
The Annals of Applied Probability
2008, Vol. 18, No. 6, 2367–2391
DOI: 10.1214/08-AAP525
© Institute of Mathematical Statistics, 2008

OPTIMAL STOPPING AND FREE BOUNDARY
CHARACTERIZATIONS FOR SOME BROWNIAN

CONTROL PROBLEMS1

BY AMARJIT BUDHIRAJA AND KEVIN ROSS

University of North Carolina at Chapel Hill and Stanford University

A singular stochastic control problem with state constraints in two-
dimensions is studied. We show that the value function is C1 and its direc-
tional derivatives are the value functions of certain optimal stopping prob-
lems. Guided by the optimal stopping problem, we then introduce the associ-
ated no-action region and the free boundary and show that, under appropriate
conditions, an optimally controlled process is a Brownian motion in the no-
action region with reflection at the free boundary. This proves a conjecture of
Martins, Shreve and Soner [SIAM J. Control Optim. 34 (1996) 2133–2171]
on the form of an optimal control for this class of singular control problems.
An important issue in our analysis is that the running cost is Lipschitz but not
C1. This lack of smoothness is one of the key obstacles in establishing reg-
ularity of the free boundary and of the value function. We show that the free
boundary is Lipschitz and that the value function is C2 in the interior of the
no-action region. We then use a verification argument applied to a suitable C2

approximation of the value function to establish optimality of the conjectured
control.

1. Introduction. We consider a singular stochastic control problem with state
constraints in two-dimensions. Roughly speaking, by singular control one means
that the control terms in the dynamics of the state process need not be absolutely
continuous with respect to the Lebesgue measure, and are only required to have
paths of bounded variation. State constraints, a key feature of our problem, refer to
the requirement that the controlled diffusion process takes values in some proper
subset S of R

2. More precisely, in our setting S = R
2+ and the state process is

described by the equation X = x + B + Y , where x ∈ S, B is a two dimensional
Brownian motion with drift θ and nondegenerate covariance matrix � and the
control Y is a nondecreasing, right continuous with left limits (RCLL), adapted
process. Y is said to be an admissible control if X(t) ∈ S for all t ≥ 0. Associated
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with each initial state and control policy is an infinite horizon discounted cost

J (x,Y )
.= E

∫ ∞
0

e−γ t�(X(t)) dt,(1)

where γ ∈ (0,∞) is the discount factor and � : S → R+ is a convex function of the
following form: For z = (z1, z2)

′ ∈ S,

�(z)
.=

{
α · z, z2 ≥ cz1,
β · z, z2 ≤ cz1,(2)

where α,β ∈ R
2, and c ∈ (0,∞). The value function V (x) is the infimum of

J (x,Y ) over all admissible controls.
Such a control problem, and its connections with queuing networks in heavy

traffic, has been studied by many authors [5, 8, 12, 18, 20, 21]. In a general mul-
tidimensional setting and with a much more general cost function, such control
problems were studied in [1] and [6]. In [1] the value function was character-
ized as the unique viscosity solution of an appropriate Hamilton–Jacobi–Bellman
(HJB) equation, whereas [6] established the existence of an optimal control by
general compactness arguments. Our main contribution in this work is to provide
an explicit representation for an optimal control under appropriate conditions on �.

Explicitly solvable singular control problems are quite rare. In the few examples
where explicit solutions are available, one finds that an optimal control takes the
following form. There is an open set O in the state space such that starting from
within Ō no control is applied until the state trajectory reaches the boundary ∂O,
at which point a minimal amount of push is applied along an appropriate control
direction to constrain the state process within Ō. Furthermore, if the initial condi-
tion is outside Ō, an instantaneous jump occurs at time 0 that brings the process
to ∂O and, subsequently, control is applied as described above, constraining the
process within Ō. In other words, an optimally controlled process is a reflected
diffusion on Ō with an appropriate (possibly oblique) reflection field. In terms of
the associated HJB equation, in O the value function satisfies a linear elliptic PDE
and in Oc a nonlinear first order PDE is satisfied; the boundary ∂O, separating
these two regions, is referred to as the free boundary for the system of PDEs. Such
characterizations for optimal controls of singular control problems in terms of a
diffusion reflected at the free boundary are some of the most useful and elegant re-
sults in the field. For one dimensional settings there have been several works (see,
e.g., [3, 11, 14]) that have used the so-called principle of smooth fit to establish the
C2 property of value functions of certain singular control problems and then char-
acterize the free boundary and an optimally controlled process. In more than one
dimension the only such results are due to Shreve and Soner [25, 26]. As one may
expect, such results are intimately tied to regularity (i.e., smoothness) properties of
the free boundary, which in turn hinge on similar properties of the value function of
the control problem. For example, in [25] the authors consider a two dimensional
singular control problem in R

2 (in particular, there are no state constraints) with
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dynamics governed by the equation X = x +B +Y , where B is a two dimensional
Brownian motion and Y is a RCLL control with paths of bounded variation. The
goal is the minimization of the cost E

∫
[0,∞) e

−t (�(Xt) dt + d|Y |t ). Under strict
convexity of � and suitable growth conditions on its first two derivatives, the au-
thors first establish, using ideas of Evans [9] and Ishii–Koike [13], that the value
function V is a C1,1 solution of the PDE: max{(−	 + 1)f − �, |Df |2 − 1} = 0.
In a construction that essentially uses the two dimensional nature of the prob-
lem the authors are then able to use the gradient flow of V to upgrade the reg-
ularity of V to C2. This regularity, in conjunction with results of Caffarelli [7]
and Kinderlehrer and Nirenberg [17], is then used to show that the free bound-
ary ∂O = {x : |DV | = 1} is C2,α for any α ∈ (0,1) and an optimally controlled
process is a reflected diffusion in the region {|DV | < 1} with the oblique direction
of reflection −DV (x) at x ∈ ∂O. The existence and uniqueness of such a reflected
diffusion follows from the established smoothness of ∂O and the reflection field
−DV (see [19]).

Two main differences from [25, 26] in the current setting are the state constraint
requirement on admissible controls and the lack of regularity of the running cost �.
Note that the cost in (2) is neither strictly convex nor C2 (in fact, it is not even C1).
These difficulties make C2 regularity of the value function an unrealistic goal.
Nevertheless, exploiting the convexity of �, we show in Section 3 that the value
function is C1 in S

o and the gradient of the value function extends continuously
to all of S. Our proof of C1 regularity is probabilistic and a key ingredient to the
proof is the availability of an optimal control as established in [6] (see proofs of
Lemmas 3.3 and 3.4). We next turn to the study of the free boundary problem and
a representation for an optimally controlled state process. In the case where α ≥ 0
and β ≥ 0, one finds that an optimally controlled process is a Brownian motion,
reflected normally on the positive quadrant (see [5, 20]) and, thus, the free bound-
ary is {x :x1 = 0 or x2 = 0}. In this case the C2 property of the value function in
S

o follows from classical elliptic regularity results, as was noted in [20]. Thus,
the interesting cases correspond to the setting where at least one coordinate of the
parameters α or β is negative. (Note that the assumptions on � imply additional
restrictions on the parameters α and β .)

In Sections 4 and 5 of this paper we will focus on the case α �≥ 0, β ≥ 0.
[By α �≥ 0, where α = (α1, α2), we mean that αi < 0 for at least one i = 1,2.
Similarly, by β ≥ 0 we mean that βi ≥ 0, i = 1,2, where β = (β1, β2).] In
the queueing network setting this parameter regime corresponds to Case IIB
of [20]. In the notation of that paper, α1 = c2μ2 − c3μ2, α2 = c3μ3, β1 = c1μ1,
β2 = μ3(c2μ2 − c1μ1)/μ2, where μ1,μ2,μ3 correspond to the service rates and
c1, c2, c3 to the holding costs of the queueing network model. The parameter
regime α ≥ 0, β �≥ 0 (Case IIC of [20]) can be treated in a symmetric manner. Fi-
nally, the case α �≥ 0, β �≥ 0 (Case IID of [20]) appears to be a significantly harder
problem and is beyond the scope of the current study.
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In Section 4 we show that the x1-directional derivative of the value function is
the value function of a closely related optimal stopping problem. Connections be-
tween singular control problems and optimal stopping/obstacle problems (see [24])
were first observed by Bather and Chernoff [2] and, subsequently, such correspon-
dence results have been studied by several authors [4, 15, 16, 25, 26] in one-
dimensional and certain multi-dimensional models. The paper [16] is the only
other paper that studies such connections in the presence of state constraints. The
key differences between [16] and our setting are that in [16] the cost function is
assumed to be C1 and the main correspondence result is established under the
assumption that the control problem admits an optimal solution.

The study of the optimal stopping problem suggests that the “no action region”
for an optimal control policy should be given as

G
.= {x ∈ S :x1 > 
(x2), x2 > 0},

where


(z2)
.= sup{z1 ≥ 0 :∇1V (z1, z2) = 0}, z2 ≥ 0,

with ∇1V denoting the partial derivative of V in the direction e1. We show that

 : R+ 
→ R+ is a nondecreasing Lipschitz continuous function with Lipschitz
norm bounded by c−1, 
(0) = 0, and that 
(z2) → ∞ as z2 → ∞. A natural con-
jecture for an optimally controlled process is a Brownian motion in G, reflected at
∂G, where the direction of reflection is e2 on ∂2G = {x ∈ S :x · e2 = 0}, whereas
on ∂1G = {x ∈ S :
(x2) = x1} the direction of reflection is e1 (see Theorem 5.2).
A similar conjecture, without giving a precise description of 
 , was first formu-
lated in [20]. A major obstacle in showing that the conjectured controlled process
is optimally controlled is the lack of sufficient smoothness of the free boundary
(
 is only Lipschitz) and the value function. Typical proofs of such a result (see
[25, 26]) follow through an application of Itô’s formula using the fact that the
value function is a classical solution of the associated Hamilton–Jacobi–Bellman
(HJB) equation. In view of unavailability of enough regularity, we proceed with
a viscosity solution approach. It was established in [1] (see Theorem 5.4 of the
current work) that the value function is a constrained viscosity solution of the non-
linear PDE (42). From this and standard elliptic regularity results, we obtain that
the value function is C2 and is a classical solution of a linear elliptic PDE (43)
on Go. For the candidate optimal control policy, denoted as Y ∗, when initial point
x ∈ G, the control term Y ∗

i increases only when the process is at the boundary
∂iG. Also, one finds that for x ∈ ∂iG, ∇iV (x) = 0. Thus, formally applying Itô’s
formula to V with the candidate optimally controlled process X∗, one obtains that

V (x) = E(e−γ tV (X∗(t))) + E

∫ t

0
e−γ s�(X∗(s)) ds.

The desired optimality of X∗ then follows on sending t → ∞. The main difficulty
in the proof is that due to the lack of sufficient regularity of the value function
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on ∂G, we cannot apply Itô’s formula directly to V . In order to make the above
argument rigorous, we consider an approximation V ε of V that is C2 in an open
set containing G, apply Itô’s formula to V ε , and finally send ε → 0.

In [20] the authors provide a conjecture for an optimally controlled process in
the case α �≥ 0, β �≥ 0 as well. In this case, the boundary of the no-action region
would be determined by two functions 
1 and 
2 with properties analogous to
those of 
 described in the previous paragraph. An optimal control would apply
reflection along the free boundary and an optimally controlled process would be
described by a set of coupled equations similar to (40). We refer the reader to [20]
for the precise form of this conjecture in the queueing network setting. Analysis of
this parameter regime will be the subject of future research.

The paper is organized as follows. We present the singular control problem and
summarize some key properties of its value function in Section 2. Section 3 is de-
voted to the proof of Theorem 3.1 which establishes the C1 property of the value
function. Sections 4 and 5 study the case α �≥ 0, β ≥ 0. In Section 4 we introduce
an optimal stopping problem and prove in Theorem 4.1 that the x1-directional
derivative of the value function of the singular control problem equals the value
function of the optimal stopping problem. We introduce in Section 5 the free
boundary associated with the singular control problem and the conjectured form of
an optimal control policy. The main result is Theorem 5.2, which establishes that
an optimally controlled process is a Brownian motion in the no-action region Go

with reflection at the free boundary ∂G.
We will use the following notation. The set of nonnegative real numbers is de-

noted as R+. For x ∈ R
2, |x| denotes the Euclidean norm. The standard ortho-

normal basis in R
2 will be written as {e1, e2}. All vectors are column vectors and

vector inequalities are to be interpreted componentwise. Given a metric space E,
a function f : [0,∞) → E is RCLL if it is right-continuous on [0,∞) and has left
limits on (0,∞). A (stochastic) process is RCLL if its sample paths are RCLL a.s.
If O is an open subset of R

2 and f :O 
→ R is differentiable, then ∇if denotes the
partial derivative of f in the direction ei , i = 1,2. The class of twice continuously
differentiable functions on O will be denoted as C2(O).

2. Setting. Let B be a two dimensional {Ft }-Brownian motion with drift θ

and nondegenerate covariance matrix � given on some filtered probability space
(�,F , {Ft },P). We will denote (�,F , {Ft },P,B) by  and call it a system. The
state space S of the controlled process X, introduced below, is the positive quad-
rant R

2+. Given x ∈ S and an RCLL, {Ft }-adapted, nonnegative, nondecreasing
process Y , define

X(t)
.= x + B(t) + Y(t), t ≥ 0.(3)

We say that such a process Y is an admissible control for the initial condition x

if X(t) ∈ S for all t ≥ 0, a.s. The class of all admissible controls (for the sys-
tem ) will be denoted by A(x,). We consider an infinite horizon discounted
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cost J (x,Y ) defined as in (1), where � : S → R+ is a continuous, convex function
defined as in (2). Note that the nonnegativity and convexity of � imposes additional
conditions on the values of α,β, c which are not made explicit here.

The value function of the control problem for initial condition x ∈ S is defined
as

V (x)
.= inf


inf

Y∈A(x,)
J (x,Y ),(4)

where the outside infimum is taken over all probability systems .
Next we record some useful properties of the value function. Let  be an arbi-

trary system and let F B
t be the P-completion of σ {B(s) : 0 ≤ s ≤ t}, the filtration

generated by B . We will write the system (�,F , {F B
t },P,B) as B. The follow-

ing result was established in [1].

PROPOSITION 2.1 (cf. Theorem 2.1 of [1]). For all x ∈ S, V (x) =
infY∈A(x,B) J (x,Y ).

The proof of the following lemma is contained in Lemma 4.5 of [1].

LEMMA 2.2. V is finite and Lipschitz continuous on S.

The following elementary lemma establishes the convexity of V .

LEMMA 2.3. V is a convex function on S.

PROOF. Fix x(i) ∈ S, i = 1,2, and let λ ∈ [0,1]. Set x̂ = λx(1) + (1 − λ)x(2).
It suffices to show that V (x̂) ≤ λV (x(1)) + (1 − λ)V (x(2)). Let ε > 0 be arbitrary.
Fix a system  and let B be as introduced above Proposition 2.1. Then one can
find Y (i) ∈ A(x(i),B), i = 1,2, such that J (x(i), Y (i)) ≤ V (x(i)) + ε. Clearly,
Ŷ

.= λY (1) + (1 − λ)Y (2) ∈ A(x̂,B). Furthermore, the convexity of � yields

V (x̂) ≤ J (x̂, Ŷ ) ≤ λJ
(
x(1), Y (1)) + (1 − λ)J

(
x(2), Y (2))

≤ λV
(
x(1)) + (1 − λ)V

(
x(2)) + ε.

Since ε > 0 is arbitrary, the result follows. �

The following result on the existence of an optimal control was established
in [6]. The result will be used in the proofs in Section 3.

PROPOSITION 2.4. Let x ∈ S. Then there exists a system  and Y ∗ ∈ A(x,)

such that V (x) = J (x,Y ∗).

PROOF. In the notation of [6], let W = U = R
2+, G be the two-dimensional

identity matrix, and h = 0. Then equation (5) of [6] is satisfied with α� = 1 and
Condition 2.2 of [6] is satisfied with cG = 1. Thus, the result is an immediate
consequence of Theorem 2.3 of [6]. �
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3. C1- property of the value function. The main result of this section is the
following C1 property of the value function.

THEOREM 3.1. For each x ∈ S
o, ∇iV (x), i = 1,2 exist. The functions x 
→

∇iV (x) are continuous on S
o and can be continuously extended to all of S.

In proving the above theorem, we will only consider ∇1V ; the proof for the
existence and continuity of ∇2V is carried out in a symmetric fashion.

For x ∈ S, define

∇+V (x)
.= lim

δ↓0

V (x + δe1) − V (x)

δ
.

Similarly, for x ∈ S such that x · e1 > 0, define

∇−V (x)
.= lim

δ↓0

V (x) − V (x − δe1)

δ
.

Existence of the above limits is a consequence of convexity of V (see Theo-
rem 24.1 of [23]). The following lemma is also an immediate consequence of
convexity of V . For a proof, see Theorem 24.1 of [23].

LEMMA 3.2. Let x ∈ S with x · e1 > 0. Then ∇−V (x) ≤ ∇+V (x).

Fix x ∈ S with x · e1 > 0. In view of Lemma 3.2, to establish the existence of
∇1V (x), it now suffices to show that ∇+V (x) ≤ ∇−V (x). This inequality will be
established by considering the following auxiliary control problem. From Propo-
sition 2.4 one can find a system  and Y ∗ ∈ A(x,) such that V (x) = J (x,Y ∗).
Denote the corresponding state process by X∗. For the rest of this section we will
fix such a (,Y ∗,X∗). Define the R

2 valued stochastic process Z = (Z1,Z2)
′ as

Z1(t)
.= x1 + B1(t);

(5)
Z2(t)

.= X∗
2(t) = x2 + B2(t) + Y ∗

2 (t), t ≥ 0.

Define S
.= inf{t ≥ 0 :Z(t) · e1 ≤ 0} and for a given {Ft }-stopping time σ set

Ĵ (x, σ )
.= E

∫ σ∧S

0
e−γ t �̂(Z(t)) dt,(6)

where, for z ∈ S,

�̂(z) =
{

α · e1, z2 ≥ cz1,
β · e1, z2 < cz1.(7)

Note that �̂ is the left derivative of � (which exists due to the convexity of �) in the
e1-direction, that is,

�̂(z)
.= lim

δ↓0

�(z) − �(z − δe1)

δ
, z ∈ S

o.
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Also, convexity of � gives that �̂ is nondecreasing in the z1 variable; in particular,
α · e1 ≤ β · e1.

Define

u(x)
.= sup

σ∈S()

Ĵ (x, σ ),(8)

where S() is the set of all {Ft }-stopping times.
The following lemma is the first key step in the proof of Theorem 3.1.

LEMMA 3.3. For x ∈ S with x · e1 > 0, ∇−V (x) ≥ u(x).

PROOF. Let δ0 > 0 be such that xδ
.= x − δe1 ∈ S for all δ ≤ δ0. Fix δ ≤ δ0.

Define Sδ
.= inf{t ≥ 0 :Z(t) · e1 ≤ δ} and let for t ≥ 0, σ ∈ S(), Yδ(t)

.= Y ∗(t) +
δe11{t≥σ∧Sδ}. Set

Xδ(t)
.= xδ + B(t) + Yδ(t) = x + B(t) + Y ∗(t) − δe11{0≤t<σ∧Sδ}.

Clearly, Yδ ∈ A(xδ,) with corresponding controlled process Xδ . Thus,

V (xδ) ≤ J (xδ, Yδ) = E

∫ σ∧Sδ

0
e−γ t �(Xδ(t)) dt + E

∫ ∞
σ∧Sδ

e−γ t �(Xδ(t)) dt.

Since � is convex, we have (see Corollary 24.2.1 of [23]) that for z ∈ S such that
z − δe1 ∈ S,

�(z − δe1) − �(z) = −δ

∫ 1

0
�̂(z − uδe1) du.(9)

Hence,

V (xδ) − V (x)

−δ
≥ E

∫ σ∧Sδ

0
e−γ t

∫ 1

0
�̂
(
X∗(t) − δue1

)
dudt

(10)

≥ E

∫ σ∧Sδ

0
e−γ t

∫ 1

0
�̂
(
Z(t) − δue1

)
dudt,

where the last inequality uses the fact that �̂(z1, z2) is nondecreasing in z1.
From the sample path continuity of Z · e1, we see that Sδ ↑ S as δ ↓ 0. Combin-

ing this with the left-continuity of �̂(z1, z2) in z1, we see that

1{t<σ∧Sδ}
∫ 1

0
�̂
(
Z(t) − δue1

)
du ↑ 1{t<σ∧S}�̂(Z(t)),

a.e. (Leb×P)(t,ω) ∈ [0,∞) × �.

Using the boundedness of �̂, we now see on taking δ ↓ 0 in (10) that ∇−V (x) ≥
E

∫ σ∧S
0 e−γ t �̂(Z(t)) dt . Since σ ∈ S() is arbitrary, the result follows. �

The next lemma is the second key step in the proof of Theorem 3.1. We remark
that the special form of the function � is used crucially in its proof.



CHARACTERIZATIONS OF BROWNIAN CONTROL PROBLEMS 2375

LEMMA 3.4. Let x ∈ S. Then ∇+V (x) ≤ u(x).

PROOF. Recall that V (x) = J (x,Y ∗). Define σ ∗ .= inf{t ≥ 0 :Y ∗(t) · e1 > 0}.
Note that σ ∗ ∈ S(). Let δ > 0 and define xδ .= x + δe1. Define the stochastic
process Zδ = (Zδ

1,Z
δ
2)

′ as

Zδ
1(t)

.= Z1(t) + δ, Zδ
2(t)

.= X∗
2(t) = x2 + B2(t) + Y ∗

2 (t), t ≥ 0.

Let σ δ .= inf{t ≥ 0 :Y ∗(t) ·e1 ≥ δ}. Note that σ δ ≥ σ ∗ and σ δ ↓ σ ∗ as δ ↓ 0. Define

Y δ
1 (t)

.= (
Y ∗

1 (t) − δ
)
1{t≥σδ}, Y δ

2 (t)
.= Y ∗

2 (t), t ≥ 0.

Note that Xδ(t)
.= x + δe1 + B(t) + Y δ(t) ∈ S for all t ≥ 0. Thus, Y δ ∈ A(x +

δe1,) and Xδ is the corresponding controlled process. Also, observe that Xδ(t) =
Zδ(t)1{t<σδ} + X∗(t)1{t≥σδ}. Next,

V (xδ) ≤ J (xδ, Y δ) = E

∫ ∞
0

e−γ t�(Xδ(t)) dt

= E

∫ σδ

0
e−γ t �(Zδ(t)) dt + E

∫ ∞
σδ

e−γ t�(X∗(t)) dt.

Thus,

V (xδ) − V (x) ≤ E

∫ σδ

0
e−γ t (�(Zδ(t)) − �(X∗(t))

)
dt

= E

∫ σδ

0
e−γ t (Zδ(t) − X∗(t)

)
(11)

· e1

(∫ 1

0
�̂
(
X∗(t) + u

(
Zδ(t) − X∗(t)

))
du

)
dt,

where the last line follows from the convexity of � [see (9)]. Recalling that �̂(z1, z2)

is nondecreasing in z1, and that (Zδ(t) − X∗(t)) · e1 ≥ 0 for t ≤ σδ , we see that

V (xδ) − V (x) ≤ E

∫ σδ

0
e−γ t (Zδ(t) − X∗(t)

) · e1�̂(Z
δ(t)) dt

= E

∫ σ ∗

0
e−γ t (Zδ(t) − X∗(t)

) · e1�̂(Z
δ(t)) dt(12)

+ E

∫ σδ

σ ∗
e−γ t (Zδ(t) − X∗(t)

) · e1�̂(Z
δ(t)) dt.

For t < σ ∗, Y ∗(t) ·e1 = 0 and so for such t , (Zδ(t)−X∗(t)) ·e1 = δ. Thus, the term
on the second line of (12) equals δE

∫ σ ∗
0 e−γ t �̂(Zδ(t)) dt . On the other hand, for

t ∈ (σ ∗, σ δ), Y ∗(t) · e1 ∈ (0, δ) and so for such t , (Zδ(t) − X∗(t)) · e1 ∈ [0, δ).
Thus, it follows that, for arbitrary ε > 0, the term on the third line of (12) is
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bounded above by δ �̂∞(E(σ δ ∧ M(ε) − σ ∗ ∧ M(ε)) + ε), where M(ε) is such
that

∫ ∞
M(ε) e

−γ t dt ≤ ε and �̂∞ .= supx∈S |�̂(x)|. Note that σ ∗ ≤ S a.s. Using these
observations in (12), we obtain

V (xδ) − V (x)

δ
≤ E

∫ σ ∗∧S

0
e−γ t �̂(Zδ(t)) dt

+ �̂∞
(
E[σ δ ∧ M(ε) − σ ∗ ∧ M(ε)] + ε

)
(13)

≤ u(x) + F(δ) + �̂∞
(
E[σ δ ∧ M(ε) − σ ∗ ∧ M(ε)] + ε

)
,

where

F(δ)
.= E

∫ σ ∗∧S

0
e−γ t [�̂(Zδ(t)) − �̂(Z(t))]dt.(14)

Noting that Zδ(t) ·e1 ≥ Z(t) ·e1 and Zδ(t) ·e2 = Z(t) ·e2, we have from convexity
of � that �̂(Zδ(t)) ≥ �̂(Z(t)) and by (7),

{�̂(Zδ(t)) > �̂(Z(t))} = {Zδ(t) · e1 > c−1Z(t) · e2 ≥ Z(t) · e1}
(15)

= {0 ≤ η(t) < δ},
where η(t)

.= c−1Z(t) · e2 − Z(t) · e1 is a semimartingale with [η]ct = κt , where
κ

.= (−1, c−1)�(−1, c−1)′ ∈ (0,∞). Let (La)a∈R be the local time of η. (We refer
the reader to Section IV.7 of [22] for definitions of [·]c and local time.) Then for
ε > 0 and M(ε) as before,∫ M(ε)

0
1[0,δ](η(t)) dt = κ−1

∫ M(ε)

0
1[0,δ](η(t)) d[η]ct

= κ−1
∫ ∞
−∞

La
M(ε)1[0,δ](a) da.

Thus, for each ε > 0, E
∫ M(ε)

0 1[0,δ](η(t)) dt → 0 as δ → 0. Next, from (15)
and (14) we have

F(δ) ≤ ε + E

∫ M(ε)

0
e−γ t (�̂(Zδ(t)) − �̂(Z(t))

)
dt

≤ ε + 2�̂∞E

∫ M(ε)

0
1[0,δ](η(t)) dt.

Combining the above observations, we now have that lim supδ→0 F(δ) = 0. The
result now follows on recalling that σ δ ↓ σ ∗ and taking limits as δ → 0 and ε → 0
in (13). �

PROOF OF THEOREM 3.1. Combining the results of Lemmas 3.2, 3.3 and 3.4,
we have that for each x ∈ S with x · e1 > 0,

u(x) ≤ ∇−V (x) ≤ ∇+V (x) ≤ u(x).
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Thus, ∇−V (x) = ∇+V (x) and, hence, ∇1V (x) exists for all such x. In a symmet-
ric fashion one can show that ∇2V (x) exists for all x ∈ S such that x · e2 > 0. The
convexity of V yields that ∇iV is continuous at all x ∈ S with x · ei > 0, i = 1,2
(see Theorem 25.5 of [23]). Finally, define ∇iV (x) = 0 for x ∈ S with x · ei = 0,
i = 1,2. To see that this extends continuously the definition of ∇V = (∇1V,∇2V )′
to all of S, it suffices to show that for i = 1,2,

For each ε > 0, there exists δ ∈ (0,∞) such that
|∇iV (x)| < ε whenever 0 < x · ei < δ.

(16)

We only consider i = 1; the proof for i = 2 is identical. Fix ε > 0 and define
θ0(ε)

.= ε/(2�̂∞). Let δ > 0 be such that

P

(
inf

0≤t≤θ0(ε)

(
x1 + B1(t)

)
> 0

)
≤ εγ

2�̂∞
,(17)

whenever 0 ≤ x · e1 ≤ δ. Now for each x ∈ S with 0 < x · e1 < δ,

∇1V (x) = u(x) = sup
σ∈S()

E

∫ S∧σ

0
e−γ t �̂(Z(t)) dt,

where ,S,Z depend on x and are defined as below Lemma 3.2. Using (17), the
right side above can be bounded by

�̂∞
∫ θ0(ε)

0
e−γ t dt + �̂∞

γ
P

(
S > θ0(ε)

) ≤ ε/2 + ε/2 = ε.

This proves (16) and the result follows. �

4. A related optimal stopping problem. In the remaining sections of the
paper we will consider the subcase α �≥ 0, β ≥ 0. Given the convexity and nonneg-
ativity of �, this, in particular, implies that α1 < 0, α2 > 0. We will focus first on
the case of β1 > 0; that is, we have

α1 < 0, α2 > 0, β1 > 0, β2 ≥ 0.

The case where β1 = 0 will be addressed in Remark 5.9.
We will study an optimal stopping problem and the free boundary associated

with the control problem in (4). By a suitable re-parametrization, we can rewrite
the cost in (2) (up to a constant multiplier) as follows: For z = (z1, z2)

′ ∈ S,

�(z)
.=

{
z2 − az1, z2 ≥ cz1,
b · z, z2 ≤ cz1,(18)

where a ∈ (0, c] and b = (b1, b2)
′ with b1 > 0 and b2 ≥ 0. From convexity of �, it

follows that b2 ∈ [0,1) and c = a+b1
1−b2

. Using the monotonicity of �(z1, z2) in the
z2 variable, one can reduce the control problem as follows. For a fixed x, and
Y ∈ A(x,), let X be as in (3). Define

Y ∗
2 (t) = − inf

0≤s≤t

{(
x2 + B2(s)

) ∧ 0
}

(19)
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and

X∗
2(t)

.= x2 + B2(t) + Y ∗
2 (t), t ≥ 0.(20)

Set X̃(t) = (X1,X
∗
2)′, Ỹ = (Y1, Y

∗
2 )′. Clearly, Ỹ ∈ A(x,) and �(X̃(t)) ≤

�(X(t)). From this it follows that

V (x) = inf


inf
Y1∈A1(x,)

J1(x,Y1),(21)

where A1(x,) is the class of all RCLL, nonnegative, nondecreasing, {Ft }-adapt-
ed processes {Y1(t), t ≥ 0} (defined on the system ) such that x1 + B1(t) +
Y1(t) ≥ 0 for all t ≥ 0, a.s. and

J1(x,Y1)
.= E

∫ ∞
0

e−γ t �(X̃(t)) dt.

We now introduce the optimal stopping problem associated with this singular con-
trol problem. For a system  and x ∈ S, let, as before, S() be the collection of all
{Ft }-stopping times. Also let S,Z, Ĵ , �̂ be as defined below Lemma 3.2, but with
the new definition of Y ∗

2 in (19) and with �̂ defined as follows: For z = (z1, z2)
′ ∈ S,

�̂(z)
.=

{−a, z2 ≥ cz1,
b1, z2 < cz1.(22)

Note that the first coordinate of Z is a Brownian motion, while the second coordi-
nate is a reflected Brownian motion; in particular, Z has continuous sample paths.
Consider the optimal stopping problem of choosing a stopping time σ to maximize
the reward in (6) with S,Z, �̂ as described above. Then the value function for the
optimal stopping problem for initial condition x is defined as

u(x)
.= sup



sup
σ∈S()

Ĵ (x, σ ).(23)

Note that clearly u(x) < ∞ and taking σ ≡ 0, we have u(x) ≥ 0 for all x ∈ S.
The proof of the following theorem is analogous to that of Theorem 3.1, so we

only provide a sketch.

THEOREM 4.1. For every x ∈ S, ∇1V (x) = u(x).

SKETCH OF PROOF. Let x ∈ S with x · e1 > 0. Let  be an arbitrary system
and let σ ∈ S(). Fix ε > 0. From Proposition 2.1 we can find a Y1 ∈ A(x,)

such that J1(x,Y1) ≤ V (x)+ ε. In fact, Proposition 2.1 says that Y1 can be chosen
to be adapted to {F B

t }. Following the proof of Lemma 3.3, we see that

V (xδ) − V (x)

−δ
≥ −ε

δ
+ E

∫ σ∧Sδ

0
e−γ t

∫ 1

0
�̂
(
Z(t) − δue1

)
dudt,(24)

where Sδ is as in the quoted lemma. Note that the second expression on the
right side above does not depend on ε (or on the ε-optimal control Y1). Letting
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ε → 0 and then δ ↓ 0, we now have, on recalling that σ and  are arbitrary, that
∇1V (x) ≥ u(x) for all x ∈ S with x · e1 > 0. The proof of ∇1V (x) ≤ u(x) for all
x ∈ S is identical to that of Lemma 3.4. Hence, ∇1V (x) = u(x) for all x ∈ S with
x · e1 > 0. Finally, when x · e1 = 0, both ∇1V (x) and u(x) are zero. This proves
the result. �

The following corollary gives a useful characterization of an optimal stopping
time in terms of an optimal control.

COROLLARY 4.2. Let x ∈ S and suppose  and Y ∗
1 ∈ A1(x,) are such that

V (x) = J1(x,Y ∗
1 ) (existence of such a Y ∗

1 is guaranteed from Proposition 2.4). Let

σ ∗ .= inf{t ≥ 0 :Y ∗
1 (t) > 0}.(25)

Then u(x) = Ĵ (x, σ ∗).

PROOF. Taking limits as δ → 0 and ε → 0 in the first line of (13), we have
that

u(x) = ∇1V (x) = ∇+V (x) ≤ E

∫ σ ∗∧S

0
e−γ t �̂(Z(t)) dt ≤ u(x).

The result follows. �

The above corollary establishes the existence of an optimal stopping rule given
on some filtered probability space. The following proposition shows that, in fact,
the optimal rule can be chosen to be an {F B

t }-stopping time and so in the optimal
stopping problem (described above Theorem 4.1) it suffices to optimize over a
fixed system  with the filtration taken to be {F B

t }. Note that from the C1 property
of V established in Theorem 3.1 we have that u is continuous on S.

PROPOSITION 4.3. Let x ∈ S and  be a system. Define

σ0
.= S ∧ inf{t ≥ 0 :u(Z(t)) = 0}.(26)

Then σ0 is optimal; that is, u(x) = Ĵ (x, σ0).

The key step in the proof of the proposition is the following lemma.

LEMMA 4.4. Let x ∈ S and let  and Y ∗
1 ∈ A1(x1,) be as in Corollary 4.2.

Define, for fixed ε > 0,

σε
.= S ∧ inf{t ≥ 0 :u(Z(t)) ≤ ε}.(27)

Then σε ≤ σ ∗ a.s., where σ ∗ is as in Corollary 4.2.
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PROOF. Define θε
.= σε ∧ σ ∗ and θ̄ε

.= θε + (δ ∧ (σε − σ ∗)+)1{σ ∗<∞}, where
δ > 0 is chosen so that εe−γ δ − �lipδ ≥ ε/2, and �lip > 0 is the Lipschitz constant
for the function �. Let Ȳ1(t)

.= −min(0, infθε≤s≤t [X∗
1(θε−) + B1(s) − B1(θε)]),

t ≥ θε , and define for t ≥ 0,

Ỹ1(t)
.= Y ∗

1 (t)1[θε,∞)(t)1{σε≤σ ∗} + Ȳ1(t)1[θε,∞)(t)1{σε>σ ∗}.(28)

Note that X̃1(t)
.= x1 + B1(t) + Ỹ1(t) ≥ 0 for all t ≥ 0 and, consequently, Ỹ1 ∈

A1(x1,). In particular,

V (x) ≤ E

[∫ θ̄ε

0
e−γ t �(X̃(t)) dt + e−γ θ̄εV (X̃(θ̄ε))

]
,

where X̃ = (X̃1,X
∗
2)′. Also, from the optimality of Y ∗

1 , we have that

V (x) = E

[∫ θ̄ε

0
e−γ t �(X∗(t)) dt + e−γ θ̄εV (X∗(θ̄ε))

]
.

Observing that Y ∗
1 (t) = Ỹ1(t) = 0 for t < θε , we have, on combining the above two

displays,

E
[
e−γ θ̄ε

(
V (X∗(θ̄ε)) − V (X̃(θ̄ε))

)] ≤ E

∫ θ̄ε

θε

e−γ t [�(X̃(t)) − �(X∗(t))]dt.

On the set {σε ≤ σ ∗}, θ̄ε = θε and Ỹ1(t) = Y ∗
1 (t) for all t ≥ 0, and thus, on this set,

the expressions on both the left and right of the above inequality are 0. Thus, we
have

E
(
1{σε>σ ∗}e−γ θ̄ε

(
V (X∗(θ̄ε)) − V (X̃(θ̄ε))

))
(29)

≤ E

(
1{σε>σ ∗}

∫ θ̄ε

θε

e−γ t [�(X̃(t)) − �(X∗(t))]dt

)
.

Using the convexity of V , Theorem 4.1 and the definition of σε , we have on the
set {σε > σ ∗}

V (X∗(θ̄ε)) − V (X̃(θ̄ε))

= (
X∗

1(θ̄ε) − X̃1(θ̄ε)
) ∫ 1

0
∇1V

(
X̃1(θ̄ε) + v

(
X∗

1(θ̄ε) − X̃1(θ̄ε)
)
,X∗

2(θ̄ε)
)
dv

≥ (
X∗

1(θ̄ε) − X̃1(θ̄ε)
)
u(Z(θ̄ε)) ≥ εY ∗

1 (θ̄ε).

Thus,

E
[
ε1{σε>σ ∗}e−γ θ̄εY ∗

1 (θ̄ε)
] ≤ E

[
1{σε>σ ∗}e−γ θ̄ε

(
V (X∗(θ̄ε)) − V (X̃(θ̄ε))

)]
.(30)
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Next, using the Lipschitz continuity of � and that Y ∗
1 (t) ≥ Ỹ1(t), t ≥ 0, we have

E

[
1{σε>σ ∗}

∫ θ̄ε

θε

e−γ t [�(X̃(t)) − �(X∗(t))]dt

]

≤ E

[
1{σε>σ ∗}e−γ θε

∫ θ̄ε

θε

e−γ (t−θε)�lip|X∗
1(t) − X̃1(t)|dt

]
(31)

≤ E
[
�lip1{σε>σ ∗}e−γ θεY ∗

1 (θ̄ε)(θ̄ε − θε)
]
.

Combining (29), (30) and (31), and recalling that on the set {σε > σ ∗}, θε = σ ∗
and θ̄ε = σ ∗ + δ ∧ (σε − σ ∗), we have

E
[
1{σε>σ ∗}e−γ σ ∗

Y ∗
1 (θ̄ε)

(
εe−γ [δ∧(σε−σ ∗)] − �lip

(
δ ∧ (σε − σ ∗)

))] ≤ 0.(32)

By the choice of δ, the term εe−γ [δ∧(σε−σ ∗)] − �lip(δ ∧ (σε −σ ∗)) is between ε and
ε/2. Thus, (32) implies

E
[
1{σε>σ ∗}e−γ σ ∗

Y ∗
1 (θ̄ε)

] = 0.(33)

Finally, on the set {σε > σ ∗}, since θ̄ε > σ ∗, recalling the definition of σ ∗, we have
Y ∗

1 (θ̄ε) > 0. Equation (33) then implies that P[σε > σ ∗] = 0. �

COROLLARY 4.5. For all x ∈ S and any arbitrary system , σε as defined
in (27) is an ε-optimal stopping time, and we have

u(x) = sup
σ∈SB

Ĵ (x, σ ),(34)

where SB is the set of all {F B
t }-stopping times.

PROOF. Note that the right-hand side of (34) is independent of the choice of
the system , so without loss of generality we can take  to be the system on
which σ ∗ [as defined in (25)] is given. Let ε > 0 be arbitrary. From Lemma 4.4
σε ≤ σ ∗ a.s. and, thus,

u(x) = E

∫ σ ∗∧S

0
e−γ t �̂(Z(t)) dt

= E

[∫ σε∧S

0
e−γ t �̂(Z(t)) dt + e−γ σε

∫ σ ∗∧S

σε

e−γ (t−σε)�̂(Z(t)) dt

]
(35)

≤ Ĵ (x, σε) + E[e−γ σεu(Z(σε))] ≤ Ĵ (x, σε) + ε,

where the last line follows from the definition of σε . Thus, σε ∈ SB is an ε-optimal
stopping time. Since ε > 0 is arbitrary, the result follows. �
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PROOF OF PROPOSITION 4.3. Let σε be as in (27). Since σε is nondecreasing
in ε, σ+ .= limε→0 σε exists a.s, and clearly, σ+ ∈ SB with σ+ ≤ S a.s. Note that
σ+ is an optimal stopping time, since, as ε → 0,

Ĵ (x, σε) = E

∫ S∧σε

0
e−γ t �̂(Z(t)) dt → E

∫ S∧σ+

0
e−γ t �̂(Z(t)) dt = Ĵ (x, σ+).

We now show that σ+ = σ0, thus completing the proof. Clearly, σ+ ≤ σ0. From
continuity of u and Z we get that u(Z(σε)) → u(Z(σ+)), a.s. on the set {σ+ < S}.
Recalling the definition of σε , we now see that on the above set u(Z(σ+)) must
be 0. The inequality σ0 ≤ σ+ follows. �

Next, in preparation for the free boundary characterization and the conjectured
form for the optimal control for the control problem in (21), we summarize below
some key properties of u.

LEMMA 4.6. The function u : S → [0,∞) satisfies the following properties:

1. For x = (x1, x2)
′ ∈ S, if x2 < cx1, then u(x) > 0.

2. For x = (x1, x2)
′ ∈ S, u(x1, x2) is nondecreasing in x1 and nonincreasing in x2.

3. u is continuous on S.
4. For all x1 ≥ 0, there is x2 < ∞ such that u(x1, x2) = 0.

PROOF. Let x ∈ S be such that x2 < cx1. Let  be an arbitrary system and
let τ1

.= inf{t ≥ 0 :Z2(t) ≥ cZ1(t)}, where Z is as introduced above (22). Since
τ1 > 0 and S > 0 a.s., we have

u(x) ≥ Ĵ (x, τ1) = (b1/γ )E
[
1 − e−γ (τ1∧S)] > 0.

This proves part 1. Monotonicity of u(x1, x2) in x1 follows from the convexity
of V , while the monotonicity in x2 is an immediate consequence of the fact that
�̂(x1, x2) is a nonincreasing function of x2. Continuity of u, as noted earlier, is a
consequence of Theorems 4.1 and 3.1.

We now consider part 4. Fix 0 < ε < 1/2 small enough so that ε
1−ε

(a +b1) < a.
Let δ > 0 be such that ε

1−ε
(a + b1) < δγ < a. Choose T ∈ (0,∞) to satisfy

−a

∫ T

0
e−γ s ds + b1

∫ ∞
T

e−γ s ds = −δ,

that is, T = − 1
γ

log −δγ+a
b1+a

. We will argue via contradiction.
Suppose there exists 0 < x̃1 < ∞ such that u(x̃1, x2) > 0 for all x2 ≥ 0. Let

 be an arbitrary system and let x1 > x̃1 be such that P[S̃ < T ] < ε/2, where
S̃

.= inf{t ≥ 0 :x1 + B1(t) = x̃1}. Fix x2 > cx1 so that P[τ < T ] < ε/2, where
τ

.= inf{t ≥ 0 :Z2(t) < cZ1(t)}, with x = (x1, x2)
′. Then by part 2 and our assump-

tion, we have u(x) > 0. Note that �̂(Z(t)) = −a for all t < τ . By Proposition 4.3,



CHARACTERIZATIONS OF BROWNIAN CONTROL PROBLEMS 2383

u(x) = Ĵ (x, σ0), where σ0 is defined in (26). We next claim that S̃ ≤ σ0 a.s. To see
the claim, note that for all t ≥ 0,

u(x) = E

[∫ σ0∧t

0
e−γ s �̂(Z(s)) ds + e−γ (σ0∧t)u

(
Z(σ0 ∧ t)

)]

≥ Ĵ (x, σ0 ∧ t) + E
[
1{S̃>σ0}e

−γ σ0u
(
Z(σ0 ∧ t)

)]
.

Letting t → ∞, we see that

u(x) ≥ u(x) + E
[
1{S̃>σ0}e

−γ σ0u(Z(σ0))
]
.

Thus, E[1{S̃>σ0}e
−γ σ0u(Z(σ0))] = 0. Since, on the set {S̃ > σ0}, e−γ σ0u(Z(σ0))

is strictly positive, it follows that P(S̃ > σ0) = 0. This proves the claim. Note that
almost surely on the set {τ ≥ T , S̃ ≥ T },

∫ σ0

0
e−γ t �̂(Z(t)) dt ≤ −a

∫ T

0
e−γ t dt + b1

∫ ∞
T

e−γ t dt = −δ.

Writing

1 = 1{τ≥T ,S̃≥T } + 1{τ<T } + 1{S̃<T } − 1{τ<T,S̃<T },

we have

E

∫ σ0

0
e−γ t �̂(Z(t)) dt ≤ −δP[τ ≥ T , S̃ ≥ T ] + (b1/γ )(P[τ < T ] + P[S̃ < T ])

+ (a/γ )P[τ < T, S̃ < T ]
≤ −δ(1 − ε) + ε(a + b1)/γ.

The quantity in the last line above is less than 0 from our choice of δ. Thus, we
have shown that u(x) = J (x,σ0) < 0, which is a contradiction. Part 4 now follows.

�

5. The free boundary and an optimal control policy. Recall that we re-
strict ourself to the case α1 < 0, α2 > 0, β1 > 0, β2 ≥ 0, which after suitable
re-parameterization leads to the running cost (18). Guided by Lemma 4.6, we now
introduce the free boundary, ∂∗ .= {(
(z2), z2), z2 ≥ 0}, where 
 is a map from
R+ to R+, associated with the optimal stopping problem in (23). Let


(z2)
.= sup{z1 ≥ 0 :u(z1, z2) = 0}, z2 ∈ [0,∞).(36)

The following lemma summarizes some key properties of 
 .

LEMMA 5.1. The function 
 has the following properties:

1. 0 ≤ 
(z2) ≤ z2/c, z2 ≥ 0.
2. 
 is nondecreasing.
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3. 
 is Lipschitz continuous on R+: For all z2, z̃2 ∈ R+,

|
(z2) − 
(z̃2)| ≤ c−1|z2 − z̃2|.
4. limz2→∞ 
(z2) = ∞.

PROOF. Clearly, u(0, x2) = 0 for all x2 ≥ 0, which implies that the set in (36)
is nonempty. This along with part 1 of Lemma 4.6 shows that 
 is a well defined
map from R+ to R+ and it satisfies the inequality in part 1 of the current lemma.
Part 2 is a consequence of part 2 of Lemma 4.6. Part 4 follows from part 4 of
Lemma 4.6. It remains to prove part 3.

Since 
 is nondecreasing, it suffices to show that for every z2 ≥ 0 and h > 0,


(z2 + h) ≤ 
(z2) + c−1h.(37)

From the definition of 
 we see that to prove (37) it is enough to show that

u(x1 + c−1h,x2 + h) ≥ u(x1, x2) for all (x1, x2) ∈ R
2+.(38)

Let σ be an optimal stopping time for the initial condition x = (x1, x2), that is,

u(x) = E

∫ σ∧S

0
e−γ t �̂(Z(t)) dt,

where Z is as defined in (5) with Y ∗
2 given by (19). Note that

u(x) = (b1 + a)E

∫ σ∧S

0
e−γ t1Lc(Z(t)) dt − aE

∫ σ∧S

0
e−γ t dt,

where Lc = {(z1, z2) ∈ R
2+ : z1 > c−1z2}. Let Z̃ be defined by the expression in (5)

with x there replaced by x̃
.= (x1 + c−1h,x2 +h) and Y ∗

2 replaced by Ỹ ∗
2 , which is

defined by (19) with x2 replaced by x2 +h. Note that S̃
.= inf{t ≥ 0 : Z̃1(t) = 0} ≥ S

a.s. Thus, we have

u(x̃) ≥ Ĵ (x̃, σ ∧ S) = E

∫ σ∧S

0
e−γ t �̂(Z̃(t)) dt

= (b1 + a)E

∫ σ∧S

0
e−γ t1Lc(Z̃(t)) dt − aE

∫ σ∧S

0
e−γ t dt.

Thus, in order to prove (38), it suffices to show that

Z(t) ∈ Lc ⇒ Z̃(t) ∈ Lc for all t, a.s.(39)

Finally, note that

Z(t) ∈ Lc ⇒ Z1(t) > c−1Z2(t) ⇒ Z1(t) + c−1h > c−1(
Z2(t) + h

)
⇒ Z̃1(t) > c−1Z̃2(t) ⇒ Z̃(t) ∈ Lc,

where we have used the fact that Z̃1(t) = Z1(t) + c−1h and Z̃2(t) ≤ Z2(t) + h for
all t ≥ 0. This proves (39) and the result follows. �
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Proposition 4.3 and Lemmas 4.6 and 5.1 lead to the following candidate for an
optimal control policy.

Fix x ∈ S and let  be an arbitrary system. Let

Y ∗
1 (t)

.= −min
{

0, inf
0≤s≤t

[x1 + B1(s) − 
(X∗
2(s))]

}
,(40)

where X∗
2 is as in (20). The remaining section is devoted to the proof of the fol-

lowing theorem.

THEOREM 5.2. For all x ∈ S,

J1(x,Y ∗
1 ) = J (x,Y ∗) = V (x),

where Y ∗ = (Y ∗
1 , Y ∗

2 )′ with Y ∗
2 as defined in (19) and Y ∗

1 as defined in (40).

We begin with the following lemma.

LEMMA 5.3. For all x ∈ X with x · e2 > 0, ∇2V (x) > 0.

PROOF. Recalling that V is convex, it suffices to show that V (xh) > V (x),
where x = (x1, x2)

′ ∈ R
2+ and xh = x + he2. Let Y1 ∈ A1(x

h,) for some sys-
tem  be such that

V (xh) = J1(x
h,Y1).(41)

Note that since xh · e1 = x · e1, Y1 ∈ A1(x,) as well. Thus, we have that

V (x) ≤ E

∫ ∞
0

e−γ t �(X̃(t)) dt,

where X̃(t) is as defined below (20) with Y1 as chosen above. Let X̃h = (X̃1,X
∗,h
2 ),

where X
∗,h
2 is defined via (19) and (20) with x2 replaced by x2 + h. Note

that V (xh) = E
∫ ∞

0 e−γ t�(X̃h(t)) dt . Let ηh
.= inf{t ≥ 0 :X∗,h

2 (t) = 0}. Since
x2 + h > 0, we have that ηh > 0 a.s. Also note that � is strictly increasing in the
second variable, that is, �(z + re2) > �(z) for all z ∈ R

2+ and r > 0. Combining

these observations with the fact that X
∗,h
2 (t) > X∗

2(t) for all t ∈ [0, ηh), we see
that, a.s., ∫ ηh

0
e−γ t �(X̃(t)) dt <

∫ ηh

0
e−γ t�(X̃h(t)) dt.

Also, ∫ ∞
ηh

e−γ t �(X̃(t)) dt =
∫ ∞
ηh

e−γ t �(X̃h(t)) dt.

Combining the above with (41), we have V (x) < V (xh). This proves the result.
�



2386 A. BUDHIRAJA AND K. ROSS

The following result was established in [1]. Let A be the second order operator

A
.= −1

2 tr(�D2) − θ · D,

where D denotes the gradient vector and D2 the Hessian matrix.

THEOREM 5.4 (cf. Theorem 2.1 [1]). V is a constrained viscosity solution of
the PDE(

γψ(x) + Aψ(x) − �(x)
) ∨ max

i=1,2

(−Dψ(x) · ei

) = 0, x ∈ S.(42)

Namely,

(i) V is a supersolution of (42) on S: For all x ∈ S and all φ ∈ C2(S) for
which V − φ has a global minimum at x, one has(

γV (x) + Aφ(x) − �(x)
) ∨ max

i=1,2

(−Dφ(x) · ei

) ≥ 0.

(ii) V is a subsolution of (42) on S
o: For all x ∈ S

o and all φ ∈ C2(S) for
which V − φ has a global maximum at x, one has(

γV (x) + Aφ(x) − �(x)
) ∨ max

i=1,2

(−Dφ(x) · ei

) ≤ 0.

Let G = {x = (x1, x2) ∈ R
2+ :x1 ≥ 
(x2)}. Note that the interior of G is given

as Go = {x ∈ G :x1 > 
(x2), x2 > 0} and the boundary of G, ∂G, satisfies ∂G =
∂1G ∪ ∂2G, where ∂1G = {x ∈ G :x1 = 
(x2)} and ∂2G = {x ∈ G :x2 = 0}. For
D ⊂ S, we denote V restricted to D as V |D.

LEMMA 5.5. V |Go ∈ C2(Go) and

γV (x) + AV (x) − �(x) = 0 for all x ∈ Go.(43)

PROOF. From Theorem 5.4, V is a viscosity solution of (42) on Go. From
Lemma 5.3 and the definition of 
 , we see that for all x ∈ Go, ∇iV (x) > 0,
i = 1,2. This shows that V |Go is a viscosity solution of (43) on Go. Indeed, let
x ∈ Go and φ ∈ C2(Go) be such that x is a minimum point of V −φ. In particular,
∇iφ(x) = ∇iV (x) > 0 for i = 1,2. From Theorem 5.4(i) we must then have that
γV (x)+Aφ(x)−�(x) ≥ 0, showing that V |Go is a viscosity supersolution of (43)
on Go. The subsolution property is immediate. By standard elliptic regularity re-
sults (see, e.g., Theorem 6.13 of [10]), one then has that V |Go ∈ C2(Go) and it is
a classical solution of (43) on Go. �

Define for ε > 0

Gε = {x ∈ R
2 :d(x,G) < ε},

where for x ∈ R
2, d(x,G) = infy∈G |x − y|. For x ∈ S, we define x(ε) = x + e(ε),

where e(ε) = ε((2 + 3c−1),2)′.
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LEMMA 5.6. x(ε) ∈ Go for every x ∈ Gε .

PROOF. Fix x ∈ Gε . Then for some x∗ ∈ G,

|x · e1 − x∗ · e1| ≤ ε, |x · e2 − x∗ · e2| ≤ ε.(44)

Using (44) and the fact that x∗ ∈ G, we have

x(ε) · e2 = x · e2 + 2ε ≥ x∗ · e2 + ε ≥ ε.

Also,

x(ε) · e1 = x · e1 + (2 + 3c−1)ε

≥ x∗ · e1 + (1 + 3c−1)ε ≥ 
(x∗ · e2) + (1 + 3c−1)ε

≥ 

(
x(ε) · e2

) − c−1|x∗ · e2 − x(ε) · e2| + (1 + 3c−1)ε

≥ 

(
x(ε) · e2

) + ε,

where the first inequality in the above display follows from (44); the second fol-
lows since x∗ ∈ G, the third inequality uses Lemma 5.1 (3) and the last inequality
is a consequence of |x∗ · e2 − x(ε) · e2| ≤ 3ε. The result x(ε) ∈ Go follows on
combining the above two displays. �

Define V ε on Gε by the relation

V ε(x) = V (x(ε)), x ∈ Gε.

Note that by Lemmas 5.5 and 5.6 V ε is C2 on Gε , and

DV ε(x) = DV (x(ε)), D2V ε(x) = D2V (x(ε)), x ∈ Gε.(45)

LEMMA 5.7. There exists ρ ∈ (0,∞) such that for all ε ∈ (0,1) and x ∈ Gε

|γV ε(x) + AV ε(x) − �(x)| ≤ ρε.

PROOF. From Lemma 5.5 and (45), we have that for all x ∈ Gε

γV ε(x) + AV ε(x) − �(x) = γV (x(ε)) + AV (x(ε)) − �(x(ε)) + �(x(ε)) − �(x)

= �(x(ε)) − �(x).

The result now follows on using the Lipschitz property of � and the definition of
x(ε). �

The following moment estimate is an immediate consequence of the Lipschitz
property of 
 and standard moment estimates for the running maximum of a
Brownian motion. The proof is omitted.
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LEMMA 5.8. For every p ≥ 1, there exists cp ∈ (0,∞) such that for each
x ∈ S and all t ≥ 0,

max
i=1,2

E|Y ∗
i (t)|p + E sup

0≤s≤t

|X∗(s)|p ≤ cp(1 + |x|p + tp/2).

We now proceed to the proof of Theorem 5.2.

PROOF OF THEOREM 5.2. We first consider the case where x ∈ G. We
will apply Itô’s formula to the semimartingale X∗ and the function (t, x) 
→
e−γ tV ε(x). Note that X∗ takes values in G and V ε is C2 on Gε , an open set
containing G. Thus,

Ee−γ tV ε(X∗(t)) = V ε(x) − E

∫ t

0
e−γ s(γV ε(X∗(s)) + AV ε(X∗(s))

)
ds

+
2∑

i=1

E

∫ t

0
∇iV

ε(X∗(s)) dY ∗
i (s).

Here we have used the fact that, since V is (globally) Lipschitz on G, DV ε is
uniformly bounded on Gε . Using Lemma 5.7, we now have

V ε(x) + γ −1ρε ≥ Ee−γ tV ε(X∗(t)) + E

∫ t

0
e−γ s�(X∗(s)) ds

(46)

−
2∑

i=1

E

∫ t

0
∇iV

ε(X∗(s)) dY ∗
i (s).

Next, using the C1 property of V , we have that, for x ∈ G, i = 1,2,

|∇iV
ε(x) − ∇iV (x)| = ∣∣∇iV

(
x + e(ε)

) − ∇iV (x)
∣∣ → 0, as ε → 0.

Using this along with Lemma 5.8 and noting that supx∈G supε∈(0,1) |∇iV
ε(x)| <

∞, we get, for i = 1,2,

E

∫ t

0
∇iV

ε(X∗(s)) dY ∗
i (s) → E

∫ t

0
∇iV (X∗(s)) dY ∗

i (s)

as ε → 0. Another application of Lemma 5.8 and recalling that V has at most
linear growth (Lemma 2.2) gives that

Ee−γ tV ε(X∗(t)) → Ee−γ tV (X∗(t))
as ε → 0. Taking limits as ε → 0 in (46), we obtain

V (x) ≥ Ee−γ tV (X∗(t)) + E

∫ t

0
e−γ s�(X∗(s)) ds

−
2∑

i=1

E

∫ t

0
∇iV (X∗(s)) dY ∗

i (s)

= Ee−γ tV (X∗(t)) + E

∫ t

0
e−γ s�(X∗(s)) ds,
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where the last equality follows on noting that Y ∗
i (s) increases only when X∗

i (s) ∈
∂iG and ∇iV (x) = 0 for x ∈ ∂iG (see the proof of Theorem 3.1 and the defin-
ition of 
 .) Next, using Lemma 5.8 once more and recalling the linear growth
property of V , we see that Ee−γ tV (X∗(t)) → 0 as t → ∞. The assertion
in the theorem, for x ∈ G, now follows on taking t → ∞ in the above dis-
play.

Now consider x = (x1, x2) ∈ S \ G. In this case, Y ∗
1 (0) = 
(x2) − x1, X∗(0) =

(
(x2), x2) ∈ G, and thus,

J ∗
1 (x1, x2) = J ∗

1 (
(x2), x2) = V (
(x2), x2).

Also, by Theorem 4.1, ∇1V (x) = u(x), which is 0 for x ∈ S \ G. Thus,
V (
(x2), x2) = V (x1, x2) and, hence, J ∗

1 (x) = V (x) for all x ∈ S. �

REMARK 5.9. We now consider β1 = 0. In this case, b1 = 0 and, thus, �̂(z) =
−a1z2≥cz1 ≤ 0. It follows that u(x) = 0 for all x ∈ S and so 
 cannot be defined
via (36). Instead, we define

Y ∗
1 (t)

.= −min
{

0, inf
0≤s≤t

[x1 + B1(s) − X∗
2(s)/c]

}
,(47)

where X∗
2 is as in (20). Let x ∈ S satisfy x2 ≤ cx1. Then X∗

2(t) ≤ cX∗
1(t) and,

thus, �(X∗(t)) = b2X
∗
2(t) for all t ≥ 0. Noting that �(z1, z2) ≥ b2z2, (z1, z2) ∈ S,

we then have that V (x) = J (x,Y ∗). Proof that V (x) = J (x,Y ∗) for x with x2 >

cx1 follows as in the last paragraph of the proof of Theorem 5.2 on noting that
∇1V (x) = u(x) = 0.
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