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CENTRAL LIMIT THEOREM FOR THE SOLUTION OF THE
KAC EQUATION

BY ESTER GABETTA1 AND EUGENIO REGAZZINI2

Università degli Studi di Pavia and Università degli Studi di Pavia

We prove that the solution of the Kac analogue of Boltzmann’s equation
can be viewed as a probability distribution of a sum of a random number of
random variables. This fact allows us to study convergence to equilibrium by
means of a few classical statements pertaining to the central limit theorem.
In particular, a new proof of the convergence to the Maxwellian distribution
is provided, with a rate information both under the sole hypothesis that the
initial energy is finite and under the additional condition that the initial dis-
tribution has finite moment of order 2 + δ for some δ in (0,1]. Moreover, it is
proved that finiteness of initial energy is necessary in order that the solution
of Kac’s equation can converge weakly. While this statement may seem to be
intuitively clear, to our knowledge there is no proof of it as yet.

1. Introduction and presentation of new results.

1.1. Introduction. Marc Kac studied Boltzmann’s derivation of a basic equa-
tion of kinetic theory by simplifying the problem to an n-particle system in one-
dimension and, under suitable conditions, he got the following analogue of the
Boltzmann equation:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂

∂t
f (v, t) = 1

2π

∫
R×[0,2π)

{f (v cos θ − w sin θ, t)

× f (v sin θ + w cos θ, t)

− f (v, t)f (w, t)}dw dθ,

f (v,0) = f0(v) (t > 0, v ∈ R),

(1)

where f0 and f (·, t) denote the probability density functions of the velocity of
each particle at time 0 and at time t , respectively. This problem admits a unique
solution within the class of all probability density functions on R. See, for example,
Kac (1956), Kac (1959), McKean (1966), Cercignani (1975) and Diaconis and
Saloff-Coste (2000).
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Bobylëv (1984) proved that the Fourier transform φ(·, t) of the solution f (·, t)
of (1) must satisfy⎧⎨

⎩
∂

∂t
φ(ξ, t) = 1

2π

∫ 2π

0
φ(ξ sin θ, t)φ(ξ cos θ, t) dθ − φ(ξ, t),

φ(ξ,0) = φ0(ξ) (t > 0, ξ ∈ R),

(2)

φ0 being the Fourier transform of f0. Clearly, problem (2) is well defined for ar-
bitrary (not necessarily absolutely continuous) probability measures μ(·, t) and
μ0 on the class B(R) of all Borel subsets of R, provided that φ(·, t) and φ0 are
thought of as Fourier–Stieltjes transforms of μ(·, t) and μ0, respectively.

The solution of (2)—which exists and is unique within the Fourier–Stieltjes
transforms of all probability measures on B(R)—can be expressed by means of
the transform of the Wild series [see Wild (1951)], that is,

φ(ξ, t) = ∑
n≥1

e−t (1 − e−t )n−1q̂+
n (ξ ;φ0) (t ≥ 0, ξ ≥ 0),(3)

where q̂+
n can be found by recursion as

q̂+
n (ξ ;φ0) = 1

n − 1

n−1∑
j=1

q̂+
n−j (ξ ;φ0) ◦ q̂+

j (ξ ;φ0) (n = 2,3, . . .),

with q̂1 := φ0. The symbol g1 ◦ g2, where g1 and g2 are characteristic functions,
designates the Wild product

g1 ◦ g2(ξ) = 1

2π

∫ 2π

0
g1(ξ cos θ)g2(ξ sin θ) dθ (ξ ∈ R).

Getting down to the approach to equilibrium of the solution of (1) as t goes to
infinity, according to Boltzmann’s classical research, the entropy of f (·, t) should
increase to its upper bound, log(σ

√
2πe) with σ 2 = ∫

R
v2f0(v) dv, while f tends

to the Maxwellian function (viz., the Gaussian density with zero mean and vari-
ance σ 2)

gσ (v) = 1

σ
√

2π
e−v2/(2σ 2) (v ∈ R).

McKean (1966) argues that the Wild representation suggests a simpler explanation:
the central limit theorem for Maxwellian molecules. With the aim of demonstrating
the solidity of his argument, he starts by proving a new expression for q̂+

n , that is,

q̂+
n (ξ ;φ0) = ∑

γ∈G(n)

pn(γ )cγ (ξ ;φ0),(4)

where cγ denotes the n-fold Wild product of φ0 with itself performed accord-
ing to an algebraic structure schematized by the element γ of a class G(n) of
random trees with n leaves. pn(·) is a probability on the subsets of G(n). See
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McKean (1967), Carlen, Carvalho and Gabetta (2000), Carlen, Carvalho and Ga-
betta (2005), Bassetti, Gabetta and Regazzini (2007). Then, considering the form
of cγ , with the aid of the Lindeberg version of the central limit theorem, McKean
proves the following statement on the weak convergence of the probability distrib-
ution function Cγ , corresponding to cγ , toward the Gaussian distribution function
Gσ(v) = ∫ v

−∞ gσ (x) dx:
Set σ 2 := ∫

R
v2f0(v) dv and let

∫
R

|v|3f0(v) dv be finite. Then, for any δ > 0,
there are constants c = c(δ, f0), c1 = c1(δ, f0) and a positive integer n0 =
n0(δ, f0) such that

pn

({
γ ∈ G(n) : sup

v∈R

|Cγ (v) − Gσ(v)| > δ

})
≤ c(δ, f0)n

8/(3π)−1

(5)
(n ≥ n0),

which leads to

sup
v∈R

|F(v, t) − Gσ(v)| → 0 (as t → +∞),(6)

where F(·, t) denotes the probability distribution function which corresponds to
the solution φ(·, t) of (2).

1.2. Presentation of new results. The study of necessary and sufficient condi-
tions under which (6) holds true, together with some hints to rate of convergence,
is the main scope of the present paper. We will prove the following:

THEOREM 1. Let μ0 be a nondegenerate probability measure on B(R) and
let F(·, t) be the probability distribution function corresponding to the solution
φ(·, t) of the Kac equation (2). Then

sup
v∈R

|F(v, t) − Gσ(v)| → 0 (as t → +∞)

holds true if and only if σ 2 := ∫
R

x2μ0(dx) is finite.

It is wellknown that (6) is valid when the initial energy is finite. See, for exam-
ple, Carlen and Lu (2003). As far as the necessity of this condition is concerned,
while it cannot be doubted from a physical intuitive standpoint, it seems that no
proof of it has been advanced as yet. Moreover, our approach leads to state a rather
precise quantitative evaluation of the rate of convergence. This result is contained
in the next theorem, where F0 and F0,d are probability distribution functions de-
fined by

F0(x) := μ0((−∞, x]),
F0,d(x) := μ0([−x,+∞)) (x ∈ R).
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THEOREM 2. Let μ0 be a nondegenerate probability measure on B(R),
σ 2 := ∫

x2μ0(dx) be finite and let a, p be fixed numbers in (0,1) and (2,+∞),
respectively. Then, there is a strictly positive constant A such that

sup
x∈R

|F(x, t) − Gσ(x)| ≤ AM(t)1/5 + 1
2 sup

x∈R

|F0(x) − F0,d(x)|e−t ,

where

M(t) =
∫
|u|>σ(xt )a−1

u2μ0(du) ∨ e−B1t ∨ e−B2t

for every t ≥ t0 := inf{t : ∫
|u|>σ(xt )a−1 u2μ0(du) ≤ 1} with

xt := exp{−tcp},
B1 := acp, B2 := 1 − 2αp − cp, c ∈

(
0,

1 − 2αp

p

)
,

αp = 1

2π

∫ 2π

0
| cos θ |p dθ.

Moreover, if m2+δ = ∫ |x|2+δμ0(dx) < +∞ for some δ in (0,1], then

sup
x∈R

|F(x, t) − Gσ(x)| ≤ Cδ

m2+δ

σ 2+δ
e−t (1−2α2+δ) + 1

2
sup
x∈R

|F0(x) − F0,d(x)|e−t ,

where Cδ is a universal constant (Berry–Esseen constant).

Constant A can be easily obtained by looking at the proof of Theorem 2 in
Section 3.

The proofs of Theorems 1 and 2 rest on an idea which goes back to McKean
(1966). In the present paper we go deep into that idea by providing a complete
proof of the next basic theorem, in which qt (n) := e−t (1 − e−t )n−1, n = 1,2, . . . ;
u∞ is the probability measure on B([0,2π)∞) which makes the coordinates of
[0,2π)∞ independent and uniformly distributed, and μ∞

0 meets the same condi-
tions with [0,2π) and u replaced by R and μ0, respectively.

THEOREM 3. For each t > 0, there are a probability space (�,F ,Pt ) and
random variables

ν̃t :� → N,

γ̃ :� → G := ⋃
n

G(n),

θ̃ := (θ̃1, θ̃2, . . .) :� → [0,2π)∞,

x̃ := (x̃1, x̃2, . . .) :� → R
∞
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with joint distribution

Pt {ν̃t = n, γ̃ = γ, θ̃ ∈ A, x̃ ∈ B} = qt (n)pn(γ )1G(n)(γ )u∞(A)μ∞
0 (B)(

n ∈ N, γ ∈ G,A ∈ B([0,2π)∞),B ∈ B(R∞)
)

such that

Vt :=
ν̃t∑

j=1

πj (γ̃ , θ̃ )x̃j

has probability distribution μ(·, t), that is, the distribution corresponding to the
solution φ(·, t) of (2).

Apart from the definition of functions πj , that we postpone to Section 2, where a
physical interpretation is given, Theorem 3 allows us to understand the connection
between convergence to equilibrium of μ(·, t) and central limit theorem: Indeed,
μ(·, t) is the distribution of Vt , that is, a sum of random variables. With respect to
ordinary applications of the central limit theorem, here we have a random number
(ν̃t ) of summands, and these summands have (not stochastically independent) ran-
dom coefficients (πj , j = 1, . . .). But these difficulties can be avoided through a
careful utilization of the features of the joint distribution of (ν̃t , γ̃ , θ̃ , x̃). This way,
one can provide complete proofs of Theorems 1 and 2 through simple adaptations
of powerful classical results from probability theory. Actually, we are pursuing
the object of tracing to the above very same kind of ideas the study of the trend
to equilibrium (with rate information) under the most important (weak or strong)
modes of convergence, both for the Kac model and for other models such as an
“inelastic” version of (1)–(2) introduced in Pulvirenti and Toscani (2004), and the
Boltzmann equation for Maxwellian molecules in case of spatially homogeneous
initial data with uniform collision kernel [see, e.g., Carlen and Lu (2003)].

It is well to pause here and consider what will be involved in the arguments used
to prove Theorems 1 and 2. First, we will provide a proof for Theorem 2 under the
sole hypothesis that the initial energy is finite. It is apparent that this covers also the
sufficiency part in Theorem 1. The line of reasoning, to obtain the rate of conver-
gence in Theorem 2, consists in adapting the argument generally used in the proof
of the classical Lindeberg–Feller version of the central limit theorem. As far as
the necessity part in Theorem 1 is concerned—that is, convergence in distribution
of Vt implies that σ 2 is finite—we will resort to a method used in Fortini, Ladelli
and Regazzini (1996) to prove central limit theorems for arrays of partially ex-
changeable random variables. The method rests on the fact that Theorem 3 entails
conditional independence of the summands in the definition of Vt , given (ν̃t , γ̃ , θ̃ ).
After denoting conditional distribution of Vt , given (ν̃t , γ̃ , θ̃ ), by ν̃t

, the next step
consists in proving that convergence in distribution of Vt , as t → +∞, implies that
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any increasing and diverging to infinity sequence of positive terms t1, t2, . . . con-
tains a subsequence (tn′) for which

the distribution of ν̃t
n′ weakly converges to the distribution of ,(7)

 being some (random) probability measure. Then, one combines (7) with the
Skorokhod–Dudley representation to transform (7) into a statement about (almost
sure) weak convergence of a suitably defined random distribution ∗

ν̃∗
t
n′

toward a

random probability measure ∗, where ∗
ν̃∗
t
n′

has the distribution of ν̃t
n′ , and ∗

has the distribution of . At this stage, the central limit theorem is employed to
deduce necessary conditions for the convergence of ∗

ν̃∗
t
n′

. Finally, one concludes

by showing that these conditions boil down to the existence of a bounded variance
for the initial distribution μ0.

As to organization of the rest of the paper, Section 2 includes, in addition to
some necessary preliminary concepts and notation, a proof of Theorem 3. In Sec-
tion 3 the reader can find the proofs of Theorems 1 and 2. The Appendix contains
the proofs of a few preparatory propositions.

2. Preliminaries and proof of Theorem 3. The first part of the section con-
tains elements necessary to the definition of the functions πj mentioned in Theo-
rem 3. Recall that, if γ is any McKean tree with n ≥ 2 leaves, each node has either
zero or two “children,” a “left child” and a “right child” such as in Figure 1, where
a few elements of G(8) are visualized.

In each tree of G(n) fix an order on the set of the (n−1) nodes and, accordingly,
associate the random variable θ̃k with the kth node. See (a) in Figure 1. Moreover,
call 1,2, . . . , n the n leaves following a left to right order. See (b) in Figure 1. The
number of generations which separate leaf j from the “root” node is said to be
the depth of j (in symbols, δ̃j ). With δ̃(1)(γ ) one denotes the depth of the tree γ ,

FIG. 1. Shaded (unshaded) circles stand for leaves (nodes).
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that is, min{δ̃1(γ ), . . . , δ̃n(γ )} if γ ∈ G(n). The cardinality of G(n) is the Catalan
number Cn = (2n−2

n−1

)
/n; see Section 15 of Comtet (1970).

Now, for any leaf j of γ in G(n), look at the path which connects j and the
“root” node at the top in ascending order. It consists of δ̃j steps: the first one from
j to its “parent” node, the second from the “parent” to the “grandparent” of j , and
so on. Define the product

πj = πj (γ̃ , θ̃ ) = τ
(j)
1 · · · τ (j)

δj
,

where τ
(j)
δj

equals cos θ̃k if j is a “left child” or sin θ̃k if j is a “right child” and θ̃k

is the element of θ̃ associated to parent node of j ; τ
(j)
δj−1 equals cos θ̃m or sin θ̃m

depending on if the “parent” of j is, in its turn, a “left child” or a “right child,”
θ̃m being the element of θ̃ associated with the grandparent of j ; and so on. For
instance, as to leaf 1 in (a) of Figure 1, π1 = cos θ̃4 · cos θ̃2 · cos θ̃1 and, for leaf 6,
π6 = sin θ̃5 · cos θ̃3 · sin θ̃1.

From the definition of πj one obtains∑
j∈γ

π2
j = 1(8)

for every γ in G(n), with n = 2,3, . . . . It is worth extending (8) to G(1) by setting
π1 ≡ 1 for the sole leaf of γ in G(1).

At this stage one is in a position to specify the form of the n-fold Wild product
of φ0 with itself, corresponding to γ̃ ∈ G(n), indicated with cγ̃ in (4):

cγ̃ (ξ ;φ0) =
∫
[0,2π)∞

(∏
j∈γ̃

φ0(πj ξ)

)
u∞(dθ) [γ̃ ∈ G(ν̃t ), ξ ∈ R].(9)

See McKean (1966) and McKean (1967). Then, conditionally on γ̃ in G(ν̃t ), cγ̃ is
a mixture, directed by u∞, of characteristic functions of linear combinations, with
coefficients

(π1, . . . , πν̃t
)(γ̃ , θ),

of independent random variables x̃1, . . . , x̃ν̃t
. Hence, in view of (3) and (4), one

recovers the interpretation of μ(·, t) stated in Theorem 3 and this completes the
proof of the same theorem.

Now we are ready to yield a physical interpretation of this result. If one thinks
of each leaf of a tree γ̃ with ν̃t leaves as a particle which collides with the parti-
cle under observation, then the velocity Vt of this last particle turns out to be the
outcome of ν̃t contributions. The j th contribution to Vt is given by the initial ve-
locity x̃j multiplied by a reducing factor πj , which depends on the number δ̃j of
collisions that particle j experiences before it collides with the molecule under ob-
servation, and on the scattering angles θ . The collisions experienced by particle j

take place according to the “order” schematized by γ̃ .
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There is a preliminary statement that plays an important role throughout the rest
of the paper. It is drawn from Gabetta and Regazzini (2006) and gives the exact
expression of the conditional expectation of

∑ν̃t

j=1 xδ̃j , given ν̃t , that is,

Et

(
ν̃t∑

j=1

xδ̃j | ν̃t

)
= �(2x + ν̃t − 1)

�(2x)�(ν̃t )
, x > 0,(10)

which yields

Et

(
ν̃t∑

j=1

xδ̃j

)
= ∑

n≥1

qt (n)
�(2x + n − 1)

�(2x)�(n)
= exp{−t (1 − 2x)}.(11)

Equalities (10)–(11) can be utilized to discuss the asymptotic behavior (as t →
+∞) of the distribution of the random variable

π◦
t := max

1≤j≤ν̃t

|πj |

involved, for example, with the proof of Theorem 2. The starting point for this
discussion is given by the following:

LEMMA 1. For every x in (0,1) and p > 2, one has

Pt {π◦
t > x} ≤ 1

xp
exp{−t (1 − 2αp)}.

In particular, Pt {π◦
t > x} → 0, as t → +∞, even if

x = xt = e−tc,(12)

provided that 0 < c < (1 − 2αp)/p.
For the proof of Lemma 1, see the Appendix.

3. Proofs of Theorems 1 and 2. It is useful to premise a remark about the
real (Re) and imaginary (Im) parts of the solution of (2). In fact, it is easy to prove
that Reφ(·, t) is the unique solution of the same problem as (2) with initial data
Reφ0, while Imφ(·, t) has an explicit form, that is,

Imφ(ξ, t) = (Imφ0(ξ))e−t .

Then, one can prove Theorems 1 and 2 by assuming, temporarily, that φ0 is a
real-valued characteristic function, which is tantamount to admitting that μ0 is
symmetric, that is,

μ0((−∞,−x]) = μ0([x,+∞)) for every x > 0.
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3.1. Proof of Theorem 2 and of sufficiency in Theorem 1. We begin with The-
orem 2 which, among other things, entails the sufficiency part of Theorem 1. The
starting point is an estimate of |�̃(ξ)|, where

�̃(ξ) := φ̃t (ξ) − e−ξ2/2

and φ̃t denotes the conditional characteristic function of

1

σ

ν̃t∑
j=1

πj · x̃j ,

given (ν̃t , γ̃ , θ̃ ):
For every ε > 0 and ξ in R,

|�̃(ξ)| ≤ e−ξ2/2
ν̃t∑

j=1

E0

[
ξ2

π2
j x̃2

j

σ 2 1(|πj x̃j | > σε)

+ ε|ξ |3 π2
j x̃2

j

σ 2 1[|πj x̃j | ≤ σε] + ξ4π2
j (π◦

t )2
]
,

where E0 indicates expectation with respect to μ∞
0 and

ε := (π◦
t )a

for some a in (0,1), π◦
t being the same as in Lemma 1. The above inequality

follows from a well-known “sharp” estimate of the remainder in the Taylor expan-
sion of exp(it). A complete proof can be found in Section 9.1 of Chow and Teicher
(1997).

Now,

ν̃t∑
j=1

E0

[
ξ2

π2
j x̃2

j

σ 2 1(|πj x̃j | > σε)

]
≤

ν̃t∑
j=1

ξ2π2
j E0

[
1(|π◦

t x̃j | > σε)
x̃2
j

σ 2

]

=
(

ξ

σ

)2 ∫
|π◦

t x|>σε
x2μ0(dx)

≤
(

ξ

σ

)2 ∫
|x|>σ(π◦

t )a−1
x2μ0(dx);

E0

[
ν̃t∑

j=1

ε|ξ |3 π2
j x̃2

j

σ 2 1(|πj x̃j | ≤ σε)

]
≤

ν̃t∑
j=1

ε|ξ |3π2
j = |ξ |3(π◦

t )a

and

E0

[
ξ4

ν̃t∑
j=1

π2
j (π◦

t )2

]
= ξ4(π◦

t )2.
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Hence,

|Et(e
iξVt /σ ) − e−ξ2/2| ≤ Et |�̃(ξ)|

≤
(

ξ

σ

)2

Et

(∫
|x|>σ(π◦

t )a−1
x2μ0(dx)

)
(13)

+ |ξ |3Et((π
◦
t )a) + ξ4Et((π

◦
t )2).

Next,

Et

(∫
|u|>σ(π◦

t )a−1
u2μ0(du)

)
= Et

(∫
|u|>σ(π◦

t )a−1
u2μ0(du) · 1{π◦

t ≤ x}

+
∫
|u|>σ(π◦

t )a−1
u2μ0(du) · 1{π◦

t > x}
)

(x > 0)

≤
∫
|u|>σxa−1

u2μ0(du) + σ 2P {π◦
t > x},

which, for x = xt := e−cpt like in (12), gives

Et

(∫
|u|>σ(π◦

t )a−1
u2μ0(du)

)
≤

∫
|u|>σ(xt )a−1

u2μ0(du) + σ 2e−t (1−2αp−cp).(14)

Moreover,

Et((π
◦
t )a) = Et

(
(π◦

t )a1{π◦
t ≤ xt }) + Et

(
(π◦

t )a1{π◦
t > xt })

(15)
≤ xa

t + e−t (1−2αp−cp)

and

Et((π
◦
t )2) ≤ x2

t + e−t (1−2αp−cp).(16)

Then, by (13), (14), (15) and (16),

|Et(e
iξVt /σ ) − e−ξ2/2|

≤
(

ξ

σ

)2 ∫
|u|>σ(xt )a−1

u2μ0(du)

+ (|ξ |2 + |ξ |3 + |ξ4|)a1e
−b1t + c1(|ξ |3 + |ξ |4)e−c2t

≤
(

ξ

σ

)2 ∫
|u|>σ(xt )a−1

u2μ0(du) + (ξ2 + 2|ξ |3 + 2|ξ |4)e−Bt

holds true with B = (acp) ∧ (1 − 2ap − cp), for every ξ . Hence, by Esseen’s



2330 E. GABETTA AND E. REGAZZINI

inequality [see, e.g., Section 9.1 of Chow and Teicher (1997)],

sup
x∈R

∣∣∣∣Pt

{
1

σ
Vt ≤ x

}
− G1(x)

∣∣∣∣
≤ 2

π

∫ T

0

1

ξ

{(
ξ

σ

)2 ∫
|u|>σ(xt )a−1

u2μ0(du) + (ξ2 + 2|ξ |3 + 2ξ4)e−Bt

}
dξ

+ 24√
2π3

1

T
.

Then, putting

M(t) = max
{∫

|u|>σ(xt )a−1
u2μ0(du), e−Bt

}

and

T = M(t)−β,

one gets

sup
x∈R

∣∣∣∣Pt

{
1

σ
Vt ≤ x

}
− G1(x)

∣∣∣∣ ≤ B1M(t)1−4β + B2M(t)β

[ = BM(t)1/5 when β = 1/5].
To complete the proof of the first part of Theorem 2, recall that we have stated
the previous inequality with initial distribution characterized by Re(φ0). Then, for
arbitrary characteristic functions φ0 as initial data, one gets

sup
x∈R

|μ((−∞, x], t) − Gσ(x)| ≤ BM(t)1/5 + e−t 1
2 sup

x∈R

|F0(x) − F0,d(x)|.

If m̄2+δ is finite and μ0 is symmetric, then from the Berry–Esseen inequality
[see, e.g., Theorem 3 in Section 9.1 of Chow and Teicher (1997)],

sup
x∈R

|F(x, t) − G1(x)| ≤ Cδ

σ 2+δ
Et

(
ν̃t∑

j=1

|πj |2+δm2+δ

)

≤ Cδ

σ 2+δ
m2+δEt

(
ν̃t∑

j=1

α
δ̃j

2+δ

)

= Cδ

σ 2+δ
m2+δ

∑
n≥1

qt (n)
�(2α2+δ + n − 1)

�(2α2+δ)�(n)
[from (10)]

= Cδ

m2+δ

σ 2+δ
exp{−t (1 − 2α2+δ)} [from (11)].
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3.2. Proof of necessity in Theorem 1. It remains to prove the only if part of
Theorem 1. Whence, we assume that the distribution of Vt converges weakly to
some probability law on (R,B(R)). Moreover, since Imφ(·, t) → 0, as t → +∞,
we can confine ourselves to dealing with symmetric initial data, that is, with real-
valued φ0. According to the guidelines indicated at the end of Section 1.2, it is
worth recalling that Theorem 3 yields the following representation for the distrib-
ution of Vt :

Pt {Vt ∈ A} =
∫
�

ν̃t
(A,ω)Pt (dω) [A ∈ B(R)],(17)

where ν̃t
indicates the ν̃t -fold convolution of λ1,t , . . . , λν̃t ,t , λj,t standing for a

conditional distribution of πj x̃j , given (ν̃t , γ̃ , θ̃ ), for j = 1, . . . , ν̃t . Now, follow-
ing the above guidelines, let us analyze the asymptotic behavior (as t → +∞) of
ν̃t ,t together with that of all the elements which figure in general formulations of
the central limit theorem, that is,

Wt := (ν̃t ,t , λ1,t , . . . , λν̃t ,t , δ0, . . . , γ̃ , θ̃ , ν̃t ,Ut (1/2),Ut (1/3), . . .),

where δy stands for the unit mass at y and, for any ζ > 0,

Ut(ζ ) := Max1≤j≤ν̃t
λj,t ([−ζ, ζ ]c).

To grasp the importance of the elements of Wt , it is worth recalling the classical
formulation of the central limit theorem for independent uniformly asymptotically
negligible (uan) summands Xnk (k = 1, . . . ,mn, n = 1,2, . . .) with symmetric dis-
tributions (Fnk will denote the probability distribution function of Xnk for every k

and n):
In order that

∑mn

k=1 Xnk can converge in distribution, it is necessary and suf-
ficient that there exist a nonnegative number σ and a symmetric Lévy measure l

(a measure on R\{0} satisfying
∫
R\{0}(y2 ∧ 1)l(dy) < +∞ and l((−∞,−x]) =

l([x,+∞)) for every x > 0) which meets the following conditions:

l([x,+∞)) = lim
n→+∞

∑
k

{1 − Fnk(x)} if x > 0 and l{x} = 0(18)

σ 2 = lim
ε→0+ limn

∑
k

∫
[−ε,ε]

x2 dFnk(x).(19)

In case these conditions are satisfied, the limiting distribution of
∑

k Xnk is the
infinitely divisible law characterized by the Fourier–Stieltjes transform exp{−ψ}
with

ψ(u) = σ 2u2

2
+

∫
R\{0}

(
1 − e−iuy + iuχ(y)

)
l(dy),(20)

χ being the function shown in Figure 2.
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FIG. 2. The function χ .

This specific version of the central limit theorem is drawn from Section 16.8 of
Fristedt and Gray (1997).

Think of the range of Wt as a subset of

S := P(R)∞ × G∗ × [0,2π)∞ × R
∞

,

where, given any metric space M , P(M) stands for the set of all probability mea-
sures on the Borel class B(M); R = [−∞,+∞] is equipped with the distance

d(x, y) := | arctany − arctanx| for any (x, y) ∈ R
2
. It is well known that P(R)

can be metrized, consinstenly with the topology of weak convergence, in such a
way that it may turn out to be a compact and separable metric space; see Sections
5 and 6 (vi) of Billingsley (1999). Moreover, think of the set G of all McKean’s
trees as a metric space with the discrete distance, and define G∗ to be a metrizable
compactification of G, which exists since G is separable; see, for example, Corol-
lary 1 in Section 10.1 of Gemignani (1990). Therefore, S proves to be a separable
and compact metric space with respect to the product topology. Hence, any fam-
ily of probability measures on (S,B(S)) is tight; in particular, the family of the
probability distributions Qt of Wt , t > 0, turns out to be tight. At this stage, the
conclusive steps of the proof rest on the following lemmata.

LEMMA 2. For every positive δ and β , one has

P {Ut(δ) > β} → 0 (t → +∞).

LEMMA 3. If the law of Vt converges weakly as t → +∞, then any sequence
(Qtn)n of elements of {Qt : t > 0}, such that tn ↗ +∞, contains a subsequence
(Qtn′ )n′ weakly convergent to a probability measure Q supported by

P0(R) × {δ0}∞ × G∗ × [0,2π)∞ × {+∞} × {0}∞
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with

P0(R) := {p ∈ P(R) :p({−∞,+∞}) = 0}.

Whence, since S is separable, from the Dudley generalization of a Skorokhod’s
theorem [see, e.g., Theorem 11.7.2 in Dudley (2002)], one can apply Lemmatas 1,
2 and 3 to state that, on some probability space (�∗,F ∗,P ∗) there are random
elements

W ∗
tn′ = (∗

ν̃∗
t
n′

, λ∗
1,tn′ , . . . , λ

∗
ν̃,tn′ , δ0, . . . , γ̃

∗, θ̃∗, ν̃∗
tn′ ,U

∗
tn′ (1/2), . . .)

taking values in S, with distribution Qtn′ , satisfying

∗
ν̃∗
t
n′

⇒ ∗, λ∗
j,tn′ ⇒ δ0 (j = 1,2, . . .),

(21)
ν̃∗
tn′ → +∞, U∗

tn′ (1/k) → 0

for k = 2,3, . . . on a set �∗
1 of F ∗ such that P ∗(�∗

1) = 1, provided that (tn′)
is the same subsequence (tn′) as in Lemma 3. (The symbol ⇒ is used to des-
ignate weak convergence of probability measures.) The distributional properties
of W ∗

tn′ imply that ∗
ν̃∗
t
n′

is the convolution of λ∗
1,tn′ , . . . , λ

∗
ν̃∗
t
n′ ,tn′ , and that equality

U∗
tn′ (1/k) = Max1≤j≤ν̃∗

t
n′ λ∗

j,tn′ ([−1/k,1/k]c) holds true for every k. Thus, condi-

tions (18)–(19) must be valid with λ∗
j,tn′ ((−∞, · ]) in the place of Ftn′,j (·). Apropos

of (19), note that

ν̃∗
t
n′∑

j=1

∫
|x|<ε

x2λ∗
j,tn′ (dx) ≥

ν̃∗
t
n′∑

j=1

(π∗
j )2

∫
{x : |π∗

j x|<ε}
x2μ0(dx)

(22)
≥

∫
{x : |x|(π◦

t
n′ )∗<ε}

x2μ0(dx),

with (π◦
t )∗ = max1≤j≤ν̃∗

t
|π∗

j |. From Lemma 1, combined with a well-known nec-
essary and sufficient condition, for convergence in probability, in terms of sub–
subsequences converging almost surely [see, e.g., Lemma 2 in Section 3.3 of Chow
and Teicher (1997)], there is a subsequence (tn′′) of (tn′) such that (π◦

t ′′)
∗ → 0

(P ∗-almost surely). Hence, from (19) and (22), it turns out that
∫
R

x2μ0(dx) =
limtn′′

∫
{x:|x|(π◦

t
n′′ )∗<ε} x2μ0(dx) must be finite. This completes the proof of Theo-

rem 1 when μ0 is symmetric. The extension to general initial data follows from
the simple remark that the second moment of μ0 is finite if and only if the second
moment of the “even” component of μ0 is finite.
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APPENDIX

PROOF OF LEMMA 1. For any x > 0,

Pt {π◦
t ≤ x} = 1 − Pt

(⋃
j

{|πj | > x}
)

≥ 1 − ∑
j

Pt {|πj | > x}

≥ 1 − 1

xp

∑
j

Et (|πj |p) (from the Markov inequality)

= 1 − 1

xp

∑
j

Et

( δj∏
i=1

∣∣τ (j)
i

∣∣p)

= 1 − 1

xp

∑
j

Et (α
δj
p ) (from Theorem 3)

= 1 − 1

xp
exp{−t (1 − 2αp)} [from (11)]. �

PROOF OF LEMMA 2. Fix β > 0 and sufficiently small ε so that

μ0({x : |x| > δ/ε}) ≤ β.

Now, notice that

Pt {Ut(δ) > β} ≤ Pt {π◦
t > ε}

+ Pt

{
π◦

t ≤ ε,μ0({x : |x| > δ/ε}) > β
}

= Pt {π◦
t > ε}

and apply Lemma 1. �

PROOF OF LEMMA 3 [FROM Fortini, Ladelli and Regazzini (1996)]. In view
of the tightness of {Qt : t > 0}, the Prokhorov theorem [cf., e.g., Section 5 of
Billingsley (1999)] can be applied to state the existence of a weakly convergent
subsequence (Qtn′ ) of (Qtn). From Lemma 2 and the fact that Pt {ν̃t > K} → 1,
as t → +∞, for every K > 0, it is easy to check that the limiting distribution
of

(λ1,tn′ , . . . , λν̃t
n′ , δ0, . . . , γ̃ , θ̃ , ν̃tn′ ,Utn′ (1/2), . . .)

is supported by {δ0}∞ × G∗ × [0,2π ]∞ × {+∞} × {0}∞. Then, it is enough to
prove that the weak limit Q(1) of the law Q

(1)
tn′ of ν̃∗

t
n′ is supported by P0(R).

Since (Vtn) converges in law, from a theorem of Le Cam, it must be tight; see
Section 5 of Billingsley (1999). Then, for every positive integer m, there is Km
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satisfying Km ↗ +∞ and

Pt {|Vtn | > Km} ≤ 1/m (m = 1,2, . . .).

Now fix η in (0,1) and put [−Km,Km]c = R\[−Km,Km]. Then, from (17),

Pt {|Vtn | > Km} =
∫

ν̃tn
([−Km,Km]c) dPt

≥
∫

ν̃tn
([−Km,Km]c)1(η,+∞)(ν̃tn

([−Km,Km]c)) dPt

≥ ηQ
(1)
tn

(
A(m)

η

)
,

with

A(m)
η = {p :p ∈ P(R),p([−Km,Km]c) > η}.

Then

Q
(1)
tn′

(
A(m)

η

) ≤ 1

mη
.

A direct application of the Alexandroff “portmanteau” theorem [see, e.g., Theo-
rem 2.1 in Billingsley (1999)] shows that C

(m)
η := (A

(m)
η )c is closed. Then, from

the same theorem [see point (iii) in Billingsley (1999)] one deduces

Q(1)(C(m)
η

) ≥ lim
n′ Q

(1)
tn′

(
C(m)

η

) ≥ 1 − 1

mη
.

Clearly, as m → +∞,

Q(1)(C(m)
η

) ↑ Q(1)

(⋃
m

C(m)
η

)
⊂ Q(1)(C(∞)

η

)
,

with

C(∞)
η = {

p :p{−∞,+∞} ≤ η
}
.

Whence, Q(1)(C
(∞)
η ) ≥ 1 − 1

mη
for every m and this entails Q(1)(C

(∞)
η ) = 1 for

every η > 0, which is tantamount to saying that {p :p{−∞,+∞} = 0} has proba-
bility one. �
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