0

Vσi,σi+1,

(4.3)

where
{

σN = σ0 and
σi(k) = 1, iff i + k − 1 ∈ C,

with

ZN = ∑
σ1,...,σN

(
N−1∏
i=0

Vσi,σi+1

)
= trace(VN).

The expression given for F
(N)
C in equation (4.3) is in the very same form as the

statement of Theorem 3. Furthermore it is immediate to check that all the coef-
ficients of VR̄−1 are positive [for p ∈ (0,1)] which ensures that V satisfies the
conditions of Theorem 3 by the Perron–Frobenius theorem.

As mentioned in Remark 2, the finite dimensional laws of the gas occupation
on L(N)

R converges to those on LR . We apply Theorem 3 and get:

THEOREM 4. Let X = (X(i, j))(i,j)∈Z2 be the gas process on LR distributed

according to P
LR
p , with p < p

LR

crit . The stochastic process (�i )i∈N defined by �i =
(X(i,0), . . . ,X(i + R̄ − 1,0)) is a Markov chain under its stationary distribution.

In other words, the stochastic process (Xi = X(i,0))i∈N is a Markov chain with
memory R̄ − 1 under its stationary distribution.

The family of lattices Ln. The family of lattices (Ln)n≥2 introduced in [5]
corresponds to the particular case of LR when R = {0,1, . . . , n − 1} (examples of
DA on L3 and L4 are given in Figure 5). In [5] the GF for DA with one source is
given as the solution of an algebraic solution of degree at most n + 1.

THEOREM 5 (Bousquet-Mélou and Conway [5]). The generating function G
for DA on Ln with a single source is solution of the following equation:

t2(1 + t)n−1[1 + (n + 1)G]n+1 − [1 + t + (n − 1)G]n−1(t − 2G 2) = 0.(4.4)
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FIG. 5. DA on the lattices L3 and L4 (all the edges are oriented upwards). The cells are black and
the sources are circled.

We give some examples of computation obtained by the application of The-
orem 4 on the lattices Ln. In the case n = 2, the computation of the eigenvalues
and eigenvectors of V =

(
1 p

1 − p p

)
constitutes an alternative proof of Theorem 3.3

of [10].
For n = 3, the transition matrix can be given explicitly as (the coefficients of the

matrix are indexed by the lexicographical order on {0,1}2)⎛⎜⎜⎝
1/λ 1 − 1/λ 0 0

0 0 1 − p/2λ p/2λ

α 1 − α 0 0
0 0 1 − p/λ p/λ

⎞⎟⎟⎠ ,

(4.5)

where

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
α = (1 − p)2p

(2 − p − λ)λ
,

λ = 1 +
√

1 + 4p − 4p2

2
.

For example, we obtain as a consequence of that formula that the generating func-
tion G L3

k for DA on L3 with a compact source of size k ≥ 2 is equal to

G L3
k (t) = 1 − t (

√
1 − 4t − 4t2)

1 − 4t − 4t2 + (1 + 2t)
√

1 − 4t − 4t2

( −2t

1 + √
1 − 4t − 4t2

)k−1

.

To obtain the GF as the solution of an algebraic equation, we use that in [5], the
largest eigenvalue λ of V is shown to be solution of

λ2(1 − p)n−1 = λn−1(λ − 1)2.(4.6)

For n ≥ 4, λ cannot be computed explicitly from equation (4.6). Nevertheless,
since L and R are eigenvectors associated to λ their coordinates can be computed
in linear time and are polynomial of degree one in λ. With the condition of renor-
malization

∑
LiRi = 1, we obtain that for any free set S, the generating function

for DA on Ln with source S is a rational fraction and its numerator and denomi-
nator are polynomial in λ. Moreover, we know that λ is solution of equation (4.6),
which implies that the generating function is algebraic in p.
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FIG. 6. Examples of DA on the triangular lattice (left) and on T4 (right).

4.2. The triangular lattice. The triangular lattice, denoted Tri, is defined as
the oriented graph with set of vertices (i, j) ∈ Z

2 such that i and j have the same
parity and with set of oriented edges [(i, j), (i − 1, j + 1)], [(i, j), (i + 1, j + 1)]
and [(i, j), (i, j + 2)] (see Figure 6).

We follow some ideas used in [4] to compute the law of the gas on that lattice
(note that in [4] the generating function for DA with one source on the triangular
lattice is obtained by the study of an ad hoc gas model). We work on Tri(N) the
cylindric version of the triangular lattice. We keep the definition of F

(N)
C intro-

duced in equation (4.1), but since a vertex has children in the two following lines,
we need to define an extension of F

(N)
C to obtain recurrence relations. Let C and D

be two subsets of [N ] and X a gas model on Tri(N), we denote F
(N)
C,D the proba-

bility that the vertices occupied in the line 0 (respectively the line 1) of Tri(N) are
exactly the ones with first coordinate belonging to C (respectively to D); in other
words, for C,D ∈ [N ],

F
(N)
C,D = P

Tri(N)

p

(
XTri(N)

(i, ε) = 1 if and only if
{

ε = 0 and i/2 ∈ C or
ε = 1 and (i − 1)/2 ∈ D

)
.

We define N (C) as
⋃

i∈C{i − 1, i + 1} which leads to the following recurrence
relation for C,D ∈ [N ] such that N (C) ∩ D = ∅:

F
(N)
C,D =

(
p

1 − p

)|C| ∑
E⊂c(C∪N (D))

FD,E(1 − p)N−|N (D)∪E|.(4.7)

Notice that since the sum is taken on sets E such that N (D)∩E = ∅, |N (D)∪E|
is equal to |N (D)| + |E|. Therefore the distribution given by

FC,D = p|C|p|D|

ZN

1N (C)∩D=∅ for C,D ∈ [N ],(4.8)

and where

ZN = ∑
C,D

N (C)∩D=∅

p|C|p|D|,

is solution to the recurrence relation given in (4.7).
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Let V =
(

1 p

1 0

)
, we can rewrite equation (4.8) as

FC,D = 1

trace(VN)

2N−1∏
i=0

Vxi ,xi+1,

(4.9)

where xi =
⎧⎨⎩

1, if i is even and i ∈ C,
1, if i is odd and i ∈ D,
0, otherwise.

Combining equation (4.9) and Theorem 3 results in the following statement:

THEOREM 6. Let X = (X(i, j))(i,j)∈Tri be the gas process under P
Tri
p , the

stochastic process � = (�i)i∈Z defined by

�i =
{

X(i,0), if i is even,
X(i,1), if i is odd,

is a Markov chain under its stationary distribution and its transition matrix is given
by

W =
(

P(�1 = 0|�0 = 0) P(�1 = 1|�0 = 0)

P(�1 = 0|�0 = 1) P(�1 = 1|�0 = 1)

)
=

(
1/λ p/λ2

1 0

)
,

where λ = 1+√
1+4p
2 and its stationary distribution is given by

[P(�0 = 0),P(�0 = 1)] = [λ2/(p + λ2),p/(p + λ2)].

Adding up equation (4.8) for all possible D leads to

FC = 1

ZN

p|C|(1 + p)N−|N (C)|.(4.10)

Setting V =
(

1 + p p

1 p

)
enables equation (4.10) to be rewritten as

FC = 1

trace(V N)

N−1∏
i=0

Vxi,xi+1, where xi = 1 if and only if 2i ∈ C.(4.11)

Again Theorem 3 and equation (4.11) lead to:

THEOREM 7. Let X = (X(i, j))(i,j)∈Tri be the gas process under P
Tri
p , the

stochastic process � = (�i )i∈Z defined by �i = X(2i,0) is a Markov chain under
its stationary distribution and its transition matrix is given by

W =
(

P(�1 = 0|�0 = 0) P(�1 = 1|�0 = 0)

P(�1 = 0|�0 = 1) P(�1 = 1|�0 = 1)

)
(4.12)

=
(

1 − α◦ α◦
α• 1 − α•

)
,
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FIG. 7. Examples of sources considered in Proposition 1(i) on the left and in Proposition 1(ii) on
the right.

and its stationary distribution by [P(�0 = 0),P(�0 = 1)] = [ α•
α◦+α• ,

α◦
α•+α◦ ], where

α◦ = 2p

1 + √
1 + 4p

and α• = 1 + √
1 + 4p

2
.

The link between gas distribution and enumeration of DA given in Proposition 1
and a simple matrix computation give the following reinterpretation in terms of
enumeration of DA of Theorems 6 and 7 (see Figure 7 for an example of the
different sources considered).

PROPOSITION 1. (i) Let S = {s1, . . . , sk} where si = (xi, εi) be some points
on the triangular lattice with εi ∈ {0,1} and such that di := xi+1 − xi for i ∈
{1, . . . , k − 1} are non smaller than 2. The GF of DA on the triangular lattice with
source S is given by

G Tri
S (−p) = (−1)|S| α

1 + α

k−1∏
i=1

(−α)di + α

1 + α
,

where α = 1+2p2+
√

1+4p2

2p2 .

(ii) Let S = {s1, . . . , sk} where si = (2xi,0) be some vertices on a line of the trian-
gular lattice, such that di := xi+1 − xi for i ∈ {1, . . . , k − 1} are positive integers.
The GF of DA on the triangular lattice with source S is given by

G Tri
S (−p) = (−1)|S| α◦

α• + α◦

k−1∏
i=1

α•(1 − α• − α◦)di + α◦
α• + α◦

.

In particular, if Sn := {(i,0), i = 1, . . . , n}, we obtain G Tri
Sn

(−p) = α◦
α◦+α• (1 −

α•)n−1(−1)n. Then, the GF of DA on the triangular lattice with compact sources
satisfies ∑

n≥1

G Tri
Sn

(−p) = ∑
n≥1

α◦
α◦ + α•

(1 − α•)n−1(−1)n = −p

1 + 4p
.

That formula was obtained in [8] by combinatorial methods.
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4.3. The family of lattices Tn. We now study the family of lattices Tn intro-
duced by Corteel, Denise and Gouyou-Beauchamps in [6]. The oriented lattice Tn

is a combination of the lattice Ln and the triangular lattice, defined as follows:

• if n = 2k + 1, the vertices of Tn are labeled by the elements of Z
2. From each

vertex (i, j) ∈ Z
2 there are n emerging edges from (i, j) to (i + r, j + 1) for

−k ≤ r ≤ k and one emerging edge from (i, j) to (i, j + 2);
• if n = 2k, the vertices are labeled by the elements (i, j) ∈ Z

2 such that i and j

have the same parity. From each vertex (i, j) there are n emerging edges from
(i, j) to (i + 2r + 1, y + 1) for −k ≤ r ≤ k − 1 and one emerging edge from
(i, j) to (i, j + 2).

The case n = 2 corresponds to the triangular lattice, treated separately in Sec-
tion 4.2 for sake of clarity. In [6], the generating function for DA on Tn with a sin-
gle source is shown to be solution of an algebraic equation given explicitly. The
proof relies on a combinatorial argument which links the generating function for
DA on Tn to that for DA on Ln.

The method used to obtain a stationary distribution for the gas model on Tn is
very similar to that used in the case of the triangular lattice in Section 4.2. We keep
the same definitions for F

(N)
C and F

(N)
C,D as those given for the triangular lattice and

define for C ∈ [N ], N (C) as the set,

• ⋃
i∈C{i + r , for −k ≤ r ≤ k} if n = 2k + 1,

• ⋃
i∈C{i + 2r + 1, for −k ≤ r ≤ k − 1} if n = 2k.

With that new definition of N (C), equations (4.7), (4.8) and (4.10) still hold true.
Following the ideas introduced to study Ln given in [5], we define V as the square
matrix (Vσ,τ )σ,τ with indices running over {0,1}n−1 and defined as follows. If
σ = (s1, . . . , sn−1) and τ = (t2, . . . , tn), then

Vσ,τ =

⎧⎪⎪⎨⎪⎪⎩
0, if (s2, . . . , sn−1) �= (t2, . . . , tn−1),

p, if (s2, . . . , sn−1) = (t2, . . . , tn−1) and s1 = 1,

1 + p, if σ = τ = (0,0, . . . ,0),

1, otherwise.

(4.13)

The stationary distribution of the gas model on a line of T (N)
n is given by

FD = 1

ZN

∏N−1

i=0
Vσi,σi+1,

(4.14)

where
{

σN = σ0 and
σi(k) = 1, if and only if i + k − 1 ∈ D,

with

ZN = ∑
σ0,...,σN−1

(
N−1∏
i=0

Vσi,σi+1

)
= trace(VN).



1878 M. ALBENQUE

The characteristic polynomial of V, denoted χ can be calculated explicitly

χ(x) = x2n−1−n

(
xn − xn−1(1 + 2p) + p2

n−2∑
k=0

xk

)
.

We rewrite the latter equation as

χ(x) = x2n−1−n

1 − x

(
p2 − xn−1(x + p2 − 1)

(
x − (2p + 1)

))
.

That implies that the dominant eigenvalue λ of V satisfies λ �= 1 and

p2 = λn−1(λ + p2 − 1)
(
λ − (2p + 1)

)
.(4.15)

We are here in the very same situation as for Ln. We can compute explicitly the
solutions of equation (4.15) only for n < 4. Nevertheless the same arguments as
those given for Ln apply and we obtain the following from Theorem 3 and equa-
tion (4.14).

THEOREM 8. Let X = (X(i, j))(i,j)∈Tn be the gas process under P
Tn
p . The

stochastic process (�i )i∈N defined by

�i = (
X(2i,0),X

(
2(i + 1),0

)
, . . . ,X

(
2(n − 2),0

))
for i ∈ N,

is a Markov chain under its stationary distribution.
In other words, (X(2i,0))i∈N is a Markov chain with memory n − 1 under its

stationary distribution.
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