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CHAOS IN A SPATIAL EPIDEMIC MODEL1

BY RICK DURRETT AND DANIEL REMENIK

Cornell University

We investigate an interacting particle system inspired by the gypsy moth,
whose populations grow until they become sufficiently dense so that an epi-
demic reduces them to a low level. We consider this process on a random
3-regular graph and on the d-dimensional lattice and torus, with d ≥ 2. On
the finite graphs with global dispersal or with a dispersal radius that grows
with the number of sites, we prove convergence to a dynamical system that is
chaotic for some parameter values. We conjecture that on the infinite lattice
with a fixed finite dispersal distance, distant parts of the lattice oscillate out
of phase so there is a unique nontrivial stationary distribution.

1. Introduction. The inspiration for this paper arose almost 20 years ago. The
first author had recently moved to Ithaca, New York and the Northeastern United
States was in the midst of a gypsy moth infestation. For all of one summer, he and
his wife destroyed egg masses, picked larvae off of trees and put bands of sticky
tape to keep the larvae from climbing the trees. When the next summer came, the
outlook for their trees seemed bleak, but suddenly all of the larvae were dead or
deformed, a victim of the nuclear polyhedrosis virus, which spreads through the
gypsy moth population once it becomes sufficiently dense.

To model this process we use dynamics that occur in discrete time with each
site in some graph GN either occupied or vacant. The number of nodes in GN

will be an increasing function of N which tends to infinity. Two processes occur
alternately: growth and epidemic.

Growth. Gypsy moths lay dormant in the winter as eggs, so no occupied site sur-
vives to the next time period but gives birth to a mean β > 1 number of individuals.
Each individual born at x is sent to a site randomly chosen from NN(x) ⊆ GN , the
growth neighborhood of x, which contains all of the nearest neighbors of x in the
graph but in general will be larger.

Epidemic. With a small probability αN an infection lands at each site. If the
site x is occupied an infection starts which spreads from x to all of its occupied
neighbors in the graph and continues until all sites in the connected component of
occupied sites containing x are wiped out (observe that the larger the cluster of
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occupied sites, the more likely it is to be wiped out by the epidemic). It is assumed
that the epidemic occurs rapidly so it is completed before the next growing season.

Our goal is to study this process on a random 3-regular graph and on a dis-
crete torus of dimension d ≥ 2. The second graph is more realistic from a bi-
ological point of view, but the first one is easier to deal with because explicit
formulas are available. In both cases, infections will be transmitted along edges
connecting neighbors. Observe that if we assume that αN → 0 then only compo-
nents with O(1/αN) sites will be affected by epidemics. In site percolation on an
regular tree of degree 3 and on Z

d there is phase transition from all components
small to the existence of an infinite component at some density pc. On the random
3-regular graph and the torus this phase transition produces one giant component
of size O(n). Thus we expect that the density of occupied sites will increase until
p > pc, at which point a large epidemic occurs and reduces the density to a low
level and the cycle begins again. We will show that in some cases this leads to
chaotic behavior of the densities.

1.1. Mean-field growth on a random 3-regular graph. To work our way up to
proving results about this system and the corresponding process on the torus we
begin with the case in which GN is a random 3-regular graph with N nodes, that is,
a graph chosen at random from the set of graphs with N vertices all of which have
degree 3 (N must be even). We will denote this random graph by RN and we will
condition on the event that RN is connected. It is known [see Janson, Łuczak and
Rucinski (2000)] that the probability that RN is connected tends to 1. We choose
this graph, not because it reflects reality, but because RN is locally a tree, so we
have explicit formulas for the percolation probabilities. To have a simple process
in which the number of occupied sites at the beginning of the growing season is
a Markov process, we let NN(x) = RN for all x. As we will see, in the limit as
N → ∞ the result is a very interesting dynamical system.

To guess what this limiting system must be, observe that if we assume that the
density of occupied sites before the growth step is p, so the expected number of
occupied sites is pN , then the expected density after the birth step is

fN(p) = 1 −
(

1 − β

N

)pN

≈ f (p) = 1 − e−βp.

Now the random 3-regular graph looks locally like a tree in which each vertex has
degree 3 (we will refer to this tree as the 3-tree). Proceeding heuristically, in the
limit N → ∞, each occupied site survives the epidemic if and only if it is not in
the giant component of the percolation process on the 3-tree defined by declaring
open the sites that are occupied after the growth step. Thus if the density before
the epidemic is p, the density gT (p) after the epidemic (the T in the subscript is
for tree) is exactly the probability that the origin is open in this percolation process
but it does not percolate. The threshold for the existence of a giant component is
pc = 1/2, so if p ≤ 1/2 then gT (p) = p.
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To compute the density for p > 1/2 we need to compute the percolation proba-
bility on the 3-tree. Throughout the rest of the paper, whenever we say percolation
we mean the event that the origin is an infinite cluster of occupied sites. We start
by noting that for site percolation on the binary tree (which is an infinite rooted
tree where each vertex has two descendants, so all vertices have degree 3 except
for the root which has degree 2) the percolation probability θbin(p) satisfies

θbin(p) = p
(
1 − (

1 − θbin(p)
)2)

since for this event to occur the origin must be occupied and percolation must
occur from one of the two neighbors. Solving gives

θbin(p) = 2p − 1

p
= 2 − 1

p
.

On the 3-tree the probability of percolation is then

θT (p) = p
(
1 − (

1 − θbin(p)
)3)

since the site must be occupied and percolation must occur from one of the three
neighbors. Thus for p ∈ (1/2,1]

gT (p) = P(0 is occupied, |C0| < ∞) = p − θT (p) = p

(
1

p
− 1

)3

= (1 − p)3

p2 .

Let a0 be the solution of 1 − e−βa0 = 1/2 [i.e., a0 = (log 2)/β]. Combining the
formulas for f and gT we see that the limiting dynamical system should be the
one defined by the function

hT (p) = gT (f (p)) =
⎧⎪⎨
⎪⎩

1 − e−βp, 0 ≤ p ≤ a0,
e−3βp

(1 − e−βp)2 , a0 < p ≤ 1.

Observe that hT is continuous in [0,1].
We are interested in properties of the iterates of hT (p):

• If β ≤ 1 then f (p) < p for all p > 0 and thus hk
T (p) decreases to 0 as k → ∞.

• If β > 1 then starting from a small positive p, f k(p) increases to a unique fixed
point p∗. If p∗ ≤ 1/2 then we never get an epidemic and hk

T (p) increases to the
same fixed point.

• 1/2 is a fixed point when e−β/2 = 1/2, that is, β = 2 log 2. When β > 2 log 2,
we let a1 = hT (1/2) = e−3β/2/(1 − e−β/2)2. Eventually the iterates of hT lie
in the interval [a1,1/2], and once they reach this interval, they stay there (see
Figure 1).

Hence if β ≤ βc = 2 log 2, hT (p) = f (p) for all p and the epidemic part of the
dynamics is not seen in the limiting system. If β > βc then hT (p) < 1/2 < f (p)

for p ≥ a0.
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FIG. 1. Graph of hT with β = 2 log 3. The point c = h−1
T (a0) will play a role in the proof of

Theorem 1.

Figure 2 shows the orbits of the system as a function of β . We plot hk
T (p)

for 501 ≤ k ≤ 550 to remove the initial transient. Note that the system proceeds
directly from a stable fixed point to a “chaotic phase” rather than via period dou-
bling bifurcations of the type occurring in the quadratic maps rx(1 − x). To say in

FIG. 2. Orbits of the system (hk
T (p))k≥0 started at p = 0.1. The x-axis has the values of β used in

the simulations, while the y-axis has hk
T (p) for k = 501, . . . ,550.
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what sense the behavior is chaotic, we will use two results of the theory of discrete
time dynamical systems. The first result, which we include here for convenience,
is commonly referred to as “period three implies chaos”:

PROPOSITION 1.1 [Theorem 1 in Li and Yorke (1975)]. Let F :J −→ J be a
continuous function on a real interval J and assume that there is point a ∈ J such
that

F 3(a) ≤ a < F(a) < F 2(a).

Then:

(a) For every k = 1,2, . . . there is a point in J of period k, that is, a point r ∈ J

such that Fk(r) = r but Fj (r) 
= r for 0 < j < k.
(b) There is an uncountable set S ⊆ J containing no periodic points such that:

(b.i) For every p,q ∈ S, p 
= q ,

lim sup
N→∞

|FN(p) − FN(q)| > 0

and

lim inf
N→∞ |FN(p) − FN(q)| = 0.

(b.ii) For every p ∈ S and any periodic point q ∈ J ,

lim sup
N→∞

|FN(p) − FN(q)| > 0.

We will say that F is chaotic if F satisfies the conditions (a) and (b) above.
(b.ii) rules out convergence to periodic orbits, while (b.i) shows that all the points
in S have different limiting behaviors.

THEOREM 1.

(a) The dynamical system defined by the function hT : [a1,1/2] −→ [a1,1/2] is
chaotic for every β > 2 log 2.

(b) If β ∈ (2 log 2,2.48] then the system has an invariant measure, μ = μ ◦ h−1
T ,

which is absolutely continuous with respect to the Lebesgue measure.

Simulations suggest that (b) actually holds for all β > 2 log(2).
Now we come back to the process running on RN . We will denote our process

by ηN
k , with ηN

k (i) = 1 if i is occupied at time k and ηN
k (i) = 0 if not. The density

of occupied sites at time k will be denoted by ρN
k :

ρN
k = 1

N
|ηN

k | = 1

N

N∑
i=1

ηN
k (i).(1.1)
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The initial distribution ηN
0 of the process will always be assumed to be a product

measure with some density p ∈ [0,1] (so, in particular, ρN
0 converges in probabil-

ity to p). In the preceding discussion we argued heuristically that ρN
k converges to

the deterministic system defined by hT . The next result shows that this is indeed
the case:

THEOREM 2. Assume that GN = RN and that the infection probability of the
epidemic satisfies

αN log2 N −−−→
N→∞

∞.

Then the process (ρN
k )k≥0 converges in distribution to the (deterministic) orbit,

starting at p, of the dynamical system associated to hT .

The above convergence means that (ρN
k )k≥0 converges in distribution to a de-

terministic process whose paths are given by the orbits (hk
T (p))k≥0.

1.2. Local growth on the d-dimensional torus. Turning now to a more realistic
setting, we consider the process running on the d-dimensional torus (Z modN)d ,
for d ≥ 2, which we will denote by TN . The case d = 2 is the one relevant to gypsy
moths, but it is no harder to prove our results in general.

To add some more realism and make our process more interesting, we will take
now the growth neighborhoods NN(x) to be smaller than TN . We let

NN(x) = {y ∈ TN : 0 < ‖y − x‖∞ ≤ rN }
(here the difference y − x is computed modulo N ) and take the range rN to be
such that rN → ∞. (We remark that on TN we are considering the L1 distance; in
particular, two points x, y ∈ TN are neighbors if ‖x − y‖1 = 1).

We start as before by guessing what the limiting system should be. To do this
we will assume for a moment that rN = ∞ for all N , so we are back in the case of
mean-field growth of the previous subsection. The growth step behaves exactly as
before: if p is the density of occupied sites before the growth step, then the density
after is

fN2(p) = 1 −
(

1 − β

N2

)pN2

≈ f (p) = 1 − e−βp.

The behavior of the epidemic step in the limit N → ∞ is analogous to the one in
the random 3-regular graph: if p is the density of occupied sites before the epi-
demic, then the density gL(p) after (here the subscript L is for lattice) is the prob-
ability that the origin is open but does not percolate in a site percolation process
in Z

d .
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Unlike the case of percolation on the 3-tree, we do not have an explicit formula
available for the percolation probability in Z

d , but we still know some qualitative
properties. Letting C0 be the percolation cluster containing the origin and

θL(p) = P(|C0| = ∞)

we have that there is a pc ∈ (0,1) (pc ≈ 0.593 in d = 2) such that θL(p) = 0 for
p ≤ pc, θL(p) is strictly increasing for p > pc, and θL(p) is infinitely differen-
tiable at every p 
= pc [see Theorem 8.92 of Grimmett (1999)]. We also have that

gL(p) = P(0 < |C0| < ∞) = P(|C0| < ∞) − P(|C0| = 0) = p − θL(p),

so gL(p) is infinitely differentiable at p 
= pc and gL(p) = p for p ≤ pc.
As before we let hL(p) = gL(f (p)) and βc be the value of β solving pc =

1 − e−βpc , that is,

βc = 1

pc

log
(

1

1 − pc

)

(βc ≈ 1.516 in d = 2). Observe that gL(p) ∈ (0,1) for p ∈ (0,1) so, in particular,
hL(p) > 0 for p > 0. Our next result holds under an hypothesis on the percolation
function which might seem strange at a first look, but which holds in d = 2 and is
expected to also hold in 3 ≤ d < 6.

THEOREM 3. Suppose that

lim
p↓pc

θ ′
L(p) = ∞.(1.2)

Then there is an ε > 0 such that for every β ∈ (βc, βc + ε) the dynamical system
(hk

L(p))k≥0 has an invariant measure which is absolutely continuous with respect
to the Lebesgue measure.

We believe (and simulations suggest) that the result holds for all β > βc. As
Yuval Peres pointed out to us, it is easy to show that (1.2) holds in d = 2 using
Russo’s formula and the fact that the expected number of pivotal sites goes to
infinity as p ↓ pc in two dimensions. This argument would obviously work in
other dimensions too if we knew that the expected number of pivotal sites blows
up at pc. This should be the case in 3 ≤ d < 6 because it is expected that θL(p) ≈
C(p − pc)

γ as p ↓ pc with γ < 1 in d < 6, γ = 1 in d > 6, and with logarithmic
corrections in d = 6 [see, e.g., Chapter 9 of Grimmett (1999)].

Our next goal is to show that the process ρN
k on the torus TN converges to

the deterministic orbit of the dynamical system defined by hL. The processes
ηN

k and ρN
k are defined in this case exactly as for the random 3-regular graph;

see (1.1) and the preceding lines. If we consider the case of mean-field growth
[i.e., NN(x) = TN ] then the result follows from the same arguments as those we
will use to prove Theorem 2 (the proof is actually simpler because we do not have
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FIG. 3. Density process (ρN
k (p))k≥0 running on the two-dimensional torus with mean-field growth,

depicted for k = 501, . . . ,550 for different values of the parameter β (similar to Figure 2). Here
N = 500.

to prove that the torus looks locally like Z
d ). Figure 3 shows part of the trajectories

of ρN
k in the case of mean-field growth. But, as we mentioned, we want to deal with

the more general case NN(x) = {y ∈ TN : 0 < ‖y−x‖∞ ≤ rN } with rN → ∞. The
result does not seem to be true if we do not take rN → ∞. As Figure 4 shows, the
graph of {(ρN

k , ρN
k+1), k ≥ 0} does not correspond to any function. This difficulty

dissappears as N → ∞ if we take rN → ∞ at an appropriate rate.
We will assume the following on αN and rN :

rN

N
−→ 0

and

αNrN −→ ∞.

For instance, we could take rN = Nγ and αN = N−δ for some 0 < δ < γ < 1.

THEOREM 4. Assume that GN = TN , with d ≥ 2, and that the number of
individuals to which each occupied site gives birth to during the growing season
is a Poisson random variable with mean β . Then the process (ρN

k )k≥0 converges
in distribution to the (deterministic) orbit, starting at p, of the dynamical system
associated to hL.

1.3. Local growth on Z
d . We now consider the case in which rN is constant.

Figure 5 shows that when rN = 5 the fluctuations in the density of occupied sites



1664 R. DURRETT AND D. REMENIK

FIG. 4. Graph of ρN
k against ρN

k+1 on the two-dimensional torus with N = 750 and rN = 50. The
graph clearly does not correspond to a function.

decrease as the system size increases. Figure 6 shows a picture of the process
running on the torus of size 450 × 450 with rN = 5. As this picture suggests the
density stays constant because different parts of the lattice oscillate out of phase.

FIG. 5. Sequence of densities ρN
k of the process running on the two-dimensional torus with local

interactions in the epidemic step for N = 500 and N = 1500, both with rN = 5. As this graph
suggests, the fluctuations of the density process get small as N grows if the range rN is held fixed.



CHAOS IN A SPATIAL EPIDEMIC MODEL 1665

FIG. 6. State of the process at time 200 on a torus of size 450 × 450 (black dots are occupied). In
this simulation, β = 2.25, rN = 5 and the infection probability at each site is 5 · 10−6. This picture
corresponds to an intermediate state of the process, after an epidemic event wiped out a big cluster
but the process has had time to grow back.

THEOREM 5. Consider the process running in Z
d with d ≥ 2. If rN = L and L

is sufficiently large then there is a nontrivial stationary distribution.

SKETCH OF THE PROOF. The key to the proof is that the density of occupied
sites after growth is at most f (1) = 1 − e−β so after the epidemic there will be a
positive density of occupied sites. Let δ = (1 − e−β)e−4β be the probability that a
site is occupied and has four vacant neighbors. Divide space into squares of side
L/2 and declare that the square is occupied if at least a fraction δ/2 of the sites
are. If L is large enough and T is chosen suitably then the set of occupied squares
at time nT dominates oriented percolation with p close to 1 and the result follows
from standard “block construction” arguments [for an account of this method see,
e.g., Durrett (1995)]. By order of the Associate Editor further details are left to the
reader. �

The remainder of the paper is devoted to proofs. The proof of Theorem 1 is
given in Section 2. If you get bored with all of the algebra and calculus involved
you can skip to Section 3 where the proof of Theorem 2 is given. The proof of
Theorem 3 given in Section 4 and the more complicated proof of Theorem 4 in
Section 5 rely on ideas from Sections 2 and 3, but are independent of each other.

The authors would like to thank referee Nicolas Lanchier for his careful reading
of the paper which resulted in a number of corrections and clarifications.



1666 R. DURRETT AND D. REMENIK

2. Proof of Theorem 1. By Proposition 1.1, to obtain (a) it is enough to prove
that there is a point c ∈ [a1,1/2] such that

h3
T (c) ≤ c < hT (c) < h2

T (c).

In our case we can take

c = f −1(a0) = 1

β
log

(
β

β − log 2

)

(see Figure 1). Observe that since a0 < 1/2, c = β−1 log((1 − a0)
−1) < β−1 ×

log 2 = a0. Hence

hT (c) = f (c) = a0,

h2
T (c) = f (a0) = 1

2

and

h3
T (c) = hT (1/2) = a1.

It is clear then that c < hT (c) < h2
T (c). To see that h3

T (c) ≤ c we need to show that
a1 ≤ f −1(a0), that is, that

e−3β/2

(1 − e−β/2)2 ≤ 1

β
log

(
β

β − log 2

)

or, equivalently, that

φ1(β) = exp
(

βe−3β/2

(1 − e−β/2)2

)
≤ φ2(β) = β

β − log 2
(2.1)

for all β > 2 log 2. If you look at the picture of these two functions it seems clear
that the inequality holds, but the proof is not as simple as the picture suggests. We
will divide it into two parts.

First, assume that β ∈ (2 log 2,1.75]. We will show that

φ1(β) ≤ 4 − β

log 2
≤ φ2(β).(2.2)

To get the first inequality let

σ(β) = βe−3β/2

(1 − e−β/2)2 .

A simple calculation gives

σ ′′(β) = 9eβ − 4eβ/2 + 1

4e5β/2 − 16e2β + 24e3β/2 − 16eβ + 4eβ/2
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and we claim that this quotient is positive. Indeed, it is easy to see that the numer-
ator is positive, while putting a = eβ/2 the denominator becomes 4a5 − 16a4 +
24a3 − 16a2 + 4a, so dividing by 4a we need to show that

w(a) = a4 − 4a3 + 6a2 − 4a + 1 > 0

for all a > 2. Observe that w′(a) = 4a3 − 12a2 + 12a − 4, so w′(2) = 4, while
w′′(a) = 12(a − 1)2 > 0, so w′(a) > 0 for all a > 2. Since w(2) = 1 we deduce
that w(a) > 0 for all a > 2 as required. Hence σ is convex, and thus so is φ1 =
exp(σ (·)). Since

φ1(2 log(2)) = 2 = 4 − 2 log 2

log 2
and φ1(1.75) ≈ 1.4518 < 4 − 1.75

log 2
≈ 1.4753,

the convexity of φ1 gives the desired inequality.
To get the second inequality in (2.2), observe that

φ2(2 log 2) = 2 = 4 − 2 log 2

log 2
and φ′

2(2 log 2) = − 1

log 2
.

Therefore, since this last quantity is exactly the slope of the line appearing in the
middle term of (2.2) and since φ2 is strictly convex, we deduce that φ′

2(β) is larger
than this slope for every β > 2 log 2 and thus the inequality holds.

Now we assume that β > 1.75. Using the Taylor expansion of the functions
1/(1 − x) and ex about x = 0 we get that (2.1) is equivalent to

∑
n≥0

(
log 2

β

)n

≥ ∑
n≥0

1

n!
(

βe−3β/2

(1 − e−β/2)2

)n

,

so it is enough to show that(
log 2

β

)n

≥ 1

n!
(

βe−3β/2

(1 − e−β/2)2

)n

for all n ≥ 0 and β > 1.75. The inequality holds trivially for n = 0, so by induction
it is enough to prove that

log 2

β
≥ 1

n

βe−3β/2

(1 − e−β/2)2

for all n ≥ 1 or, equivalently, for n = 1. That is, we need to show that

β2 e−3β/2

(1 − e−β/2)2 ≤ log 2(2.3)

for all β > 1.75. To see that this holds we observe that the derivative of the left
side with respect to β is

−βe−β/2(3βeβ/2 − 4eβ/2 − β + 4)

2(eβ/2 − 1)
3 .
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We claim that this quotient is negative for β > 1.75. Indeed, the denominator is
clearly positive, so we only need to show that

w(β) = 3βeβ/2 − 4eβ/2 − β + 2 > 0

for β > 1.75. This is easy, because w′(β) = 3eβ/2(1 + β/2) − 2eβ/2 − 1 > eβ/2 −
1 > 0 and w(1.75) ≈ 5.28. Thus the left side of the (2.3) is decreasing in β , and
then the inequality holds because its value at β = 1.75 is approximately 0.6523 <

log 2. This finishes the proof of (a).
To get (b) it is enough to show by Lasota and Yorke (1973) that

inf
p∈[a1,1/2]\{a0}

|(h3
T )′(p)| > 1(2.4)

for β ∈ (2 log 2,2.48]. The idea of the proof is the following. We find an explicit
formula for (h3

T )′ and use it to compute numerically its infimum on [a1,1/2] \ {a0}
for every β in a certain grid of (2 log 2,2.48]. Due to monotonicity properties of
the derivative of hT the numerical computation of the infimum is exact (up to
floating-point numerical errors which are small enough for our purposes) for any
fixed β . We then show that (h3

T )′, as a function of β , has a Lipschitz constant that
ensures that the infimum is larger than 1 for every β between subsequent points in
the grid. We will do this step by step.

We begin by computing (h3
T )′. For p ∈ [a1, a0), h′

T (p) = f ′(p) = βe−βp , while
for p ∈ (a0,1/2],

h′
T (p) = −3βe−3βp

(1 − e−βp)2 − 2
e−3βp

(1 − e−βp)3 βe−βp = e−3βp

(1 − e−βp)3 [−3β + βe−βp].
This gives an explicit formula for h′

T . On the other hand,

(h3
T )′(p) = h′

T (h2
T (p))h′

T (hT (p))h′
T (p).(2.5)

Putting these two formulas together we get an explicit expression for (h3
T )′.

Now observe that h′
T is decreasing in [a1, a0) and increasing in (a0,1/2]. In-

deed, h′′
T (p) = f ′′(p) = −β2e−βp < 0 on the first interval, while on the second

one h′′
T (p) = g′′

T (f (p))f ′(p)2 + g′
T (f (p))f ′′(p), so since f ′ > 0, f ′′ < 0,

g′
T (p) =

(
1

p
− 1

)3

+ 3p

(
1

p
− 1

)2(−1

p2

)
= −

(
1 + 2

p

)(
1

p
− 1

)2

< 0

and

g′′
T (p) = 2

p2

(
1

p
− 1

)2

−
(

1 + 2

p

)(
1

p
− 1

)(−1

p2

)
> 0,

we get that h′′
T (p) > 0 for p ∈ (a0,1/2]. This means by (2.5) that (h3

T )′ is
monotone in each interval of constancy of its sign. These intervals are given by
the partition of [a1,1/2] defined by the preimage of a0 under h3

T . We deduce that

inf
p∈[a1,1/2]\{a0}

|(h3
T )′(p)| = inf

p∈h−3
T (a0)∪{a1,1/2}

min{|(h3
T )′(p−)|, |(h3

T )′(p+)|},
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FIG. 7. Infimum of |(h3
T )′(p)| on the relevant interval for β ∈ (2 log 2,2.6). The computation was

done for each β on a grid of width 2 · 10−6 on this interval, as explained within the proof of Theo-
rem 1. The infimum lies above 1.002 for β ∈ (2 log 2,2.48].

where the superscripts − and + indicate left and right derivatives, respectively.
Using this observation we can compute numerically the infimum in (2.4) for any
given β . We did this for every β in a grid of width 2 · 10−6 of (2 log 2,2.48], and
we obtained that the infimum is larger than 1.002 at each of these values of β .
Figure 7 shows a graph of the values obtained.

The last step is to make sure that the infimum in (2.4) stays above 1 for every β ∈
(2 log 2,2.48]. We will write hT (p,β) to indicate the dependence of hT (p) on the

value of the parameter β . Our goal is to find a bound for | ∂2

∂β ∂p
h3

T (p,β)|. Observe

that by the product rule and (2.5), if | ∂
∂p

hT (p,β)| ≤ M1 and | ∂2

∂β ∂p
hT (p,β)| ≤ M2

for all β ∈ (2 log 2,2.48] and p ∈ [a1,1/2] \ {a0} then∣∣∣∣ ∂2

∂β ∂p
h3

T (p,β)

∣∣∣∣ ≤ 3M2
1M2(2.6)

for all such β and p. We already computed | ∂
∂p

hT (p,β)|. For p ∈ [a1, a0), it equals

βe−βp which is smaller than 2.48 for each β ≤ 2.48. For p ∈ (a0,1/2] we know
that h′

T is negative and increasing, so∣∣∣∣ ∂

∂p
hT (p,β)

∣∣∣∣ ≤
∣∣∣∣ ∂

∂p
hT

(
1

2
, β

)∣∣∣∣ =
∣∣∣∣ e−3β/2

(1 − e−β/2)3 [−3β + βe−β/2]
∣∣∣∣

≤ e−3·2.48/2

2−3 · 4 · 2.48 ≈ 1.923.
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Thus if we take M1 = 2.48 the desired inequality holds. Now for p ∈ [a1, a0),∣∣∣∣ ∂2

∂β ∂p
hT (p,β)

∣∣∣∣ =
∣∣∣∣ ∂

∂β
(βe−βp)

∣∣∣∣ = |(1 − β2)e−βp| ≤ 1.

For p ∈ (a0,1/2],∣∣∣∣ ∂2

∂β ∂p
hT (p,β)

∣∣∣∣
=

∣∣∣∣ ∂

∂β

(
e−3βp

(1 − e−βp)3 [−3β + βe−βp]
)∣∣∣∣

= e−βp

(1 − e−βp)4 |(9βp − 3)e−2βp + (4 − 4βp)e−3βp + (βp − 1)e−4βp|

≤ e−βa0

(1 − e−β/2)4 (14βp + 8) ≤ 2−1

(1 − e−2.48/2)4 (14 · 2.48/2 + 8) ≈ 49.73,

if β ∈ (2 log 2,2.48]. Thus if we take M2 = 49.73 we get by (2.6) that | ∂
∂β

h3
T (p,

β)| ≤ 917.6.
The bound we just obtained implies that for any fixed p ∈ [a1,1/2] \ {a0} the

function β �→ ∂
∂p

hT (p,β) is Lipschitz and its Lipschitz constant is at most 917.6.
Now fix β ∈ (2 log 2,2.48] and let β ′ be the point in the grid of (2 log 2,2.48] on
which we computed the infimum in (2.4) which is immediatly before β . Then for
any p ∈ [a1,1/2] \ {a0},∣∣∣∣ ∂

∂p
h3

T (p,β)

∣∣∣∣ ≥
∣∣∣∣ ∂

∂p
h3

T (p,β ′)
∣∣∣∣ −

∣∣∣∣ ∂

∂p
h3

T (p,β) − ∂

∂p
h3

T (p,β ′)
∣∣∣∣

≥ 1.002 − 917.6|β − β ′| ≥ 1.002 − 917.6 · 2 · 10−6 ≈ 1.0001.

This completes the proof of (2.4).

3. Proof of Theorem 2. To prove this result it will be enough to study the
one-step transition probabilities for ρN

k . Recall that in the growth step, since here
NN(x) = GN , every site becomes occupied with probability 1 − (1 − β/N)pN ≈
1 − e−βp , where p is the starting density of occupied sites. For simplicity we will
assume that the occupation probability of each site after the growth step is exactly
1 − e−βp , and then in the proof of the theorem we will say how to remove this
assumption.

Abusing notation, we will also let ηN
k stand for the set of occupied sites in the

process. ηN
k+1/2 will denote the intermediate state of the process between ηN

k and

ηN
k+1 after the growth part of the dynamics has been run but before running the

epidemic. We will denote by {0, . . . ,N − 1} the set of nodes of RN . B(i, r) will
denote the set of sites in RN at distance at most r from i (here the distance between
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two points i and j is defined as the number of edges in the shortest path going from
i to j ).

Let η̃N
1 be the set of occupied sites after the epidemic is run on ηN

1/2 ignoring

infections coming from a distance greater that (log2 N)/5. Define ρ̃N
1 = |η̃N

1 |/N .
Recall that we are assuming that

αN log2 N −→ ∞.

LEMMA 3.1.

E(|ρ̃N
1 − ρN

1 |)−−−→
N→∞

0,

uniformly in the initial density p.

PROOF. By translation invariance, and observing that η̃N
1 (i) ≥ ηN

1 (i) for all
i ∈ RN ,

E(|ρ̃N
1 − ρN

1 |) ≤ 1

N

∑
i∈RN

E
(|η̃N

1 (i) − ηN
1 (i)|) = P(0 ∈ η̃N

1 ) − P(0 ∈ ηN
1 )

= P(0 ∈ η̃N
1 \ ηN

1 ) ≤ (1 − αN)1/5 log2 N ≈ e−1/5αN log2 N −→ 0.

The second inequality above follows from the fact that if 0 is in η̃N
1 but not in ηN

1 ,
then there must be an open path in ηN

1/2 going from 0 to ∂B(0, (log2 N)/5), and all
sites in this path must have not been infected. �

Now let

HN = {
i ∈ RN :B

(
i, (log2 N)/5

)
is a finite 3-tree

}
.

By a finite 3-tree we mean a finite tree where all nodes have degree 3 except for
the leaves which have degree 1. The next lemma says that RN looks locally like a
3-tree:

LEMMA 3.2.

E

(
1

N
|RN \ HN |

)
= P(0 /∈ HN)−−−→

N→∞
0.

PROOF. A random 3-regular graph is a special case of a graph with a fixed
degree distribution and can be studied using techniques in Section 3.2 of Dur-
rett (2007). To explore the subgraph B(0, (log2 N)/5) of RN , let R0 = ∅, A0 = {0}
and U0 = {1, . . . ,N − 1}. These are called the removed, active and unexplored
sites, respectively. If An 
= ∅ then to go from time n to n + 1 we pick a site in
from An according to some given rule and let

Rn+1 = Rn ∪ {in},
An+1 = (An \ {in}) ∪ {j ∈ Un : j ∼ i},
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Un+1 = Un \ {j ∈ Un : j ∼ i},
where j ∼ i here denotes that j and i are neighbors. For n ≤ 3N1/5/2, |An| ≤
3N1/5/2 + 2, so the probability of a collision (i.e., that when we examine the
neighbors of in we see a site already in An) at some time is at most

2 · 3

2
N1/5 3N1/5/2 + 2

N
−→ 0.

Now suppose that when choosing the sites in we choose those at distance 1 from 0
first, then those at distance 2, etcetera. Then by time 3N1/5/2 we will have inves-
tigated all points within distance (log2 N)/5 of 0, and if we see no collision, then
we will know that the subgraph B(0, (log2 N)/5) is a tree. �

LEMMA 3.3. Let C0 be the cluster containing the origin in a site percolation
process on the 3-tree, and let Pp denote the law of this process when each site is
retained independently with probability p ∈ [0,1]. Then for any kN ↑ ∞,

sup
p∈[0,1]

∣∣Pp

(
diam(C0) < ∞) − Pp

(
diam(C0) ≤ kN

)∣∣−−−→
N→∞

0.

PROOF. The result follows from the fact that any increasing sequence of
continuous functions on [0,1] which converges pointwise to a continuous func-
tion on [0,1] actually converges uniformly to that function [see, e.g., Theo-
rem 7.13 in Rudin (1976)]. We only need to observe that Pp(diam(C0) < ∞) and
Pp(diam(C0) ≤ kN) are continuous on [0,1] as functions of p, and the latter is
increasing in N and converges pointwise to the former as N → ∞. �

LEMMA 3.4.

E

(
1

N
|η̃N

1 ∩ HN |
)

−−−→
N→∞

hT (p),

uniformly in the initial density p.

PROOF. Observe that since 0 ∈ η̃N
1 implies that 0 ∈ η̃N

1/2 = ηN
1/2,

E

(
1

N
|η̃N

1 ∩ HN |
)

(3.1)
= P(0 ∈ η̃N

1 |0 ∈ HN ∩ ηN
1/2)P(0 ∈ HN)P(0 ∈ ηN

1/2).

By Lemma 3.2, P(0 ∈ HN) → 1 uniformly in p, while by our assumption, P(0 ∈
ηN

1/2) = 1 − e−βp .
For the other term on the right-hand side of (3.1), we only need to look at the

configuration of ηN
1/2 inside B(0, (log2 N)/5), on which, conditional on the event

{0 ∈ HN }, the graph looks like a finite 3-tree. Thus, we can construct the random
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variables (η̃N
1 (0))N>0 conditioned on {0 ∈ HN ∩ ηN

1/2} on a common probability
space in the following way. Let T be the set of sites in an infinite (rooted) 3-tree and
consider a site percolation process on T with each site being open, independently,
with probability 1 − e−βp . We will call C0 the corresponding percolation cluster
containing 0. We also consider a collection (BN

i )i∈T,N>0 of independent Bernoulli
random variables with P(BN

i = 1) = αN . With this, the random variable η̃N
1 (0),

conditional on the event {0 ∈ HN ∩ ηN
1/2}, can be constructed as

η̃N
1 (0) =

{
1, if BN

i = 0 for all i ∈ C0 ∩ B
(
0, (log2 N)/5

)
,

0, otherwise.

It is clear that this construction gives the right conditional distribution for η̃N
1 (0).

Now let lN = log2(α
−1/2
N ). Observe that lN < (log2 N)/5 for large N , so we

have that

P(0 ∈ η̃N
1 |0 ∈ HN ∩ ηN

1/2)

= P
(
0 ∈ η̃N

1 ,diam(C0) ≤ lN |0 ∈ HN ∩ ηN
1/2

)
(3.2)

+ P
(
0 ∈ η̃N

1 , lN < diam(C0) ≤ 1
5 log2 N |0 ∈ HN ∩ ηN

1/2
)

+ P
(
0 ∈ η̃N

1 ,diam(C0) > 1
5 log2 N |0 ∈ HN ∩ ηN

1/2
)
.

For the first probability on the right-hand side we have that

P
(
0 ∈ η̃N

1 ,diam(C0) ≤ lN |0 ∈ HN ∩ ηN
1/2

)
≤ P

(
0 < diam(C0) ≤ lN |0 ∈ HN ∩ ηN

1/2
)

−→ P
(
0 < diam(C0) < ∞|0 is open

) = gT (1 − e−βp)

1 − e−βp
.

This convergence is uniform in p thanks to Lemma 3.3. On the other hand, since
any subset of T with diameter n has at most 1 + 3 · 2n−1 < 3 · 2n nodes, we get that

P
(
0 ∈ η̃N

1 ,diam(C0) ≤ lN |0 ∈ HN ∩ ηN
1/2

)
= P

(
BN

i = 0 ∀i ∈ C0,diam(C0) ≤ lN |0 ∈ HN ∩ ηN
1/2

)
= E

(
(1 − αN)|C0|,0 < diam(C0) ≤ lN |0 ∈ HN ∩ ηN

1/2
)

≥ (1 − αN)3α
−1/2
N P

(
0 < diam(C0) ≤ lN |0 ∈ HN ∩ ηN

1/2
)

−→ gT (1 − e−βp)

1 − e−βp

uniformly in p by the same reason as above and because (1 − αN)3α
−1/2
N ≈

e−3
√

αN → 1. We deduce that

P
(
0 ∈ η̃N

1 ,diam(C0) ≤ lN |0 ∈ HN ∩ ηN
1/2

) −→ gT (1 − e−βp)

1 − e−βp
,
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uniformly in p. For the second probability on the right-hand side of (3.2) we have
that, since P(0 ∈ HN ∩ ηN

1/2) ≥ C = (1 − e−βp)/2 for large enough N ,

P
(
0 ∈ η̃N

1 , lN < diam(C0) ≤ 1
5 log2 N |0 ∈ HN ∩ ηN

1/2
)

≤ C−1
P

(
lN < diam(C0) ≤ 1

5 log2 N
)

= C−1[
P

(
diam(C0) > lN

) − P
(
diam(C0) = ∞)]

− C−1[
P

(
diam(C0) > 1

5 log2 N
) − P

(
diam(C0) = ∞)]

−→ 0,

uniformly in p, again by Lemma 3.3. For the last probability in (3.2) we simply
observe that

P
(
0 ∈ η̃N

1 ,diam(C0) > 1
5 log2 N |0 ∈ HN ∩ ηN

1/2
)

≤ (1 − αN)1/5 log2 N ≈ e−1/5αN log2 N −→ 0.

The previous calculations and (3.2) imply that

P(0 ∈ η̃N
1 |0 ∈ HN ∩ ηN

1/2) −→ gT (1 − e−βp)

1 − e−βp
,

uniformly in p. Putting this together with (3.1) we get the result. �

PROOF OF THEOREM 2. By Karr (1975), it is enough to prove that ρN
0 ⇒ p

and that given any sequence pN in [0,1] converging to some p′ ∈ [0,1], the se-
quence ρN

1 , with ηN
0 started at a product measure of density pN , converges weakly

(or, equivalently, in probability) to hT (p′).
The first part is straightforward. For the second part we will assume, for sim-

plicity, that pN = p′ for all N and, moreover, that each site is occupied with prob-
ability 1 − e−βp′

after the growing season. The general case follows from the facts
that 1− (1−β/N)p

′N converges uniformly as N → ∞ to 1− e−βp′
for p′ ∈ [0,1]

and that, by the preceding lemmas, all the convergences we will prove below are
uniform on the initial density p.

Observe that by Markov’s inequality, given any ε > 0

P
(|ρN

1 − hT (p′)| > ε
) ≤ 1

ε
E

(|ρN
1 − hT (p′)|),

so

P
(|ρN

1 − hT (p′)| > ε
) ≤ 1

ε
E(|ρN

1 − ρ̃N
1 |) + 1

ε
E

(∣∣∣∣ρ̃N
1 − 1

N
|η̃N

1 ∩ HN |
∣∣∣∣
)

+ 1

ε
E

(∣∣∣∣ 1

N
|η̃N

1 ∩ HN | − E

(
1

N
|η̃N

1 ∩ HN |
)∣∣∣∣

)
(3.3)

+ 1

ε

∣∣∣∣E
(

1

N
|η̃N

1 ∩ HN |
)

− hT (p′)
∣∣∣∣.
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Lemmas 3.1 and 3.4 imply that the first and last terms on the right-hand side of
the inequality go to 0 as N → ∞. The second one also goes to 0 since, using
Lemma 3.2,

E

(∣∣∣∣ρ̃N
1 − 1

N
|η̃N

1 ∩ HN |
∣∣∣∣
)

≤ E

(
1

N
|RN \ HN |

)
−→ 0.

To deal with the third term, observe that

Var(|η̃N
1 ∩ HN |)

=
N−1∑
i=0

N−1∑
j=0

Cov(1i∈η̃N
1 ∩HN

,1j∈η̃N
1 ∩HN

)

≤ ∣∣{(i, j) ∈ HN × HN :B
(
i, (log2 N)/5

) ∩ B
(
j, (log2 N)/5

) 
= ∅
}∣∣

= ∣∣{(i, j) ∈ HN × HN : |i − j | ≤ 2(log2 N)/5}∣∣ ≤ 2N · N2/5.

Hence, by Jensen’s inequality,

E

(∣∣∣∣ 1

N
|η̃N

1 ∩ HN | − E

(
1

N
|η̃N

1 ∩ HN |
)∣∣∣∣

)2

≤ Var
(

1

N
|η̃N

1 ∩ HN |
)

≤ 2N · N2/5

N2 −→ 0.

We deduce from (3.3) that ρN
1 converges in probability to hT (p′). �

4. Proof of Theorem 3. As in the case of the 3-tree, we let a0 be the solution
of f (a0) = pc [i.e., a0 = log(1/(1 − pc))/β] and a1 = hL(pc) (see Figure 1 for a
sketch of these values in the case of the 3-tree). It is enough to prove, by Lasota
and Yorke (1973), that there is a K ∈ N such that

inf
p∈[a1,pc]\{a0}

|(hK
T )′(p)| > 1.(4.1)

Fix any β1 > βc. Since a1 is bounded away from 0 for β ∈ (βc, β1), there is a
K ∈ N such that min{k ∈ N :f k(a1) > pc} ≤ K − 1 for any such β . In particular,
since a0 is always less than pc we deduce that given any β ∈ (βc, β1) and any
p ∈ [a1,pc], the K-tuple (p,hL(p), . . . , hK−1

L (p)) contains at least one point in
(a0,pc].

Now recall that f ′′ < 0, so f ′ attains its minimum on the interval [a1, a0] at a0,
and at this point its value is β(1 − pc). Thus for every β ∈ (βc, β1), this minimum
is larger than βc(1 − pc). Since gL(p) = p for p ∈ [a1, a0] we deduce that

|hL(p)| ≥ βc(1 − pc) for all p ∈ [a1, a0].
Now using the fact that a0 ↑ pc as β ↓ βc, we can choose given any ε > 0 a β2 ∈
(βc, β1) so that f (pc)−pc = f (pc)− f (a0) < ε for any β ∈ (βc, β2). Since (1.2)
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implies that

g′
L(p) = 1 − θ ′

L(p)−−−→
p↓pc

−∞,

we can choose a small enough ε, so that

|h′
L(p)| = |g′

L(f (p))||f (p)| > max
{[βc(1 − pc)]−(K−1),1

}
for all p ∈ (a0,pc], and thus this inequality holds for all β ∈ (βc, β2).

Putting the previous arguments together with the fact that

(hK
L )′(p) = h′

L(hK−1
L (p))h′

L(hK−2
L (p)) · · ·h′

L(p)

we deduce that (4.1) holds for all β ∈ (βc, β2).

5. Proof of Theorem 4. Given i ∈ TN and m ∈ N we will write

B(i,m) = {j ∈ TN :‖i − j‖∞ ≤ m} and V (m) = (2m + 1)d = |B(i,m)|
(here and in what follows all differences i − j for i, j ∈ TN are computed mod-
ulo N ). Define, for k ∈ N,

dN
k (i) = 1

V (rN)

∑
‖j−i‖∞≤rN

ηN
k (j)

and

GN
k (ε) = {i ∈ TN : |dN

k (i) − hk
L(p)| < ε}.

dN
k (i) is the density of occupied sites in the growth neighborhood of i, while

GN
k (ε) can be thought of as the set of “good sites at time k,” where a site is said

to be good at time k if the density of occupied sites in its growth neighborhood at
that time is close to the desired value hk

L(p). The proof of Theorem 4 will depend
on the following proposition:

PROPOSITION 5.1. Fix ε1, ε2 > 0 and k ∈ N and assume that

1

Nd
E

(|TN \ GN
k (δ1)|) < δ2.(5.1)

Then if δ1 and δ2 are small enough and N is large enough,

1

Nd
E

(|TN \ GN
k+1(ε1)|) < ε2.

This result will allow us to give an inductive proof of Theorem 4. We will need
thus the following lemma:

LEMMA 5.2. Given any δ > 0,

1

Nd
E

(|TN \ GN
0 (δ)|)−−−→

N→∞
0.
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PROOF. By translation invariance,

E
(|TN \ GN

0 (δ)|) = ∑
i∈TN

P
(
i /∈ GN

0 (δ)
) = Nd

P
(|dN

0 (0) − p| ≥ δ
)
.

Since E(dN
0 (0)) = p, Chebyshev’s inequality and the fact that (by definition)

V (rN)dN
0 (0) is the sum of V (rN) independent Bernoulli random variables with

success probability p imply that

P
(|dN

0 (0) − p| ≥ δ
) ≤ 1

δ2V (rN)2 V (rN)p(1 − p),

so

1

Nd
E

(|TN \ GN
0 (δ)|) ≤ 1

δ2V (rN)
p(1 − p) −→ 0. �

Now we turn to the proof of Proposition 5.1. Many parts in the argument will be
similar to those in the proof of Theorem 2 and the lemmas that preceeded it, so we
will skip some details. We begin with some preliminary results. Throughout this
part, and until the proof of Theorem 4, we fix k, δ1, δ2, ε1, ε2 and assume that (5.1)
holds.

Observe that since each occupied site i sends a Poisson[β] number of births
during the growing season, each to a site chosen randomly from B(i, rN), we can
equivalently think of each occupied site i as sending a Poisson[β/V (rN)] number
of births to each of its V (rN) neighbors at a distance smaller than rN . Hence dur-
ing the growing season, each site i receives

∑
‖j−i‖∞≤rN

ηN
k (j)Yj,i births, where

(Yi,j )i,j∈TN
are i.i.d. Poisson[β/V (rN)] random variables. Conditional on dN

k (i),
this last sum is distributed as a Poisson[dN

k (i)β] random variable. We deduce that
we can regard the growing season as taking place as follows:

Given ηN
k , each i will be in ηN

k+1/2 with probability equal to the probability that a

Poisson[dN
k (i)β] random variable is positive, that is, with probability 1 − e−βdN

k (i).

The Poisson random variables above are taken to be independent of each other.
Let lN = √

rN/αN and observe that

lN

rN
= 1√

αNrN
−→ 0 and αNlN = √

αNrN −→ ∞.

We let η̃N
k+1 be the configuration obtained from ηN

k+1/2 by ignoring infections com-
ing from a distance greater than lN .

LEMMA 5.3.

1

Nd

∑
i∈TN

E
(|ηN

k+1(i) − η̃N
k+1(i)|

)−−−→
N→∞

0.
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In particular,

E(|ρN
k+1 − ρ̃N

k+1|) −→ 0.

PROOF. By translation invariance, and repeating the arguments of the proof of
Lemma 3.1, we get that

1

Nd

∑
i∈TN

E
(|ηN

k+1(i) − η̃N
k+1(i)|

) = 1

Nd

∑
i∈TN

P
(
ηN

k+1(i) 
= η̃N
k+1(i)

)

= P(0 ∈ η̃N
k+1 \ ηN

k+1) ≤ (1 − αN)lN

≈ e−αN lN −→ 0. �

Before continuing, it is useful to give an explicit construction of the random
variable η̃N

k+1(0). Consider a collection X = (X(i))i∈Zd of i.i.d. random variables
with uniform distribution in [0,1] and, given ηN

k , construct ηN
k+1/2 as follows:

ηN
k+1/2(i) = 1

X(i)>e
−βdN

k
(i) .

Observe that with this choice, P(ηN
k+1/2(i) = 1) = 1 − e−βdN

k (i) as required. We

will call CN
0 the open cluster in ηN

k+1/2 containing 0. Define (BN
i )i∈Zd ,N>0 as in

Section 3 and set

η̃N
k+1(0) =

{
1, if η̃N

k+1/2(0) = 1 and BN
i = 0 for all i ∈ CN

0 ∩ B(0, lN),
0, otherwise.

This construction gives the right distribution for η̃N
k+1(0).

We introduce another modification of ηN
k+1: let η̂N

k+1 be the configuration ob-
tained from ηN

k in the same way as η̃N
k+1, except that in the growing season we

replace ηN
k+1/2 by the configuration η̂N

k+1/2 defined by

η̂N
k+1/2(i) = 1

X(i)>e
−βhk

L
(p)

(using the same family of variables X). That is, η̂N
k+1/2 corresponds to running

the growth step as if the density of occupied sites in the ball of radius rN around
each site was exactly hk

L(p). ρ̂N
k will denote the density of occupied sites in this

modified process, that is, ρ̂N
k = |η̂N

k |/Nd . We will call C0 the open cluster contain-
ing 0 in the site percolation process in all of Z

d constructed from the collection of
random variables X with each site being open with probability 1 − e−βhk

L(p).

LEMMA 5.4. Given any ε > 0, if δ1 and δ2 are small enough, then

E(|ρ̃N
k+1 − ρ̂N

k+1|) ≤ ε.
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PROOF. The idea behind the proof of this result is the following. By (5.1), the
density of occupied sites is close to hk

L(p) around most sites. If this holds for some
site i, then in a box around i the density must still be close to this. We then prove
the result by comparing η̃N

k+1 and η̂N
k+1 with processes in which the outcome of the

growth step is replaced by product measures of sligthly smaller and slightly larger
densities.

To get started we observe that

E(|ρ̃N
k+1 − ρ̂N

k+1|)

≤ 1

Nd

∑
i∈TN

E
(|η̃N

k+1(i) − η̂N
k+1(i)|

) = P
(
η̃N

k+1(0) 
= η̂N
k+1(0)

)
(5.2)

≤ P
(
η̃N

k+1(0) 
= η̂N
k+1(0),0 ∈ GN

k (δ1)
) + P

(
0 /∈ GN

k (δ1)
)

≤ P
(
η̃N

k+1(0) 
= η̂N
k+1(0),0 ∈ GN

k (δ1)
) + δ2,

where in last bound we used (5.1). To deal with the last probability we first observe
that given any i ∈ B(0, lN),

dN
k (i) = 1

V (rN)

∑
j∈B(i,rN )

ηN
k (j)

= dN
k (0) + 1

V (rN)

∑
j∈B(i,rN )\B(0,rN )

ηN
k (j)

− 1

V (rN)

∑
j∈B(0,rN )\B(i,rN )

ηN
k (j)

≤ dN
k (0) + |B(i, rN) \ B(0, rN)|

V (rN)

and thus, since the cardinality in the last term is largest when i is at any of the 2d

corners of the hypercube B(0, lN), we have that for some C > 0

|dN
k (i) − dN

k (0)| ≤ C
rd−1
N lN

V (rN)
≈ lN

rN
−→ 0.

We deduce that

P
(
η̃N

k+1(0) 
= η̂N
k+1(0),0 ∈ GN

k (δ1)
)

≤ P
(
η̃N

k+1(0) 
= η̂N
k+1(0), |dN

k (i) − hk
L(p)| ≤ 2δ1 ∀i ∈ B(0, lN),0 ∈ GN

k (δ1)
)

+ P
(|dN

k (i) − hk
L(p)| > 2δ1 for some i ∈ B(0, lN),0 ∈ GN

k (δ1)
)

≤ P
(
η̃N

k+1(0) 
= η̂N
k+1(0), |dN

k (i) − hk
L(p)| ≤ 2δ1 ∀i ∈ B(0, lN)

)
+ P

(|dN
k (i) − dN

k (0)| > δ1 for some i ∈ B(0, lN)
)
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+ P
(|dN

k (0) − hk
L(p)| > δ1,0 ∈ GN

k (δ1)
)

= P
(
η̃N

k+1(0) 
= η̂N
k+1(0), |dN

k (i) − hk
L(p)| ≤ 2δ1 ∀i ∈ B(0, lN)

)
for large enough N .

Next, we introduce the following notation: ξ
q
1/2 will be the set of open sites in a

site percolation process in Z
d with each site being open with probability 1 − e−βq

for q ∈ [0,1] constructed from the family of random variables X. In other words,
we put ξ

q
1/2(i) = 1X(i)>e−βq for each i ∈ Z

d . We also let ξ
q,N
1 ⊆ TN be the config-

uration obtained after running the epidemic step on ξ
q
1/2 ∩ TN (this is done on the

torus TN , so we take into account the periodic boundary conditions of the torus
while running the epidemic), using the variables (BN

i )i∈TN
, and ignoring infec-

tions coming from a distance greater than lN . Observe that with these definitions,

η̂N
k+1/2 = ξ

hk
L(p)

1/2 ∩ TN and η̂N
k+1 = ξ

hk
L(p),N

1 . The key fact is the following:

P
(
η̃N

k+1(0) 
= η̂N
k+1(0), |dN

k (i) − hk
L(p)| ≤ 2δ1 ∀i ∈ B(0, lN)

)
≤ P

(
ξ

hk
L(p)+2δ1,N

1 (0) = 0, ξ
hk

L(p),N

1 (0) = 1
)

+ P
(
ξ

hk
L(p)−2δ1

1/2 (0) = 0, ξ
hk

L(p)

1/2 (0) = 1
)

(5.3)

+ P
(
ξ

hk
L(p)−2δ1,N

1 (0) = 1, ξ
hk

L(p),N

1 (0) = 0
)

+ P
(
ξ

hk
L(p)+2δ1

1/2 (0) = 1, ξ
hk

L(p)−2δ1
1/2 (0) = 0

)
.

To see that this is true observe that |dN
k (i) − hk

L(p)| ≤ 2δ1 for all i ∈ B(0, lN)

implies that

1 − e−β(hk
L(p)−2δ1) ≤ 1 − e−βdN

k (i) ≤ 1 − e−β(hk
L(p)+2δ1)

for all i ∈ B(0, lN), and thus

ξ
hk

L(p)−2δ1
1/2 ∩ B(0, lN) ⊆ CN

0 ∩ B(0, lN) ⊆ ξ
hk

L(p)+2δ1
1/2 ∩ B(0, lN).

Assuming this, we have that η̃N
k+1(0) = 0 and η̂N

k+1(0) = 1 implies that

ξ
hk

L(p),N

1 (0) = ξ
hk

L(p)

1/2 (0) = 1, and either η̃N
k+1/2(0) = 0, which implies that

ξ
hk

L(p)−2δ1
1/2 (0) = 0, or η̃N

k+1/2(0) = 1 but there is an infection in CN
0 ∩ B(0, lN),

which implies that ξ
hk

L(p)+2δ1,N

1 (0) = 0. Similarly, η̃N
k+1(0) = 1 and η̂N

k+1 = 0

implies that ξ
hk

L(p)+2δ1
1/2 (0) = 1, ξ

hk
L(p),N

1 = 0, and there is no infection in CN
0 ∩

B(0, lN), and thus ξ
hk

L(p)−2δ1,N

1 (0) = 1 whenever ξ
hk

L(p)−2δ1
1/2 (0) = 1.
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To finish the proof we need to bound the probabilities on the right-hand side of

(5.3). For the first one, since ξ
hk

L(p)−2δ1
1/2 ⊆ ξ

hk
L(p)

1/2 ⊆ ξ
hk

L(p)+2δ1
1/2 , we have that if #ξ

denotes the size of the cluster containing 0 in the configuration given by ξ , then

P
(
ξ

hk
L(p)+2δ1,N

1 (0) = 0, ξ
hk

L(p),N

1 (0) = 1
)

≤ P
(
ξ

hk
L(p)+2δ1,N

1 (0) = 0, ξ
hk

L(p),N

1 (0) = 1,#ξ
hk

L(p)+2δ1
1/2 < ∞)

+ P
(
ξ

hk
L(p),N

1 (0) = 1,#ξ
hk

L(p)

1/2 = ∞) + P
(
#ξ

hk
L(p)

1/2 < #ξ
hk

L(p)+2δ1
1/2 = ∞)

.

The first probability on the right-hand side is bounded by

P
(
ξ

hk
L(p)+2δ1,N

1 (0) = 0, ξ
hk

L(p)+2δ1
1/2 (0) = 1,#ξ

hk
L(p)+2δ1

1/2 < ∞)
(5.4)

≤ E
(
1 − (1 − αN)

#ξ
hk
L

(p)+2δ1
1/2 ,#ξ

hk
L(p)+2δ1

1/2 < ∞)
,

which goes to 0 by the dominated convergence theorem. The second one goes to 0
as well because it is bounded by (1 − αN)lN ≈ e−αN lN . The third one equals

θL

(
hk

L(p) + 2δ1
) − θL(hk

L(p)),

which is less than ε/2 for small enough δ1 by the (uniform) continuity of the
percolation probability θL(p) for p ∈ [0,1]. The other two probabilities on the
right-hand side of (5.3) can be bounded similarly, yielding

P
(
η̃N

k+1(0) 
= η̂N
k+1(0),0 ∈ GN

k (δ1)
)
< ε

for large enough N and small enough δ1. Putting this together with (5.2) gives the
result. �

LEMMA 5.5.

|E(ρ̂N
k+1) − hk+1

L (p)| −→ 0.

PROOF. This proof is similar to that of Lemma 3.4. First we observe that

E(ρ̂N
k+1) = P(0 ∈ η̂N

k+1|0 ∈ η̂N
k+1/2)P(0 ∈ η̂N

k+1/2)
(5.5)

= P(0 ∈ η̂N
k+1|0 ∈ η̂N

k+1/2)
[
1 − e−βhk

L(p)]
and

P
(
0 ∈ η̂N

k+1,diam(C0) = ∞|0 ∈ η̂N
k+1/2

) ≤ (1 − αN)lN ≈ e−αN lN −→ 0.(5.6)

Now

P
(
0 ∈ η̂N

k+1,diam(C0) < ∞|0 ∈ η̂N
k+1/2

)
= P

(
0 ∈ η̂N

k+1,diam(C0) ≤ lN |0 ∈ η̂N
k+1/2

)
(5.7)

+ P
(
0 ∈ η̂N

k+1, lN < diam(C0) < ∞|0 ∈ η̂N
k+1/2

)
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and, trivially,

P
(
0 ∈ η̂N

k+1, lN < diam(C0) < ∞|0 ∈ η̂N
k+1/2

)
(5.8)

≤ P
(
lN < diam(C0) < ∞|0 ∈ η̂N

k+1/2
) −→ 0.

On the other hand,

P
(
0 ∈ η̂N

k+1,diam(C0) ≤ lN |0 ∈ η̂N
k+1/2

)
= P

(
BN

i = 0 ∀i ∈ C0 ∩ B(0, lN),diam(C0) ≤ lN |0 is open
)

= E
(
(1 − αN)|C0∩B(0,lN )|,diam(C0) ≤ lN |0 is open

)
= P

(
diam(C0) ≤ lN |0 is open

)
− E

(
1 − (1 − αN)|C0∩B(0,lN )|,diam(C0) ≤ lN |0 is open

)
.

The second expectation is positive and bounded from above by

E
(
1 − (1 − αN)|C0|, |C0| < ∞|0 is open

)
,

so it goes to 0 as N → ∞ by the dominated convergence theorem as in (5.4). Thus

lim
N→∞ P

(
0 ∈ η̂N

k+1,diam(C0) ≤ lN |0 ∈ η̂N
k+1/2

)
= P

(
diam(C0) < ∞|0 is open

)
= P(0 < diam(C0) < ∞)

1 − e−βhk
L(p)

= gL(1 − e−βhk
L(p))

1 − e−βhk
L(p)

.

Putting this together with (5.7) and (5.8) we get that

∣∣∣∣P(
0 ∈ η̂N

k+1,diam(C0) < ∞|0 ∈ η̂N
k+1/2

) − hk+1
L (p)

1 − e−βhk
L(p)

∣∣∣∣ −→ 0

and thus by (5.5) and (5.6) we obtain

|E(ρ̂N
k+1) − hk+1

L (p)| −→ 0

as required. �

PROOF OF PROPOSITION 5.1.

1

Nd
E

(|TN \ GN
k+1(ε1)|) = P

(
0 /∈ GN

k+1(ε1)
) = P

(|dN
k+1(0) − hk+1

L (p)| ≥ ε1
)

≤ 1

ε1
E

(|dN
k+1(0) − hk+1

L (p)|).



CHAOS IN A SPATIAL EPIDEMIC MODEL 1683

Hence

1

Nd
E

(|TN \ GN
k+1(ε1)|)

≤ 1

ε1

[
E

(|dN
k+1(0) − d̃N

k+1(0)|) + E
(|d̃N

k+1(0) − E(ρ̃N
k+1)|

)
(5.9)

+ E
(|E(ρ̃N

k+1) − ρ̃N
k+1|

) + E
(|ρ̃N

k+1 − hk+1
L (p)|)],

where d̃N
k+1(0) = 1

V (rN )

∑
‖j‖∞≤rN

η̃N
k+1(j).

For fixed ε > 0 we want to show that each of the expectations on the right-hand
side of the last inequality can be bounded by ε if N is large enough and δ1 and δ2
are small enough. The bound for the last one follows directly from the triangle
inequality and Lemmas 5.4 and 5.5.

For the first one we have by translation invariance that

E
(|dN

k+1(0) − d̃N
k+1(0)|) ≤ 1

V (rN)

∑
‖j‖∞≤rN

E
(|ηN

k+1(j) − η̃N
k+1(j)|)

= 1

NdV (rN)

∑
i∈TN

∑
j∈B(i,rN )

E
(|ηN

k+1(j) − η̃N
k+1(j)|)

= 1

NdV (rN)

∑
j∈TN

E

( ∑
i∈B(j,rN )

|ηN
k+1(j) − η̃N

k+1(j)|
)

= 1

Nd

∑
j∈TN

E
(|ηN

k+1(j) − η̃N
k+1(j)|) < ε

for large enough N by Lemma 5.3.
For the second one we first observe that, again by translation invariance,

E(d̃N
k+1(0)) = E(ρ̃N

k+1). Hence

E
(|d̃N

k+1(0) − E(ρ̃N
k+1)|

)2

≤ Var(d̃N
k+1(0))

(5.10)

= 1

V (rN)2

∑
i,j∈B(0,rN )

Cov(η̃N
k+1(i), η̃

N
k+1(j))

≤ 1

V (rN)2

∣∣{i, j ∈ B(0, rN) :‖i − j‖∞ ≤ lN }∣∣ ≈ V (lN)

V (rN)
−→ 0.

The bound for the third expectation on the right-hand side of (5.9) follows from
the exact same argument as previous one. We deduce that

1

Nd
E

(|TN \ GN
k+1(ε1)|) ≤ 4ε

ε1
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for large enough N , and thus choosing ε < ε1ε2/4 gives the result. �

PROOF OF THEOREM 4. Since [0,1] is compact, it is enough to prove the
convergence of the finite-dimensional distributions of ρN

k , and since our limit is
deterministic, we only need to prove that

P
(|ρN

k − hk
L(p)| > ε

)−−−→
N→∞

0(5.11)

for every k ≥ 0 and ε > 0. Proceeding as in the proof of Theorem 2 we have that

P
(|ρN

k − hk
L(p)| > ε

) ≤ 1

ε
E(|ρN

k − ρ̃N
k |) + 1

ε
E(|ρ̃N

k − ρ̂N
k |)

(5.12)

+ 1

ε
E

(|ρ̂N
k − E(ρ̂N

k )|) + 1

ε
|E(ρ̂N

k ) − hL(p)|.

By Lemmas 5.3, 5.4 and 5.5, given any υ > 0 there are constants δk−1
1 , δk−1

2 > 0
such that

V (lN)

Nd
E

(|TN \ GN
k−1(δ

k−1
1 )|) < δk−1

2(5.13)

implies that the first, second and last terms on the right-hand side of (5.12) are each
bounded by υε for large enough N . The third term is also less than υε for large N ,
which follows from repeating again the argument in (5.10). We deduce that

P
(|ρN

k − hk
L(p)| > ε

)
< 4υ(5.14)

for large enough N provided that (5.13) holds.
Similarly, Proposition 5.1 implies that (5.13) will hold provided that

V (lN)

Nd
E

(|TN \ GN
k−2(δ

k−2
1 )|) < δk−2

2

for some δk−2
1 , δk−2

2 > 0. Repeating this procedure inductively we deduce
that (5.14) holds provided that

V (lN)

Nd
E

(|TN \ GN
0 (δ0

1)|) < δ0
2

for some small δ0
1, δ0

2 > 0, which holds for large enough N by Lemma 5.2, and
thus (5.11) follows. �
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