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SELLING A STOCK AT THE ULTIMATE MAXIMUM

BY JACQUES DU TOIT AND GORAN PESKIR

The University of Manchester

Assuming that the stock price Z = (Zt )0≤t≤T follows a geometric
Brownian motion with drift μ ∈ R and volatility σ > 0, and letting Mt =
max0≤s≤t Zs for t ∈ [0, T ], we consider the optimal prediction problems

V1 = inf
0≤τ≤T

E
(

MT

Zτ

)
and V2 = sup

0≤τ≤T

E
(

Zτ

MT

)
,

where the infimum and supremum are taken over all stopping times τ of Z.
We show that the following strategy is optimal in the first problem: if μ ≤ 0
stop immediately; if μ ∈ (0, σ 2) stop as soon as Mt/Zt hits a specified func-
tion of time; and if μ ≥ σ 2 wait until the final time T . By contrast we show
that the following strategy is optimal in the second problem: if μ ≤ σ 2/2
stop immediately, and if μ > σ 2/2 wait until the final time T . Both solutions
support and reinforce the widely held financial view that “one should sell bad
stocks and keep good ones.” The method of proof makes use of parabolic free-
boundary problems and local time–space calculus techniques. The resulting
inequalities are unusual and interesting in their own right as they involve the
future and as such have a predictive element.

1. Introduction. Imagine an investor who owns a stock which he wishes to
sell before time T > 0 so as to maximize his profit. The investor has to decide
when to sell the stock. Naturally, he would like to sell when the stock price is at
its maximal value over the interval [0, T ], but such a strategy is impractical since
this information is only known at time T . What the investor would like to do at
any time t ∈ [0, T ] is to use all the accumulated information to infer how close
the stock price is to the ultimate maximum, and based on this decide whether he
should sell or not. In the present paper we consider the question of predicting
the maximum when the stock follows a geometric Brownian motion. Following
the initial publication [5], this question has arisen independently within circles of
researchers and practitioners; however, all attempts at deriving a complete solution
have been unsuccessful until now. For other optimal prediction problems studied
to date we refer to [2–4, 9, 13, 14, 16] (see also [12], Chapter VIII).
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The purpose of the present paper is to present the solution to this problem. Let
Z = (Zt )0≤t≤T denote a stock price with drift μ ∈ R and volatility σ > 0 such
that

dZt = μZt dt + σZt dBt ,(1.1)

where B = (Bt )0≤t≤T is a standard Brownian motion. Setting

Mt = max
0≤s≤t

Zs(1.2)

for t ∈ [0, T ] we see that MT is the largest profit the investor could make from
the sale. It is clear that the investor’s selling strategy must be a stopping time
taking values in [0, T ]; however, for any such strategy τ there are several ways
of evaluating its performance. One could deem τ to be a “good” strategy if
the expected ratio E(MT /Zτ ) is small, or if the expected ratio E(Zτ /MT ) is
big. It could also be “good” if the expected weighted difference E(MT − Zτ )

p

is small for some p > 0, or indeed if the expected difference E|θ − τ | is
small where θ = inf{t ∈ [0, T ] | Zt = MT } denotes the time at which Z at-
tains its maximal value. Optimizing each of these performance measures over
all stopping times in [0, T ] will typically yield different results, and it is up
to the investor to decide which performance measure is most appropriate to
him.

In the present paper we will judge performance based on the ratio of MT to Zτ .
This formulation is very natural and has the effect of stripping away the monetary
value of the stock and focusing only on the underlying randomness. The ratio is
unitless (or dimensionless) meaning that expensive stocks and cheap stocks are
treated in the same way. However, here as well, one can examine either the ratio
MT /Zτ or the ratio Zτ/MT and there is no reason a priori to prefer either. This
leads to the optimal prediction problems

V1 = inf
0≤τ≤T

E
(

MT

Zτ

)
,(1.3)

V2 = sup
0≤τ≤T

E
(

Zτ

MT

)
,(1.4)

where the infimum and supremum are taken over all stopping times τ of Z. While
these two problem formulations have arisen independently within circles of re-
searchers and practitioners following [5], to the best of our knowledge the first
to record them in the present form was Shiryaev (see [13], page 488). Note that
V1 aims at penalizing small values of Zτ in relation to the size of MT , while V2
rewards large values of Zτ and represents the highest percentage of MT one can
attain with an adapted selling strategy. Since the two problems are so similar, one
would expect them to have similar solutions. It is therefore quite surprising to find
that the two solutions are very different for an important set of parameters.
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For the infimum formulation (1.3) the optimal strategy is as follows (Theo-
rem 1): if μ ≤ 0 stop immediately; if μ ∈ (0, σ 2) stop as soon as Mt/Zt hits a
specified function of time; and if μ ≥ σ 2 wait until the final time T . By contrast
(and quite unexpectedly) the supremum formulation (1.4) has the following so-
lution (Theorem 2): if μ ≤ σ 2/2 stop immediately, and if μ > σ 2/2 wait until
the final time T . This solution extends and reinforces a recent result by Shiryaev,
Xu and Zhou (presented at Sydney’s QMF conference in 2007) that when μ ≤ 0
in (1.4) it is optimal to stop immediately and when μ ≥ σ 2 it is optimal to wait
until the final time (see [15]). Apart from resolving the problem when μ ∈ (0, σ 2),
and revealing a “bang–bang” strategy at μ = σ 2/2 (see Remarks 1 and 2), our
proof is purely probabilistic.

Both formulations therefore reinforce the widely held financial view that one
should sell bad stocks and keep good ones; however, they disagree somewhat on
which stocks are “good.” It is also interesting that the infimum formulation (1.3)
has a more sophisticated strategy: dividing the maximum MT by the stock price Zτ

exposes and magnifies the small perturbations produced by the Brownian motion,
whereas dividing Zτ by MT effectively dampens them out. Both strategies are also
quite different from the optimal stopping time in [2] where a standard Brownian
motion with drift was considered.

The solution to the optimal prediction problem (1.3) is derived in Section 3,
and the solution to the optimal prediction problem (1.4) is derived in Section 4.
It is interesting to note that although the optimal stopping time in the latter case
is trivial, the proof nonetheless requires some effort [the case μ ∈ (0, σ 2/2) being
the most demanding]. The resulting inequalities (Theorems 2 and 3) are unusual
and interesting in their own right as they involve the future and as such have a
predictive element.

2. Formulation of the problem. We begin our exposition by formally intro-
ducing the setting and the problem to be studied. Let B = (Bt )0≤t≤T be a standard
Brownian motion defined on the probability space (�,F ,P), and for any μ ∈ R

and σ > 0, let Z = (Zt )0≤t≤T be the unique strong solution to the stochastic dif-
ferential equation

dZt = μZt dt + σZt dBt ,(2.1)

where the initial value Z0 > 0 is taken to be independent from B . It is well known
that Z defines a geometric Brownian motion which is given by

Zt = Z0 exp
(
σBt + (μ − σ 2/2)t

)
(2.2)

for t ∈ [0, T ]. Defining the maximum M = (Mt)0≤t≤T of the process Z by Mt =
max0≤s≤t Zs we see from (2.2) that

Mt = Z0 exp
(
σ max

0≤s≤t

(
Bs +

(
μ − σ 2/2

σ

)
s

))
(2.3)
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for t ∈ [0, T ]. With this in mind, fix λ ∈ R and let Bλ = (Bλ
t )0≤t≤T denote the

Brownian motion with drift λ given by Bλ
t = Bt + λt for t ∈ [0, T ]. Defining the

process Sλ = (Sλ
t )0≤t≤T by Sλ

t = max0≤s≤t B
λ
s , it follows that Mt = Z0 exp(σSλ

t )

for t ∈ [0, T ] where the drift λ is given by λ = (μ − σ 2/2)/σ .
Consider the optimal prediction problem

V1 = inf
0≤τ≤T

E
(

MT

Zτ

)
= inf

0≤τ≤T
E
(
eσ(Sλ

T −Bλ
τ )),(2.4)

where the infimum is taken over all stopping times τ of Z (or B equivalently) and
λ = (μ − σ 2/2)/σ . (Note that this expression is unitless since the initial value of
the stock Z0 does not appear.) The gain process (Sλ

T − Bλ
t )0≤t≤T in the optimiza-

tion problem above is not adapted to the natural filtration (F B
t )0≤t≤T of B as Sλ

T

is only F B
T measurable. This means that (2.4) falls outside the scope of standard

optimal stopping theory. However, using the same approach as in [9] it is possi-
ble to reduce (2.4) to an equivalent optimization problem to which the standard
techniques of optimal stopping for Markov processes (see, e.g., [12]) can be ap-
plied. To do this, recall (cf. [1] and [8]) that the distribution function of Sλ

t is given
explicitly by

P(Sλ
t ≤ x) = �

(
x − λt√

t

)
− e2λx�

(−x − λt√
t

)
(2.5)

for all (t, x) ∈ (0,∞) × R+, where �(x) = ∫ x
−∞ ϕ(z) dz denotes the distribution

function of a standard normal random variable, and ϕ(x) = (1/
√

2π)e−x2/2 de-
notes its density function for x ∈ R.

LEMMA 1. The optimal prediction problem (2.4) is equivalent to the standard
optimal stopping problem

V1 = inf
0≤τ≤T

E
(
G(τ,Sλ

τ − Bλ
τ )

)
,(2.6)

where the infimum is taken over all stopping times τ of B and λ = (μ − σ 2/2)/σ .
When μ �= 0 the function G is given by

G(t, x) = E
(
eσ(x∨Sλ

T −t )
) = eσx + σ

∫ ∞
x

eσyP(Sλ
T −t ≥ y)dy

= 2
(

σ + λ

σ + 2λ

)
eσ(σ+2λ)(T −t)/2�

(−x + (λ + σ)(T − t)√
T − t

)
(2.7)

+ eσx�

(
x − λ(T − t)√

T − t

)

−
(

σ

σ + 2λ

)
e(σ+2λ)x�

(−x − λ(T − t)√
T − t

)
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for all (t, x) ∈ [0, T ] × R+, and when μ = 0 the function G is given by

G(t, x) = E
(
eσ(x∨S

−σ/2
T −t )) = eσx + σ

∫ ∞
x

eσyP(S
−σ/2
T −t ≥ y)dy

= σ
√

T − tϕ

(
x − σ(T − t)/2√

T − t

)
+ eσx�

(
x + σ(T − t)/2√

T − t

)
(2.8)

+
(

1 − σx + σ 2

2
(T − t)

)
�

(−x + σ(T − t)/2√
T − t

)
for all (t, x) ∈ [0, T ] × R+.

PROOF. Since Bλ has stationary independent increments, we see for any (in-
tegrable) real-valued C1 function 
 that

E
(

(Sλ

T − Bλ
t ) | F B

t

)
= E

(



((
Sλ

t ∨ max
t≤s≤T

Bλ
s

)
− Bλ

t

) ∣∣∣ F B
t

)

= E
(



(
(Sλ

t − Bλ
t ) ∨ max

0≤s≤T −t
(Bλ

t+s − Bλ
t )

) ∣∣∣ F B
t

)
(2.9)

= E
(

(x ∨ Sλ

T −t )
)∣∣

x=Sλ
t −Bλ

t

=
(

(x)P(Sλ

T −t ≤ x) +
∫ ∞
x


(z)P(Sλ
T −t ∈ dz)

)∣∣∣∣
x=Sλ

t −Bλ
t

= 
(Sλ
t − Bλ

t ) +
∫ ∞
Sλ

t −Bλ
t


 ′(z)P(Sλ
T −t > z) dz,

where the last step follows upon integrating by parts as long as limz→∞ 
(z) ×
P(Sλ

T −t > z) = 0.
Turning to (2.4) and setting 
(x) = eσx for x ∈ R+, we see from (2.5) that

eσzP(Sλ
T −t > z) → 0 as z → ∞ and therefore

E
(
eσ(Sλ

T −Bλ
t )) = E

(
G(t, Sλ

t − Bλ
t )

)
(2.10)

for all t ∈ [0, T ], where a lengthy calculation based on (2.5) shows that G is given
by (2.7) when μ �= 0 and is given by (2.8) when μ = 0.

Standard arguments based on the fact that each stopping time can be written as
the limit of a decreasing sequence of discrete stopping times imply that (2.10) can
be extended to

E
(
eσ(Sλ

T −Bλ
τ )) = E

(
G(τ,Sλ

τ − Bλ
τ )

)
(2.11)

for all stopping times τ of B taking values in [0, T ], and taking the infimum on
both sides over all such stopping times we conclude the proof. �
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As it stands, the problem (2.6) appears to be three-dimensional since the under-
lying Markov process driving the gain function G is the triple (t,Bλ

t , Sλ
t )0≤t≤T .

However, as in [2] and [3], we will show that the problem in fact is only two-
dimensional.

Define the process X = (Xt)0≤t≤T by setting Xt = Sλ
t −Bλ

t for t ∈ [0, T ]. Since
Bλ is a Lévy process, it follows that X is strong Markov. It is known (cf. [6]) that X

is equal in law to |Y | = (|Yt |)0≤t≤T , where the process Y = (Yt )0≤t≤T is the unique
strong solution to the stochastic differential equation dYt = −λ sign(Yt ) dt + dBt

with Y0 = 0. It is also known (cf. [6]) that under Y0 = x the process |Y | has the
same law as a Brownian motion with drift −λ started at |x| and reflected at 0.
Applying the Itô–Tanaka formula to |Y | we see that

d|Yt | = −λ sign(Yt )
2 dt + sign(Yt ) dBt + d�0

t (Y )
(2.12)

= −λdt + dβt + d�0
t (Y ),

where �0(Y ) = (�0
t (Y ))0≤t≤T denotes the local time of Y at zero and βt =∫ t

0 sign(Ys) dBs defines a standard Brownian motion for t ∈ [0, T ] by Lévy’s
characterization theorem. Using the equality in law of X and |Y | it follows that
the infinitesimal generator LX of X acts on functions f ∈ C2

b([0,∞)) satisfying
f ′(0) = 0 as

LXf (x) = −λf ′(x) + 1
2f ′′(x).(2.13)

In order to apply the standard techniques from the theory of optimal stopping
for Markov processes (see, e.g., [12]) it is necessary to extend the problem (2.6)
by allowing X to start at any time t ∈ [0, T ] at any point x in the state space. It
is therefore especially important to see how X depends on its starting value x.
Although the equation for Y is difficult to solve explicitly, it is known (cf. [2],
Lemma 2.2 and [11], Theorem 2.1) that the Markov process Xx = (Xx

t )0≤t≤T

defined under P as Xx
t = x ∨ Sλ

t − Bλ
t also realizes a Brownian motion with drift

−λ started at x ≥ 0 and reflected at 0. Denoting by {Pt,x | (t, x) ∈ [0, T ]×R+} the
family of Markov measures under which Pt,x(Xt = x) = 1, it follows that X under
Pt,x is equal in law to Xx under P for any x ≥ 0 and t ∈ [0, T ] given and fixed.

Using the Markov measures to change the starting point of the process X and
letting Et,x denote expectation under Pt,x , we extend the problem (2.6) as follows:

V1(t, x) = inf
0≤τ≤T −t

Et,x

(
G(t + τ,Xt+τ )

) = inf
0≤τ≤T −t

E
(
G(t + τ,Xx

τ )
)

(2.14)

for any (t, x) ∈ [0, T ] × R+. The second equality follows since the infimum in
(2.6) is attained at the first entry time τD of X to a closed set D (this follows from
general theory of optimal stopping and will be demonstrated below) so that XτD

under Pt,x is equally distributed as Xx
τD

under P. We will freely use either of the
representations above without further mention. Note also that V1 ≤ G since one
can always insert τ ≡ 0 in (2.14).
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3. The infimum problem. We are now in a position to prove our main result
regarding the infimum problem (2.14). To simplify notation we will write V for
the value function V1 from (2.14) throughout this section. We begin by making the
following definitions. Define the real-valued function H by

H(t, x) = σ

2
(σ − 2λ)eσx�

(
x − λ(T − t)√

T − t

)

− σ 2

2
e(σ+2λ)x�

(−x − λ(T − t)√
T − t

)
(3.1)

− σ(σ + λ)eσ(σ+2λ)(T −t)/2�

(−x + (σ + λ)(T − t)√
T − t

)
for all (t, x) ∈ [0, T ] × R+ where λ = (μ − σ 2/2)/σ . Recalling (see, e.g., [7],
page 368) that the joint density function of (Bλ

t , Sλ
t ) under P is given by

f (t, b, s) =
√

2

π

(2s − b)

t3/2 e−(2s−b)2/(2t)+λ(b−λt/2)(3.2)

for all t > 0, s ≥ 0 and b ≤ s, define the functions

J (t, x) = Et,x(G(T ,XT ))
(3.3)

=
∫ ∞

0

∫ s

−∞
G(T ,x ∨ s − b)f (T − t, b, s) db ds,

K(t, x, r, y) = Et,x

(
H(t + r,Xt+r )I (Xt+r > y)

)
=

∫ ∞
0

∫ s

−∞
H(t + r, x ∨ s − b)(3.4)

× I (x ∨ s − b > y)f (r, b, s) db ds,

for all (t, x) ∈ [0, T ]× R+, all r ∈ [0, T − t] and y ≥ 0. Lastly, the set {H ≥ 0} :=
{(t, x) ∈ [0, T ] × R+ | H(t, x) ≥ 0} will play a prominent role in our discussion.
A direct examination of the function H reveals the existence of a continuous de-
creasing function h : [0, T ] → R+ with h(T ) = 0 such that {H ≥ 0} = {(t, x) ∈
[0, T ] × R+ | x ≥ h(t)} whenever μ ∈ (0, σ 2). Our main result in this section may
now be stated as follows.

THEOREM 1. Consider the optimal stopping problem (2.14) and let D de-
note the optimal stopping set. Then there exists a continuous decreasing function
b : [0, T ] → R+ with b(T ) = 0 such that

D =
⎧⎪⎨⎪⎩

[0, T ] × R+, when μ ≤ 0,

{(t, x) ∈ [0, T ] × R+ | x ≥ b(t)}, when μ ∈ (0, σ 2),

{(T , x) | x ≥ 0}, when μ ≥ σ 2,

(3.5)



990 J. DU TOIT AND G. PESKIR

so that the stopping time

τD(t, x) = inf{s ∈ [0, T − t] | (t + s,Xx
s ) ∈ D}(3.6)

is optimal in (2.14) for all (t, x) ∈ [0, T ] × R+. More precisely, (3.5) means that
when μ ≤ 0 it is optimal to stop immediately; when 0 < μ < σ 2 it is optimal to
stop as soon as Xx rises above the curve b; and when μ ≥ σ 2 it is optimal to wait
until the final time T . Furthermore, the value function from (2.14) is given by

V (t, x) =

⎧⎪⎪⎨⎪⎪⎩
G(t, x), when μ ≤ 0,

J (t, x) −
∫ T −t

0
K

(
t, x, s, b(t + s)

)
ds, when μ ∈ (0, σ 2),

J (t, x), when μ ≥ σ 2,

(3.7)

for all (t, x) ∈ [0, T ] × R+, where the function b itself is characterized as the
unique solution to the nonlinear Volterra integral equation

J (t, b(t)) = G(t, b(t)) +
∫ T −t

0
K

(
t, b(t), s, b(t + s)

)
ds(3.8)

in the class of continuous functions t �→ b(t) on [0, T ] satisfying b(t) ≥ h(t) for all
t ∈ [0, T ]. Finally, the value V1 from (2.4) is given by V1 = V (0,0) and the optimal
stopping time for this problem is τD(0,0) = inf{t ∈ [0, T ] | Mt/Zt ≥ eσb(t)}.

PROOF. 1. Existence of optimal stopping time. We begin by showing that an
optimal stopping time for the problem (2.14) exists. To do this we first establish
some general integrability conditions on the function G. From the definition of the
process Xx we see that

Xx
t = x ∨ Sλ

t − Bλ
t ≤ x + 2λT + 2 max

0≤s≤T
|Bs | =: x + R(3.9)

for all (t, x) ∈ [0, T ] × R+ where we set R = 2λT + 2 max0≤s≤T |Bs |. Turn-
ing to the random variable max0≤t≤T |Bt |, observe that {max0≤t≤T |Bt | ≥ z} =
{max0≤t≤T Bt ≥ z} ∪ {min0≤t≤T Bt ≤ −z} for any z ≥ 0, so that

P
(

max
0≤t≤T

|Bt | ≥ z

)
≤ P

(
max

0≤t≤T
Bt ≥ z

)
+ P

(
max

0≤t≤T
(−Bt) ≥ z

)
(3.10)

= 2P
(

max
0≤t≤T

Bt ≥ z

)
= 2P(|BT | ≥ z)

since the random variables max0≤t≤T Bt and |BT | are equal in law. A similar cal-
culation as at (2.9) then shows that

E(eαR) = E
(
eα(2λT +max0≤t≤T |Bt |))

= e2αλT

(
1 +

∫ ∞
0

αeαzP
(

max
0≤t≤T

|Bt | ≥ z

)
dz

)
(3.11)

≤ e2αλT

(
1 +

∫ ∞
0

2αeαzP(|BT | ≥ z) dz

)
< ∞
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FIG. 1. The optimal stopping boundaries in the optimal prediction problem (2.4) for drifts μ1, μ2
and μ3 satisfying 0 < μ1 < μ2 < μ3 < σ 2. The optimal stopping sets lie above the boundaries. The
convergence relations take place for μ1 ↓ 0 and μ3 ↑ σ 2.

for any α ∈ R. Turning to (2.7) and (2.8) and using (3.9) above, we see that

0 ≤ G(t,Xx
t ) ≤ K1 + K2e

σ(x+R) + K3e
(1+|σ+2λ|)(x+R),(3.12)

where K1, K2 and K3 are positive constants (independent of t). This combined
with (3.11) shows that G(t,Xx

t ) is bounded by an integrable random variable for
all t ∈ [0, T ] and x ≥ 0.

Using the dominated convergence theorem together with the continuity of the
function G and the continuity of the flow x �→ Xx , we see that the map (t, x) �→
E(G(t +τ,Xx

τ )) is continuous and thus upper semicontinuous (usc) for every stop-
ping time τ taking values in [0, T − t]. Since the infimum of usc functions is usc,
it follows that the function V is usc as well and so by general results of optimal
stopping (see [12], Corollary 2.9) we conclude that an optimal stopping time for
the problem (2.14) exists. Moreover, this stopping time is given by (3.6) above
where the stopping set is given by D = {(t, x) ∈ [0, T ] × R+ | V (t, x) = G(t, x)}
and the continuation set C is given by C = Dc = {(t, x) ∈ [0, T ] × R+ | V (t, x) <

G(t, x)}. The fact that D is closed (and C is open) follows from the fact that V is
usc.

2. Shape of D. We now turn to the question of determining the shape of the
stopping set D. From either (2.7) or (2.8) above, note that

Gx(t, x) = σeσxP(Sλ
T −t ≤ x) ≤ σeσx(3.13)
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so that in particular Gx(t,0) = 0 for all t ∈ [0, T ). By Itô’s formula we get

G(t + s,Xx
s ) = G(t, x) +

∫ s

0

(
Gt − λGx + 1

2
Gxx

)
(t + r,Xx

r ) dr

+
∫ s

0
Gx(t + r,Xx

r ) d(x ∨ Sλ
r ) −

∫ s

0
Gx(t + r,Xx

r ) dBr(3.14)

= G(t, x) +
∫ s

0
H(t + r,Xx

r ) dr + Ms,

where we use that d(x ∨ Sλ
r ) is zero off the set of all r ∈ [0, s] at which Xx

r �= 0
while Gx(t + r,Xx

r ) = 0 for Xx
r = 0, and we set Ms = − ∫ s

0 Gx(t + r,Xx
r ) dBr for

s ∈ [0, T − t]. A lengthy calculation shows that the function H = Gt − λGx +
1
2Gxx is given by (3.1) above when λ �= −σ

2 , and is given by

H(t, x) = σ 2eσx�

(
x + σ(T − t)/2√

T − t

)
− σ 2�

(−x + σ(T − t)/2√
T − t

)
(3.15)

for all (t, x) ∈ [0, T ] × R+ when λ = −σ
2 . Equations (3.9), (3.11) and (3.13) to-

gether with the Burkholder–Davis–Gundy inequalities show that the local mar-
tingale M = (Ms)s∈[0,T −t] in (3.14) is a martingale. Replacing s in (3.14) with
τD(t, x), taking expectations and using the optional sampling theorem, we obtain

V (t, x) = G(t, x) + E
(∫ τD(t,x)

0
H(t + r,Xx

r ) dr

)
(3.16)

for all (t, x) ∈ [0, T ] × R+.
Recall that λ = (μ−σ 2/2)/σ and let us suppose first that λ = −σ

2 (i.e., μ = 0).
Note from (3.15) that

H(t, x) ≥ σ 2
[
�

(
x + σ(T − t)/2√

T − t

)
− �

(−x + σ(T − t)/2√
T − t

)]
(3.17)

> 0

for all (t, x) ∈ [0, T ) × (0,∞). Choosing any t ∈ [0, T ) and x ≥ 0, we see
from (3.16) that we must have τD(t, x) = 0 since otherwise we would have
V (t, x) > G(t, x) which is a contradiction. Therefore when μ = 0 we see that
τD ≡ 0 so that the optimal stopping set D is given by D = [0, T ] × R+.

A similar result holds when we assume that λ < −σ
2 (i.e., μ < 0). Turning

to (3.1), we see that

H(t, x) ≥ σ 2eσx�

(
x − λ(T − t)√

T − t

)
− σ 2

2
e(σ+2λ)x�

(−x − λ(T − t)√
T − t

)

− σ 2

2
eσ(σ+2λ)(T −t)/2�

(−x + (σ + λ)(T − t)√
T − t

)
(3.18)
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≥ σ 2

2

[
�

(
x − λ(T − t)√

T − t

)
− �

(−x − λ(T − t)√
T − t

)]

+ σ 2

2

[
�

(
x + σ(T − t)/2√

T − t

)
− �

(−x + σ(T − t)/2√
T − t

)]
> 0

for all (t, x) ∈ [0, T ) × (0,∞) where the inequalities follow since σ − 2λ > 2σ

while σ + λ < σ/2 and σ + 2λ < 0. Turning to (3.16) and choosing any t ∈ [0, T )

and x ≥ 0, we see that we must have τD(t, x) = 0 since otherwise we would have
V (t, x) > G(t, x).

We conclude therefore that whenever μ ≤ 0, we have D = [0, T ] × R+ and
τD ≡ 0 so that it is optimal to stop immediately. This establishes the first parts of
(3.5) and (3.7) in Theorem 1 above.

Suppose now that λ ≥ σ
2 (i.e., μ ≥ σ 2) so that σ − 2λ ≤ 0. From (3.1) above

we easily see that H(t, x) < 0 for all (t, x) ∈ [0, T ] × [0,∞). Choose now any
t ∈ [0, T ) and x ≥ 0, let U ⊆ [0, T ) × R+ be an open neighborhood of (t, x) and
denote by σU the first exit time from U when X starts at x at time t . Replacing
s with σU in (3.14) above, taking expectations and using the optional sampling
theorem, we see that

V (t, x) ≤ E
(
G(t + σU,Xx

σU
)
) = G(t, x) + E

(∫ σU

0
H(t + s,Xx

s ) ds

)
(3.19)

< G(t, x),

which shows that (t, x) ∈ C. Therefore all points (t, x) ∈ [0, T ) × R+ must lie in
the continuation set, so that it is never optimal to stop before the end of time. We
see then that when μ ≥ σ 2, we have τD(t, x) = T − t for all (t, x) ∈ [0, T ] × R+
so that D = {(T , x) | x ≥ 0}. This establishes the last part of (3.5) above, and since
V (t, x) = Et,x(G(t +τD,Xt+τD

)) = Et,x(G(T ,XT )) = J (t, x) from (3.3), the last
part of (3.7) holds as well.

To summarize, we have shown that when μ ≤ 0 or μ ≥ σ 2 the optimal stopping
problem (2.14) has a trivial solution: in the first case it is always optimal to stop
immediately, whereas in the last case it is always optimal to wait until the end
of time. Our task therefore reduces to describing the solution of (2.14) when μ

does not lie in either of these sets. In the remainder of the proof we will therefore
assume that μ ∈ (0, σ 2), that is, λ ∈ (−σ/2, σ/2).

When λ is constrained to this interval, a direct examination of H from (3.1) re-
veals the existence of a continuous decreasing function h on [0, T ] with h(T ) = 0
such that {H < 0} = {(t, x) ∈ [0, T ]×R+ | x < h(t)}. Arguments similar to (3.19)
above then show that {H < 0} ⊆ C, and defining the optimal stopping boundary b

as

b(t) = inf{x ≥ 0 | (t, x) ∈ D}(3.20)
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for all t ∈ [0, T ] it follows that b(t) ≥ h(t) for all t ∈ [0, T ]. Moreover, differenti-
ating (3.1) in time we find that

Ht(t, x) = σ 2

2
eσx

(
2x + (σ + 2λ)(T − t)

(T − t)3/2

)
ϕ

(
x − λ(T − t)√

T − t

)

+ σ 2

2
(σ + λ)(σ + 2λ)eσ(σ+2λ)(T −t)/2(3.21)

× �

(−x + (σ + λ)(T − t)√
T − t

)
≥ 0

for all (t, x) ∈ [0, T ] × R+ whenever λ ∈ (−σ/2, σ/2). To see the importance of
this fact, fix any x ∈ R+ and s < t in [0, T ] and set τs = τD(s, x) and τt = τD(t, x).
Since 0 ≤ τt ≤ T − t < T − s and since τt is a suboptimal time when X starts at x

at time s, we see from (3.16) that(
V (t, x) − G(t, x)

) − (
V (s, x) − G(s, x)

)
≥ E

(∫ τt

0
H(t + r,Xx

r ) dr

)
− E

(∫ τt

0
H(s + r,Xx

r ) dr

)
(3.22)

= E
(∫ τt

0
H(t + r,Xx

r ) − H(s + r,Xx
r ) dr

)
≥ 0,

from where we derive the important fact that

t �→ V (t, x) − G(t, x) is increasing on [0, T ](3.23)

for each x ∈ R+ given and fixed. A direct consequence of this is that if any point
(t, x) ∈ D, then all points (t + s, x) ∈ D for s ∈ [0, T − t] since 0 ≥ V (t + s, x) −
G(t + s, x) ≥ V (t, x) − G(t, x) = 0. This means that the function t �→ b(t) is
decreasing.

We now show that if (t, x) ∈ D, then all points (t, y) ∈ D for y ≥ x. To see
this, fix a point (t, x) ∈ D and take any y ≥ x. Since all the points (t + s, x) ∈ D

for s ∈ [0, T − t], the process X started at (t, y) must enter the stopping set D

upon (or before) hitting the level x. In particular, we must have Xt+s ≥ x for all
s ∈ [0, τD(t, y)] under Pt,y . However, recalling that x ≥ h(t) and that h is decreas-
ing, it follows that the rectangle [t, T ] × [x,∞) ⊆ {H ≥ 0} and so from (3.16) we
must have V (t, y) ≥ G(t, y). This shows that (t, y) ∈ D for all y ≥ x whenever
(t, x) ∈ D, and combined with the observations above establishes that D has the
form given in (3.5) above.

3. Function b is finite-valued. We show that the optimal stopping boundary b

is finite valued, which also shows that the stopping set D is strictly greater than
the set {(T , x) | x ∈ R+}. Suppose that the function b(t) is not finite-valued for all
t ∈ [0, T ] and define the time t∗ ∈ [0, T ] as t∗ = sup{t ∈ [0, T ] | b(t) = ∞}. Con-
sider first the case when t∗ ∈ (0, T ] and note that there are two possibilities: either b

has a jump discontinuity at t∗ jumping down from infinity to a finite value, or b has
an asymptote at t∗. Setting τx = τD(0, x), it is clear that τx → t∗ as x → ∞ in ei-
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ther case. From (3.1) we see that m := inf{H(t, x) | (t, x) ∈ [0, T ] × R+} > −∞,
and so by Fatou’s lemma and (3.16) it follows that

0 ≥ lim inf
x→∞

(
V (0, x) − G(0, x)

)
= lim inf

x→∞

[
E
(∫ τx

0
H(t,Xx

t )I
(
Xx

t > h(t)
)
dt

)
(3.24)

+ E
(∫ τx

0
H(t,Xx

t )I
(
Xx

t ≤ h(t)
)
dt

)]
≥ E

(∫ t∗

0
H(t,∞) dt

)
+ mT = ∞,

which shows that we cannot have t∗ ∈ (0, T ]. On the other hand if t∗ = 0, then by
extending the terminal time to T ′ > T and considering our problem on the interval
[0, T ′] instead of [0, T ] we will make t∗ strictly positive (since b is decreasing),
reducing it to the case already considered. Therefore b(t) must be finite for all
t ∈ [0, T ].

4. Continuity of V . We show that (t, x) �→ V (t, x) is continuous on [0, T ]×R+.
For this, take any t ∈ [0, T ] and x, y ∈ R+, set τx = τD(t, x) and τy = τD(t, y) and
suppose without loss of generality that x ≤ y. From (2.14) we see that

E
(
G(t + τy,X

y
τy

) − G(t + τy,X
x
τy

)
)

≤ V (t, y) − V (t, x)(3.25)

≤ E
(
G(t + τx,X

y
τx

) − G(t + τx,X
x
τx

)
)
.

Note from (3.13) that x �→ G(t, x) is increasing. This together with the mean value
theorem and (3.9) shows that for any stopping time τ ∈ [0, T − t] we have

0 ≤ G(t + τ,Xy
τ ) − G(t + τ,Xx

τ ) = Gx(t + τ, ξ)(Xy
τ − Xx

τ )
(3.26)

≤ σeσξ (Xy
τ − Xx

τ ) ≤ σeσ(y+R)(y − x),

where ξ is some value in [Xx
τ ,X

y
τ ], and the last inequality is obvious once we

observe that X
y
τ − Xx

τ = y ∨ Sλ
τ − x ∨ Sλ

τ ≤ y − x and ξ ≤ X
y
τ ≤ y + R. Inserting

(3.26) in (3.25) yields

0 ≤ V (t, y) − V (t, x) ≤ σE
(
eσ(y+R))(y − x)(3.27)

and taking the limit as y − x → 0 we see that x �→ V (t, x) is continuous on R+
uniformly over all t ∈ [0, T ].

To complete the proof of the initial claim it is enough to show that t �→ V (t, x)

is continuous on [0, T ] for every x ∈ R+. For this fix x ≥ 0, take any s ≤ t in
[0, T ] and set τs = τD(s, x). Since the stopping time τs does not necessarily lie in
the interval [0, T − t], it is not possible to mimic the previous argument directly
and we therefore adjust our approach as follows. Recalling (3.23) and defining the
stopping time ρ = τs ∧ (T − t), we see from (3.14) and (3.16) upon using the
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optional sampling theorem that

0 ≤ V (t, x) − G(t, x) − (
V (s, x) − G(s, x)

)
≤ E

(∫ ρ

0
H(t + r,Xx

r ) − H(s + r,Xx
r ) dr

)
(3.28)

− E
(∫ τs

ρ
H(s + r,Xx

r ) dr

)
.

Note from (3.1) that

|H(t, x)| ≤ σ

2
(σ − 2λ)eσx + σ 2

2
e(σ+2λ)x + σ(σ + λ)eσ(σ+2λ)T /2(3.29)

for all (t, x) ∈ [0, T ]×[0,∞), and since 0 ≤ τs −ρ ≤ t −s we may pass to the limit
as t − s → 0 in (3.28) and use the dominated convergence theorem [recalling (3.9)
and (3.11) for the necessary integrability] to conclude that t �→ V (t, x) − G(t, x)

is continuous. The continuity of t �→ G(t, x) then completes the proof.
5. Free-boundary problem. We now formulate a free-boundary problem that the

value function V solves. This differential equation will be useful to us later on,
but is also interesting in its own right and can be used as the departure point in
computing numerical values for the optimal stopping boundary b and for the value
function V . It is well known from the theory of Markov processes (see, e.g., [12],
Chapter III, Section 7) that V is C1,2 in the continuation set C and satisfies the
following version of the Kolmogorov backward equation:

Vt(t, x) − λVx(t, x) + 1
2Vxx(t, x) = 0 for all (t, x) ∈ C(3.30)

together with the following instantaneous stopping condition:

V (t, x) = G(t, x) for all (t, x) ∈ D.(3.31)

The free-boundary problem is completed by the normal reflection condition and
the smooth fit condition respectively:

Vx(t,0+) = 0 for all t ∈ [0, T ),(3.32)

x �→ Vx(t, x) is continuous at b(t) for all t ∈ [0, T ),(3.33)

which will be established below. The smooth fit condition in particular will play
an important role in the derivation of the integral equations (3.7) and (3.8).

6. Smooth fit. We show that x �→ Vx(t, x) is continuous over the optimal
stopping boundary b. Fix any t ∈ [0, T ) and ε > 0 and set x = b(t) and τε =
τD(t, x − ε). We first show that Vx(t, x) = Gx(t, x). From the mean value theo-
rem we have

G(t, x) − G(t, x − ε) ≤ V (t, x) − V (t, x − ε)

≤ E
(
G(t + τε,X

x
τε

) − G(t + τε,X
x−ε
τε

)
)

(3.34)
= E

(
Gx(t + τε, ξε)(X

x
τε

− Xx−ε
τε

)
)

≤ εE
(
Gx(t + τε, ξε)

)
,
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where Xx−ε
τε

≤ ξε ≤ Xx
τε

. Since the optimal stopping boundary b is decreasing it
follows that all points (t + s, x) ∈ D for s ∈ [0, T − t]. Define the stopping time

σε = inf{s ∈ [0, T − t] | Xx−ε
s ≥ x}(3.35)

and note that 0 ≤ τε ≤ σε . Then under P we have

σε = inf{s ∈ [0, T − t] | (x − ε) ∨ Sλ
s − Bλ

s ≥ x}
(3.36)

≤ inf{s ≥ 0 | −Bs ≥ ε + λs} → 0

as ε → 0 since the function t �→ ε + λt is a lower function of Brownian motion
at 0+. It follows therefore that τε → 0 as ε ↓ 0 as well.

Turning to (3.34), dividing through by ε and passing to the limit as ε ↓ 0, we
see that the first term converges to Gx(t, x) since G is differentiable, while the
last term converges to E(Gx(t,X

x
0 )) = Gx(t, x) by dominated convergence [upon

recalling (3.11) and (3.13)] since ξε → Xx
0 . We conclude therefore that Vx(t, x) =

Gx(t, x) as claimed.
A small modification of the argument above shows that x �→ V (t, x) is continu-

ously differentiable at b(t). Indeed, taking δ > 0 and setting τδ = τD(t, x − δ) with
x = b(t), we see as before that for any ε ∈ (0, δ) we have

V (t, x − δ + ε) − V (t, x − δ)

≤ E
(
G(t + τδ,X

x−δ+ε
τδ

) − G(t + τδ,X
x−δ
τδ

)
)

(3.37)

= E
(
Gx(t + τδ, η)(Xx−δ+ε

τδ
− Xx−δ

τδ
)
) ≤ εE

(
Gx(t + τδ, η)

)
,

where η ∈ [Xx−δ
τδ

,Xx−δ+ε
τδ

]. Clearly η → Xx−δ
τδ

as ε → 0, and in a similar manner
to (3.35) and (3.36) above we can show that τδ → 0 as δ → 0. Dividing (3.37) by ε

and taking first the limit as ε ↓ 0 (recalling that V is C1,2 in C so that Vx exists)
and then the limsup as δ ↓ 0, we see by the dominated convergence theorem that

lim sup
δ↓0

Vx(t, x − δ) ≤ Gx(t, x).(3.38)

To prove the reverse inequality, take ε > 0 and note that

V (t, x − δ) − V (t, x − δ − ε)

ε

≥ 1

ε
E
(
G(t + τδ,X

x−δ
τδ

) − G(t + τδ,X
x−δ−ε
τδ

)
)

(3.39)

= E
(

1

ε
(Xx−δ

τδ
− Xx−δ−ε

τδ
)Gx(t + τδ, η)

)
,

where η ∈ [Xx−δ−ε
τδ

,Xx−δ
τδ

]. Observe that 0 ≤ 1
ε
(Xx−δ

τδ
− Xx−δ−ε

τδ
) ≤ 1 and

1

ε
(Xx−δ

τδ
− Xx−δ−ε

τδ
) → I (Sλ

τδ
< x − δ)(3.40)
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as ε → 0, while clearly η → Xx−δ
τδ

. Passing to the limit as ε ↓ 0 in (3.39) and using
the dominated convergence theorem, we see that

Vx(t, x − δ) ≥ E
(
I (Sλ

τδ
< x − δ)Gx(t + τδ,X

x−δ
τδ

)
)
.(3.41)

Taking the lim inf as δ ↓ 0 and recalling that τδ → 0, we obtain the reverse inequal-
ity

lim inf
δ↓0

Vx(t, x − δ) ≥ Gx(t, x)(3.42)

and conclude the result.
7. Continuity of b. We show that the function t �→ b(t) is continuous on [0, T ].

We begin by proving that b is right-continuous. For this fix any t ∈ [0, T ), let tn ↓ t

and consider the limit b(t+) := limn→∞ b(tn) which exists as b is decreasing.
Since (tn, b(tn)) ∈ D for all n ≥ 1 and D is closed, it follows that (t, b(t+)) ∈ D

and so from (3.20) we see that b(t) ≤ b(t+). On the other hand, the fact that b

is decreasing implies that b(t) ≥ b(tn) for all n ≥ 1, and passing to the limit as
n → ∞ we obtain the reverse inequality.

We now show that b is left-continuous. Suppose this is not the case so that there
exists some t ∈ (0, T ] at which b(t−) > b(t), and choose any x ∈ (b(t), b(t−)).
Since b ≥ h and h is continuous, it follows that x > h(s) for all s ∈ [s1, t] for some
s1 sufficiently close to t . Hence m := inf{H(s, y) | s ∈ [s1, t), y ∈ [x, b(s)]} > 0
by the continuity of H . Moreover, since V is continuous and V (t, y) = G(t, y) for
all y ∈ [x, b(t−)], it follows that∣∣λ(

V (s, y) − G(s, y)
)∣∣ ≤ m

4

(
b(t−) − x

)
(3.43)

for all s ∈ [s2, t] and y ∈ [x, b(s)] where s2 ∈ [s1, t) is some value sufficiently close
to t . Since H = Gt − λGx + 1

2Gxx we see from (3.23) and (3.30) that 1
2(Vxx −

Gxx) = Gt −Vt +λ(Vx −Gx)−H ≤ λ(Vx −Gx)−H , and this together with the
smooth-fit condition (3.33) and (3.43) implies that

V (s, x) − G(s, x) =
∫ b(s)

x

∫ b(s)

y

(
Vxx(s, z) − Gxx(s, z)

)
dzdy

≤ 2
∫ b(s)

x

∫ b(s)

y

(
λ(Vx − Gx) − H

)
(s, z) dz dy

(3.44)

≤ 2
∫ b(s)

x

(−λ
(
V (s, y) − G(s, y)

) − m
(
b(s) − y

))
dy

≤ m

2

(
b(t−) − x

)(
b(s) − x

) − m
(
b(s) − x

)2

for any s ∈ [s2, t). Passing to the limit as s ↑ t gives V (t, x) − G(t, x) ≤
−m

2 (b(t−) − x)2 < 0 and contradicts the fact that (t, x) ∈ D. We conclude there-
fore that t �→ b(t) is continuous on [0, T ]. Note that this proof also shows that
b(T ) = 0 since h(T ) = 0 and V (T , x) = G(T ,x) for all x ∈ R+.
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8. Normal reflection. We show that the normal reflection condition (3.32) holds.
For this, first note from (3.27) that x �→ V (t, x) is increasing on [0,∞) so that
Vx(t,0+) ≥ 0 for all t ∈ [0, T ). Note that the limit exists since V is C1,2 in C.
Suppose that there exists some t ∈ [0, T ) such that Vx(t,0+) > 0. The smoothness
of V in C implies that t �→ Vx(t,0+) is continuous on [0, T ), and so there must
exist a δ > 0 such that Vx(t + s,0+) ≥ ε > 0 for all s ∈ [0, δ] with t + δ < T .
Setting τδ = τD ∧ δ, recalling (3.30) and applying Itô’s formula to V in C, we see
that

E
(
V (t + τδ,X

0
τδ

)
) = V (t,0) + E

(∫ τδ

0
Vx(t + s,X0

s ) dSλ
s

)
(3.45)

≥ V (t,0) + εE(Sλ
τδ

)

by the optional sampling theorem, where the latter follows from (3.11) upon di-
viding (3.27) by y − x and passing to the limit as y − x → 0. From the general
theory of optimal stopping for Markov processes (see, e.g., [12]) we know that the
process (V (t + s ∧ τD,X0

s∧τD
))0≤s≤T −t is a martingale. This means that we must

have E(Sλ
τδ

) = 0, but since the properties of the process Sλ clearly exclude this, we
conclude that Vx(t,0+) = 0 for all t ∈ [0, T ).

9. Integral equations. We may now derive the integral equations (3.7) and (3.8).
Setting c = b(0) + 1 we see from (3.27) that

|λ|Vx(t, x) ≤ |λ|σE
(
eσ(c+R)) =: K < ∞(3.46)

for all (t, x) ∈ [0, T ] × [0, c]. Using this inequality in (3.30) and recalling (3.23)
we obtain 1

2Vxx = −Vt + λVx ≤ −Gt + K in C. If we set

f (t, x) = 2
∫ x

0

∫ y

0

(−Gt(t, z) + K
)
dzdy(3.47)

for all (t, x) ∈ [0, T ] × [0, c], we see that Vxx ≤ fxx on [0, T ] × [0, c]. Defining
the function F : [0, T ] × R+ → R by F(t, x) = V (t, x) − f (t, x), we see that:
(i) the map x �→ F(t, x) is concave on the intervals [0, b(t)) and (b(t), c] for every
t ∈ [0, T ]; (ii) the function F is C1,2 on C ∪Do; (iii) the function Ft −λFx + 1

2Fxx

is locally bounded on C ∪ Do; and (iv) the map t �→ Fx(t, b(t)±) = Gx(t, b(t)) −
fx(t, b(t)) is continuous on [0, T ]. Since the function b is decreasing and con-
sequently of bounded variation, we may apply the local time–space formula [10]
to F(t + s,Xt+s) and Itô’s formula to f (t + s,Xt+s) since f is C1,2. Adding
these two expressions, using (3.30), (3.32), (3.33) and the fact that fx(t,0) = 0,
we obtain

V (t + s,Xx
s )

= V (t, x) +
∫ s

0

(
Vt − λVx + 1

2
Vxx

)
(t + r,Xx

r )I
(
Xx

r �= b(t + r)
)
dr

+
∫ s

0
Vx(t + r,Xx

r )I
(
Xx

r �= b(t + r)
)
d(x ∨ Sλ

r )(3.48)
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−
∫ s

0
Vx(t + r,Xx

r )I
(
Xx

r �= b(t + r)
)
dBr

+ 1

2

∫ s

0

(
Vx(t + r,Xx

r +) − Vx(t + r,Xx
r −)

)
× I

(
Xx

r = b(t + r)
)
d�b

r (X
x)

= V (t, x) +
∫ s

0
H(t + r,Xx

r )I
(
Xx

r > b(t + r)
)
dr + Ms

for any (t, x) ∈ [0, T ] × R+ and s ∈ [0, T − t], where �b(Xx) denotes the local
time of Xx on the curve b and Ms = − ∫ s

0 Vx(t + r,Xx
r ) dBr is a martingale for s ∈

[0, T − t]. Setting s = T − t , taking expectations and using the optional sampling
theorem, we obtain

V (t, x) = Et,x(G(T ,XT ))
(3.49)

− Et,x

(∫ T −t

0
H(t + r,Xt+r )I

(
Xt+r > b(t + r)

)
dr

)
which is exactly (3.7) after interchanging the order of integration. Setting x equal
to b(t) in (3.49) we get

G(t, b(t)) = Et,b(t)(G(T ,XT ))
(3.50)

−
∫ T −t

0
Et,b(t)

(
H(t + r,Xt+r )I

(
Xt+r > b(t + r)

))
dr

which is exactly (3.8) as claimed.
10. Uniqueness. We lastly show that the function b is the unique solution to

(3.8) in the class of continuous functions t �→ b(t) on [0, T ] satisfying b(t) ≥ h(t)

for all t in [0, T ].
Take any continuous function c on [0, T ] which solves (3.8) and satisfies c(t) ≥

h(t) for all t ∈ [0, T ]. Motivated by (3.49) above, define the continuous function
Uc : [0, T ] × R+ → R by

Uc(t, x) = Et,x(G(T ,XT ))
(3.51)

− Et,x

(∫ T −t

0
H(t + r,Xt+r )I

(
Xt+r > c(t + r)

)
dr

)
and observe that c solving (3.8) means exactly that Uc(t, c(t)) = G(t, c(t)) for all
t ∈ [0, T ]. Let Dc := {(t, x) ∈ [0, T ] × R+ | x ≥ c(t)} so that Dc is closed and
plays the role of a “stopping set” for c. To avoid confusion we will denote by Db

the original stopping set from (3.5) defined by the function b.

(i) We show that Uc = G on Dc. Since X is Markov, the process

Uc(t + s,Xt+s) −
∫ s

0
H(t + r,Xt+r )I

(
Xt+r > c(t + r)

)
dr(3.52)
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is a martingale under Pt,x for all s ∈ [0, T − t]. Take any point (t, x) ∈ Dc and
consider the stopping time

σc = inf{s ∈ [0, T − t] | (t + s,Xt+s) /∈ Dc}(3.53)

under the measure Pt,x . Since Uc(t, c(t)) = G(t, c(t)) for all t ∈ [0, T ] and
Uc(T , x) = G(T ,x) for all x ∈ R+, we must have Uc(t + σc,Xt+σc) = G(t +
σc,Xt+σc). Inserting σc in (3.52), taking Pt,x expectations and using the optional
sampling theorem [recalling (3.29) together with (3.11) and (3.12) above] we find
that

Uc(t, x) = Et,x

(
Uc(t + σc,Xt+σc)

)
− Et,x

(∫ σc

0
H(t + r,Xt+r )I

(
(t + r,Xt+r ) ∈ Dc

)
dr

)
(3.54)

= Et,x

(
G(t + σc,Xt+σc)

) − Et,x

(∫ σc

0
H(t + r,Xt+r ) dr

)
= G(t, x),

where in the last equality we used (3.14). This shows that Uc = G on Dc as
claimed.

(ii) We show that Uc(t, x) ≥ V (t, x) for all (t, x) ∈ [0, T ] × R+. To see this
take any (t, x) ∈ [0, T ] × R+ and consider the stopping time

τc = inf{s ∈ [0, T − t] | (t + s,Xt+s) ∈ Dc}(3.55)

under Pt,x . We claim that Uc(t + τc,Xt+τc) = G(t + τc,Xt+τc). Indeed, if
(t, x) ∈ Dc, then τc = 0 so that Uc(t, x) = G(t, x) by the argument above. Con-
versely if (t, x) /∈ Dc, then the result follows since Uc(t, c(t)) = G(t, c(t)) for all
t ∈ [0, T ] and Uc(T , x) = G(T ,x) for all x ∈ R+. Inserting τc in (3.52) and using
the optional sampling theorem, we see that

Uc(t, x) = Et,x

(
U(t + τc,Xt+τc)

)
− Et,x

(∫ τc

0
H(t + s,Xt+s)I

(
(t + s,Xt+s) ∈ Dc

)
ds

)
(3.56)

= Et,x

(
G(t + τc,Xt+τc)

) ≥ V (t, x),

where the second identity follows from the definition of τc. We conclude that
Uc ≥ V on [0, T ] × R+ as claimed.

(iii) We show that Db ⊆ Dc. Suppose this is not the case so that there exists
some time t ∈ [0, T ) at which b(t) < c(t). Choose any x > c(t) and consider the
stopping time

σb = inf{s ∈ [0, T − t] | (t + s,Xt+s) /∈ Db}(3.57)
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under the measure Pt,x . Replacing s with σb in (3.48) and (3.52) and using the
optional sampling theorem we find

Et,x

(
V (t + σb,Xt+σb

)
) = V (t, x) + Et,x

(∫ σb

0
H(t + s,Xt+s) ds

)
,(3.58)

Et,x

(
Uc(t + σb,Xt+σb

)
)

(3.59)

= Uc(t, x) + Et,x

(∫ σb

0
H(t + s,Xt+s)I

(
(t + s,Xt+s) ∈ Dc

)
ds

)
.

Since (t, x) belongs to both Db and Dc it follows that Uc(t, x) = V (t, x) =
G(t, x), and the fact that Uc(t + σb,Xt+σb

) ≥ V (t + σb,Xt+σb
) = G(t +

σb,Xt+σb
) implies

Et,x

(∫ σb

0
H(t + s,Xt+s)I

(
(t + s,Xt+s) /∈ Dc

)
ds

)
≤ 0.(3.60)

The assumption that b(t) < c(t) together with the continuity of the functions c

and b means that there exists a small enough u ∈ (t, T ] such that b(s) < c(s) for
all s ∈ [t, u]. Consequently the Pt,x probability of X spending a strictly positive
amount of time (w.r.t. Lebesgue measure) in this set is strictly positive. Combined
with the fact that b lies above c, this forces the expectation above to be strictly
positive and provides a contradiction.

(iv) We show that Dc = Db. Suppose that this is not the case so that c(t) < b(t)

for some t ∈ [0, T ]. Choose any point x ∈ (c(t), b(t)) and consider the stopping
time

τD = inf{s ∈ [0, T − t] | (t + s,Xt+s) ∈ Db}(3.61)

under Pt,x . Inserting τD in (3.48) and (3.52), taking Pt,x expectations and using
the optional sampling theorem we obtain

Et,x

(
G(t + τD,Xt+τD

)
) = V (t, x),(3.62)

Et,x

(
Uc(t + τD,Xt+τD

)
)

(3.63)

= Uc(t, x) + Et,x

(∫ τD

0
H(t + s,Xt+s)I

(
(t + s,Xt+s) ∈ Dc

)
ds

)
.

Since Db ⊆ Dc and Uc equals G on Dc we must have Uc(t + τD,Xt+τD
) = G(t +

τD,Xt+τD
), and using the fact that Uc ≥ V we find that

Et,x

(∫ τD

0
H(t + s,Xt+s)I

(
(t + s,Xt+s) ∈ Dc

)
ds

)
≤ 0.(3.64)

However, as before the continuity of the functions b and c combined with the fact
that c lies above h forces the expectation to be strictly positive and provides a
contradiction. We therefore conclude that c(t) = b(t) for all t ∈ [0, T ] completing
the proof. �
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4. The supremum problem. We now consider the supremum formula-
tion (1.4) of the stock selling problem. We recall from Section 2 that B =
(Bt )0≤t≤T denotes a standard Brownian motion, Bλ = (Bλ

t )0≤t≤T denotes Brown-
ian motion with drift λ ∈ R defined by Bλ

t = Bt + λt for t ∈ [0, T ], and Sλ =
(Sλ

t )0≤t≤T denotes its running maximum process, that is, Sλ
t = max0≤s≤t B

λ
s for

t ∈ [0, T ]. By (2.1)–(2.4) above we see that the problem (1.4) is equivalent to

V2 = sup
0≤τ≤T

E
(

Zτ

MT

)
= sup

0≤τ≤T

E
(
eσ(Bλ

τ −Sλ
T )),(4.1)

where λ = (μ−σ 2/2)/σ with σ > 0 and μ ∈ R given and fixed, and the supremum
is taken over all stopping times τ of Z (or B equivalently) taking values in [0, T ].

1. As mentioned in the Introduction, it is surprising that this optimal prediction
problem turns out to have a solution which is quite different from the solution to
the infimum formulation when μ ∈ (0, σ 2). Indeed, it was shown in [15] that the
function H = Gt − λGx + 1

2Gxx in the supremum formulation is strictly positive
when μ ≥ σ 2 (i.e., λ ≥ σ/2) and strictly negative when μ ≤ 0 (i.e., λ ≤ −σ/2).
This global argument implies that (4.2) holds when λ ≥ σ/2 and that (4.3) holds
when λ ≤ −σ/2. However, when μ ∈ (0, σ 2) [i.e., λ ∈ (−σ/2, σ/2)] the func-
tion H may take on both positive and negative values and the same global argu-
ment is no longer applicable (see Remark 3 for more details). Moreover, in view
of the fact that the optimal stopping boundary in the infimum formulation of the
problem is nontrivial in this case (recall Theorem 1 above) one could expect that
the same fact holds in the supremum formulation as well. We now show, however,
that this is not the case. Indeed, the probabilistic proof presented below applies
to all cases of μ ∈ R simultaneously, resolves the problem when μ ∈ (0, σ 2), and
reveals the “bang–bang” character of the optimal strategy at μ = σ 2/2. In the ver-
sion of [15] that we received after communicating this proof, it was shown that
when μ ∈ [σ 2/2, σ 2) it is more optimal to continue to the final time T than to stop
at once. When combined with the general result from optimal stopping theory (af-
ter verifying sufficient conditions) that the supremum is attained at the first entry
time to the set where the value and gain functions are equal, this fact also yields the
inequality (4.2) for all λ ≥ 0. Finally, the inequalities (4.2) and (4.3) are interesting
in their own right and rather unusual: they are, to the best of our knowledge, the
first time such inequalities involving the maximum at a future time have appeared.

THEOREM 2. Consider the optimal prediction problem (4.1). If λ ≥ 0 then

E
(
eσ(Bλ

τ −Sλ
T )) ≤ E

(
eσ(Bλ

T −Sλ
T ))(4.2)

for all stopping times τ of B taking values in [0, T ]. If λ ≤ 0 then

E
(
eσ(Bλ

τ −Sλ
T )) ≤ E(e−σSλ

T )(4.3)
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for all stopping times τ of B taking values in [0, T ]. This shows that the optimal
stopping time τ∗ in (4.1) is described by the following “bang–bang” rule: when
μ ≥ σ 2/2 then τ∗ ≡ T , and when μ ≤ σ 2/2 then τ∗ ≡ 0. (Note that when μ =
σ 2/2 then both τ∗ ≡ T and τ∗ ≡ 0 are optimal, while in all other cases τ∗ is P-a.s.
unique.)

PROOF. Observe from (4.1) and the scaling property of Brownian motion that
there is no restriction in assuming that σ = 1 if we likewise adjust the terminal
time T accordingly.

1. We first consider the case when λ ≥ 0 (i.e., μ ≥ σ 2/2). In order to prove that
τ∗ ≡ T we need to show that (4.2) holds with σ = 1, that is,

E(eBλ
T −Sλ

T ) ≥ E(eBλ
τ −Sλ

T )(4.4)

for every stopping time τ of B taking values in [0, T ]. Clearly (4.4) will follow
from

E(eBλ
T −Sλ

T | F B
τ ) ≥ E(eBλ

τ −Sλ
T | F B

τ )(4.5)

being valid for all stopping times τ of B taking values in [0, T ], where (F B
t )0≤t≤T

is the natural filtration generated by B . To prove (4.5) it is enough to show that

E(eBλ
T −Sλ

T | F B
t ) ≥ E(eBλ

t −Sλ
T | F B

t )(4.6)

for all t ∈ [0, T ], since if (4.6) were to hold pointwise between these two (con-
tinuous) processes for all times t ∈ [0, T ], it would hold for all stopping times as
well. To establish (4.6), fix any t ∈ [0, T ] and note by the stationary independent
increments of Bλ that

E
(
exp(Bλ

T − Sλ
T ) | F B

t

)
= E

(
exp

(
Bλ

T − Sλ
t ∨ max

t≤s≤T
(Bλ

s − Bλ
t + Bλ

t )

) ∣∣∣ F B
t

)
(4.7)

= E
(

exp
(
Bλ

T − Bλ
t − (Sλ

t − Bλ
t ) ∨ max

t≤s≤T
(Bλ

s − Bλ
t )

) ∣∣∣ F B
t

)
= E(eBλ

T −t−x∨Sλ
T −t )|x=Sλ

t −Bλ
t
.

Similarly we find that

E(eBλ
t −Sλ

T | F B
t ) = E(e−x∨Sλ

T −t )|x=Sλ
t −Bλ

t
(4.8)

and so from (4.7) and (4.8) we see that for (4.6) it is enough to show that

E(eBλ
t −x∨Sλ

t ) ≥ E(e−x∨Sλ
t )(4.9)

for all x ≥ 0 and t ∈ [0, T ] whenever λ ≥ 0. To derive (4.9) we make the key
observation that (4.9) holds for all λ ≥ 0 if and only if it holds for λ = 0. Indeed
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suppose that (4.9) holds for λ = 0 and let λ > 0 be given and fixed. Then by the
assumption we see that

E(eBλ
t −x∨Sλ

t ) ≥ E
(
eBt+λt−x∨(St+λt)) ≥ E

(
eBt+λt−(x∨St+λt))

(4.10)
= E(eBt−x∨St ) ≥ E(e−x∨St ) ≥ E(e−x∨Sλ

t )

proving the claim. Thus it is enough to show that

E(eBt−x∨St ) ≥ E(e−x∨St )(4.11)

for all x ≥ 0 and t ∈ [0, T ]. To derive (4.11) recall that x ∨ St − Bt =law |x + Bt |
and St =law |Bt |. It follows then that (4.11) can be written as

E
(
e−|x+Bt |) ≥ E

(
e−(x∨|Bt |))(4.12)

which by the scaling property of Brownian motion is the same as

E
(
e−√

t |(x/
√

t)+B1|) ≥ E
(
e−√

t((x/
√

t)∨|B1|)).(4.13)

Therefore it is enough to show that

E
(
e−c|x+B1|) ≥ E

(
e−c(x∨|B1|))(4.14)

for all c ≥ 0 and all x ≥ 0. Setting ϕ(x) = (1/
√

2π)e−x2/2 it is easy to see that the
left-hand side in (4.14) equals

L = ecx
∫ −x

−∞
ecyϕ(y) dy + e−cx

∫ x

−x
e−cyϕ(y) dy

(4.15)
+ e−cx

∫ ∞
x

e−cyϕ(y) dy

while the right-hand side is given by

R =
∫ −x

−∞
ecyϕ(y) dy + e−cx

∫ x

−x
ϕ(y) dy +

∫ ∞
x

e−cyϕ(y) dy.(4.16)

Turning to (4.15), setting y = −z in the first integral and adding this to the last
integral, and doing likewise in (4.16), we see that the resulting expressions satisfy

(ecx + e−cx)

∫ ∞
x

e−cyϕ(y) dy ≥ 2
∫ ∞
x

e−cyϕ(y) dy(4.17)

since 1
2(ecx +e−cx) = ch(cx) ≥ 1 for all c ≥ 0 and all x ≥ 0. Therefore to complete

the proof it is enough to show that

f (x) :=
∫ x

−x
e−cyϕ(y) dy ≥

∫ x

−x
ϕ(y) dy =: g(x)(4.18)

for all c ≥ 0 and x ≥ 0. For this, note that f (0) = g(0) = 0 and

f ′(x) = (e−cx + ecx)ϕ(x) ≥ 2ϕ(x) = g′(x)(4.19)
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for all x ≥ 0 since ch(cx) ≥ 1 for all c ≥ 0 and x ≥ 0. Thus f (x) ≥ g(x) for all
x ≥ 0 and the proof of (4.2) is complete. Note also that when λ > 0 the proof above
shows that equality in (4.2) is not attained at any other stopping time τ of B with
values in [0, T ] such that P(τ < T ) > 0. Thus τ∗ ≡ T is the only optimal stopping
time (P-a.s.) when μ > σ 2/2.

2. We next consider the case when λ ≤ 0 (i.e., μ ≤ σ 2/2). In order to prove that
τ∗ ≡ 0 we need to show that (4.3) holds with σ = 1 (by Brownian scaling). Writing
the drift as −λ for λ ≥ 0, we see that the problem reduces to showing that

E(e−S−λ
T ) ≥ E(eB−λ

τ −S−λ
T )(4.20)

for every stopping time τ of B taking values in [0, T ]. This inequality is more
involved than the inequality (4.4) above (when λ ∈ {0} ∪ [1/2,∞) a shorter proof
can be given using Girsanov’s theorem).

We begin by rewriting the left-hand side of (4.20). For this, recall that S−λ
T =law

B−λ
T − I−λ

T =law −Bλ
T + Sλ

T , where I−λ
T = inf0≤t≤T B−λ

t , so that (4.20) reads

E(eBλ
T −Sλ

T ) ≥ E(eB−λ
τ −S−λ

T ),(4.21)

where τ and λ are as above. Clearly it is enough to show that

E(eBλ
T −Sλ

T | F B
τ ) ≥ E(eB−λ

τ −S−λ
T | F B

τ )(4.22)

for all τ as above, and as at (4.6) above, the inequality (4.22) will follow if

E(eBλ
T −Sλ

T | F B
t ) ≥ E(eB−λ

t −S−λ
T | F B

t )(4.23)

for all t ∈ [0, T ]. For this, by the same arguments as in (4.7) above we find that

E(eBλ
T −Sλ

T | F B
t ) = E(eBλ

T −t−x∨Sλ
T −t )|x=Sλ

t −Bλ
t

(4.24)

and similarly

E(eB−λ
t −S−λ

T | F B
t ) = E(e−x∨S−λ

T −t )|
x=S−λ

t −B−λ
t

(4.25)

for all t ∈ [0, T ]. Since λ ≥ 0 we have that

Sλ
t − Bλ

t ≤ St + λt − (Bt + λt)
(4.26)

= St − Bt = St − λt − (Bt − λt) ≤ S−λ
t − B−λ

t

for all t ∈ [0, T ]. Using (4.26) in (4.24) we see that

E(eBλ
T −Sλ

T | F B
t ) ≥ E(eBλ

T −t−x∨Sλ
T −t )|

x=S−λ
t −B−λ

t
(4.27)

so that (4.23) will follow if we are able to show that

E(eBλ
t −x∨Sλ

t ) ≥ E(e−x∨S−λ
t )(4.28)
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for all x ≥ 0 and all t ∈ [0, T ]. Note that the inequality (4.28) is sharper than the
inequality (4.9) above since the right-hand side in (4.28) is larger, and once (4.28)
is proved we will get (4.9) as a consequence. Note also that a similar approach
based on (4.10) above is no longer possible in the case of (4.28). Lastly, observe
that (4.28) is satisfied if either λ = 0 or x = 0. Indeed, the former case reduces to
(4.9) above, while the latter case follows from the fact that Bλ

t − Sλ
t =law Iλ

t =law

−S−λ
t so that (4.28) holds in particular.
To derive (4.28) in general, let us first note that x ∨ Sλ

t = x + (Sλ
t − x)+, where

λ can be positive or negative, so that (4.28) reads

E
(
eBλ

t −(Sλ
t −x)+) ≥ E

(
e−(S−λ

t −x)+)
.(4.29)

Recalling that (4.29) holds for x = 0, we see that it is enough to show that

∂

∂x
E
(
eBλ

t −(Sλ
t −x)+) ≥ ∂

∂x
E
(
e−(S−λ

t −x)+)
(4.30)

for all x ≥ 0 and all t ∈ [0, T ]. Interchanging ∂
∂x

and E in (4.30) (which is easily
justified by standard means) we see that (4.30) becomes

E
(
eBλ

t −(Sλ
t −x)I (Sλ

t > x)
) ≥ E

(
e−(S−λ

t −x)I (S−λ
t > x)

)
,(4.31)

which upon multiplying by e−x is the same as

E
(
eBλ

t −Sλ
t I (Sλ

t > x)
) ≥ E

(
e−S−λ

t I (S−λ
t > x)

)
.(4.32)

Since (Sλ
t , Sλ

t − Bλ
t ) =law (Bλ

t − Iλ
t ,−Iλ

t ) =law (−B−λ
t + S−λ

t , S−λ
t ) we see that

the left-hand side of (4.32), and thus (4.32) itself, can be rewritten as

E
(
e−S−λ

t I (S−λ
t − B−λ

t > x)
) ≥ E

(
e−S−λ

t I (S−λ
t > x)

)
.(4.33)

Recall [see (3.2) above] that the density function f of (B−λ
t , S−λ

t ) is given explic-
itly by

f (t, b, s) =
√

2

π

(2s − b)

t3/2 e−(2s−b)2/(2t)−λ(b+λt/2)(4.34)

for s ≥ 0 and b ≤ s. Using f we can rewrite (4.33) as follows:∫ ∞
0

e−s
∫ s−x

−∞
f (t, b, s) db ds ≥

∫ ∞
x

e−s
∫ s

−∞
f (t, b, s) db ds.(4.35)

Substituting b′ = b − (s − x) in the left-hand side, s ′ = s − x and b′ = b − (s′ + x)

in the right-hand side, and setting

g(b, s) = (2s − b)e−(2s−b)2/(2t)−λb(4.36)
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with t ∈ [0, T ] fixed, we find that (4.35) is equivalent to∫ ∞
0

e−s
∫ 0

−∞
g(b + s − x, s) db ds

(4.37)

≥
∫ ∞

0
e−(s+x)

∫ 0

−∞
g(b + s + x, s + x)db ds.

Hence it is enough to show that

g(b + s − x, s) ≥ g(b + s + x, s + x).(4.38)

For this, note that we have

g(b + s − x, s) = (s − b + x)e−(s−b+x)2/(2t)−λ(b+s)+λx,(4.39)

g(b + s + x, s + x) = (s − b + x)e−(s−b+x)2/(2t)−λ(b+s)−λx.(4.40)

A direct comparison of (4.39) and (4.40) shows that (4.38) holds for all x ≥ 0 and
this completes the proof. �

REMARK 1 (The “bang–bang” strategy). To grasp the meaning of the “bang–
bang” character of the optimal strategies in the supremum formulation (4.1), let us
consider the optimal stopping problem

V = sup
0≤τ≤T

E(Zτ ),(4.41)

where the supremum is taken over all stopping times τ of the geometric Brownian
motion Z with drift μ ∈ R and volatility σ > 0. By the sub/super/martingale prop-
erty of Z we see that the optimal stopping time τ∗ is described by the following
“bang–bang” rule: when μ ≥ 0 then τ∗ ≡ T and when μ ≤ 0 then τ∗ ≡ 0. This
shows that if we are to maximize the mean of Zτ with reference to 1 [in the sense
that Zτ in (4.41) equals Zτ/1], then the “critical” drift μ∗ equals 0. On the other
hand, if this reference point is being replaced by the more ambitious reference
point of the ultimate maximum MT , then the result of Theorem 2 shows that the
drifts μ belonging to (0, σ 2/2) are no longer good enough for continuation and
the “critical” drift equals σ 2/2 in this case.

Quite similarly, to relate these interpretations to the optimal strategies in the
infimum formulation (2.4), let us consider the optimal stopping problem

V = inf
0≤τ≤T

E
(

1

Zτ

)
,(4.42)

where the infimum is taken over all stopping times τ of Z as in (4.41) above. By
the super/sub/martingale property of Z we see that the optimal stopping time τ∗ is
described by the following “bang–bang” rule: when μ ≥ σ 2 then τ∗ ≡ T and when
μ ≤ σ 2 then τ∗ ≡ 0. This shows that if we are to penalize the mean of 1/Zτ for
small Zτ with reference to 1 [in the sense that the integrand in (4.42) equals 1/Zτ ],
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then the “critical” drift μ∗ equals σ 2. On the other hand, if this reference point is
replaced by the more ambitious reference point of the ultimate maximum MT , then
the result of Theorem 1 shows that the drifts μ belonging to (0, σ 2) are no longer
good enough for stopping, and the “critical” drift μ∗ is diffused into a nontrivial
function of time specified in Theorem 1.

REMARK 2 (Implementing the “bang–bang” strategy). As we have shown in
Theorem 2 above, the optimal strategy in the supremum formulation of the stock
selling problem is of the so-called “bang–bang” type: when μ ≤ σ 2/2 one stops
immediately, and when μ > σ 2/2 one waits until the final time T . There are a num-
ber of interesting questions which emerge when one considers how this strategy
could be implemented in practice. One way is to exploit the “bang–bang” struc-
ture and leverage the fact that a single point (namely σ 2/2) defines the boundary
between one simple strategy (sell the stock) and another (hold the stock).

Imagine an investor who owns a stock Z following a geometric Brownian mo-
tion with unknown drift μ and known volatility σ . The investor has a history of
observations and wishes to use this information to determine at which time be-
fore T to sell the stock so as to maximize E(Zτ /MT ). Unfortunately this involves
estimating the drift, and it is well known that this is particularly difficult and re-
quires a prodigious amount of data to achieve with any kind of accuracy. Moreover,
the optimal strategy is very sensitive to errors in the estimated value μ̂ of μ when
close to σ 2. One approach which lends itself to engineering applications is to link
this problem with two well-known problems from mathematical statistics:

(i) Sequential testing. To use the sequential testing approach, one assumes that
the stock-price drift takes one of two possible values: μ0 > σ 2/2 or μ1 ≤ σ 2/2.
The aim is to test the null hypothesis H0 :μ = μ0 against the alternate hypothesis
H1 :μ = μ1, and if H0 is rejected one sells the stock. The test is performed by
monitoring the process f (Zt) for a specified functional f when t runs from 0
to T , and stopping at the first time τ∗ at which f (Zτ∗) belongs to a specified set
D0 ∪ D1. If f (Zτ∗) belongs to D0, then one rejects H0 and sells the stock, and if
f (Zτ∗) belongs to D1, then one does not reject H0 and holds the stock until time T .
For further information about the test and other ramifications in this direction see,
for example, [12], Section 21.

(ii) Quickest detection. To use the quickest detection approach, one assumes
that the stock-price drift is equal to μ0 > σ 2/2, and that at some independent (e.g.,
exponentially distributed) time θ , the drift will change to μ1 ≤ σ 2/2. The aim is to
detect θ as quickly and as accurately as possible, and at this point to sell the stock.
The test is performed by monitoring the process f (Zt) for a specified functional f

when t runs from 0 to T , and stopping at the first time τ∗ at which f (Zτ∗) belongs
to a specified set D. At this point one sells the stock. For further information about
the test and other ramifications in this direction see, for example, [12], Section 22.
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REMARK 3. We chose to solve the optimal prediction problem (4.1) directly,
proving that τ∗ ≡ T or τ∗ ≡ 0 by establishing the inequalities (4.2) and (4.3). How-
ever, one can also tackle (4.1) with the same machinery as was used to solve the
infimum formulation (1.3), and doing so reveals why the supremum formulation
is inherently more complex than the infimum formulation. Calculations similar to
those at Lemma 1 show that

V (t, x) := sup
0≤τ≤T −t

Et,x

(
Zτ

MT

)
= sup

0≤τ≤T −t

Et,x

(
G(t + τ, Sλ

t+τ − Bλ
t+τ )

)
(4.43)

= sup
0≤τ≤T −t

E
(
G(t + τ,Xx

τ )
)

for all (t, x) ∈ [0, T ] × R+, where the function G above is equal to G from (2.7)
and (2.8) with σ replaced by −σ and Xx = (Xx

t )0≤t≤T = (x ∨ Sλ
t − Bλ

t )0≤t≤T for
any x ≥ 0.

Applying Itô’s formula to G [as at (3.14) above] and taking expectations, one
finds by the optional sampling theorem [as at (3.16) above] that

V (t, x) = G(t, x) + sup
0≤τ≤T −t

E
(∫ τ

0
H(t + s,Xx

s ) ds

)
(4.44)

for all (t, x) ∈ [0, T ]×R+, where H = Gt −λGx + 1
2Gxx is equal to H from (3.1)

and (3.15) with σ replaced by −σ . A direct examination of the function H shows
that when μ ≤ 0 we have H(t, x) < 0, and when μ ≥ σ 2 we have H(t, x) > 0 for
all (t, x) ∈ [0, T ] × R+ (this was derived in [15]). Considerations similar to those
at (3.17)–(3.19) then show that if μ ≤ 0, it is optimal to stop immediately, whereas
if μ ≥ σ 2, it is optimal to wait until time T .

However, when μ ∈ (0, σ 2) there exists a continuous decreasing function h on
[0, T ] with h(T ) = 0 such that {H < 0} = {(t, x) ∈ [0, T ] × R+ | x < h(t)}. The
same arguments as at (3.19) then show that the area above h will be part of the
continuation set, while the area below h may contain a stopping set. In addition, it
is also not true that Ht ≤ 0. This peculiar behavior of H and Ht leads to several
complications; for example, it is much harder to show that the optimal stopping
boundary is regular for the diffusion [compare with (3.35) and (3.36) above] with-
out resorting to purely analytic methods coming from the theory of free-boundary
problems. Moreover, while solving the optimal stopping problem (4.43) is quite
demanding, it is not required in order to solve the optimal stopping problem (1.4)
where the process X starts at 0 at time 0. All that is needed is to show that (0,0) is a
stopping point when μ ≤ σ 2/2, and that no point in [0, T ) × R+ is in the stopping
set when μ > σ 2/2. For this reason we chose to present the current proof in Sec-
tion 4 rather than to solve the problem (4.43) directly. It may also be noted that the
inequality (4.11) is strict when x > 0 and t > 0 [since ch(cx) > 1 for cx �= 0] so
that no point (t, x) ∈ [0, T ) × (0,∞) belongs to the stopping set when μ = σ 2/2,
that is, the optimal stopping boundary is given by b(t) = 0 for t ∈ [0, T ] in this
case.
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2. To conclude the paper we briefly return to the infimum formulation (2.4). Re-
call (see Theorem 1) that for this problem it is optimal to wait until the final time T

when μ ≥ σ 2 and it is optimal to stop immediately if μ ≤ 0. These results were
derived in Section 3 by reducing (2.4) to an adapted optimal stopping problem,
and then using stochastic calculus techniques to examine the two cases. We now
give a direct proof of these facts based on the methods developed in the proof of
Theorem 2 and the Girsanov theorem. Quite similarly, the Girsanov theorem can
also be used to give simpler proofs of the inequalities (4.2) and (4.3) when either
μ ≥ σ 2 or μ ≤ 0 respectively.

THEOREM 3. Consider the optimal prediction problem (2.4). If λ ≥ σ/2 then

E
(
eσ(Sλ

T −Bλ
τ )) ≥ E

(
eσ(Sλ

T −Bλ
T ))(4.45)

for all stopping times τ of B taking values in [0, T ]. If λ ≤ −σ/2 then

E
(
eσ(Sλ

T −Bλ
τ )) ≥ E(eσSλ

T )(4.46)

for all stopping times τ of B taking values in [0, T ]. This shows that the optimal
stopping time τ∗ in (2.4) is described as follows: when μ ≥ σ 2 we have τ∗ ≡ T ,
and when μ ≤ 0 we have τ∗ ≡ 0. [Recalling that τ∗ is nontrivial when μ ∈ (0, σ 2)

we see that (4.45) and (4.46) fail to hold for all stopping times when either λ < σ/2
or λ > −σ/2 respectively.]

PROOF. We will be rather brief as many of the ideas are very similar to the
proof of Theorem 2. Recall that we can set σ = 1 by Brownian scaling.

1. We first consider (4.45) and observe, as at (4.6) above, that it is enough to
show that

E(eSλ
T −Bλ

t | F B
t ) ≥ E(eSλ

T −Bλ
T | F B

t )(4.47)

for all t ∈ [0, T ]. Recalling (4.7)–(4.9) above, we similarly see that (4.47) reduces
to showing

E(ex∨Sλ
t ) ≥ E(ex∨Sλ

t −Bλ
t )(4.48)

for all t ∈ [0, T ] and all x ≥ 0. Although a similar trick as at (4.10) [reducing (4.48)
for “large” λ to (4.48) with “smaller” λ] still applies, one notes, however, that
(4.48) fails for λ = 0. [This can be seen by mimicking the arguments from (4.11)
onward.] On the other hand, the inequality (4.48) does hold for λ = 1/2. Indeed,
by the Girsanov theorem we have

E(ex∨S
1/2
t −B

1/2
t ) = E(ex∨S

1/2
t −Bt−t/2) = Ẽ(ex∨S

1/2
t )

(4.49)
= Ẽ(ex∨S̃

−1/2
t ) ≤ E(ex∨S

1/2
t )
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since Bt + t
2 = Bt + t − t + t

2 = B̃t − t
2 for t ∈ [0, T ], where B̃ = (B̃t )0≤t≤T is a

standard Brownian motion under P̃ . Hence if λ ≥ 1/2 then

E(ex∨Sλ
t −Bλ

t ) = E
(
ex∨max0≤s≤t (Bs+λs)−Bλ

t
)

= E
(
ex∨max0≤s≤t (Bs+s/2+(λ−1/2)s)−Bt−λt )

(4.50)
≤ E

(
ex∨S

1/2
t +(λ−1/2)t−Bt−λt ) = E(ex∨S

1/2
t −B

1/2
t )

≤ E(ex∨S
1/2
t ) ≤ E(ex∨Sλ

t )

for all t ∈ [0, T ]. This establishes (4.48) and completes the proof of (4.45).
2. To prove (4.46) for all λ ≤ −1/2, we first write the drift as −λ for λ ≥ 1/2.

Mimicking the arguments from (4.20)–(4.28) and writing E(eS−λ
T ) = E(eSλ

T −Bλ
T ),

we see that it is enough to establish

E(ex∨S−λ
t ) ≥ E(ex∨Sλ

t −Bλ
t )(4.51)

for all t ≥ 0 and all x ≥ 0 whenever λ ≥ 1/2. Performing the same computations
as at (4.29)–(4.33) leads to the inequality

E
(
eS−λ

t I (S−λ
t > x)

) ≤ E
(
eS−λ

t I (S−λ
t − B−λ

t > x)
)
,(4.52)

which has to be proved. Recalling the function f from (4.34), expanding the ex-
pectations as integrals and making the same substitutions as below (4.35), we can
rewrite (4.52) as ∫ ∞

0
es

∫ 0

−∞
exg(b + s + x, s + x)db ds

(4.53)

≤
∫ ∞

0
es

∫ 0

−∞
g(b + s − x, s) db ds,

where the function g is given by (4.36) for t ≥ 0 given and fixed. Since

exg(b + s + x, s + x) = (s − b + x)e−(s−b+x)2/(2t)−λ(b+s)+x(1−λ),(4.54)

g(b + s − x, s) = (s − b + x)e−(s−b+x)2/(2t)−λ(b+s)+λx,(4.55)

we see that (4.53) will be satisfied whenever λ ≥ 1/2. This completes the proof.
�

REMARK 4 (Key inequalities). A closer examination of the proofs in this sec-
tion will reveal that there are two key inequalities that were derived in establishing
Theorems 2 and 3. For the sake of completeness we list them here:

E(eBλ
t −x∨Sλ

t ) ≥ E(e−x∨S−λ
t ) for all λ ≥ −1/2,(4.56)

E(ex∨S−λ
t ) ≥ E(ex∨Sλ

t −Bλ
t ) for all λ ≥ 1/2,(4.57)
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whenever t ≥ 0 and x ≥ 0. In fact the inequality (4.56) was derived only for λ ≥ 0
above; however, a careful examination of the calculations in (4.51)–(4.54) and
(4.28)–(4.40) shows that it also holds for λ ≥ −1/2. Moreover, one can likewise
verify that

E(eBλ
t −x∨Sλ

t ) ≤ E(e−x∨S−λ
t ) for all λ ≤ −1/2,(4.58)

E(ex∨S−λ
t ) ≤ E(ex∨Sλ

t −Bλ
t ) for all λ ≤ 1/2,(4.59)

whenever t ≥ 0 and x ≥ 0.

REFERENCES

[1] DOOB, J. L. (1949). Heuristic approach to the Kolmogorov–Smirnov theorems. Ann. Math.
Statist. 20 393–403. MR0030732

[2] DU TOIT, J. and PESKIR, G. (2007). The trap of complacency in predicting the maximum.
Ann. Probab. 35 340–365. MR2303953

[3] DU TOIT, J. and PESKIR, G. (2008). Predicting the time of the ultimate maximum for Brown-
ian motion with drift. In Proc. Math. Control Theory Finance (Lisbon 2007) 95–112.
Springer, Berlin.

[4] DU TOIT, J., PESKIR, G. and SHIRYAEV, A. N. (2008). Predicting the last zero of Brownian
motion with drift. Stochastics 80 229–245. MR2402166

[5] GRAVERSEN, S. E., PESKIR, G. and SHIRYAEV, A. N. (2000). Stopping Brownian motion
without anticipation as close as possible to its ultimate maximum. Theory Probab. Appl.
45 41–50. MR1810977

[6] GRAVERSEN, S. E. and SHIRYAEV, A. N. (2000). An extension of P. Lévy’s distributional
properties to the case of a Brownian motion with drift. Bernoulli 6 615–620. MR1777686

[7] KARATZAS, I. and SHREVE, S. E. (1998). Methods of Mathematical Finance. Applications of
Mathematics (New York) 39. Springer, New York. MR1640352

[8] MALMQUIST, S. (1954). On certain confidence contours for distribution functions. Ann. Math.
Statist. 25 523–533. MR0065095

[9] PEDERSEN, J. L. (2003). Optimal prediction of the ultimate maximum of Brownian motion.
Stoch. Stoch. Rep. 75 205–219. MR1994906

[10] PESKIR, G. (2005). A change-of-variable formula with local time on curves. J. Theoret.
Probab. 18 499–535. MR2167640

[11] PESKIR, G. (2006). On reflecting Brownian motion with drift. In Proc. Symp. Stoch. Syst.
(Osaka 2005) 1–5. ISCIE, Kyoto, Japan.

[12] PESKIR, G. and SHIRYAEV, A.N. (2006). Optimal Stopping and Free-Boundary Problems.
Birkhäuser, Basel. MR2256030

[13] SHIRYAEV, A. N. (2002). Quickest detection problems in the technical analysis of the financial
data. In Mathematical Finance—Bachelier Congress, 2000 (Paris) 487–521. Springer,
Berlin. MR1960576

[14] SHIRYAEV, A. N. (2007). On the conditionally extremal problems of the quickest detection
of non-predictable times for the observable Brownian motion. Theory Probab. Appl. To
appear.

[15] SHIRYAEV, A. N., XU, Z. and ZHOU, X. Y. (2008). Thou shalt buy and hold. Working Pa-
per 21/5/2008, University of Oxford.

http://www.ams.org/mathscinet-getitem?mr=0030732
http://www.ams.org/mathscinet-getitem?mr=2303953
http://www.ams.org/mathscinet-getitem?mr=2402166
http://www.ams.org/mathscinet-getitem?mr=1810977
http://www.ams.org/mathscinet-getitem?mr=1777686
http://www.ams.org/mathscinet-getitem?mr=1640352
http://www.ams.org/mathscinet-getitem?mr=0065095
http://www.ams.org/mathscinet-getitem?mr=1994906
http://www.ams.org/mathscinet-getitem?mr=2167640
http://www.ams.org/mathscinet-getitem?mr=2256030
http://www.ams.org/mathscinet-getitem?mr=1960576


1014 J. DU TOIT AND G. PESKIR

[16] URUSOV, M. A. (2004). On a property of the time of attaining the maximum by Brown-
ian motion and some optimal stopping problems. Theory Probab. Appl. 49 169–176.
MR2141339

SCHOOL OF MATHEMATICS

THE UNIVERSITY OF MANCHESTER

OXFORD ROAD

MANCHESTER M13 9PL
UNITED KINGDOM

E-MAIL: Jacques.Du-Toit@postgrad.manchester.ac.uk
Goran.Peskir@manchester.ac.uk

http://www.ams.org/mathscinet-getitem?mr=2141339
mailto:Jacques.Du-Toit@postgrad.manchester.ac.uk
mailto:Goran.Peskir@manchester.ac.uk

	Introduction
	Formulation of the problem
	The infimum problem
	The supremum problem
	References
	Author's Addresses

