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UNIFORM OBSERVABILITY OF HIDDEN MARKOV MODELS
AND FILTER STABILITY FOR UNSTABLE SIGNALS

BY RAMON VAN HANDEL

Princeton University

A hidden Markov model is called observable if distinct initial laws give
rise to distinct laws of the observation process. Observability implies stability
of the nonlinear filter when the signal process is tight, but this need not be the
case when the signal process is unstable. This paper introduces a stronger no-
tion of uniform observability which guarantees stability of the nonlinear filter
in the absence of stability assumptions on the signal. By developing certain
uniform approximation properties of convolution operators, we subsequently
demonstrate that the uniform observability condition is satisfied for various
classes of filtering models with white-noise type observations. This includes
the case of observable linear Gaussian filtering models, so that standard re-
sults on stability of the Kalman–Bucy filter are obtained as a special case.

1. Introduction. In a classic paper, Blackwell and Dubins [2] have obtained
the following remarkably general result. Let (Yk)k≥0 be a discrete time stochastic
process which takes values in a Polish space, and consider the regular conditional
probabilities P((Yk)k>m ∈ ·|Y0, . . . , Ym) and Q((Yk)k>m ∈ ·|Y0, . . . , Ym). Then if
P ∼ Q, one can show that P- and Q-a.s.∥∥P

(
(Yk)k>m ∈ ·|Y0, . . . , Ym

) − Q
(
(Yk)k>m ∈ ·|Y0, . . . , Ym

)∥∥
TV

m→∞−−−→ 0

without any further assumptions on the laws P and Q. The interpretation of Black-
well and Dubins is that P and Q represent the “opinions” of two individuals about
the dynamics of the time series (Yk)k≥0. When the individuals observe an initial
portion of the time series (Yk)k≤m, they update their opinion of the future observa-
tions (Yk)k>m by Bayesian learning. The result then guarantees that the opinions
of the two individuals will eventually merge, provided the individuals agree on
which events can and cannot occur. A continuous time counterpart of this result
was obtained by Tsukahara [27] using the prediction process of F. Knight.

The result of Blackwell and Dubins typically does not hold when P and Q are
mutually singular, even when the total variation distance ‖ · ‖TV is replaced by
a weaker measure of proximity. Motivated by this problem, Diaconis and Freed-
man [11] investigated a special class of models with mutually singular measures
for which the merging of opinions still holds in a weak sense. This has led to the
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investigation of various notions of merging of probability measures [10] which are
compatible with the topology of weak convergence of probability measures. In-
deed, the result of Blackwell and Dubins shows that the regular conditional prob-
abilities P((Yk)k>m ∈ ·|(Yk)k≤m) and Q((Yk)k>m ∈ ·|(Yk)k≤m) converge toward
one another, despite that neither sequence of probability measures is in fact itself
convergent. Particularly when the state space is not compact, proving that two se-
quences of probability measures merge can be subtle (see [13], Section 11.7).

Such considerations play a central role in the present paper. Unlike the setting
studied by Diaconis and Freedman, we will be content to assume the absolute con-
tinuity of our probability measures. In contrast to the problem studied by Blackwell
and Dubins, however, we will consider a setting where we do not have access to
the full information about the past history of the process under consideration, but
we are only able to observe a subfiltration. Thus, in essence, we are interested in
the merging of opinions with partial information. We will restrict ourselves to a
particular aspect of this problem, the stability of the nonlinear filter, which has
attracted much attention in recent years (see [9] and the references therein). As
we will see, this problem can be investigated very much in the spirit of the work
of Blackwell and Dubins in combination with two new ingredients: the merging
of probability measures in the dual bounded-Lipschitz distance ‖ · ‖BL, as studied
in the fundamental papers of Pachl [22] and Cooper and Schachermayer [7], and
certain uniform approximation properties of convolution operators.

We will work chiefly in continuous time (though a general discrete time re-
sult is developed for comparison in Section 3.4). Let (Xt , Yt )t≥0 be a Markov
additive process in the sense of Çinlar [6]; this means that under the probability
measure Pμ, the processes (Xt)t≥0 and (Xt , Yt )t≥0 are time-homogeneous Markov
processes with initial law (X0, Y0) ∼ μ⊗ δ0, and that (Yt )t≥0 has conditionally in-
dependent increments given (Xt)t≥0. This is the standard assumption on a hidden
Markov model in continuous time, where Yt is the observed component and Xt is
the unobserved component. Let us now define the regular conditional probabilities
π

μ
t (·) = Pμ(Xt ∈ ·|(Ys)s≤t ), that is, π

μ
t is the nonlinear filter associated to our

model. We are interested in finding conditions such that π
μ
t and πν

t merge in an
appropriate sense as t → ∞ for different initial measures μ,ν.

REMARK 1.1. Using similar methods, one could also investigate the merging
of the full predictive distributions Pμ((Xr)r≥t ∈ ·|(Ys)s≤t ). In the present paper,
however, we will restrict ourselves to the study of the nonlinear filter.

Our approach has its origin in the work of Chigansky and Liptser [5], who
discovered independently a corollary of the result of Blackwell and Dubins and
applied it to prove that the filtered estimates of certain functions of the signal
process are always stable. This idea was significantly generalized by the author
in [29], where a characterization of all such functions was obtained by a functional
analytic argument in the case where the signal state space is compact. In particular,
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it turns out that the filters π
μ
t and πν

t actually merge in a weak sense whenever the
following observability condition is satisfied:

Pμ|σ {(Yr )r≥0} = Pν |σ {(Yr )r≥0} implies μ = ν,

or, in other words, when distinct initial laws give rise to distinct laws of the ob-
servation process. It is tempting to conjecture that this observability criterion also
leads to stability of the filter when the signal state space is not compact, as this
is well known to be the case in the special case of linear Gaussian filtering mod-
els [19]. However, as the following example shows, this conjecture is not correct.

EXAMPLE 1.2. Consider a signal process Xt on the state space [1,∞[ defined
as Xt = X0e

λt (λ > 0, X0 ≥ 1), and consider the observation process

Yt =
∫ t

0
h(Xs) ds + Wt, h(x) = x−1.

Here Wt is a Wiener process independent of X0. We claim that this model is ob-
servable, but that there exist μ ∼ ν such that π

μ
t and πν

t do not merge as t → ∞.
Indeed, observability is easily demonstrated along the lines of [29], Section 5.1.

To prove that π
μ
t and πν

t do not merge, set f (x) = cos(log(x)) and tn = 2πn/λ,
n ∈ N. Note that f (Xtn) = f (X0) for every n ∈ N, so that

π
ρ
tn(f ) = Eρ(f (X0)|(Yr)r≤tn)

n→∞−−−→ Eρ(f (X0)|(Yr)r<∞)

for any initial measure ρ. It thus suffices to show that Eμ(f (X0)|(Yr)r<∞) 
=
Eν(f (X0)|(Yr)r<∞) for some μ,ν. But by the Bayes formula

Eρ(f (X0)|(Yr)r<∞)

=
∫

f (x) exp(x−1 ∫ ∞
0 e−λs dYs − 1/2x−2 ∫ ∞

0 e−2λs ds)ρ(dx)∫
exp(x−1

∫ ∞
0 e−λs dYs − 1/2x−2

∫ ∞
0 e−2λs ds)ρ(dx)

,

which is clearly not independent of ρ.

In the present paper we take a somewhat different point of view than in [29].
The basic idea behind our approach is easily explained. Using the Markov additive
property of our model, it is not difficult to verify that

Pμ(
(Yr − Yt )r≥t ∈ ·|(Ys)s≤t

) = Pπ
μ
t
(
(Yr)r≥0 ∈ ·).

An argument along the lines of Blackwell and Dubins applies to the left-hand side
of this expression. In particular, we find that

∥∥Pπ
μ
t
(
(Yr)r≥0 ∈ ·) − Pπν

t
(
(Yr)r≥0 ∈ ·)∥∥TV

t→∞−−−→ 0, Pμ-a.s.,

whenever Pμ|σ {(Yr )r≥0} � Pν |σ {(Yr )r≥0}. Now suppose that we could prove that

∥∥Pμn |σ {(Yr )r≥0} − Pνn |σ {(Yr )r≥0}
∥∥

TV

n→∞−−−→ 0 implies ‖μn − νn‖BL
n→∞−−−→ 0
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for any two sequences of probability measures {μn}, {νn}. In this case, the filtering
model is called uniformly observable, and it follows automatically that

‖πμ
t − πν

t ‖BL
t→∞−−−→ 0, Pμ-a.s., whenever Pμ|σ {(Yr )r≥0} � Pν |σ {(Yr )r≥0},

that is, that the filters merge in the dual bounded-Lipschitz distance. This argument
can be made rigorous with some care, which is done in Theorem 3.3 below.

That a filtering model may be observable but not uniformly observable is
demonstrated by the counterexample above. It is easily established, however, that
the two notions are identical when the signal state space is compact (Proposi-
tion 3.5), so that results of [29] follow as a special case. When the state space is
not compact, proving that a filtering model is uniformly observable is more dif-
ficult. We will prove that a large class of diffusion signals with white noise type
observations is uniformly observable (Section 3.4). In addition, we will show that
in the linear Gaussian setting, uniform observability is equivalent to observability
in the sense of linear systems theory (Section 3.3). This reproduces a well-known
result on the stability of the Kalman–Bucy filter [19], which was hitherto out of
reach of general stability results for nonlinear filters. The proofs of these facts rely
on two key technical tools which are developed in the appendices.

The stability of nonlinear filters has been an active research topic in recent
years, see, for example, [9] and the references therein. The majority of results
in this direction assume that the signal process is ergodic or at least tight. Such
results therefore do not allow us to prove stability of the filter when the signal
process is unstable, that is, when its mass does not remain localized in a compact
set. Beside specialized results for the Kalman–Bucy filter, almost all existing re-
sults in the unstable case either explicitly [4, 8, 18, 21] or implicitly [26] rely on
some form of “balancing of rates” argument, where a rate of contraction must win
from an opposing rate of expansion in order to give rise to stability of the filter.1

This invariably implies that stability of the filter is only proved when the signal
to noise ratio of the observations is sufficiently high. In contrast, the results in
the present paper guarantee filter stability for a large class of unstable signals in
a manner that is purely structural and is completely independent of the signal to
noise ratio. This suggests that though one may prove filter stability by a balancing
of rates argument—the latter often even leads to quantitative results on the rate of
stability—this does not reflect the fundamental mechanism that causes the filter
to be stable, at least in the models considered here. (The author is not aware of an
example where the filter loses stability as the signal to noise ratio crosses a positive
threshold.)

The remainder of this paper is organized as follows. In Section 2 we introduce
the canonical hidden Markov model and the associated filtering problem. Section 3

1An exception is the result of [3], where filter stability is proved under the strong assumption
that the observation noise has compact support. In this setting the nonlinear filter is itself compactly
supported, so that this reduces essentially to the case of a compact signal state space.
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is devoted to the statement of our main results and contains some short proofs.
Longer proofs can be found in Sections 4 and 5. The appendices develop the tech-
nical tools that are used in our proofs. Appendix A establishes that certain distances
between probability kernels (including the dual bounded-Lipschitz distance) are in
fact measurable. Appendix B develops a general result on the merging of proba-
bility measures in the dual bounded-Lipschitz distance. This result was already
obtained in a more general setting in [7, 22], but we give here a more elementary
proof in the Euclidean setting. The latter is all that will be needed in our proofs,
and also serves to keep the paper more self-contained. Finally, Appendix C de-
velops a uniform approximation result for convolution operators which plays an
important role in proving uniform observability for additive noise models.

2. The hidden Markov model. The purpose of this section is to introduce
the general class of models which will be studied throughout the paper. We also
introduce the filtering problem and state some fundamental regularity properties.

2.1. Preliminaries. Before we introduce our hidden Markov model, let us fix
some notation that will be used throughout the paper.

Let S be a Polish space endowed with a complete metric dS . We denote by B(S)

the Borel σ -field of S, and we define the spaces B(S) of bounded measurable
functions, Cb(S) of bounded continuous functions, Ub(S) of bounded uniformly
continuous functions and P(S) of Borel probability measures. We always endow
B(S), Cb(S) and Ub(S) with the topology of uniform convergence, and P(S) with
the topology of weak convergence of probability measures (recall that the space
P(S) is then itself Polish [23], Theorems II.6.2 and II.6.5). We denote

‖f ‖L = sup
x 
=y

|f (x) − f (y)|
dS(x, y)

, ‖f ‖∞ = sup
x

|f (x)| for all f ∈ B(S),

and we define Lip(S) = {f ∈ Cb(S) :‖f ‖∞ ≤ 1 and ‖f ‖L ≤ 1}.
Let G ⊂ Cb(S) be uniformly bounded supg∈G ‖g‖∞ < ∞, and define

‖μ − ν‖G := sup
g∈G

∣∣∣∣
∫

g dμ −
∫

g dν

∣∣∣∣, μ, ν ∈ P(S).

Then ‖μ − ν‖G is a pseudometric on P(S), and is a metric whenever G is a sep-
arating class [15], Section 3.4. We will frequently encounter the following special
cases: the dual bounded-Lipschitz distance ‖μ − ν‖BL := ‖μ − ν‖Lip(S), which
metrizes the Polish space P(S) [13], Theorem 11.3.3, and the total variation dis-
tance ‖μ − ν‖TV := ‖μ − ν‖G with G = {f ∈ Cb(S) :‖f ‖∞ ≤ 1}.

As we will be interested in distances between random probability measures, it is
important to establish that the distance ‖μ−ν‖G is a (measurable) random variable
for any pair of probability kernels μ,ν. Corollary A.2 in Appendix A establishes
that this is the case whenever the family G ⊂ Cb(S) is uniformly bounded and
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equicontinuous; in particular, we find that ‖μ− ν‖BL is measurable for any pair of
probability kernels μ,ν. That the total variation distance ‖μ − ν‖TV between ker-
nels is measurable is well known; this follows from the existence of a measurable
version of the Radon–Nikodym derivative (see, e.g., [20], Theorem 3.1).

2.2. Hidden Markov model. Throughout this paper, we consider a continu-
ous time hidden Markov model with signal state space E and observation state
space Rq (the observation dimension q ∈ N is fixed at the outset). We presume
only that E is Polish and we endow it with a distinguished complete metric d .

Let �X = D([0,∞[;E) and �Y = D([0,∞[;Rq) be the spaces of E-valued
and Rq -valued càdlàg paths, respectively. We endow �X and �Y with the Sko-
rokhod topology so that they are Polish [15], Theorem 3.5.6. We will work on the
probability space � = �X × �Y with its Borel σ -field F̃ = B(�X × �Y ), and
we denote by Xt :� → E and Yt :� → Rq the coordinate projections Xt(x, y) =
x(t), Yt (x, y) = y(t). Furthermore, we define the natural filtrations

F̃ X
t = σ {Xs : s ≤ t}, F̃ Y

t = σ {Ys : s ≤ t}, F̃t = F̃ X
t ∨ F̃ Y

t

and the filtration generated by the observation increments

G̃Y
t = σ {Ys − Y0 : s ≤ t}.

We will denote F̃ X = ∨
t≥0 F̃ X

t , and F̃ Y and G̃Y are defined similarly. The canon-
ical shift θt :� → � is defined as θt (x, y)(s) = (x(s + t), y(s + t)).

We now proceed to impose on this canonical setup the structure of a hidden
Markov model, where Yt is the observation process and Xt is the signal process.
Our basic assumption is that the pair (Xt , Yt )t≥0 is a time-homogeneous Markov
process, whose semigroup we will denote as Tt :B(E × Rq) → B(E × Rq). We
therefore presume that we are given a family {Pμ :μ ∈ P(E)} ⊂ P(�) such that
for every μ ∈ P(E), the pair (Xt , Yt )t≥0 is a Markov process under Pμ relative to
the usual augmentation [24], Section 1.4, of F̃t with respect to the family {Pμ :μ ∈
P(E)}, with semigroup Tt and initial measure μ⊗δ{0}. To be precise, let us denote
by F , F X , F Y , GY the completions of F̃ , F̃ X , F̃ Y , G̃Y and by Ft , F X

t , F Y
t , GY

t

the usual augmentations of F̃t , F̃ X
t , F̃ Y

t , G̃Y
t with respect to the family {Pμ :μ ∈

P(E)}. We then assume that

Pμ(f (Xt , Yt )|Fs) = (Tt−sf )(Xs,Ys) for all f ∈ B(E × Rq),μ ∈ P(E),

whenever t ≥ s ≥ 0, and that

Pμ(f (Xt , Yt )) =
∫

(Ttf )(x,0)μ(dx) for all f ∈ B(E × Rq),μ ∈ P(E).

Before we proceed, two remarks are in order.
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REMARK 2.1. When E is locally compact and Tt is Feller, one can always
construct the family Pμ with the required properties directly from the semi-
group Tt , for example, see [15]. As we have only assumed that E is Polish, we
impose the existence of the family Pμ as an assumption. However, the locally
compact Feller case furnishes a broad family of examples where the construction
can be accomplished.

REMARK 2.2. The restriction to initial laws of the form μ⊗ δ{0} is in essence
the requirement that the initial observation F Y

0 does not contain any information
on the signal. The general case can be reduced to this setting, however, so there is
no loss of generality in our assumptions (see the remark in [29], Section 2).

We now impose on our Markov model (Xt , Yt )t≥0 the fundamental assumption
that it is a Markov additive process in the sense of Çinlar [6], that is, we require
that the semigroup Tt satisfies the following condition:

For anyf ∈ B(E × Rq), (TtSyf )(x, y) does not depend on y.

Here Sy :B(E × Rq) → B(E × Rq) is defined as (Syf )(x, z) = f (x, z − y). It is
not difficult to verify (see also [6]) that this assumption corresponds to the follow-
ing two properties: first, the process (Xt)t≥0 is a Markov process in its own right
[i.e., Ttf ∈ B(E) whenever f ∈ B(E), where B(E) is seen as a natural subspace
of B(E×Rq)]; second, under the conditional law of (Yt )t≥0 given F X , the process
(Yt )t≥0 has independent increments. This first property enforces the idea that there
is no feedback in the system, so that the evolution of the signal is not affected
by the observations. The second property enforces the idea that the observation
noise is memoryless. The process (Xt , Yt )t≥0 is therefore a natural continuous
time counterpart of the usual discrete time notion of a hidden Markov model, and
the vast majority of continuous time filtering problems that are encountered in the
literature fit in this framework (see, e.g., [30]).

2.3. The filtering problem. Roughly speaking, the problem of nonlinear fil-
tering is to compute the conditional distributions Pμ(Xt ∈ ·|F Y

t ). As we will be
dealing with convergence issues, it is essential that we choose “nice” versions of
the filtered estimates. We cite the following result which provides what is needed.

LEMMA 2.3. For every initial measure μ ∈ P(E), there is a probability kernel
πμ : [0,∞[×� × B(E) → [0,1] such that:

1. For every A ∈ B(E), the process (t,ω) �→ πμ(t,ω,A) is the F Y
t -optional pro-

jection of (t,ω) �→ IA(Xt(ω)).
2. For every ω ∈ �, the P(E)-valued sample path t �→ πμ(t,ω, ·) is càdlàg in the

topology of P(E).

For simplicity, we denote by π
μ
t (·) the random measure ω �→ πμ(t,ω, ·).
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PROOF. See [30], Proposition 1 or [17], Theorem A.3. �

As we will deal with different initial measures, the uniqueness of πμ is of inter-
est. The following result is straightforward due to the separability of E.

LEMMA 2.4. The kernel πμ is unique up to Pμ|F Y -indistinguishability.

PROOF. As E is Polish, we can find a countable algebra {An} ⊂ B(E) such
that B(E) = σ {An :n ∈ N}. Let πμ and π̃μ be two kernels that satisfy the def-
inition of the previous lemma. To show that πμ(t,ω, ·) = π̃μ(t,ω, ·), it suffices
to show that πμ(t,ω,An) = π̃μ(t,ω,An) for all n. But by the uniqueness of
the optional projection up to evanescence [24], Theorem IV.5.6, we can clearly
find a set B ∈ F Y of Pμ-full measure such that this holds for all t ∈ [0,∞[ and
ω ∈ B . �

3. Main results. The purpose of this section is to state our main results. We
also give some short proofs; the remaining proofs appear in the following sections.

3.1. Uniform observability and filter stability. Let us begin by introducing the
central result of this paper. We are interested in characterizing the stability of the
filter, that is, the dependence of π

μ
t on μ as t → ∞. Our general result relates this

question to the following uniform notion of observability.

DEFINITION 3.1. Let G ⊂ Cb(E) be uniformly bounded and equicontinuous.
The filtering model is said to be G-uniformly observable if for {μn}, {νn} ⊂ P(E)

‖Pμn |F Y − Pνn |F Y ‖TV
n→∞−−−→ 0 implies ‖μn − νn‖G

n→∞−−−→ 0.

When G = Lip(E) the model is simply called uniformly observable.

In [29], a model is called observable if Pμ|F Y = Pν |F Y implies μ = ν. Evi-
dently G-uniform observability implies observability whenever G is a separating
class. However, uniform observability is strictly stronger than observability: the
model is observable whenever the map μ �→ Pμ|F Y is injective, while uniform
observability requires in addition that the inverse map is uniformly continuous.2

2We recall the following elementary facts. A map f :S → T between metric spaces (S, dS) and
(T , dT ) is called uniformly continuous if for every ε > 0, the exists a δ > 0 (depending on ε only)
such that dS(x, y) < δ implies dT (f (x), f (y)) < ε. Equivalently, f is uniformly continuous if
and only if for every pair of sequences (xn)n≥0 and (yn)n≥0 such that dS(xn, yn) → 0, we have
dT (f (xn), f (yn)) → 0. The proof of this fact is standard and is therefore omitted.
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REMARK 3.2. In principle one could define uniform observability in total
variation by choosing G to be the unit ball in Cb(E) (our proofs then require some
modification as this family is not equicontinuous). However, uniform observability
almost never holds in this setting, as is illustrated by the following toy example.

For μ ∈ P(R), denote by Pμ ∈ P(R) the law of Y = X + ξ where X ∼ μ and
ξ ∼ N(0,1) are independent. Let μn = δ{1/n} and μ = δ{0}. Then ‖Pμn −Pμ‖TV →
0 as n → ∞ while ‖μn − μ‖TV = 2 for all n. Note that this entirely reasonable
model is observable and even Lip(R)-uniformly observable, but uniform observ-
ability in total variation fails. Evidently we cannot obtain uniform observability
in total variation when the observations are “smoothing,” as is usually the case in
practice, and it is therefore essential to use a smaller class G.

The following result relates the notion of uniform observability to the stability
of the filter. We will prove this theorem in Section 4.

THEOREM 3.3. Let G ⊂ Cb(E) be uniformly bounded and equicontinuous,
and suppose that the filtering model is G-uniformly observable. Then

‖πμ
t − πν

t ‖G

t→∞−−−→ 0, Pμ-a.s., whenever Pμ|F Y � Pν |F Y .

Note that in this result G need not be a separating class. However, we are typ-
ically interested in the case where G = Lip(E). In the following subsections, we
will introduce various filtering models where uniform observability can be veri-
fied.

REMARK 3.4. The condition Pμ|F Y � Pν |F Y always holds when μ � ν,
but the latter is not necessary. It could even be the case that Pμ|F Y ∼ Pν |F Y for
every μ,ν ∈ P(E), in which case the filter forgets any initial condition. The latter
property is closely related to the notion of controllability; see [29], Section 7.

3.2. Compact state space. We have seen that observability in the sense of [29]
is a weaker condition than uniform observability. However, in the special case
that E is compact and (X,Y ) is Feller, observability and uniform observability are
equivalent. This follows directly from the general fact that any continuous bijection
from a compact metric space to a metric space is a uniform homeomorphism. The
proof of this fact is elementary and is given here for completeness.

PROPOSITION 3.5. Suppose that E is compact and that (X,Y ) is Feller. Then
observability, that is, the requirement that Pμ|F Y = Pν |F Y implies μ = ν, already
guarantees that the filtering model is uniformly observable.

PROOF. Let {μn}, {νn} ⊂ P(E) and suppose that ‖μn − νn‖BL 
→ 0. Then we
may assume, by passing to a subsequence if necessary, that ‖μn − νn‖BL ≥ ε > 0
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for all n. As E is compact, {μn} and {νn} are tight and we may assume, again
passing to a subsequence if necessary, that ‖μn − μ‖BL → 0 and ‖νn − ν‖BL → 0
for some μ,ν ∈ P(E). By the Feller property, we find that

‖Pμn |F Y − Pνn |F Y ‖BL
n→∞−−−→ ‖Pμ|F Y − Pν |F Y ‖BL

(see [15], Theorem 4.2.5). But by the observability assumption and ‖μ−ν‖BL ≥ ε

we must have ‖Pμ|F Y − Pν |F Y ‖BL > 0, so that ‖Pμn |F Y − Pνn |F Y ‖TV 
→ 0. By
contradiction, ‖Pμn |F Y − Pνn |F Y ‖TV → 0 must imply ‖μn − νn‖BL → 0. �

As a consequence, observability gives rise to stability of the filter in the sense
of Theorem 3.3 when the signal state space is compact and the filtering model is
Feller. Note that this result could also be obtained from the main result in [29] by
using the Arzelà–Ascoli theorem (as outlined in Appendix B).

3.3. The Kalman–Bucy filter. Consider the hidden Markov model defined by
the unique martingale problem solution to the stochastic differential equations

Xt = X0 +
∫ t

0
AXs ds + BWt,

Yt =
∫ t

0
CXs ds + DVt,

where E = Rd , A ∈ Rd×d , B ∈ Rd×p , C ∈ Rq×d , D ∈ Rq×r , and Wt and Vt are
independent p- and r-dimensional Wiener processes, respectively. We refer to this
hidden Markov model as the linear Gaussian filtering model. When X0 is Gaussian
and D is invertible the associated filtering problem is solved by the Kalman–Bucy
filter; however, these assumptions are not required for our purposes.

We begin by stating a variant of a well-known result from linear systems theory.

LEMMA 3.6. The following are equivalent.

1. The dq × d-matrix

O(A,C) :=

⎡
⎢⎢⎣

C

CA
...

CAd−1

⎤
⎥⎥⎦ has full rank.

2. There is a linear function f : (Rq)k → Rd such that

f

(∫ t1

0
CeAsx ds, . . . ,

∫ tk

0
CeAsx ds

)
= x for all x ∈ Rd

for some finite number of times t1, . . . , tk ∈ R+ (k ∈ N).

When this is the case, we say that the pair {A,C} is observable.
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PROOF. Suppose that O(A,C) has full rank. We begin by noting that

lim
t↘0

1

t

∫ t

0
CeAr dr = C.

Similarly, we find that

lim
s↘0

lim
t↘0

1

st

[∫ s+t

s
CeAr dr −

∫ t

0
CeAr dr

]
= CA.

Proceeding along the same lines, we can find for every ε > 0 a finite number of
times t1(ε), . . . , tk(ε) and a matrix Hε ∈ Rdq×kq such that

Hε

⎡
⎢⎢⎢⎢⎣

∫ t1(ε)

0
CeAs ds

...∫ tk(ε)

0
CeAs ds

⎤
⎥⎥⎥⎥⎦

ε→∞−−−→ O(A,C).

But as O(A,C) has full rank, the matrix on the left-hand side will have full rank
for ε sufficiently small, and the claim follows in one direction.

To prove the converse, note that by the Cayley–Hamilton theorem∫ t

0
CeAs ds = c0(t)C + c1(t)CA + · · · + cd−1(t)CAd−1

for coefficients ci(t) depending on t and A only. Therefore, by the existence of the
function f , the matrix O(A,C) has a left inverse and therefore has full rank. �

We now obtain the following result.

PROPOSITION 3.7. The linear Gaussian filtering model is uniformly observ-
able if and only if {A,C} is observable in the sense of linear systems theory.

PROOF. We can solve the equation for (Xt , Yt ) explicitly:

Xt = eAtX0 +
∫ t

0
eA(t−s)B dWs,

Yt =
∫ t

0
CeAsX0 ds +

∫ t

0

∫ s

0
CeA(s−r)B dWr ds + DVt .

Suppose first that {A,C} is not observable. Then there exists v ∈ Rd such that∫ t

0
CeAsv ds = 0 for all t ≥ 0.

When this is the case, it is easily seen that for any initial law μ ∈ P(Rd), the initial
law μ ∗ δv gives rise to the same law of the observations as does μ. Therefore the
model is certainly not uniformly observable.
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Conversely, suppose that the pair {A,C} is observable. Let t1, . . . , tk and
f : (Rq)k → Rd be as in Lemma 3.6. Then we can write

(Yt1, . . . , Ytk ) =
(∫ t1

0
CeAsX0 ds, . . . ,

∫ tk

0
CeAsX0 ds

)
+ ξ,

where ξ is a kq-dimensional Gaussian random variable. In particular, the charac-
teristic function of ξ vanishes nowhere. By Proposition C.2 and the fact that f is
Lipschitz continuous (as it is linear), it is easily established that

‖Pμn |F Y − Pνn |F Y ‖TV
n→∞−−−→ 0 implies ‖μn − νn‖BL

n→∞−−−→ 0.

This completes the proof of uniform observability. �

As a corollary, it follows from Theorem 3.3 that if {A,C} is observable, then
‖πμ

t −πν
t ‖BL → 0 Pμ-a.s. as t → ∞ whenever Pμ|F Y � Pν |F Y . This result is es-

sentially known, see, for example, [19], Section 2. However, previous proofs rely
crucially on the fact that the solution to the filtering problem can be explicitly ex-
pressed in terms of the Kalman–Bucy filtering equations, which are amenable to
explicit analysis. In contrast, the Kalman–Bucy filter (in the case of unstable sig-
nals) has hitherto been out of reach of results on filter stability which also apply to
nonlinear filtering models. The present approach is therefore of significant interest,
as it allows us to infer stability of the filter directly from the general Theorem 3.3.

REMARK 3.8. The present result differs somewhat from previous stability re-
sults for the Kalman–Bucy filter. It is customary to assume controllability in ad-
dition to observability, which is replaced in our setting by the absolute continuity
requirement Pμ|F Y � Pν |F Y . It is not difficult to verify that if the signal is con-
trollable and D is invertible, then Pμ|F Y ∼ Pν |F Y for every μ,ν ∈ P(Rd), so that
our result is in fact more general in this sense. On the other hand, the assumptions
in [19], Section 2, are weaker than the observability assumption; in particular,
detectability suffices (at least when D is invertible; see also [29], Appendix A).
It would be interesting to obtain a generalization of the latter notion to general
hidden Markov models, for example, by combining Theorem 3.3 with the results
in [28].

3.4. Diffusion signals. The verification of uniform observability for the linear
Gaussian filtering model was simplified significantly by the fact that the stochas-
tic differential equations which define the model can be solved explicitly. In the
present subsection we will verify uniform observability for a class of nonlinear
filtering models, where we do not have this luxury. Consequently the conditions
for uniform observability will be more stringent than in the previous section; in
particular, we will recover Proposition 3.7 as a special case in the setting where C

is invertible (in which case {A,C} is automatically observable).
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Let E = Rq (i.e., we assume that the signal and observation state space dimen-
sions coincide). We consider a hidden Markov model of the form

Xt = X0 +
∫ t

0
b(Xs) ds +

∫ t

0
σ(Xs) dWs,

Yt =
∫ t

0
h(Xs) ds + DVt,

where Wt and Vt are independent p- and r-dimensional Wiener processes, respec-
tively, and D ∈ Rq×r , b : Rq → Rq , σ : Rq → Rq×p , h : Rq → Rq . In addition, we
assume that the following conditions hold:

1. b is globally Lipschitz continuous;
2. σ is globally Lipschitz continuous and bounded;
3. h(x) = Cx + h0(x), where C is an invertible matrix and ‖C−1h0‖L < 1.

Note that under these conditions it is well known that the martingale problem for
(X,Y ) has a unique solution, so that our model is well defined.

The proof of the following result can be found in Section 5.

THEOREM 3.9. The filtering model in this section is uniformly observable.

The required form of the observation function h may seem a little odd; however,
the proof of Theorem 3.9 shows that this is a natural choice. To gain a little more
insight into this condition, we prove the following lemma.

LEMMA 3.10. Any function h(x) = Cx + h0(x), where C is invertible and
‖C−1h0‖L < 1, is bi-Lipschitz, that is, there exist 0 < m < M < ∞ such that

m‖x − y‖ ≤ ‖h(x) − h(y)‖ ≤ M‖x − y‖ for all x, y ∈ Rq.

Conversely, if q = 1 and h is a bi-Lipschitz function, then h(x) = Cx + h0(x) for
some 0 < C < ∞ and Lipschitz function h0 with ‖C−1h0‖L < 1.

PROOF. Suppose that h(x) = Cx +h0(x), where C is an invertible matrix and
‖C−1h0‖L < 1. Clearly M := ‖h‖L < ∞. Moreover, we can estimate

‖x − y‖ ≤ ‖C−1h(x) − C−1h(y)‖ + ‖C−1h0(x) − C−1h0(y)‖
≤ ‖C−1‖‖h(x) − h(y)‖ + ‖C−1h0‖L‖x − y‖.

As ‖C−1h0‖L < 1, we may set m := (1 − ‖C−1h0‖L)/‖C−1‖.
Conversely, let q = 1 and suppose that h is bi-Lipschitz with constants m < M .

Then in particular h : R → R is a continuous bijection, so that it is either strictly
increasing or strictly decreasing. Define C := (M + m)/2 if h is increasing and
C := −(M + m)/2 if h is decreasing. Then for any x > y, we evidently have

(1 − ε)(x − y) ≤ C−1h(x) − C−1h(y) ≤ (1 + ε)(x − y),



UNIFORM OBSERVABILITY AND FILTER STABILITY 1185

where ε := (M − m)/(M + m). In particular,

|C−1h(x) − x − (C−1h(y) − y)|
|x − y| ≤ ε for all x > y.

This estimate consequently holds for all x, y ∈ R by symmetry. The result now
follows by noting that h0(x) := h(x) − Cx satisfies ‖C−1h0‖L ≤ ε < 1. �

Using Lemma 3.10 we find that when the signal state space is the real line, the
filtering model of the present section is uniformly observable whenever the obser-
vation function h is a Lipschitz bijection with Lipschitz inverse (i.e., bi-Lipschitz).
In higher dimensions the condition h(x) = Cx + h0(x) is stronger than the bi-
Lipschitz condition, and enforces the idea that h(x) cannot be “too nonlinear.”

Intuitively, one might well expect that for additive noise observation models
with a strongly invertible observation function h, the filter would be stable under
only mild conditions on the signal process. This is certainly the spirit of Theo-
rem 3.9, but the requirement on h and the assumptions on the signal (i.e., that
it is a diffusion) are somewhat stronger than one might expect to be necessary.
Following the approach used in the proof of Theorem 3.9, the author did not suc-
ceed in weakening the requirements of that result. For comparison, however, let us
briefly discuss a related problem in discrete time where a very general result may
be obtained.

Let E = Rq , and let P : Rq × B(Rq) → [0,1] be a given transition probability
kernel. On the sequence space EZ+ × FZ+ with the canonical coordinate projec-
tions Xn(x, y) = x(n), Yn(x, y) = y(n), we define the family of probability mea-
sures Pμ, μ ∈ P(Rq) such that (Xn)n≥0 is a Markov chain with initial measure
X0 ∼ μ and transition probability P , and such that Yn = h(Xn) + ξn for every
n ≥ 0 where ξn is an i.i.d. sequence independent of (Xn)n≥0. We now define for
every μ ∈ P(Rq) the regular conditional probabilities

πμ
n (·) := Pμ(Xn+1 ∈ ·|Y0, . . . , Yn), n ≥ 0.

In other words, π
μ
n is the one step predictor of the signal given the observations.

In the present setting, the following result holds without further assumptions.

PROPOSITION 3.11. Suppose that the following hold:

1. h possesses a uniformly continuous inverse; and
2. the characteristic function of ξ0 vanishes nowhere.

Then ‖πμ
n − πν

n‖BL
n→∞−−−→ 0, Pμ-a.s. whenever Pμ|σ {(Yk)k≥0} � Pν |σ {(Yk)k≥0}.

PROOF. Let μ,ν ∈ P(Rq) satisfy Pμ|σ {(Yk)k≥0} � Pν |σ {(Yk)k≥0}, and let ξ ∈
P(Rq) be the law of ξ0. It is easily verified that for any ρ ∈ P(Rq)

Pρ(Yn+1 ∈ ·|Y0, . . . , Yn) = πρ
n h−1 ∗ ξ.
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The classical result of Blackwell and Dubins [2], Section 2, shows that

‖πμ
n h−1 ∗ ξ − πν

nh−1 ∗ ξ‖TV
n→∞−−−→ 0, Pμ-a.s.

We therefore obtain by Proposition C.2

‖πμ
n h−1 − πν

nh−1‖BL
n→∞−−−→ 0, Pμ-a.s.

As the bounded-Lipschitz functions are uniformly dense in Ub(R
q) [12], Lemma 8,

|πμ
n (f ◦ h) − πν

n (f ◦ h)| n→∞−−−→ 0 for all f ∈ Ub(R
q), Pμ-a.s.,

where the Pμ-exceptional set does not depend on f . But h has a uniformly con-
tinuous inverse, so any function in Ub(R

q) can be written as f ◦ h for some
f ∈ Ub(R

q). The result now follows from Corollary B.4. �

It should be noted, in particular, that this result places no conditions whatsoever
on the signal process Xn except the Markov property. However, this result is a
statement about the one step predictor and not about the filter. In continuous time,
one can obtain filtered estimates at time t by taking the limit of predictive esti-
mates over the time interval [t, t + δ] as δ ↘ 0. The chief difficulty in the proof of
Theorem 3.9 is to show that the limits as δ ↘ 0 and t → ∞ can be interchanged.

4. Proof of Theorem 3.3. In the following, we denote by FY the family

FY = span{f1(Yt1 − Y0) · · ·fk(Ytk − Y0) :

f1, . . . , fk ∈ B(Rq), t1, . . . , tk ∈ [0,∞[, k ∈ N}
of G̃Y -measurable cylindrical random variables. Before we turn to the proof of
Theorem 3.3, we introduce two elementary lemmas.

LEMMA 4.1. There is a countable HY ⊂ FY , suph∈HY‖h‖∞ ≤ 1 so that

‖Pμ|F Y − Pν |F Y ‖TV = sup
h∈HY

∣∣∣∣
∫

hdPμ −
∫

hdPν

∣∣∣∣ for all μ,ν ∈ P(E).

PROOF. Note that for any μ ∈ P(E), the σ -fields F Y and G̃Y coincide Pμ-a.s.
By [15], Proposition 3.7.1, we have G̃Y = ∨

k≥0 G̃Y,k where

G̃Y,k = σ {Y2−k − Y0 : = 1, . . . ,4k}.
Choose a countable dense set {xp} ⊂ Rq , and consider the countable collection of
open balls Bp,m = {x ∈ Rq : |x − xp| < 1/m}. Then G̃Y,k = ∨

n≥0 G̃Y,k,n with

G̃Y,k,n = σ {Y2−k − Y0 ∈ Bp,m
:p,m = 1, . . . , n,  = 1, . . . ,4k}.
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Now note that every G̃Y,k,n consists of a finite number of sets in G̃Y , and for
every A ∈ G̃Y,k,n the indicator function IA ∈ FY . But G̃Y,k,n ↗ G̃Y,k as n → ∞
and G̃Y,k ↗ G̃Y as k → ∞, so that we can evidently estimate

‖Pμ|F Y − Pν |F Y ‖TV = ‖Pμ|G̃Y − Pν |G̃Y ‖TV

= 2 lim
k→∞ lim

n→∞ max
A∈G̃Y,k,n

|Pμ(A) − Pν(A)|

≤ sup
h∈HY

∣∣∣∣
∫

hdPμ −
∫

hdPν

∣∣∣∣,
where we have defined the countable family HY ⊂ FY as

HY = ⋃
k,n∈N

{IA − IAc :A ∈ G̃Y,k,n}.

On the other hand, the reverse inequality is immediate. �

We will also need the following.

LEMMA 4.2. For any ξ ∈ FY , μ ∈ P(E) and t ∈ [0,∞[, we have

Eμ(ξ ◦ θt |F Y
t ) = Eπ

μ
t (ξ), Pμ-a.s.

PROOF. By the Markov additive property of our model,

Eμ(
f (Ys+t − Yt )|Ft

) = Eμ(
f (Ys+t − y)|Ft

)|y=Yt

= TsSyf (Xt , Yt )|y=Yt = Tsf (Xt ,0) = EδXt
(
f (Ys − Y0)

)
.

Along the same lines Eμ(ξ ◦ θt |Ft ) = EδXt (ξ) for any ξ ∈ FY . Therefore

Eμ(ξ ◦ θt |F Y
t ) = Eμ(EδXt (ξ)|F Y

t ) =
∫

Eδx (ξ)π
μ
t (dx) = Eπ

μ
t (ξ)

by the tower property of the conditional expectation, and the result follows. �

We now turn to the proof of Theorem 3.3. We assume throughout the proof that
Pμ|F Y � Pν |F Y , so that in particular both π

μ
t and πν

t are defined uniquely Pμ-a.s.

PROOF OF THEOREM 3.3. Let ξ ∈ HY ; then we have

|Eπ
μ
t (ξ) − Eπν

t (ξ)| = |Eν((� − Eν(�|F Y
t ))ξ ◦ θt |F Y

t )|
Eν(�|F Y

t )
, Pμ-a.s.

by Lemma 4.2 and the Bayes formula, where � := dPμ|F Y /dPν |F Y . But HY is
countable and supξ∈HY ‖ξ‖∞ ≤ 1, so we can evidently estimate

sup
ξ∈HY

|Eπ
μ
t (ξ) − Eπν

t (ξ)| ≤ Eν(Mt |F Y
t )

Eν(�|F Y
t )

for all t ∈ Q+, Pμ-a.s.,
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where Mt := |� − Eν(�|F Y
t )|. It should be noted that as Pμ|F Y � Pν |F Y , all the

preceding quantities are Pμ|F Y -a.s. uniquely defined and we have implicitly taken
only countable intersections of sets of full measure (as HY and Q+ are countable).

We now claim that Eν(Mt |F Y
t ) → 0 Pν -a.s. as t → ∞ along the rationals

t ∈ Q+. To see this, define Mk
t := |�I�≤k − Eν(�I�≤k|F Y

t )|, and note that

Mt ≤ Mk
t + �I�>k + Eν(�I�>k|F Y

t ) for all t ∈ Q+, k ∈ N, Pν-a.s.

Therefore we obtain, using that trivially 2�I�>k → 0 as k → ∞ Pν -a.s.,

lim sup
t→∞,t∈Q+

Eν(Mt |F Y
t ) ≤ lim sup

k→∞
lim sup

t→∞,t∈Q+
Eν(Mk

t |F Y
t ), Pν-a.s.

But as by construction Pν-a.s. Mk
t ≤ k for all t ∈ Q+, k ∈ N and as Pν -a.s.

lim supt→∞,t∈Q+ Mk
t = 0 for all k ∈ N by martingale convergence, we have

lim sup
t→∞,t∈Q+

Eν(Mk
t |F Y

t ) ≤ lim sup
n→∞

lim sup
t→∞,t∈Q+

Eν

(
sup
s≥n

s∈Q+

Mk
s |F Y

t

)
= 0, Pν-a.s.

As by construction � > 0 Pμ-a.s., we have evidently established that

sup
ξ∈HY

|Eπ
μ
t (ξ) − Eπν

t (ξ)| t→∞−−−→
t∈Q+

0, Pμ-a.s.

Denote by �0 ⊂ � a set of Pμ-full measure on which this convergence holds. Then∥∥Pπμ(tk,ω,·)|F Y − Pπν(tk,ω,·)|F Y

∥∥
TV

k→∞−−−→ 0

for every ω ∈ �0 and every subsequence {tk} ⊂ Q+ such that tk ↗ ∞. As the
model is presumed to be G-uniformly observable, this implies that

‖πμ(tk,ω, ·) − πν(tk,ω, ·)‖G

k→∞−−−→ 0

for every ω ∈ �0 and every subsequence {tk} ⊂ Q+ such that tk ↗ ∞. But as G

is uniformly bounded and equicontinuous and as πμ(t,ω, ·) and πν(t,ω, ·) are
càdlàg in the topology of P(E) by Lemma 2.3, it follows from [23], Theo-
rem II.6.8, that t �→ ‖πμ

t − πν
t ‖G is càdlàg. We therefore obtain

‖πμ(t,ω, ·) − πν(t,ω, ·)‖G

t→∞−−−→ 0 for all ω ∈ �0.

This completes the proof. �

5. Proof of Theorem 3.9. In the proof of Theorem 3.9 we will make essential
use of the flow generated by the deterministic part of the signal process: define
ηt (x), for every x ∈ Rq , as the solution of the ordinary differential equation

ηt (x) = x +
∫ t

0
b(ηs(x)) ds.

Existence and uniqueness follows from the global Lipschitz property of b.
The special form of h is essential, as it allows us to establish the following.
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LEMMA 5.1. Let h(x) = Cx + h0(x), where C is an invertible matrix and
‖C−1h0‖L < 1. Then there exist constants ε0 > 0 and m,M > 0 such that

m‖x − y‖ ≤
∥∥∥∥1

ε

∫ ε

0
h(ηs(x)) ds − 1

ε

∫ ε

0
h(ηs(y)) ds

∥∥∥∥ ≤ M‖x − y‖

for every ε < ε0 and x, y ∈ Rq .

PROOF. Let us define

Hε(x) := 1

ε

∫ ε

0
h(ηs(x)) ds

and note that we can write

C−1Hε(x) = 1

ε

∫ ε

0
ηs(x) ds + 1

ε

∫ ε

0
C−1h0(ηs(x)) ds.

We now estimate as follows.

‖x − y‖ ≤ ‖C−1Hε(x) − C−1Hε(y)‖ + ‖C−1Hε(x) − C−1Hε(y) − (x − y)‖
≤ ‖C−1Hε(x) − C−1Hε(y)‖ + 1

ε

∫ ε

0
‖ηs(x) − ηs(y) − (x − y)‖ds

+ 1

ε

∫ ε

0
‖C−1h0(ηs(x)) − C−1h0(ηs(y))‖ds

≤ ‖C−1‖‖Hε(x) − Hε(y)‖ + 1

ε

∫ ε

0

∫ s

0
‖b(ηr(x)) − b(ηr(y))‖dr ds

+ ‖C−1h0‖L

1

ε

∫ ε

0
‖ηs(x) − ηs(y)‖ds

≤ ‖C−1‖‖Hε(x) − Hε(y)‖
+ (‖C−1h0‖L + ‖b‖Lε/2) sup

s<ε
‖ηs(x) − ηs(y)‖.

But note that

‖ηs(x) − ηs(y)‖ ≤ ‖x − y‖ + ‖b‖L

∫ s

0
‖ηr(x) − ηr(y)‖dr,

so that by Gronwall’s lemma

sup
s<ε

‖ηs(x) − ηs(y)‖ ≤ e‖b‖Lε‖x − y‖.

We therefore find that for all x, y ∈ Rq and ε > 0

1 − ‖C−1h0‖Le‖b‖Lε − ‖b‖Lεe‖b‖Lε/2

‖C−1‖ ‖x − y‖ ≤ ‖Hε(x) − Hε(y)‖.
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But evidently

1 − ‖C−1h0‖Le‖b‖Lε − ‖b‖Lεe‖b‖Lε/2

‖C−1‖ ↗ 1 − ‖C−1h0‖L

‖C−1‖ > 0 as ε ↘ 0.

This establishes the lower bound. For the upper bound, note that

‖Hε(x) − Hε(y)‖ ≤ 1

ε

∫ ε

0
‖h(ηs(x)) − h(ηs(y))‖ds

≤ ‖h‖L sup
s≤ε

‖ηs(x) − ηs(y)‖ ≤ ‖h‖Le‖b‖Lε‖x − y‖.

The proof is complete. �

The following lemma is used to reduce the proof of Theorem 3.9 to the study of
the deterministic part ηt (x), rather than working with the fully stochastic signal Xt .
It is here that the boundedness of the diffusion coefficient σ is used.

LEMMA 5.2. Provided that σ is bounded, we have

sup
s≤t

sup
μ∈P(Rq )

Eμ(‖Xs − ηs(X0)‖) t→0−−−→ 0.

PROOF. For every x ∈ Rq , let ξt (x) be the solution of

ξt (x) = x +
∫ t

0
b(ξs(x)) ds +

∫ t

0
σ(ξs(x)) dWs.

By the global Lipschitz property of the coefficients, the solution is uniquely defined
and is square integrable for every x ∈ Rq . We therefore obtain using Itô’s rule

E
(‖ξt (x) − ηt (x)‖2)

= E
[∫ t

0
{2〈ξs(x) − ηs(x), b(ξs(x)) − b(ηs(x))〉 + a(ξs(x))}ds

]
,

where a(x) = Tr[σ(x)∗σ(x)]. Note that as we have assumed that σ is uniformly
bounded, a(x) is also uniformly bounded a(x) ≤ K < ∞. Therefore

E
(‖ξt (x) − ηt (x)‖2) ≤ Kt + 2‖b‖L

∫ t

0
E

(‖ξs(x) − ηs(x)‖2)
ds.

By Gronwall’s lemma, we obtain for every T < ∞ and x ∈ Rq

sup
t≤T

E
(‖ξt (x) − ηt (x)‖2) ≤ KT e2‖b‖LT .

By Jensen’s inequality, we find that for every T < ∞
sup
t≤T

sup
x∈Rq

E
(‖ξt (x) − ηt (x)‖) ≤ e‖b‖LT

√
KT .
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It remains to note that

sup
μ∈P(Rq )

Eμ(‖Xt − ηt (X0)‖) = sup
μ∈P(Rq )

∫
Eδx

(‖Xt − ηt (X0)‖)
μ(dx)

= sup
x∈Rq

Eδx
(‖Xt − ηt (X0)‖)

= sup
x∈Rq

E
(‖ξt (x) − ηt (x)‖)

.

The proof is complete. �

We can now proceed with the proof of Theorem 3.9.

PROOF OF THEOREM 3.9. Let us fix two sequences {μn}, {νn} ⊂ P(Rq) so
that ‖Pμn |F Y − Pνn |F Y ‖TV → 0, a constant α > 0, and a function f ∈ Lip(Rq). In
the following ε0,m,M > 0 are as defined in Lemma 5.1, and we define

Hε(x) := 1

ε

∫ ε

0
h(ηs(x)) ds, H̃ε := 1

ε

∫ ε

0
h(Xs) ds.

By Lemma 5.2, we may choose ε < ε0 such that

sup
s≤ε

sup
μ∈P(Rq )

Eμ(‖Xs − ηs(X0)‖)
< α.

By Lemma 5.1, there is an unbounded-Lipschitz function gε , with ‖gε‖L ≤ m−1,
such that gε(Hε(x)) = x for all x ∈ Rq . In particular, we have for all n ∈ N∣∣∣∣

∫
f dμn −

∫
f dνn

∣∣∣∣ = |Eμn(fε(Hε(X0))) − Eνn(fε(Hε(X0)))|,
where we have written fε := f ◦ gε . Now note that

sup
μ∈P(Rq )

|Eμ(fε(Hε(X0))) − Eμ(fε(H̃ε))|

≤ ‖fε‖L‖h‖L

1

ε

∫ ε

0
sup

μ∈P(Rq )

Eμ(‖Xs − ηs(X0)‖)
ds < ‖h‖Lm−1α.

Therefore, we have for all n ∈ N∣∣∣∣
∫

f dμn −
∫

f dνn

∣∣∣∣ ≤ 2‖h‖Lm−1α + |Eμn(fε(H̃ε)) − Eνn(fε(H̃ε))|.
To proceed, note that

Yε

ε
= H̃ε + DVε

ε
.

As DVε/ε is Gaussian, its characteristic function vanishes nowhere. Therefore,
using that fε ∈ Ub(R

q) and Proposition C.1, we may choose uε ∈ Ub(R
q) so that

sup
μ∈P(Rq )

|Eμ(fε(H̃ε)) − Eμ(uε(Yε/ε))| < α.
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We thus obtain for every n ∈ N∣∣∣∣
∫

f dμn −
∫

f dνn

∣∣∣∣ ≤ 2α(1 + ‖h‖Lm−1) + |Eμn(uε(Yε/ε)) − Eνn(uε(Yε/ε))|.
But as ‖Pμn |F Y − Pνn |F Y ‖TV → 0, we evidently have

lim sup
n→∞

∣∣∣∣
∫

f dμn −
∫

f dνn

∣∣∣∣ ≤ 2α(1 + ‖h‖Lm−1).

Now note that α > 0 and f ∈ Lip(Rq) were arbitrary, so evidently∣∣∣∣
∫

f dμn −
∫

f dνn

∣∣∣∣ n→∞−−−→ 0 for all f ∈ Lip(Rq).

The result follows from Corollary B.4. �

APPENDIX A: MEASURABILITY OF PROBABILITY DISTANCES

The goal of this appendix is to prove that the distance ‖μ − ν‖G between two
probability kernels μ,ν is measurable, provided that the family G ⊂ Cb(S) is cho-
sen appropriately. To this end we prove the following lemma.

LEMMA A.1. Let G ⊂ Cb(S) be uniformly bounded and equicontinuous.
Then there is a countable collection {gn :n ∈ N} ⊂ G such that

‖μ − ν‖G = sup
n

∣∣∣∣
∫

gn dμ −
∫

gn dν

∣∣∣∣ for all μ,ν ∈ P(S).

PROOF. P(S) is Polish, so there is a countable dense subset {μn :n ∈ N} ⊂
P(S). As any probability measure on a Polish space is tight, we can find for
every n,m,p ∈ N a compact set Kn,m,p ⊂ S such that μn(Kn,m,p) > 1 − 1/p and
μm(Kn,m,p) > 1 − 1/p. Let us write Gn,m,p = {f |Kn,m,p :f ∈ G} ⊂ Cb(Kn,m,p).
By the Arzelà–Ascoli theorem the family Gn,m,p is compact, and thus a forteri-
ori separable, in the topology of uniform convergence. Therefore, we can find for
every n,m,p ∈ N a countable family {gn,m,p

k :k ∈ N} ⊂ G such that

∀n,m,p ∈ N, g ∈ G,ε > 0, ∃k ∈ N s.t. sup
x∈Kn,m,p

|g(x) − g
n,m,p
k (x)| < ε.

We claim that the countable family G′ = {gn,m,p
k :n,m,p, k ∈ N} ⊂ G satisfies

‖μ − ν‖G = sup
g∈G′

∣∣∣∣
∫

g dμ −
∫

g dν

∣∣∣∣ := ‖μ − ν‖G′ for all μ,ν ∈ P(S).

Of course, the inequality ‖μ− ν‖G′ ≤ ‖μ− ν‖G is trivial as G′ ⊂ G, so it suffices
to prove that for every μ,ν ∈ P(S) there is a sequence {h : ∈ N} ⊂ G′ such that
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|μ(h) − ν(h)| → ‖μ − ν‖G. To this end, let us fix μ,ν ∈ P(S), and choose a
sequence {h′

 : ∈ N} ⊂ G such that |μ(h′
) − ν(h′

)| → ‖μ − ν‖G. Note that∣∣|μ(h′
) − ν(h′

)| − |μ(h) − ν(h)|
∣∣ ≤ |μ(h′

) − μ(h)| + |ν(h′
) − ν(h)|

by the reverse triangle inequality, so it suffices to find a sequence {h : ∈ N} ⊂ G′
such that |μ(h′

) − μ(h)| → 0 and |ν(h′
) − ν(h)| → 0. Fix  ∈ N. By [23],

Theorem II.6.8, we can choose n,m ∈ N such that ‖μn − μ‖G < 1/ and ‖μm −
ν‖G < 1/. Choose k ∈ N such that supx∈Kn,m,

|h′
(x) − g

n,m,
k (x)| < 1/, and set

h = g
n,m,
k . Then we can estimate as follows:

|μ(h′
) − μ(h)| ≤ |μ(h′

) − μn(h
′
)| + |μn(h

′
) − μn(h)|

≤ ‖μn − μ‖G +
∣∣∣∣
∫
Kn,m,

(h′
 − h) dμn

∣∣∣∣ +
∣∣∣∣
∫
Kc

n,m,

(h′
 − h) dμn

∣∣∣∣
≤ ‖μn − μ‖G + sup

x∈Kn,m,

|h′
(x) − h(x)|

+ 2 sup
g∈G

‖g‖∞μn(K
c
n,m,)

≤ 2



(
1 + sup

g∈G

‖g‖∞
)
,

where Kc denotes the complement of a set K . The identical bound is found for
|ν(h′

) − ν(h)|. Repeating the procedure for every  ∈ N, we evidently construct
a sequence {h} with the desired properties. This completes the proof. �

This result will be used in the following fashion.

COROLLARY A.2. Let (�,F ) be a measurable space and let μ :� ×
B(S) → [0,1] and ν :� × B(S) → [0,1] be probability kernels. Moreover, let
G ⊂ Cb(S) be uniformly bounded and equicontinuous. Then ‖μ − ν‖G is a ran-
dom variable [i.e., the map ω �→ ‖μ(ω, ·) − ν(ω, ·)‖G is measurable].

PROOF. Immediate from the previous lemma. �

Corollary A.2 is used implicitly throughout the paper without further comment.

APPENDIX B: MERGING OF PROBABILITY MEASURES

It is well known that a sequence of probability measures {μn} ⊂ P(S) converges
weakly to μ ∈ P(S) if and only if ‖μn − μ‖BL → 0 [13], Theorem 11.3.3. In par-
ticular, as the class of bounded-Lipschitz functions is uniformly dense in Ub(S), it
follows that if μn(f ) → μ(f ) for all f ∈ Lip(S) then ‖μn −μ‖BL → 0. This is in
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some sense surprising; evidently the convergence of the expectation of every func-
tion f ∈ Lip(S) separately already implies that this convergence holds uniformly
over Lip(S), without any further assumptions.

The purpose of this appendix is to show that a similar statement holds for the
merging of two sequences of probability measures. This result was already proved
in [22] and in [7], Section 6, for probability measures on any Polish space. We
provide here an alternative and much simpler proof, which is however restricted to
probability measures on Rd . In this paper only the latter will be needed.

PROPOSITION B.1. Let {μn}, {νn} ⊂ P(Rd) satisfy∣∣∣∣
∫

f dμn −
∫

f dνn

∣∣∣∣ n→∞−−−→ 0 for all f ∈ Lip(Rd).

Moreover, let G ⊂ Ub(R
d) be a uniformly bounded and uniformly equicontinuous

family of functions. Then ‖μn − νn‖G

n→∞−−−→ 0.

The proof is based on the following well-known result from Banach space the-
ory, which states in essence that the claim is true for probability measures on N

(rather than Rd ). An elementary proof can be found in [1], Theorem 4.32.

LEMMA B.2 (Schur property of 1). A sequence in 1 converges in the weak
topology if and only if it converges in the norm topology.

REMARK B.3. Note that this result only holds for sequences. Indeed, it can
not hold for nets, as that would imply that the weak and norm topologies coincide.

We now turn to the proof of Proposition B.1. The basic idea is to reduce to the
setting of Lemma B.2 by introducing a partition of unity.

PROOF OF PROPOSITION B.1. For every α > 0, define the countable family of
functions V α = {x �→ ϕk1(αx1) · · ·ϕkd

(αxd) : (k1, . . . , kd) ∈ Zd} ⊂ Ub(R
d), where

ϕk(x) = cos2(π(x − k)/2)I|x−k|≤1. The following facts are easily verified:

1. 0 ≤ ϕ(x) ≤ 1 for all ϕ ∈ V α ;
2. For every x ∈ R, at most N elements of ϕ ∈ V α satisfy ϕ(x) > 0 (where N ∈ N

depends only on the state space dimension d);
3. For every x ∈ Rd , we have

∑
ϕ∈V α ϕ(x) = 1;

4. supϕ∈V α ‖ϕ‖L < ∞ (i.e., V α is equilipschitzian).

Thus V α is a partition of unity of Rd with some additional uniformity properties
(which will be important in the following).

Fix ε > 0. As G is uniformly equicontinuous, there exists a δ > 0 such that
‖x − y‖ ≤ δ implies |g(x) − g(y)| ≤ ε for all g ∈ G. Choose α large enough so
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that every element of V α is supported inside a ball of radius δ. Moreover, choose
for every ϕ ∈ V α an arbitrary point xϕ ∈ Rd in the support of ϕ. Then

‖μn − νn‖G = sup
g∈G

∣∣∣∣ ∑
ϕ∈V α

∫
gϕ dμn − ∑

ϕ∈V α

∫
gϕ dνn

∣∣∣∣
≤ sup

g∈G

∑
ϕ∈V α

∣∣∣∣
∫

gϕ dμn −
∫

gϕ dνn

∣∣∣∣
≤ sup

g∈G

∑
ϕ∈V α

{∣∣∣∣
∫ (

g − g(xϕ)
)
ϕ dμn

∣∣∣∣ +
∣∣∣∣
∫ (

g − g(xϕ)
)
ϕ dνn

∣∣∣∣
}

+ sup
g∈G

∑
ϕ∈V α

{
|g(xϕ)|

∣∣∣∣
∫

ϕ dμn −
∫

ϕ dνn

∣∣∣∣
}

≤ 2ε + sup
g∈G

‖g‖∞
∑

ϕ∈V α

∣∣∣∣
∫

ϕ dμn −
∫

ϕ dνn

∣∣∣∣.
Suppose that we can show that for any α > 0∑

ϕ∈V α

∣∣∣∣
∫

ϕ dμn −
∫

ϕ dνn

∣∣∣∣ n→∞−−−→ 0.

Then the result follows as ε > 0 was arbitrary.
Now note that V α is countable, so it may be ordered as V α = {χk :k ∈ N}. For

any finite signed measure ρ, the sequence (ρ(χk))k∈N ∈ 1. We must establish that
(μn(χk)−νn(χk))k∈N converges to zero in the 1-norm. Therefore, by Lemma B.2,
it suffices to prove that this convergence holds in the weak topology. In particular,
define for every z ∈ ∞ the function fz := ∑

k zkχk . Then it suffices to show that∣∣∣∣
∫

fz dμn −
∫

fz dνn

∣∣∣∣ n→∞−−−→ 0 for every z ∈ ∞.

By our assumptions this is the case if ‖fz‖∞ < ∞ and ‖fz‖L < ∞. But this holds
for any z ∈ ∞; indeed, it is easily seen from the properties of V α that ‖fz‖∞ ≤
‖z‖∞ and ‖fz‖L ≤ 2N‖z‖∞ supϕ∈V α ‖ϕ‖L. This completes the proof. �

The following corollary is immediate.

COROLLARY B.4. For {μn}, {νn} ⊂ P(Rd), the following are equivalent:

1. | ∫ f dμn − ∫
f dνn| → 0 as n → ∞ for every f ∈ Lip(Rd);

2. ‖μn − νn‖BL → 0 as n → ∞.

It should be noted that for sequences of probability measures in P(K), where K

is a compact Polish space, the same results can be proved in a completely ele-
mentary fashion; indeed, in this case any uniformly bounded and equicontinuous
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family G ⊂ Cb(K) is compact in the topology of uniform convergence (by the
Arzelà–Ascoli theorem), so that it can be covered by a finite number of arbitrarily
small balls. The previous results then follow from elementary arguments. When
the state space is not compact, however, the result is far from obvious and relies
heavily on the (elementary but nontrivial) Schur property of 1.

APPENDIX C: UNIFORM APPROXIMATION AND CONVOLUTION

In order to verify uniform observability for additive noise observation models,
the following result is of central importance. Though the result seems to be of
independent interest—it states that the range of a convolution operator on Ub(R

d)

is uniformly dense in Ub(R
d) under a mild condition—the author was not able to

find a statement or proof of this result in the literature.

PROPOSITION C.1. Suppose that the characteristic function of the probability
measure μ ∈ P(Rd) vanishes nowhere. Then the family {f ∗ μ :f ∈ Ub(R

d)} ⊂
Ub(R

d) is dense in Ub(R
d) in the topology of uniform convergence.

The difficulty here is that we seek uniform density of functions on a noncompact
space; as the Banach space dual Ub(R

d)∗ contains elements which are not count-
ably additive, this precludes the routine application of the Hahn–Banach theorem
(see [14] for related results). We circumvent this problem by using the elemen-
tary properties of convolutions to “push” the approximation problem into L1(Rd),
where standard approximation results are readily available.

PROOF OF PROPOSITION C.1. We first collect some well-known facts about
convolutions. Let ϕ ∈ L1(Rd) be any function such that

∫
ϕ(x)dx = 1. Define

ϕt(x) = t−dϕ(t−1x). Then by [16], Theorem 8.14, we have ‖f ∗ ϕt − f ‖∞ → 0
as t → 0 for any f ∈ Ub(R

d). Moreover, for f ∈ Ub(R
d) and � ∈ L1(Rd), we have

by [16], Proposition 8.8, that ‖f ∗�‖∞ ≤ ‖f ‖∞‖�‖1 and f ∗� ∈ Ub(R
d). Finally,

if � ∈ L1(Rd) and ν ∈ P(Rd), then � ∗ ν ∈ L1(Rd) by [16], Proposition 8.49.
Fix ϕ ∈ L1(Rd) as above and let f ∈ Ub(R

d) and k ∈ N. Then we may choose
t > 0 such that ‖f ∗ ϕt − f ‖∞ ≤ k−1. Now suppose that we can find a function
�k ∈ L1(Rd) such that ‖ϕt − �k ∗ μ‖1 ≤ k−1. Then we can evidently estimate

‖f −f ∗ (�k ∗μ)‖∞ ≤ ‖f −f ∗ϕt‖∞ +‖f ‖∞‖ϕt −�k ∗μ‖1 ≤ k−1(1+‖f ‖∞).

But note that f ∗ (�k ∗ μ) = (f ∗ �k) ∗ μ and gk := f ∗ �k ∈ Ub(R
d). Repeating

the procedure for every k ∈ N, we find a sequence {gk} ⊂ Ub(R
d) such that ‖f −

gk ∗ μ‖∞ → 0. As the function f ∈ Ub(R
d) was arbitrary, the result follows.

It thus remains to show that for every t > 0 and k ∈ N, we can find a function
� ∈ L1(Rd) such that ‖ϕt − � ∗ μ‖1 ≤ k−1. It suffices to show that the family
{� ∗ μ :� ∈ L1(Rd)} ⊂ L1(Rd) is dense in L1(Rd). To this end, consider

T � := span{x �→ �(x − a) :a ∈ Rd} ⊂ L1(Rd), �(x) := e−‖x‖2/2.
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Evidently {� ∗ μ :� ∈ T �} is the span of all translates of the function � ∗ μ. But
the Fourier transform (� ∗ μ)∧ = �∧μ∧ vanishes nowhere, so {� ∗ μ :� ∈ T �} is
dense in L1(Rd) by the Wiener Tauberian theorem [25], Theorem 9.5. �

As an application, we prove the following result.

PROPOSITION C.2. Let {μn}, {νn} ⊂ P(Rd), and let ξ ∈ P(Rd) be a proba-
bility measure whose characteristic function vanishes nowhere. Then

‖μn ∗ ξ − νn ∗ ξ‖BL
n→∞−−−→ 0 if and only if ‖μn − νn‖BL

n→∞−−−→ 0.

In other words, if ξ is a probability measure whose characteristic function
vanishes nowhere, then the convolution operator Cξ :P(Rd) → P(Rd) defined
as Cξμ = μ ∗ ξ is uniformly continuous, injective and the inverse operator
Cξ

−1 : RanCξ → P(Rd) is uniformly continuous (relative to the ‖ · ‖BL-norm).

PROOF OF PROPOSITION C.2. Denote by ξ̄ the reflected probability measure
defined by ∫

f (x)ξ̄ (dx) =
∫

f (−x)ξ(dx) for all f ∈ B(Rd).

Clearly the characteristic function of ξ̄ vanishes nowhere. Now note that we obtain
for any probability measure μ ∈ P(Rd) the identity∫

f (x)(μ ∗ ξ)(dx) =
∫

(f ∗ ξ̄ )(x)μ(dx) for all f ∈ B(Rd).

Moreover, it is easily verified that f ∗ ξ̄ ∈ Ub(R
d) whenever f ∈ Ub(R

d).
Let us first suppose that ‖μn − νn‖BL → 0. Then∣∣∣∣

∫
f dμn −

∫
f dνn

∣∣∣∣ n→∞−−−→ 0 for all f ∈ Ub(R
d)

as the family of bounded-Lipschitz functions is dense in Ub(R
d) in the topology

of uniform convergence [12], Lemma 8. Therefore∣∣∣∣
∫

f d(μn ∗ ξ) −
∫

f d(νn ∗ ξ)

∣∣∣∣ =
∣∣∣∣
∫

(f ∗ ξ̄ ) dμn −
∫

(f ∗ ξ̄ ) dνn

∣∣∣∣ n→∞−−−→ 0

for every f ∈ Ub(R
d). That ‖μn ∗ ξ − νn ∗ ξ‖BL → 0 follows from Corollary B.4.

Conversely, let us suppose that ‖μn ∗ ξ − νn ∗ ξ‖BL → 0, so that∣∣∣∣
∫

f dμn −
∫

f dνn

∣∣∣∣ n→∞−−−→ 0, whenever f ∈ {g ∗ ξ̄ :g ∈ Ub(R
d)}.

By Proposition C.1, the family {g ∗ ξ̄ :g ∈ Ub(R
d)} is uniformly dense in Ub(R

d);
therefore this convergence holds for any f ∈ Ub(R

d). But then Corollary B.4 im-
plies that ‖μn − νn‖BL → 0, and the proof is complete. �
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