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RANDOM ENVIRONMENT
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We study a contact process running in a random environment in Z
d

where sites flip, independently of each other, between blocking and nonblock-
ing states, and the contact process is restricted to live in the space given by
nonblocked sites. We give a partial description of the phase diagram of the
process, showing in particular that, depending on the flip rates of the envi-
ronment, survival of the contact process may or may not be possible for large
values of the birth rate. We prove block conditions for the process that par-
allel the ones for the ordinary contact process and use these to conclude that
the critical process dies out and that the complete convergence theorem holds
in the supercritical case.

1. Introduction. We consider the following version of a contact process run-
ning in a dynamic random environment in Z

d . The state of the process is repre-
sented by some η ∈ X = {−1,0,1}Z

d
, where sites in state 0 are regarded as vacant,

sites in state 1 as occupied and sites in state −1 as blocked (that is, no births of 1’s
are allowed on that site). The process ηt is defined by the following transition rates:

0 −→ 1 at rate βf1
1 −→ 0 at rate 1

0,1 −→ −1 at rate α

−1 −→ 0 at rate αδ

where f1 is the fraction of occupied neighbors at L1 distance 1.
In words, the −1’s define a random environment in which each site becomes

blocked at rate α and flips back to being unblocked at rate αδ, while the 1’s behave
like a nearest neighbor contact process with birth rate β in the space left unblocked
by the environment. Observe that when an occupied site becomes blocked, the
particle is killed. This version is simpler than the alternative in which only 0’s
can turn to −1’s (mainly because our process satisfies a self-duality relation, see
Proposition 2.2). However, we feel that our choice is natural: If a site becomes
uninhabitable, the particles living there will soon die.

Ever since it was introduced in Harris (1974), the contact process has been ob-
ject of intensive study, and many extensions and modifications of the process have
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been considered. In particular, the literature includes several different versions of
contact processes in random environments. One class of these processes corre-
sponds to contact processes where the birth and death rates are not homogeneous
in space, and they are chosen according to some probability distribution, inde-
pendently across sites, and remain fixed in time [see, e.g., Bramson, Durrett and
Schonmann (1991), Liggett (1992), Andjel (1992) and Klein (1994)]. The main
question for this class of processes is to determine conditions on the parameters
that guarantee or preclude survival.

A different class of models, which are somehow closer to the process we con-
sider, have two species with different parameters or ranges, but one of them be-
haves independently of the other while the second is restricted to live in the space
left by the first. These processes were studied in Durrett and Swindle (1991),
Durrett and Møller (1991) and Durrett and Schinazi (1993). The results in these
papers (mainly bounds on critical parameters for coexistence and complete conver-
gence theorems) are asymptotic, in the sense that they are proved when the range
of one or both types is sufficiently large.

The process we consider differs from both of the types of examples mentioned
above: The random environment is dynamic and it behaves independently across
sites. An example of a spin system running in this type of environment was stud-
ied in Luo (1992), and corresponds to the Richardson model which would result
from ignoring transitions from 1 to 0 in our process. Another example was studied
recently in Broman (2007), where the author considers a process in which the en-
vironment changes the death rate of the contact process instead of blocking sites.
The dynamics of the process �

γ,p,A
δ0,δ1

introduced there are the same as those of
our process if δ1 = ∞. The author considers this case as a tool in the study of his
process, but the results of the paper focus on the case δ1 < ∞. We will use one
of his results to give a bound on a part of the phase diagram of our process in
Theorem 1.

As mentioned above, the −1’s evolve independently of the 1’s. They follow an
“independent flip process” whose equilibrium is given by the product measure

μρ

({η :η(x) = −1}) = 1 − μρ

({η :η(x) �= −1}) = ρ = 1

1 + δ
∀x ∈ Z

d .

This process is reversible, and its reversible measure is given by μρ .
In Section 2.1, we will construct our process using the so-called graphical rep-

resentation. A direct consequence of the construction will be that ηt satisfies some
monotonicity properties analogous to those of the contact process. (Here and in
the rest of the paper, when we refer to the contact process we mean the “ordinary”
nearest-neighbor contact process in Z

d .) We consider the following partial order
on configurations:

η1 ≤ η2 ⇔ η1(x) ≤ η2(x) ∀x ∈ Z
d .(1.1)
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With this order, our process has the following property: Given two initial states
η1

0 ≤ η2
0, it is possible to couple two copies of the process η1

t and η2
t with these

initial conditions in such a way that η1
t ≤ η2

t for all t ≥ 0. We will refer to this
property as attractiveness by analogy with the case of spin systems [this property
is sometimes termed monotonicity, see Sections II.2 and III.2 of Liggett (1985) for
a discussion of general monotone processes and of attractive spin systems, resp.].

For A ⊆ Z
d , we define the following probability measure νA on X: −1’s are

chosen first according to their equilibrium measure μρ and then 1’s are placed at
every site in A that is not blocked by a −1. These measures are the initial condi-
tions for ηt that are suitable for duality.

Let ν = ν∅, which corresponds to having the −1’s at equilibrium and no 1’s.
Let also ν be the limit distribution of the process when starting at the configuration
having all sites at state 1, which is obviously the largest configuration in the partial
order (1.1). We will show in Proposition 2.1 that this limit is well defined and
it is stationary, and that ν and ν are, respectively, the lower and upper invariant
measure of the process (i.e., the smallest and largest stationary distribution of the
process).

We will say that the process survives if there is an invariant measure ν such that

ν
({

η :η(x) = 1 for some x ∈ Z
d})

> 0,

or, equivalently, if ν �= ν (we remark that, as a consequence of Theorem 2, every
invariant measure for the process is translation invariant, so the above probability is
actually 1 whenever it is positive). Otherwise, we will say that the process dies out.
We will see in Section 4 that this definition of survival is equivalent to the following
condition: The process started with a single 1 at the origin and everything else at
−1 contains 1’s at all times with positive probability.

A second monotonicity property that will follow from the construction of ηt is
monotonicity with respect to the parameters β and δ:

(i) If α and δ are fixed, and for some β > 0 the process survives, then the
process also survives for any β ′ > β .

(ii) If α and β are fixed, and for some δ > 0 the process survives, then the
process also survives for any δ′ > δ.

These properties follow easily from standard coupling arguments. We will denote
by βc = βc(α, δ) ∈ [0,∞] the parameter value such that, fixing these α and δ, ηt

survives for β > βc and dies out for β < βc. We define δc = δc(α,β) analogously.
Our first result provides some bounds on the critical parameters for survival. Let

β
cp
c be the critical value of the contact process in Z

d [here we are taking the birth
rate β to be the total birth rate from each site, so each site sends births to each
given neighbor at rate β/(2d)].

THEOREM 1.

(a) If β ≤ (α + 1)β
cp
c , then the process dies out.
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(b) There exists a δp > 0 such that for any δ < δp the process dies out (regard-
less of α and β).

(c) Let

λ(α,β, δ) = 1

2

[
β + α(1 + δ) −

√(
β − α(1 + δ)

)2 + 4αβ
]
.

If λ(α,β, δ) > (α + 1)β
cp
c , then the process survives.

Part (a) of the theorem is trivial because the 1’s die at rate α + 1. For part (b),
observe that if the complement of the set of sites at state −1 does not space-time
percolate, then each 1 in the process is doomed to live in a finite space-time re-
gion, and then the process cannot have 1’s at all times when started with finitely
many occupied sites. We will show by adapting arguments in Meester and Roy
(1996) that, with probability 1, no such space-time percolation occurs if δ is small
enough. For part (c), we will use Broman’s result to obtain a suitable coupling with
a contact process with birth rate λ(α,β, δ) and death rate α + 1.

In particular, Theorem 1 implies that if δ is large enough then βc(α, δ) < ∞,
and in fact δ > α+1

α
β

cp
c is enough. To see this, observe that

lim
β→∞λ(α,β, δ) = αδ > (α + 1)βcp

c

whenever the above condition on δ holds. Then part (c) of the theorem implies that
the process survives for these choices of α and δ and large enough β . Another con-
sequence is that δp ≤ β

cp
c . Indeed, if δ > β

cp
c , then δ > α+1

α
β

cp
c for large enough α,

and the previous property implies that the process survives for these choices of α

and δ and large enough β .
A significant difficulty in giving a more complete picture of the phase diagram

of ηt is that we lack a result about monotonicity with respect to α analogous to
the properties (i) and (ii) (monotonicity with respect to β and δ) mentioned above.
Observe that the equilibrium density of nonblocked sites is independent of α, but
the environment changes more quickly as α increases. Simulations suggest that if
β and δ are given and the process dies out at some parameter value α, then it also
dies out for any parameter value α′ > α (note that part (a) of Theorem 1 says that
the process dies out at least for all α large enough). But the usual simple arguments
based on coupling do not work in this case, since increasing α increases both the
rate at which sites are blocked, which plays against survival, and the rate at which
sites are unblocked, which plays in favor of survival, and we have not been able to
find an alternative proof.

The second part of our study of ηt investigates the convergence of the process
and the structure of its limit distributions. For η ∈ X, we will write η = (A,B),
where

A = {x ∈ Z
d :η(x) = 1} and B = {x ∈ Z

d :η(x) = −1}.
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η
μ
t = (A

μ
t ,B

μ
t ) will denote the process with initial distribution μ, and we will refer

to B
μ
t (or Bt if no initial distribution is prescribed) as the environment process.

Observe that the dynamics of the environment process are independent of the 1’s
in ηt .

THEOREM 2. Denote by τ = inf{t ≥ 0 :At = ∅} the extinction time of the
process. Then for every initial distribution μ,

η
μ
t �⇒ P

μ(τ < ∞)ν + P
μ(τ = ∞)ν,

where the limit is in the topology of weak convergence of probability measures.

This result, which is usually called a complete convergence theorem, implies
that all limit distributions are convex combinations of ν and ν. Thus, the only
interesting nontrivial stationary distribution is ν.

The proof of Theorem 2 relies on extending for ηt the classical block construc-
tion for the contact process introduced in Bezuidenhout and Grimmett (1990), so
that we are able to use the proof of complete convergence for the contact process to
prove the corresponding convergence of the contact process part of ηt . As a conse-
quence of this construction, we will obtain, just as for the contact process, the fact
that the process dies out at the critical parameters βc and δc (see Corollary 4.4).
The arguments involved in this part will depend heavily on a duality relation which
will be developed in Section 2.2.

The rest of the paper is devoted to the proofs of the two theorems. Section 2
describes the construction of ηt and presents some basic preliminary results. The-
orem 1 is proved in Section 3. In Section 4 we obtain the block conditions for
the survival of the process. Finally, in Section 5 we use duality and the conditions
obtained in Section 4 to prove Theorem 2.

2. Preliminaries.

2.1. Graphical representation and monotonicity. The graphical representation
is one of the basic and most useful tools in the study of the contact process and
other interacting particle systems. It will allow us to construct our process from a
collection of independent Poisson processes and obtain a single probability space
in which copies of the process with arbitrary initial states can be coupled. We will
give a rather informal description of this construction, which can be made precise
by adapting the arguments of Harris (1972). We refer the reader to Section III.6 of
Liggett (1985) for more details on this construction in the case of an additive spin
system.

The construction is done by placing symbols in Z
d × [0,∞) to represent the

different events in the process. For each ordered pair x, y ∈ Z
d at distance 1, let

Nx,y be a Poisson process with rate β/(2d), and take the processes assigned to
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different pairs to be independent. At each event time t of Nx,y , draw an arrow
1−→

in Z
d × [0,∞) from (x, t) to (y, t) to indicate the birth of a 1 sent from x to y

(which will only take place if x is occupied and y is vacant at time t). Similarly,
define a family of independent Poisson processes (U1,x)x∈Zd with rate 1 and for
each event time t of U1,x place a symbol ∗1 at (x, t) to indicate that a 1 flips to 0
(i.e., that a particle dies). To represent the environment, consider two families of
independent Poisson processes (V x)x∈Zd and (U−1,x)x∈Zd with rates α and αδ,
respectively. For each event time t of V x , place a symbol •−1 at (x, t) to indicate
the birth of a −1 (i.e., the blocking of a site) and for each event time t of U−1,x ,
place a symbol ∗−1 to indicate that a −1 flips to 0 (i.e., the unblocking of a site).

We construct ηt from this percolation structure in the following way. Consider a
deterministic initial condition η0 and define the environment process Bt by setting
ηt (x) = −1 when (x, t) lies between symbols •−1 and ∗−1 (in that order) in the
time line {x} × [0,∞), and also if η0(x) = −1 and there is no symbol ∗−1 in
that time line before time t . Having defined Bt , we say that there is an active
path between (x, s) and (y, t) if there is a connected oriented path, moving along

the time lines in the increasing direction of time and passing along arrows
1−→,

which crosses neither symbols ∗1 nor space-time points that were set to −1. The
collection of active paths corresponds to the possible space-time paths along which
1’s can move, so we define At by

At = {y ∈ Z
d :∃x ∈ A0 with an active path from (x,0) to (y, t)}.

The arguments of Harris (1972) imply that this construction gives a well-defined
Markov process with the right transition rates. Moreover, the same realization of
this graphical representation can be used for different initial conditions, and this
gives the coupling mentioned above [see Section III.6 in Liggett (1985) for more
details on this coupling in the case of a spin system]. For the rest of the paper,
we will implicitly use this “canonical” coupling every time we couple copies of ηt

with different initial conditions. The attractiveness property mentioned in the In-
troduction follows directly from this construction, and the monotonicity properties
with respect to β and δ can be obtained by a simple modification of this coupling
(analogous to what is done for the contact process).

Recall the definition of the partial order on configurations given in (1.1). Clearly,

η1 ≤ η2 ⇔ A1 ⊆ A2 and B1 ⊇ B2.

For probability measures on X, which we endow with the product topology, we
consider the usual ordering: μ1 ≤ μ2 if and only if

∫
f dμ1 ≤ ∫

f dμ2 for every
continuous increasing f :X −→ R. We recall that the property μ1 ≤ μ2 is equiva-
lent to the existence of a probability space in which a pair of random variables X1
and X2 with distributions μ1 and μ2 can be coupled in such a way that X1 ≤ X2 al-
most surely [see Theorem II.2.4 in Liggett (1985)]. We will use this fact repeatedly,
and for simplicity we will say that X2 dominates X1 when this condition holds. We
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will also use this term to compare two processes, so saying that η2
t dominates η1

t

will mean that the two processes can be constructed in a single probability space
in such a way that η1

t ≤ η2
t for all t ≥ 0.

The attractiveness property allows us to obtain the lower and upper invariant
measure of the process.

PROPOSITION 2.1. Let χZd be the probability distribution on X assigning
mass 1 to the all 1’s configuration, and let S(t) be the semigroup associated to the
process. Define

ν = lim
t→∞χZd S(t),

where the limit is in the topology of weak convergence of probability measures.
Then ν is the upper invariant measure of the process, that is, ν is invariant and
every other invariant measure is stochastically smaller than ν. Moreover,

ν = lim
t→∞νZd S(t).

Analogously,

ν = ν∅

is the lower invariant measure of the process.

PROOF. Since μρ is invariant for the environment and the empty state is a trap
for the 1’s, ν is invariant. It is the lower invariant measure because every invariant
measure has μρ as its projection onto the environment, and ν∅ is the smallest
probability measure on X having μρ as its marginal on the −1’s.

For the other part, standard arguments imply that the limit defining ν exists and
is invariant [see, e.g., Sections I.1 and III.2 in Liggett (1985)]. Since χZd is larger
than any other measure on X, it follows by attractiveness that ν is the largest
invariant measure.

Now let ν∗ = limt→∞ νZd S(t). As above, ν∗ is well defined and invariant, so
to prove that ν∗ = ν it is enough to prove that ν∗ is larger than any other invariant
measure. If ν is any invariant measure, its projection onto the −1’s must be μρ , so
for any continuous increasing f ,∫

f dν = E
ν(f (η0)) = E

ν(f (ηt ))

≤ E
ν
Zd (f (ηt )) =

∫
f d[νZd S(t)] −→

t→∞

∫
f dν∗. �

2.2. Duality. The dual process (η̂t
s)0≤s≤t = (Ât

s, B̂
t
s )0≤s≤t is constructed using

the same graphical representation we used for constructing ηt . Our duality relation
will require that the process be started with the environment at equilibrium. The
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dual processes will also be started with measures of the form νC , for C ⊆ Z
d , and

the dual process started with this distribution will be denoted by (η̂
νC,t
s )0≤s≤t .

Fix t > 0, and start by choosing B0 according to μρ . Then run the environment
process forward in time until t , using the graphical representation. This defines
(Bs)0≤s≤t . The dual environment is given by B̂t

s = Bt−s . Now place a 1 at time t

at every site x ∈ C \ B̂t
0, that is, every site in C which is not blocked by the envi-

ronment at time t . This defines Â
νC,t
0 , and by the stationarity of the environment

process we get an initial condition (Â
νC,t
0 , B̂t

0) for the dual chosen according to νC .
Having defined Â

νC,t
0 and (B̂t

s)0≤s≤t , we define the 1-dual by

ÂνC,t
s = {y ∈ Z

d :∃x ∈ Â
νC,t
0 with an active path from (y, t − s) to (x, t)}.

That is, the 1-dual is defined by running the contact process for the 1’s backwards
in time and with the direction of the arrows reversed. An active path in ηt from
(y, t − s) to (x, t) will be called a dual active path from (x, t) to (y, t − s) in the
dual process.

We could have defined the dual by simply choosing a random configuration at
time t according to νC and then running the whole process backward. The idea of
the preceding construction is to allow coupling the process and its dual in the same
graphical representation in such a way that the initial state of the environment for
ηs is the same as the final state of the environment for η̂t

s (that is, B0 = B̂t
t ). This

allows us to obtain the following duality result:

PROPOSITION 2.2. For any A,C,D ⊆ Z
d ,

P
νA(At ∩ C �= ∅,Bt ∩ D �= ∅) = P

νC (Ât
t ∩ A �= ∅, B̂t

0 ∩ D �= ∅).(2.1)

Moreover, ηt satisfies the following self-duality relation: if A or C is finite, then

P
νA(At ∩ C �= ∅,Bt ∩ D �= ∅) = P

νC (At ∩ A �= ∅,B0 ∩ D �= ∅).(2.2)

PROOF. The first equality follows directly from coupling the process and its
dual using the same realization of the graphical representation. Indeed, if we use
this coupling then, by definition,

P(B̂νC,t
s = B

νA
t−s for every 0 ≤ s ≤ t) = 1.

Calling E the σ -algebra generated by the environment process, observe that our
construction implies that

P
νA(At ∩ C �= ∅|E) = P

νC (Ât
t ∩ A �= ∅|E).

Therefore,

P
νA(At ∩ C �= ∅,Bt ∩ D �= ∅) = E

νA
(
P(At ∩ C �= ∅|E),Bt ∩ D �= ∅

)
= E

νC
(
P(Ât

t ∩ A �= ∅|E), B̂t
0 ∩ D �= ∅

)
= P

νC (Ât
t ∩ A �= ∅, B̂t

0 ∩ D �= ∅).
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Equation (2.2) is obtained from (2.1), the self-duality of the contact process,
and the reversibility of the environment. �

Taking A finite and C = D = Z
d in (2.2) and using the monotonicity of the

event {At �= ∅} in t we obtain the following:

P
νA(At �= ∅ ∀t ≥ 0) = ν({(E,F ) :E ∩ A �= ∅}).

Since ν is translation invariant, the right-hand side of this equality is positive if
and only if A �= ∅ and ηt survives, that is, ν �= ν. As a consequence, we deduce
that the following condition is equivalent to the survival of the process:

For any (or, equivalently, some) finite A ⊆ Z
d with A �= ∅, the process

started at νA contains 1’s for every t ≥ 0 with positive probability.
(S1)

2.3. Positive correlations. A second property that is central to the study of the
contact process is positive correlations. Recall that a probability measure μ has
positive correlations if for every f,g increasing,∫

fg dμ ≥
∫

f dμ

∫
g dμ.(2.3)

In the following lemma we prove a version of positive correlations for η
νA
t with

respect to cylinder functions.

LEMMA 2.3. Let f,g be increasing real-valued functions on X depending on
finitely many coordinates. Then if μt denotes the distribution of η

νA
t , (2.3) holds

with μ = μt , that is,

E
νA(f (ηt )g(ηt )) ≥ E

νA(f (ηt ))E
νA(g(ηt )).(2.4)

The same inequality holds if νA is replaced by any deterministic initial condition.

PROOF. Since f and g depend on finitely many coordinates and every jump
in our process is between states which are comparable in the partial order (1.1), a
result of Harris [see Theorem II.2.14 in Liggett (1985)] and attractiveness imply
that it is enough to show that the initial distribution of the process has positive cor-
relations in the sense of the lemma. The result with νA replaced by a deterministic
initial condition readily follows.

To show that νA is positively correlated, consider the process ςt defined in X
by ς0 ≡ 1 and independent transitions at each site given by

0 −→ −1 at rate ρ

−1 −→ 0 at rate 1 − ρ

}
for x /∈ A,

1 −→ −1 at rate ρ

−1 −→ 1 at rate 1 − ρ

}
for x ∈ A.
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It is clear that ςt converges weakly to the measure νA. Since the initial distribu-
tion of ςt has positive correlations (because it is deterministic), (2.3) holds for its
limit νA, using again Harris’ result. �

3. Survival and extinction. In this section, we prove Theorem 1. Throughout
the proof, we will implicitly use (S1) to characterize survival. We start with the
easy part.

PROOF OF THEOREM 1, PART (A). Consider the process η̃t defined by the
following transition rates:

0,−1 −→ 1 at rate βf1
1 −→ 0 at rate 1

0,1 −→ −1 at rate α

−1 −→ 0 at rate αδ.

This process corresponds to modifying ηt by ignoring the effect of blocked sites
on births. It is easy to couple η̃t and ηt using the graphical representation in such
a way that if the initial states are the same, ηt ≤ η̃t for all t ≥ 0. Therefore, it
is enough to show that η̃t dies out, and this follows directly from the hypothesis
because the 1’s in η̃t behave just like a contact process with birth rate β and death
rate α + 1. �

The proof of part (b) is more involved, and it is based on adapting the techniques
of Boolean models in continuum percolation [see Meester and Roy (1996)].

PROOF OF THEOREM 1, PART (B). The idea is to show that when δ is small,
the set of unblocked sites in the environment process Bt does not “space-time
percolate” with probability 1. By this we mean that there is no infinite path in
Z

d × [0,∞) moving between nearest-neighbor sites in Z
d and along time lines in

the increasing direction of time that uses only nonblocked sites. The conclusion
follows directly from this fact, since in that case, every 1 will live in a finite space-
time box, so it will not be able to contribute to the survival of the process.

By a simple time change, we can consider the environment process as having
transitions given by

−1 −→ 0 at rate q

0 −→ −1 at rate 1 − q,

where q = δ/(1 + δ) −→ 0 as δ −→ 0. We still consider this process as defined by
the graphical representation, though now the symbols •−1 and ∗−1 appear at rate
1 − q and q , respectively.

Take the percolation structure given by the graphical representation and draw
for every symbol ∗−1 at a space-time point (x, t) a box of base x + [−2/3,2/3]d
spanning the interval in the time coordinate from t until the time corresponding
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to the next symbol •−1 (i.e., these boxes span intervals where the sites are not
blocked). Then since the environment process is translation invariant, the 0’s will
almost surely not space-time percolate if and only if

P(|W | = ∞) = 0,(3.1)

where W denotes the connected component of the union of the boxes that contains
the origin at time 0, and |W | denotes the number of boxes that form this cluster.

To prove (3.1), we compare this continuum percolation structure with a mul-
titype branching process X = (Xn,i)n,i∈N. The first step in the comparison is to
stretch all the boxes so that their heights are all integer-valued. It is enough to
show that (3.1) holds after this modification, since increasing the heights of the
boxes increases the probability of space-time percolation of the unblocked sites.
Assume that the origin is not blocked at time 0, and call i0 ∈ N the (random) height
of its associated box. For simplicity, assume further that all the neighbors of the
origin are blocked at time 0, the extension to the general case being straightfor-
ward. We start defining X by saying that the 0th generation has only one member,
and it is of type i0 (i.e., X0,j = 1{j=i0}). The box containing the origin at time 0 is
possibly intersected by boxes placed at the 2d neighbors of the origin, and these
boxes will constitute the children of the initial member: we let X1,j be the number
of boxes of height j that intersect the original box. We define the subsequent gen-
erations of X inductively: Xn+1,j is the number of boxes of height j that intersect
boxes of the nth generation and which have not been counted up to generation
n − 1. Now let

X∞ =
∞∑

n=0

∞∑
i=1

Xn,i,

and observe that every box in W is counted in X∞, so

|W | ≤ X∞(3.2)

(recall that X is constructed from the stretched boxes).
Our goal is to show that E(X∞) < ∞. To achieve this, we will couple X with

another multitype branching process Y = (Yn,i)n,i∈N, which we define below. The
details of this part can be adapted easily from the proof of Theorem 3.2 in Meester
and Roy (1996), so we will only sketch the main ideas. Consider a box of height i

based at [x−2/3, x+2/3]d ×{t}, which we will denote by B(x, t, i). The boxes of
height j that intersect this box must all have bases of the form [y −2/3, y +2/3]×
{s} for some y at distance 1 of x and some s ∈ (0 ∨ (t − j), t + i]. The number
of symbols ∗−1 appearing in the piece {y} × (0 ∨ (t − j), t + i] of the graphical
representation above a given neighbor y of x is a Poisson random variable with
mean q[t + i − 0∨ (t − j)] ≤ q[i + j ], and each of these symbols corresponds to a
box that intersects B(x, t, i). Since the probability that any one of these (stretched)
boxes is of height j is pj = P(Z ∈ (j − 1, j ]), where Z is an exponential random
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variable with rate 1 − q , we deduce that the number of children of B(x, t, i) of
height j is a Poisson random variable with mean bounded by

2dpjq[i + j ] ≤ 4dqijpj ,(3.3)

where we used the fact that i + j ≤ 2ij for positive integers i and j . Now let Y

be a multitype branching process where the number of children of type j of each
individual of type i is a Poisson random variable with mean 4dqijpj (Yn,i is the
number of individuals of type i in generation n). Then a coupling argument and
(3.3) imply that if X0,i = Y0,i for all i ≥ 1 then Xn,i is dominated by Yn,i for each
n ≥ 0 and i ≥ 1, and thus

E(X∞|X0,k = 1{k=i0}) ≤ E

( ∞∑
n=0

∞∑
j=1

Yn,j |Y0,k = 1{k=i0}
)
.(3.4)

To bound this last sum, we recall a standard result in branching processes theory
[see, e.g., Chapter V in Athreya and Ney (1972)]: the expected number of indi-
viduals of type j in the nth generation of Y when starting with one individual of
type i0 is given by

E
(
Yn,j |Y0,k = 1{k=i0}

) = (Mn)i0,j ,(3.5)

where M is the infinite matrix indexed by N with Mi,j being the expected number
of children of type j of an individual of type i. By definition of Y , Mi,j = 4dqijpj ,
and from this we get inductively a bound for (Mn)i0,j :

(Mn)i0,j ≤ (4dq)ni0E(H 2)n−1
P(H = j)j

for all n ≥ 1, where H is a random variable with positive integer values and distri-
bution given by P(H = j) = pj . Using this together with (3.4) and (3.5) gives

E(X∞|X0,k = 1k=i0) ≤ 1 + i0

∞∑
n=1

(
(4dq)nE(H 2)n−1

∞∑
j=1

pjj

)
(3.6)

= 1 + 4dqi0E(H)

∞∑
n=0

(4dqE(H 2))n.

Observe that H is dominated by Z + 1, so E(H 2) ≤ 2(2−q)

(1−q)2 + 1. Hence,

4dqE(H 2) ≤ 4d

(
2q(2 − q)

(1 − q)2 + q

)
< 1(3.7)

for sufficiently small q , and then the last sum in (3.6) converges for such q . This
implies by (3.2) that E(|W |) < ∞, so P(|W | = ∞) = 0. �

Using (3.7) we can get explicit lower bounds for δp , but these turn out to be
rather small (around 0.02 for d = 2 and 0.01 for d = 3).
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Before proving the last part of Theorem 1, we need to introduce a result from
Broman (2007). Let (Jt ,Xt) be the process with state space {0,1} × N defined as
follows. J0 is a Bernoulli random variable with P(J0 = 1) = 1 − P(J0 = 0) = p,
and X0 = 0. The evolution of the process is given by the following transition rates:

for Jt :
{

0 −→ 1 at rate γp

1 −→ 0 at rate γ (1 − p)

for Xt : k −→ k + 1 at rate σ0(1 − Jt ) + σ1Jt

where γ,σ1 > 0 and 0 ≤ σ0 ≤ σ1. In words, Jt acts as the environment, starting at
equilibrium and then flipping between states 0 and 1 independently of Xt , while Xt

is a sort of Poisson process where the rate depends on Jt . The next lemma recovers
the part of Theorem 1.4 in Broman (2007) that is relevant for our purposes. We
observe that the original theorem is stated for σ0 > 0, but the same proof works if
σ0 = 0.

LEMMA 3.1. Let

σ = 1
2

[
σ0 + σ1 + γ −

√
(σ1 − σ0 − γ )2 + 4γ (1 − p)(σ1 − σ0)

]
.(3.8)

Then a Poisson process Nt(σ ) with rate σ can be coupled with (Jt ,Xt) in such a
way that if Nt(σ ) has an arrival at time T , then so does Xt . Moreover, σ is the
largest rate such that this coupling is possible.

Recall that we denote

λ(α,β, δ) = 1
2

[
β + α(1 + δ) −

√(
β − α(1 + δ)

)2 + 4αβ
]
.

The following result gives the coupling that we need to prove part (c) of Theorem 1.
Its proof is very similar to that of Theorem 1.7 in Broman (2007); we include here
a version based in the graphical representation.

PROPOSITION 3.2. Let ξt denote the set of occupied sites of a contact process
with birth rate λ = λ(α,β, δ) and death rate α + 1. Then the processes ηt and ξt

can be coupled in such a way that if ξ0 ⊆ A0, then ξt ⊆ At for all t > 0.

PROOF. Consider the graphical representation used to construct ηt . Each time
line defines an independent copy of the process Jt introduced above by identifying
symbols •−1 and ∗−1 with Jt flipping to 0 and 1, respectively, and setting γ =
α(1 + δ) and p = δ/(1 + δ). Now consider the collection of arrows emanating
from that time line ignoring arrows born at times where the site is blocked. By
construction, this collection of arrows defines the arrival times of the process Xt

associated to Jt , with σ0 = 0 and σ1 = β . By Lemma 3.1, we can construct a
Poisson process Nt(λ) [where λ comes from plugging in our parameters in (3.8)]
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such that if this process has an arrival at time T , then there is an arrow at that time
for ηt .

We repeat this construction at each time line, getting an i.i.d. collection of Pois-
son processes (Nx

t (λ))x∈Zd , and use this collection of processes and the graphical
representation of ηt to construct the graphical representation of ξt : for each arrival
time of Nx

t (λ) put an arrow at that time from x to the site pointed by the corre-
sponding arrow in the graphical representation of ηt , and for each symbol ∗1 and
each symbol •−1 for ηt put a death symbol for ξt . It is easy to see that this construc-
tion gives a graphical representation for the desired contact process ξt . Moreover,
since only the arrows at nonblocked sites can carry births of 1’s for ηt , the con-
struction gives a coupling that satisfies the desired monotonicity property. These
facts can be checked exactly as in the proof of Theorem 1.7 of Broman (2007)
(there the processes Yt and Y ′

t correspond to At and ξt ). �

The proof of the remaining part of Theorem 1 is now straightforward.

PROOF OF THEOREM 1, PART (C). Since λ(α,β,δ)
α+1 > λc implies that the con-

tact process ξt with birth rate λ(α,β, δ) and death rate α +1 survives, the coupling
achieved in Proposition 3.2 gives the survival of ηt . �

4. Block construction. The aim of this section is to establish “block condi-
tions” concerning the process in a finite space-time box that guarantee survival.
This was first done in Bezuidenhout and Grimmett (1990). Here we will follow
closely Section I.2 of Liggett (1999), together with the corrections to the book that
can be found in the author’s website.

Before getting started with the block construction, we need to obtain the equiv-
alent condition for survival mentioned in the Introduction, which says that ηt sur-
vives if and only if the following condition holds:

The process started with a single 1 at the origin and everything
else at −1 contains 1’s at all times with positive probability.

(S2)

The sufficiency of this condition is a consequence of (S1) and attractiveness. The
necessity will be a consequence of the following stronger result, which is precisely
what we will need in the proof of Lemma 4.2 below. Let χA denote the probability
measure on X that assigns mass 1 to the configuration η with η|A ≡ 1, η|Ac ≡ −1.

LEMMA 4.1. Suppose that the process survives. Then for any σ > 0 there is a
positive integer n such that

P
χ[−n,n]d (At �= ∅ ∀t ≥ 0) > 1 − σ 2.

To obtain (S2) from this result observe that the process started with a single 1
at the origin has [−n,n]d fully occupied by time 1 with some positive probability,
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so we can use the strong Markov property and attractiveness to restart the process
at time 1 starting from χ[−n,n]d and obtain P

χ{0}(At �= ∅ ∀t ≥ 0) > 0. Observe that
the lemma is a simple consequence of duality when the initial condition for ηt is
ν[−n,n]d instead of χ[−n,n]d . Indeed, using (2.2) with D = Z

d gives

lim
n→∞ P

ν[−n,n]d (At �= ∅ ∀t ≥ 0) = lim
n→∞ lim

t→∞P
ν[−n,n]d (At �= ∅)

= lim
n→∞ lim

t→∞P
ν
Zd (At ∩ [−n,n]d �= ∅)

= lim
n→∞ν

({(E,F ) :E ∩ [−n,n]d �= ∅})
= ν

({(E,F ) :E �= ∅}).
This last probability is 1 when ηt survives, so in this case given any ε > 0 we can
choose a positive integer m such that

P
ν[−m,m]d (At �= ∅ ∀t ≥ 0) > 1 − ε.(4.1)

Recall that in Proposition 2.1 we showed that the limit distributions of the
processes started at χZd and at νZd are the same. It is then reasonable to expect
that the asymptotic behavior as t → ∞ of the process started at χ[−n,n]d is similar
to that of the process started at ν[−n,n]d , at least for large enough n. This idea will
allow us to derive the lemma from (4.1).

PROOF OF LEMMA 4.1. Let ε > 0 and choose m to be the positive integer
obtained in (4.1). To extend this inequality to the process started at χ[−n,n]d , we
will consider two copies of the process η1

t and η2
t coupled using the graphical

representation, with η1
t started at ν[−m,m]d and η2

t at χ[−n,n]d for some large n > m.
For simplicity, we will write Q(k) = [−k, k]d .

We want to obtain a space-time cone growing linearly in time such that⋃
t≥0{t} × A

νQ(m)

t is contained in that cone with high probability. To achieve this,
we compare A

νQ(m)

t with a branching random walk Zt with branching rate β/(2d)

and no deaths [i.e., each particle in Zt gives birth to a new particle at each neigh-
bor at rate β/(2d), and multiple particles per site are allowed]. Let {pt(x, y)}x,y∈Zd

be the transition probabilities of a simple random walk in Z
d that moves to each

neighbor at rate β/(2d) and let Ct be the set-valued process given by

Ct = {x ∈ Z
d :Zt(x) > 0}.

For D ⊆ Z
d , ZD

t and CD
t will denote the processes started with all sites in D

occupied by one particle and no particles outside D. It is not hard to see that for
any t > 0 and any x ∈ Z

d ,

E
(
Z

{0}
t (x)

) = eβtpt (0, x)
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[see, e.g., the proof of Proposition I.1.21 in Liggett (1999)]. Therefore, for any
D ⊆ Z

d ,

E
(∣∣C{0}

t ∩ Dc∣∣) ≤ ∑
x /∈D

E
(
Z

{0}
t (x)

) = eβt
∑
x /∈D

pt(0, x).

From this we get that if k > m and c > 0 then

E
(∣∣CQ(m)

t ∩ Q(k + ct)c∣∣) ≤ (2m + 1)deβt
∑

‖x‖∞>k−m+ct

pt (0, x).(4.2)

Now if Xt is the one dimensional random walk starting at 0 and moving to each
neighbor at rate β/(2d), Chebyshev’s inequality gives

P(|Xt | > k − m + ct) = 2P(Xt − k + m − ct > 0)

≤ 2E(eXt−k+m−ct ) = 2e−(k−m)e−ct+(β/2d)(e+e−1−2)t .

The last equality can be obtained by seeing Xt as the difference between two inde-
pendent Poisson random variables, each with mean (βt)/(2d), and using the fact
that the moment generating function of a Poisson random variable Y with mean λ

is E(esY ) = eλ(es−1). Applying this bound to each coordinate of the d-dimensional
walk, we get that∑

‖x‖∞>k−m+ct

pt (0, x) ≤ dP(|Xt | > k − m + ct)

≤ 2de−(k−m)e−ct+(β/2d)(e+e−1−2)t ,

and then using (4.2), we deduce that c can be taken large enough so that

E
(∣∣CQ(m)

t ∩ Q(k + ct)c∣∣) ≤ 2d(2m + 1)de−(k−m)e−t .

Observe that, by the definition of Zt , the process A
νQ(m)

t is dominated by C
Q(m)
t ,

so the last bound implies that

E

(∫ ∞
0

∣∣AνQ(m)

t ∩ Q(k + ct)c∣∣dt

)
≤

∫ ∞
0

E
(∣∣CQ(m)

t ∩ Q(k + ct)c∣∣)dt

(4.3)
≤ 2d(2m + 1)de−(k−m).

We can use this inequality to estimate the probability that At ⊆ Q(k + 1 + ct) for
all t ≥ 0. Observe that if x ∈ At ∩Q(k + 1 + ct)c, the particle at x survives at least
until time t + 2/c with probability e−2α(1+δ)/c, and thus x ∈ As ∩ Q(k + cs)c for
all s ∈ [t + 1/c, t + 2/c] with at least that probability. We deduce that

E
νQ(m)

(∫ ∞
0

∣∣At ∩ Q(k + ct)c∣∣dt

)
≥ P

νQ(m)
(
At ∩ Q(k + 1 + ct)c �= ∅ for some t ≥ 0

)
e−2α(1+δ)/c 1

c
.
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Therefore, if we let

G1 = {A1
t ⊆ Q(k + 1 + ct) ∀t ≥ 0},

(where A1
t denotes the set of 1’s in the process η1

t started at νQ(m)), we can use this
bound together with (4.3) to get

P(Gc
1) ≤ 2cd(2m + 1)de2α(1+δ)/ce−(k−m).

Choosing now k large enough yields

P(G1) > 1 − ε.(4.4)

Now take n > k, T > 0, let (t − T )+ = (t − T ) ∨ 0, and call G2 the event that
on the space-time region

⋃
t≥0{t} × Q(n + c(t − T )+) the environment for η2

t

dominates the environment for η1
t [with respect to the order (1.1)]:

G2 = {B2
t ⊆ B1

t on Q(n + c(t − T )+) ∀t ≥ 0}.
We want this space-time region to contain the region defining G1, so we let T =
(n − k − 1)/c.

Observe that, since we are coupling the processes using the canonical cou-
pling given by the graphical representation, once the environment is equal for both
process at a given site, it stays equal at that site from that time on. In particular,
B2

t dominates B1
t on Q(n) for all t ≥ 0. For any other site, any symbol •−1 or ∗−1

leaves the environment equal for both process. Therefore,

P(Gc
2) ≤ ∑

x /∈Q(n)

P
(
no •−1 or ∗−1 at x by time T + (‖x‖∞ − n)/c

)
= ∑

j>n

|Q(j) \ Q(j − 1)|e−α(1+δ)(T +(j−n)/c)

≤ eα(1+δ)(k+1)/c
∑
j>n

(2j + 1)de−α(1+δ)j/c.

By taking n large enough, we obtain

P(G2) > 1 − ε.(4.5)

Finally, let

G3 = {A1
t �= ∅ ∀t ≥ 0}.

By (4.1), P(G3) > 1 − ε. Observe that on the event G1 ∩ G2 ∩ G3, η2
t contains 1’s

at all times with probability 1. Therefore,

P
χ[−n,n]d (At �= ∅ ∀t ≥ 0) ≥ P(G1 ∩ G2 ∩ G3)

≥ 1 − P(Gc
1) − P(Gc

2) − P(Gc
3)

> 1 − 3ε,
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and choosing ε small enough we get the result. �

In the following lemma, we combine and extend for our process the results in
Liggett (1999) that lead to the block conditions. Consider the process Lηt , for
L > 0, where no births are allowed outside of (−L,L)d . Define N+(L,T ) to be
the maximal number of space-time points in

S+(L,T ) = {
(x, s) ∈ ({L} × [0,L)d−1) × [0, T ] :x ∈ LAs

}
such that each pair of these points having the same spatial coordinate have their
time coordinates at distance at least 1.

LEMMA 4.2. Suppose that the process survives. Then for any σ > 0, there is
a positive integer n satisfying the following: For any given pair of positive integers
N and M , there are choices of a positive integer L and a positive real number T

such that

P
χ[−n,n]d (|LAT ∩ [0,L)d | > N

) ≥ 1 − σ 2−d

(4.6a)

and

P
χ[−n,n]d (

N+(L,T ) > M
) ≥ 1 − σ 2−d/d .(4.6b)

PROOF. By Lemma 4.1, we can choose a large enough integer n such that

P
χ[−n,n]d (At �= ∅ ∀t ≥ 0) > 1 − σ 2.(4.7)

Having this, the proof of the lemma is a simple adaptation of the corresponding
proofs for the contact process. To avoid repetition of published results, we will
explain the main ideas involved and why the original proofs still work with the
random environment, but refer the reader to Section I.2 of Liggett (1999) for the
details.

We claim the following: For any finite A ⊆ Z
d and any N ≥ 1,

lim
t→∞ lim

L→∞ P
χA(|LAt | ≥ N) = P

χA(At �= ∅ ∀t ≥ 0).(4.8)

To see that this is true, we observe that

lim
L→∞P

χA(|LAt | ≥ N) = P
χA(|At | ≥ N)

and then argue that, conditioned on survival, |At | −→ ∞ as t −→ ∞ with proba-
bility 1. This follows from the easy fact that there is an εN > 0 such that if |A| ≤ N

then the process started with 1’s at A becomes extinct with probability at least εN ,
so

P
χA(0 < |At | ≤ N)εN ≤ P

χA(t < τ < ∞) −→
t→∞ 0.
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The next step is to use positive correlations to localize estimates on the cardi-
nality of LAt to a specific orthant of Z

d : For every N ≥ 1 and L ≥ n,

P
χ[−n,n]d (|LAt ∩ [0,L)d | ≤ N

) ≤ [
P

χ[−n,n]d (|LAt | ≤ 2dN)
]2−d

.(4.9)

This relation follows easily from the positive correlations result in Lemma 2.3, and
its proof is identical the proof of Proposition I.2.6 in Liggett (1999).

Observe that (4.7), (4.8) and (4.9) together suffice to obtain (4.6a). The preced-
ing arguments can be modified to obtain similar estimates for N+(L,T ), which in
turn give (4.6b). The only detail remaining is getting the same L and T to work for
both inequalities. This is done by obtaining sequences Lj ↗ ∞ and Tj ↗ ∞ such
that (4.6a) holds with L = Lj and T = Tj for every j ≥ 1, and then adapting the
arguments above to show that (4.6b) must hold for some pair (Lj , Tj ). We refer
the reader to the proof of Theorem I.2.12 in Liggett’s book for the details on how
this is achieved, and remark that the argument depends only on properties such as
positive correlations and the Feller property which are available both for ηt and
the contact process. �

We state now the block conditions that are equivalent to the survival of the
process.

THEOREM 4.3. The process survives if and only if for any given ε > 0 there
are positive integers n and L and a positive real number T such that the following
conditions (BC) are satisfied:

P
χ[−n,n]d (

L+2nAT +1 ⊇ x + [−n,n]d for some x ∈ [0,L)d
)
> 1 − ε(BC1)

and

P
χ[−n,n]d (

L+2nAt+1 ⊇ x + [−n,n]d for some 0 ≤ t ≤ T
(BC2)

and some x ∈ {L + n} × [0,L)d−1)
> 1 − ε.

Observe that these conditions correspond exactly to the conditions in Theo-
rem I.2.12 of Liggett (1999). This will allow us to borrow the arguments from
Liggett’s book to prove that (BC) implies survival for ηt . The reason why we need
the conditions (BC) starting ηt from χ[−n,n]d is because the proof of their suf-
ficiency for survival (as well as their use in the proof of Theorem 2) demands
obtaining repeatedly cubes fully occupied by 1’s and, at each step, restarting the
process at the lowest possible configuration having those cubes fully occupied.

PROOF OF THEOREM 4.3. The proof uses the exact same arguments as those
in the proofs of Theorems I.2.12 and I.2.23 in Liggett (1999). As before, we will
only make some remarks and refer the reader to Liggett’s book for the details.
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The necessity of (BC) follows from Lemma 4.2, by choosing the quantities N

and M to be large enough to produce the desired boxes filled with 1’s.
For the sufficiency of (BC), attractiveness and (S2) imply that it is enough to

show that for some n > 0 the process started at χ[−n,n]d contains 1’s at all times
(by using, as above, the fact that for any given n > 0 the process started at χ{0}
has [−n,n]d fully occupied by time 1 with some positive probability). The proof
of this fact relies on starting with a large enough cube fully occupied by 1’s and
then moving its center in an appropriate way. This is used to compare the process
with supercritical oriented site percolation, and conclude that such boxes exist for
all times with positive probability. �

The following consequence of Theorem 4.3 is obtained in the same way as for
the contact process, see Theorem I.2.25 in Liggett (1999) for the details.

COROLLARY 4.4. If β = βc(α, δ) or δ = δc(α,β), then the process dies out.

5. Complete convergence. We are ready now to use the block construction
of Section 4 to prove Theorem 2. The key step in the proof will be to obtain the
result in the special case where the initial distribution μ is a probability measure
of the form νA, in which case we can use duality.

PROPOSITION 5.1. For every A ⊆ Z
d ,

η
νA
t �⇒ P

νA(τ < ∞)ν + P
νA(τ = ∞)ν.

To prove the proposition, we need a preliminary lemma. Both the proof of the
proposition and this lemma are inspired by the proof Theorem 2 in Durrett and
Møller (1991).

We will denote by P
νA,νC the probability measure associated to starting the

process at νA and its dual at νC , using the same realization of the graphical repre-
sentation, as explained in Section 2.2.

LEMMA 5.2. For every finite C ⊆ Z
d and every ε > 0, if r is a positive real

number and s is large enough, then∣∣∣∣PνA,νC

(
τ >

s

2
, Âr+s

r �= ∅, B̂r+s
0 ∩ D �= ∅

)
− P

νA

(
τ >

s

2

)
P

νC (Âr
r �= ∅, B̂r

0 ∩ D �= ∅)

∣∣∣∣ < ε.

Observe that for the (ordinary) contact process, the forward process and the
dual are independent when they run on nonoverlapping time intervals, so this fact
is trivial and holds with s/2 replaced by s.
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PROOF OF LEMMA 5.2. Given r and ε, there is a q = q(|C|) such that every
dual active path in (η̂

νC,r
u )0≤u≤r stays inside C +[−q, q]d with probability at least

1 − ε. To see this, observe that the number of particles in all such dual active paths
is dominated by Xr , where (Xr)r≥0 is a branching process starting with |C| parti-
cles and with birth rate β and death rate 0 (we are ignoring deaths and coalescence
of paths). By Markov’s inequality, P(Xr > q) ≤ E(Xr)/q ≤ ε for large enough q .
Since any dual active path in η̂

νC,r
t starts inside C, Xr ≤ q implies that all dual

active paths are contained inside C + [−q, q]d up to time r .

Now denote by η
(μρ,s/2)
t and η̂

(μρ,s/2),r
t modifications of the process and its

dual, constructed on the same graphical representation as the original ones, where
the environment is reset at time s/2 to its equilibrium μρ , independently of its state
before s/2 (that is, at time s/2 we replace every −1 by a 0 and then flip every site
to −1 with probability ρ, regardless of it being at state 0 or 1). Then for given r

and q , if s is large enough, we have that

P
νA,νC

(
Bu = B

(μρ,s/2)
u on C + [−q, q]d ∀u ∈ [s, s + r])

(5.1)
≥ (

1 − e−α(1+δ)s/2)|C+[−q,q]d |
> 1 − ε.

Indeed, for any given x ∈ C + [−q, q]d the probability that Bu and B
(μρ,s/2)
u ar

equal at x for every u ∈ [s, s + r] is bounded below by the probability that an
exponential random variable with parameter α(1 + δ) is smaller than s/2 [because
any symbol •−1 or ∗−1 above (x, s/2) leaves the environment at that site equal for
both processes from that time on].

The property discussed at the first paragraph of the proof together with (5.1)
imply that∣∣∣∣PνA,νC

(
τ >

s

2
, Âr+s

r �= ∅, B̂r+s
0 ∩ D �= ∅

)
− P

νA,νC

(
τ >

s

2
, Â

(μρ,s/2),r+s
r �= ∅, B̂

(μρ,s/2),r+s

0 ∩ D �= ∅

)∣∣∣∣ < 2ε.

The statement of the lemma follows now from the independence of disjoint parts
of the graphical representation and the stationarity of Bt , since

P
νA,νC

(
τ >

s

2
, Â

(μρ,s/2),r+s
r �= ∅, B̂

(μρ,s/2),r+s

0 ∩ D �= ∅

)
= P

νA

(
τ >

s

2

)
P

νC
(
Â

(μρ,s/2),r+s
r �= ∅, B̂

(μρ,s/2),r+s

0 ∩ D �= ∅
)

= P
νA

(
τ >

s

2

)
P

νC (Âr
r �= ∅, B̂r

0 ∩ D �= ∅). �

PROOF OF PROPOSITION 5.1. The result is straightforward in the subcriti-
cal case. If the process survives, and since weak convergence in this setting cor-
responds to the convergence of the finite-dimensional distributions, it is enough
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to prove that the following three properties hold for any two finite subsets C,D

of Z
d :

P
νA(At ∩ C �= ∅) −→

t→∞ P
νA(τ = ∞)ν

({(E,F ) :E ∩ C �= ∅}),(c1)

P
νA(Bt ∩ D �= ∅) = P

νA(τ < ∞)ν
({(E,F ) :F ∩ D �= ∅})

(c2)
+ P

νA(τ = ∞)ν
({(E,F ) :F ∩ D �= ∅})

and

P
νA(At ∩ C �= ∅,Bt ∩ D �= ∅)

(c3)
−→
t→∞P

νA(τ = ∞)ν
({(E,F ) :E ∩ C �= ∅,F ∩ D �= ∅}).

Indeed, all the finite-dimensional distributions of the process are determined by
these probabilities via the inclusion-exclusion formula. Observe that the right-hand
side of (c2) is equal to μρ({η :η(x) = −1 for some x ∈ D}).

The convergence in (c1) follows from the same arguments used in Liggett
(1999) for the contact process. Using duality (Proposition 2.2), the proof of Theo-
rem I.1.12 in that book applies in the same way to obtain the fact that (c1) holds if
and only if for every x ∈ Z

d and every A ⊆ Z
d ,

P
νA(τ = ∞) = P

νA(x ∈ At i.o.)(5.2a)

and

lim
n→∞ lim inf

t→∞ P
ν[−n,n]d (At ∩ [−n,n]d �= ∅) = 1.(5.2b)

The analogous conditions are checked for the contact process in the proof of The-
orem I.2.27 in Liggett (1999). The equality in (5.2a) follows from the same proof
after some minor modifications, so we will skip the argument. For (5.2b), Theo-
rem 4.3 allows us to use Liggett’s arguments to get the desired limit when ν[−n,n]d
is replaced by χ[−n,n]d , so given any ε > 0 we can choose a large enough integer m

such that

lim inf
t→∞ P

χ[−m,m]d (At ∩ [−m,m]d �= ∅) > 1 − ε.(5.3)

Given this m, we can choose a large enough n so that the process started at ν[−n,n]d
contains at time 0 a fully occupied cube of side 2m+1 (contained in [−n,n]d ) with
probability at least 1 − ε (in fact, any translate of [−m,m]d contained in [−n,n]d
is fully occupied by 1’s with some probability p > 0, so we only need to choose n

so that [−n,n]d contains enough disjoint translates of [−m,m]d ). On this event,
we can restart the process by putting every site outside that cube at state −1 and
use attractiveness, translation invariance and (5.3) to get

lim inf
t→∞ P

ν[−n,n]d (At ∩ [−n,n]d �= ∅) > (1 − ε)2,
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whence (5.2b) follows. There is only one detail to consider: in his book, Liggett
only proves the condition analogous to (5.2b) in case d ≥ 2, because it is simpler
and the case d = 1 was already done in Liggett (1985). The difficulty in the one-
dimensional case arises from the fact that certain block events are not independent.
This can be overcome by comparing with k-dependent oriented site percolation
instead of ordinary oriented site percolation [see Theorem B26 in Liggett (1999)].
We refer the reader to Section 5 of Durrett and Schonmann (1987), where the
authors use a similar block construction to derive a complete convergence theorem
for a general class of one-dimensional growth models.

The convergence in (c2) is trivial due to the stationarity of the environment
process. To prove (c3), we start by observing that

P
νA(Ar+s ∩ C �= ∅,Br+s ∩ D �= ∅)

(5.4)
= P

νA,νC (As ∩ Âr+s
r �= ∅, B̂r+s

0 ∩ D �= ∅),

which follows from constructing (η
νA
u )0≤u≤r+s and (η̂

νC,r+s
u )0≤u≤r+s on the same

copy of the graphical representation. On the other hand,

|PνA,νC (As ∩ Âr+s
r �= ∅, B̂r+s

0 ∩ D �= ∅)

− P
νA,νC (As �= ∅, Âr+s

r �= ∅, B̂r+s
0 ∩ D �= ∅)|

= P
νA,νC (As �= ∅, Âr+s

r �= ∅,As ∩ Âr+s
r = ∅, B̂r+s

0 ∩ D �= ∅)(5.5)

≤ P
νA,νC (As �= ∅, Âr+s

r �= ∅,As ∩ Âr+s
r = ∅)

= P
νA,νC (As �= ∅, Âr+s

r �= ∅) − P
νA,νC (As ∩ Âr+s

r �= ∅).

Observe that

P
νA(s/2 < τ < ∞) −→

s→∞ 0.

Thus, for any given D ⊆ Z
d and ε > 0, and for large enough s, we can write

|PνA,νC (As �= ∅, Âr+s
r �= ∅, B̂r+s

0 ∩ D �= ∅)

− P
νA,νC (τ > s/2, Âr+s

r �= ∅, B̂r+s
0 ∩ D �= ∅)|

(5.6)
= P

νA,νC (s/2 < τ ≤ s, Âr+s
r �= ∅, B̂r+s

0 ∩ D �= ∅)

≤ P
νA(s/2 < τ < ∞) <

ε

3
.

Putting the previous observations together we get, for large enough s

|PνA(Ar+s ∩ C �= ∅,Br+s ∩ D �= ∅)

− P
νA,νC (As �= ∅, Âr+s

r �= ∅, B̂r+s
0 ∩ D �= ∅)|

= |PνA,νC (As ∩ Âr+s
r �= ∅, B̂r+s

0 ∩ D �= ∅)
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− P
νA,νC (As �= ∅, Âr+s

r �= ∅, B̂r+s
0 ∩ D �= ∅)| by (5.4)

≤ P
νA,νC (As �= ∅, Âr+s

r �= ∅) − P
νA,νC (As ∩ Âr+s

r �= ∅) by (5.5)

≤ ε

3
+ |PνA,νC (τ > s/2, Âr+s

r �= ∅) − P
νA,νC (As ∩ Âr+s

r �= ∅)| by (5.6),

where we used D = Z
d and the fact that P

νA,νC (B̂r+s
0 �= ∅) = 1 in the application

of (5.6). Using again this fact to apply Lemma 5.2 with D = Z
d , and then using

duality we get

|PνA,νC (τ > s/2, Âr+s
r �= ∅) − P

νA,νC (As ∩ Âr+s
r �= ∅)|

≤ ε

3
+ |PνA(τ > s/2)PνC (Âr

r �= ∅) − P
νA,νC (As ∩ Âr+s

r �= ∅)|

= ε

3
+ |PνA(τ > s/2)Pν

Zd (Ar ∩ C �= ∅) − P
νA(Ar+s ∩ C �= ∅)|

for large enough s. By (c1), the last difference converges to 0 as r, s → ∞, so we
finally get

|PνA(Ar+s ∩ C �= ∅,Br+s ∩ D �= ∅)

− P
νA,νC (As �= ∅, Âr+s

r �= ∅, B̂r+s
0 ∩ D �= ∅)| < ε

for large enough r, s.
This calculation implies that in order to prove (c3) it is enough to show that

P
νA,νC (As �= ∅, Âr+s

r �= ∅, B̂r+s
0 ∩ D �= ∅)

−→
r,s→∞ P

νA(τ = ∞)ν
(
(E,F ) :E ∩ C �= ∅,F ∩ D �= ∅

)
.

Repeating the previous application of (5.6) and Lemma 5.2 we get that, for large
enough s,

|PνA,νC (As �= ∅, Âr+s
r �= ∅, B̂r+s

0 ∩ D �= ∅)

− P
νA(τ > s/2)PνC (Âr

r �= ∅, B̂r
0 ∩ D �= ∅)|

≤ ε

2
+ |PνA,νC (τ > s/2, Âr+s

r �= ∅, B̂r+s
0 ∩ D �= ∅)

− P
νA(τ > s/2)PνC (Âr

r �= ∅, B̂r
0 ∩ D �= ∅)|

≤ ε.

Therefore, we can finally reduce to proving that

P
νA(τ > s/2)PνC (Âr

r �= ∅, B̂r
0 ∩ D �= ∅)

−→
r,s→∞ P

νA(τ = ∞)ν
(
(E,F ) :E ∩ C �= ∅,F ∩ D �= ∅

)
.
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This follows easily from duality, since (2.1) yields

P
νA(τ > s/2)PνC (Âr

r �= ∅, B̂r
0 ∩ D �= ∅)

= P
νA(τ > s/2)Pν

Zd (Ar ∩ C �= ∅,Br ∩ D �= ∅),

and this last term converges to the desired limit as r, s → ∞. �

We extend now Proposition 5.1 to the general case.

PROOF OF THEOREM 2. It is enough to show that

lim
t→∞E

μ(f (ηt )) = P
μ(τ < ∞)

∫
f dν + P

μ(τ = ∞)

∫
f dν(5.7)

for every f in the space of continuous increasing functions depending on finitely
many coordinates of X, which we will denote by F . To see this, observe that given
any two finite subsets C,D of Z

d , the functions

f1(E,F ) = 1E∩C �=∅,

f2(E,F ) = 1F∩D=∅ and f3(E,F ) = 1E∩C �=∅,F∩D=∅

are all in F and (as in the proof of Proposition 5.1) all the finite-dimensional
distributions of the process can be obtained from E

μ(f1(ηt )), E
μ(f2(ηt )), and

E
μ(f3(ηt )) by the inclusion-exclusion formula.
Let f be a function in F and observe that, in particular, f is bounded. One

inequality in (5.7) is easy: by the Markov property and attractiveness, given 0 <

s < t we have that

E
μ(f (ηt )) = E

μ(
f (ηt ), τ < s

) + E
μ(

f (ηt ), τ ≥ s
)

= E
μ(

E
ηs (f (ηt−s)), τ < s

) + E
μ(

E
ηs (f (ηt−s)), τ ≥ s

)
≤ E(f (η0

t−s))P
μ(τ < s) + E

χ
Zd (f (ηt−s))P

μ(τ ≥ s),

where η0
t denotes the process started at the configuration η ≡ 0. Since η0

t �⇒
μρ = ν and η

χ
Zd

t �⇒ ν, we get

lim sup
t→∞

E
μ(f (ηt )) ≤ P

μ(τ < s)

∫
f dν + P

μ(τ ≥ s)

∫
f dν,

and now taking s → ∞ we deduce that

lim sup
t→∞

E
μ(f (ηt )) ≤ P

μ(τ < ∞)

∫
f dν + P

μ(τ = ∞)

∫
f dν.(5.8)

To obtain the other inequality in (5.7), we will begin by considering the case
μ = χ[−n,n]d and showing that, given any ε > 0 and any x ∈ Z

d ,

lim inf
t→∞ E

χ
x+[−n,n]d (

f (ηt ), τ = ∞) ≥
∫

f dν − ε(5.9)
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for large enough n. By the translation invariance of ηt and ν, it is enough to con-
sider the case x = 0. To show (5.9), we will use the construction introduced in the
proof of Lemma 4.1. Using the notation of that proof, recall that we showed that,
given any γ > 0, there are positive integers n > k > m such that

P(G1 ∩ G2 ∩ G3) > 1 − 3γ.

This means that the processes η1
t (started at ν[−m,m]d ) and η2

t (started at χ[−n,n]d )
can be coupled in such a way that, with probability at least 1 − 3γ , for all t ≥ 0 we
have that A1

t �= ∅, A2
t �= ∅, A1

t ⊆ Q(k+1+ct) and B2
t ⊆ B1

t inside Q(k+1+ct).
Let G = G1 ∩ G2 ∩ G3 and γ > 0 and choose n > k > m so that P(G) > 1 − 3γ .

We will denote by τ 1 and τ 2 the extinction times of the processes η1
t and η2

t ,
respectively. Define

η̌t = (A1
t ,B

2
t )

and observe that, on the event G, η̌t defines an X-valued process and, moreover,
η2

t ≥ η̌t for all t ≥ 0. Therefore, since f is increasing and {τ 2 = ∞} ⊇ G,

E
(
f (η2

t ), τ
2 = ∞) ≥ E(f (η2

t ),G) ≥ E(f (η̌t ),G)(5.10)

for all t ≥ 0. Now observe that, trivially,

E(f (η̌t ),G) = E
(
f (η̌t ), τ

2 = ∞) − E
(
f (η̌t ), τ

2 = ∞,Gc),
and

E
(
f (η̌t ), τ

2 = ∞,Gc) ≤ ‖f ‖∞P(Gc) < 3γ ‖f ‖∞,

so

E(f (η̌t ),G) > E
(
f (η̌t ), τ

2 = ∞) − 3γ ‖f ‖∞(5.11)

for all t ≥ 0. On the other hand,∣∣E(
f (η̌t ), τ

2 = ∞) − E
(
f (η1

t ), τ
2 = ∞)∣∣ −→

t→∞ 0.(5.12)

To see this, observe that since f depends on finitely many coordinates, then given
any q > 0, f (η̌s) = f (η1

s ) for all s ≥ t with probability at least 1 − q if t is large
enough. Indeed, if K ⊆ Z

d is the finite set of coordinates of X on which f de-
pends, then repeating the calculations that led to (4.5) we get that

P
(
B1

s (x) �= B2
s (x) for some x ∈ K and some s ≥ t

)
≤ ∑

x∈K

P(no •−1 or ∗−1 at x by time t) = |K|e−α(1+δ)t −→
t→∞ 0.

Therefore, given any q > 0,∣∣E(
f (η̌t ), τ

2 = ∞) − E
(
f (η1

t ), τ
2 = ∞)∣∣ ≤ E

(|f (η̌t ) − f (η1
t )|

) ≤ 2q‖f ‖∞
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for large enough t , and we get (5.12). Finally, we have that

E
(
f (η1

t ), τ
2 = ∞) = E

(
f (η1

t ), τ
1 = ∞) − (

E
(
f (η1

t ), τ
1 = ∞) − E(f (η1

t ),G)
)

− (
E(f (η1

t ),G) − E(f (η1
t ), τ

2 = ∞)
,

and since G ⊆ {τ 1 = ∞} ∩ {τ 2 = ∞},∣∣E(
f (η1

t ), τ
i = ∞) − E(f (η1

t ),G)
∣∣ ≤ ‖f ‖∞P(Gc) < 3γ ‖f ‖∞

for i = 1,2. Thus, Proposition 5.1 implies that

lim inf
t→∞ E

(
f (η1

t ), τ
2 = ∞)

> P(τ 1 = ∞)

∫
f dν − 6γ ‖f ‖∞,

and since P(τ 1 = ∞) ≥ P(G) > 1 − 3γ , we obtain

lim inf
t→∞ E

(
f (η1

t ), τ
2 = ∞)

>

∫
f dν − 9γ ‖f ‖∞.(5.13)

Putting (5.10), (5.11), (5.12) and (5.13) together, we deduce that

lim inf
t→∞ E

(
f (η2

t ), τ
2 = ∞) ≥

∫
f dν − 12γ ‖f ‖∞,

and choosing γ appropriately we obtain (5.9).
Getting back to the proof of the remaining inequality in (5.7), let ε > 0 and

choose n ∈ N so that (5.9) holds. Define

N = inf{k ∈ N :ηk ⊇ x + [−n,n]d for some x ∈ Z
d }

and let p = P
χ{0}(A1 ⊇ x + [−n,n]d for some x ∈ Z

d) > 0. Observe that for any
k ≥ 0, if Ak �= ∅ then Ak+1 contains some translate of [−n,n]d with probability
at least p (by attractiveness and translation invariance) and, therefore, since the
Poisson processes used in the graphical representation for disjoint time intervals
are independent, we deduce that

{τ = ∞} ⊆ {N < ∞}.(5.14)

When N < ∞, we will denote by X the center of the corresponding fully occupied
box. If there is more than one point x such that x + [−n,n]d is fully occupied
by 1’s at time N , we pick X to be the one minimizing φ(x), where φ is any fixed
bijection between Z

d and N (this ensures that the events {X = x} are disjoint for
different x). Then given m ∈ N, the Markov property and attractiveness imply that

E
μ(

f (ηt ), τ = ∞) ≥
m∑

k=0

E
μ(

f (ηt ), τ = ∞,N = k
)

=
m∑

k=0

E
μ(

E
ηk

(
f (ηt−k), τ = ∞)

,N = k
)

≥
m∑

k=0

∑
x∈Zd

E
μ(

E
χ

x+[−n,n]d (
f (ηt−k), τ = ∞)

,N = k,X = x
)
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for t ≥ m. Since f is bounded, (5.9) implies that

lim inf
t→∞ E

μ(
f (ηt ), τ = ∞) ≥

(∫
f dν − ε

) m∑
k=0

∑
x∈Zd

P
μ(N = k,X = x)

=
(∫

f dν − ε

)
P

μ(N ≤ m).

Taking now m → ∞, we get by (5.14) that

lim inf
t→∞ E

μ(
f (ηt ), τ = ∞) ≥

(∫
f dν − ε

)
P

μ(N < ∞)

≥
(∫

f dν − ε

)
P

μ(τ = ∞)

if ε <
∫

f dν, and taking ε → 0 we deduce that

lim inf
t→∞ E

μ(
f (ηt ), τ = ∞) ≥ P

μ(τ = ∞)

∫
f dν.

On the other hand, by arguments similar to those that led to (5.8) (using attractive-
ness to compare with the process started at χ∅), we get

lim inf
t→∞ E

μ(
f (ηt ), τ < ∞) ≥ P

μ(τ < ∞)

∫
f dν.

We finally deduce that

lim inf
t→∞ E

μ(f (ηt )) ≥ P
μ(τ < ∞)

∫
f dν + P

μ(τ = ∞)

∫
f dν,

and the proof is ready. �
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