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CONTINUOUS FIRST-PASSAGE PERCOLATION AND
CONTINUOUS GREEDY PATHS MODEL: LINEAR GROWTH

BY JEAN-BAPTISTE GOUÉRÉ AND RÉGINE MARCHAND

Université d’Orléans and Université Henri Poincaré Nancy 1

We study a random growth model on R
d introduced by Deijfen. This is

a continuous first-passage percolation model. The growth occurs by means of
spherical outbursts with random radii in the infected region. We aim to find
conditions on the distribution of the random radii to determine whether the
growth of the process is linear or not. To do so, we compare this model with
a continuous analogue of the greedy lattice paths model and transpose results
for greedy paths from the lattice setting to the continuous setting.

1. Introduction and statement of the main results. We study a random
growth model on R

d , d ≥ 1, introduced by Deijfen in [3]. The model can be
thought of as describing the spread of an infection in a continuous medium. We
fix an initially infected region S0 in R

d (with positive Lebesgue measure) and
a distribution μ on (0,+∞). Let us denote by St the random subset of R

d that
corresponds to the infected region at time t and by |St | its Lebesgue measure. The
random growth process (St )t≥0 is a Markov process whose dynamics is as follows.
Given St , we wait an exponentially distributed random time with mean |St |−1. We
then add to St a random ball, whose center is chosen uniformly on St and whose
radius is chosen accordingly to the law μ.

In [3] Deijfen proved an asymptotic shape result, namely, the almost sure con-
vergence of t−1St toward a deterministic Euclidean ball. This convergence holds
as soon as the growth of St is not superlinear. She provided a sufficient condition
for this behavior of the growth: the boundedness of the support of μ. This condi-
tion was weakened by Deijfen, Häggström and Bagley in [2] to the existence of an
exponential moment for μ.

In this work we aim to find a necessary and sufficient condition on the distri-
bution μ of the radii of added balls to ensure the asymptotic shape result for this
growth process. In Theorem 1.1 we prove the following:

• If ∫ +∞
0

(∫ +∞
x

rμ(dr)

)1/d

dx < +∞,(1)
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then the growth is not superlinear and, therefore, the asymptotic shape result
holds.

• On the other hand, if ∫ +∞
0

rd+1μ(dr) = +∞,(2)

then the growth is superlinear and, therefore, the asymptotic shape result does
not hold.

In dimension d = 1, conditions (1) and (2) are exclusive and thus give a necessary
and sufficient condition for the linear growth. Unfortunately, in dimension d ≥ 2,
there is a gap between these two conditions that we did not manage to fill. Note,
however, that if there exists ε > 0 such that∫ +∞

1
rd+1(ln r)d+εμ(dr) < +∞,

then (1) holds. The gap is therefore reasonably sharp.
To establish the sufficient condition (1), we introduce and study a continuous

analogue to the greedy lattice paths model introduced by Cox, Gandolfi, Griffin
and Kesten in [1]. In Theorem 1.2 we give a necessary condition and a sufficient
condition for the integrability of the supremum of mean weights of paths in the
continuous setting. Those results mimic similar ones in the discrete setting.

A comparison between Deijfen’s model and those continuous greedy paths then
enables us to conclude. Note that the gap between (1) and (2) comes directly from
a similar gap for the continuous lattice paths model, a gap which is itself similar to
the one existing for the greedy lattice paths model.

In the following, the dimension d ≥ 1 is fixed. On R
d , we denote by ‖ · ‖ the

Euclidean norm, and by Br the closed Euclidean ball centered at the origin with
radius r .

1.1. Deijfen’s model. Let us first recall the growth model introduced by Dei-
jfen in [3]. Instead of using the original construction of the process, we use the
construction given later in [4] by Deijfen and Häggström. This makes the analogy
with first-passage percolation clearer. We follow the presentation of Gouéré in [7].

We fix a probability measure μ on (0,+∞). We also fix χ , a Poisson point
process on R

d × [0,+∞) × (0,+∞) whose intensity is the product of the
Lebesgue measure on R

d × [0,+∞) by the distribution μ on (0,+∞).
Let us consider the complete directed graph with vertex set R

d . We associate
a passage time τ with each edge as follows:

(1) For all x ∈ R
d , we let τ(x, x) = 0.

(2) For each point (c, t, r) ∈ χ—where c, t and r respectively belong to R
d ,

[0,+∞) and (0,+∞)—and for each vertex y ∈ (c + Br) \ {c}, we let τ(c, y) = t .
(3) For all edges (x, y) to which we have not yet assigned any passage time,

we let τ(x, y) = +∞.
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To say it in words, for a point (c, t, r) in the Poisson process χ , t represents the
time needed to travel from the center c to each point of the ball centered in c with
radius r , while outside the balls, it takes an infinite time to travel.

If a and b are two points of R
d , we call path from a to b any finite sequence

π = (a = x0, . . . , xk = b) of distinct points of R
d . We denote by C(a, b) the set of

such paths. With each path π = (x0, . . . , xk) we associate a passage time defined
by

T (π) =
k−1∑
i=0

τ(xi, xi+1).

If A is a subset of R
d and x is a point of R

d , we can then define the time T (A,x)

needed to cover x starting from A by

T (A,x) = inf{T (π) :a ∈ A, π ∈ C(a, x)}.
Finally, if we start the process with the unit Euclidean ball B centered at the origin,
we can define the set St of covered points at time t by

St = {x ∈ R
d :T (B,x) ≤ t}.

Relying on Kingman’s subadditive ergodic theorem and using the isotropy of
the model, one can establish the existence of a real λ ≥ 0 such that the following
convergence holds almost surely:

lim‖x‖→+∞
T (B,x)

‖x‖ = λ.

This result is contained in the paper by Deijfen [3]. The growth is linear if λ,
which is the inverse of the speed, is positive. In such a case, one can easily deduce
the following asymptotic shape result: almost surely, for every ε > 0, for all large
enough t , one has

B(1−ε)/λ ⊂ St

t
⊂ B(1+ε)/λ.

To prove the positivity of λ when μ admits an exponential moment, Bagley,
Deijfen and Häggström introduce a new process that grows faster than Deijfen’s
one and whose linear growth is easier to prove. This new process can be roughly
described as follows. Assume that we have started with a set A0 and that at time
t we have added balls A1, . . . ,An. With each set Ai we associate an exponential
clock with mean |Ai |−1. These clocks are independent. We wait for the first clock
to ring. If it is clock i, then we choose a point uniformly in Ai and add a ball
centered at this point with random radius. The projection on the first-coordinate
axis of this new process is a one dimensional spatial branching process whose
linear growth, when μ admits an exponential moment, is well known.

Our conditions for the linear growth of Deijfen’s model are the following ones.
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THEOREM 1.1. 1. If∫ +∞
0

(∫ +∞
x

rμ(dr)

)1/d

dx < +∞,(3)

then there exists λ ∈ (0,+∞) such that, almost surely, for all ε > 0, for all large
enough t , one has

B(1−ε)/λ ⊂ St

t
⊂ B(1+ε)/λ.

2. If ∫ +∞
0

rd+1μ(dr) = +∞,(4)

then, almost surely, for all M > 0, for all large enough t , one has

BM ⊂ St

t
.

REMARKS. 1. Note that in dimension d = 1, if
∫
(0,+∞) r

2μ(dr) < +∞, one
can compute explicitly the speed of the growth. With the notation of the theorem,
one finds λ−1 = 1

2

∫ +∞
0 r2μ(dr). We sketch a proof of this result in Appendix.

2. To see how quantities scale, let us prove that if one multiplies the radii by 2,
then one multiplies the speed by 2d+1. Let us consider the following Poisson point
processes:

χ1 = {(c, t,2r), (c, t, r) ∈ χ},
χ2 = {(2−1c,2−1t, r), (c, t, r) ∈ χ},
χ3 = {(

c,2−(d+1)t, r
)
, (c, t, r) ∈ χ

}
.

With those points processes one can, as we have done with χ , associate passage
times to paths. We denote them by T1, T2 and T3. Let π = (x0, . . . , xn) be a path
that originates in 0. Then

T1(2π)‖2xn‖−1 = T2(π)‖xn‖−1,

T2(π)
law= T3(π),

T3(π) = 2−(d+1)T (π).

(The second property results of the equality in law of the Poisson point processes
χ2 and χ3, which itself results of the equality of their intensities.) This gives the
announced scaling.
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Some of the ideas of the proof. In the end of this subsection we would like to
explain how trying to rule out the possibility of an infinite speed in Deijfen’s model
naturally leads to introduce continuous greedy paths. We fix a small α > 0 and
consider the “fast” balls:

ξα = {(c, r) : ∃t ≤ αr : (c, t, r) ∈ χ}.(5)

Roughly speaking, the speed in these balls is at least 1/α, while outside these “fast”
balls, the speed is less than 1/α. More precisely, consider a path π = (x0, . . . , xn)

such that T (π) is finite. Then, by the definition of T , every point xi in π—but
the last—is the first coordinate of a point (xi, ti, ri) in χ . Moreover, we have
‖xi+1 − xi‖ ≤ ri and

T (π) =
n−1∑
i=0

ti .

If the path uses only “slow” balls, then

T (π) =
n∑

i=0

ti ≥
n∑

i=0

αri ≥
n∑

i=0

α‖xi+1 − xi‖ = α|π |,

where |π | is the length of the path π , that is, the sum of the Euclidean length of its
segments.

If it also uses a “fast” ball (xi, ti, ri), the portion between xi and xi+1 is trav-
eled through at high speed. By considering that this portion is traveled through at
infinite speed, we obtain (the sums are over visited “fast” balls)

T (π) ≥ α
(
|π | − ∑‖xi+1 − xi‖

)
≥ α

(
|π | − ∑

ri

)
and then

T (π)

|π | ≥ α
(
1 − 1

|π |
∑

ri

)
.

We are therefore led to bound from above the following kind of quantity:

1

|π |
∑

xi∈π,(xi ,ri )∈ξα

ri .

In the greedy lattice paths model one assigns random weights to points in Z
d and

tries to bound average weights of paths (see Section 1.2). The previous expres-
sion naturally leads to define and study the continuous analogue of greedy paths
discussed in Section 1.3. This crude link between Deijfen’s model and continuous
greedy paths will be detailed in Section 2.3. The proof of Theorem 1.1 is given in
Section 2.4.
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1.2. Greedy lattice paths model. In this subsection d ≥ 2.
One first gives to points c of Z

d i.i.d. positive random weights r(c) with com-
mon law ν. A path is here a finite sequence of distinct points of Z

d such that the
Euclidean distance between any two consecutive points is 1 and the length of a path
is naturally the sum of the Euclidean lengths of its segments. With each path one
associates a weight which is the sum of the weights of its points. If n is a positive
integer, we denote by An the supremum of the weights of all paths with length n

that originates in 0. In [1] the authors show that if there exists a real ε > 0 such
that ∫ +∞

1
rd(ln r)d+εν(dr) < +∞,

then there exists a real M < +∞ such that

lim sup
n→+∞

An

n
≤ M a.s.

This result was improved in [5] by Gandolfi and Kesten: under the same condi-
tion, An/n converges almost surely and in L1 toward a finite constant. Martin,
in [8], obtains the same results under a weaker assumption and with a much sim-
pler proof:

if
∫ +∞

0
ν([r,+∞))1/d < +∞,

then An/n converges a.s. and in L1 to a finite constant.

As an intermediate step, he shows that

if
∫ ∞

0
ν([r,+∞))1/d < +∞, then sup E

(
An

n

)
< +∞.(6)

Deriving this property in a continuous setting will turn out to be sufficient for our
purpose.

On the other hand, from results in [1] and [8], one knows that

if
∫ +∞

0
rdν(dr) = +∞, then An/n almost surely goes to+∞.

1.3. Continuous greedy paths. In our continuous analogue the points of the
lattice Z

d are replaced by the points of a homogeneous Poisson point process
on R

d . Fix a finite measure ν on (0,+∞), and consider a Poisson point process ξ

on R
d × (0,+∞) whose intensity is the product of the Lebesgue measure on R

d

by the measure ν. We denote by 
 the projection of ξ on R
d : the point process 
 is

thus a Poisson point process on R
d with intensity ν((0,+∞)) times the Lebesgue

measure on R
d . If x is a point of 
, we denote by r(x) the only positive real num-

ber such that (x, r(x)) belongs to ξ . Thus, given 
, the weights (r(x))x∈
 are i.i.d.
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with common law ν((0,+∞))−1ν [if ν((0,+∞)) is positive]. For points x ∈ R
d

that are not in 
, we set r(x) = 0.
A path is a finite sequence of distinct points of R

d . (In the lattice model, con-
secutive points of a path are required to be nearest neighbors. We do not require
such a condition in our continuous model, which is therefore not an exact analogue
of the lattice model.) We denote by |π | its length, that is, the sum of the Euclidean
length of its segments. We define the weight A(π) of a path π = (x0, . . . , xn) by

A(π) =
n∑

i=0

r(xi).

We are interested in the finiteness of the supremum S of the mean weights of paths,
defined as

S = sup
{
A(π)

|π |
}
,(7)

where the supremum is taken over all paths whose length is positive and that origi-
nate in 0. In order to emphasize the dependence of S on ξ , we shall sometimes use
the notation S(ξ). We also introduce, for l > 0,

Sl = sup
{
A(π)

|π |
}
,(8)

where the supremum is now taken over all paths whose length is larger than l and
that originate in 0.

As we will mainly consider paths starting from 0, to avoid extra discussion
on the status of the origin, we will always work on the full event {0 /∈ 
}. Let
us also notice that we do not change S if we take the supremum over all paths
(x0, . . . , xn) such that, in addition to the previous requirements, xi belongs to 


for all i ≥ 1. This can be seen by the triangular inequality. We shall use this remark
when convenient without further reference.

We state in the following theorem sufficient conditions for S to be either in-
tegrable or a.s. infinite. These conditions are similar to the ones obtained for the
discrete setting.

THEOREM 1.2. Assume d ≥ 2.
1. If

∫ +∞
0 ν([r,+∞))1/d dr < +∞, then ES < +∞.

2. If
∫ +∞

0 rdν(dr) = +∞, then S is a.s. infinite.

REMARK. If d = 1, then E(S) is infinite as soon as ν((0,+∞)) is pos-
itive: the contribution of the first positive point already has an infinite mean.
Indeed, denote by X the smallest positive point of 
. This is an exponential ran-
dom variable with parameter ν((0,+∞)). Moreover, r(X) is distributed accord-
ing to ν((0,+∞))−1ν and is independent of X. As a consequence, E(r(X)X−1)

is infinite and, therefore, E(S) is infinite. We shall therefore be led to study
E(liml→+∞ Sl) when d = 1 in Section 2.2.
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We conclude this subsection by giving some ideas of the proof. The sec-
ond item of the theorem is rather straightforward [actually, the supremum of
r(x)‖x‖−1, x ∈ 
, is already a.s. infinite]. The proof of the first item fol-
lows the proof of the corresponding result in the lattice setting by Martin [8].
The first step consists in studying the case where ν is the Dirac mass at point
1, in which case S is integrable. For a general measure ν, one then distin-
guishes between the contribution of the points x ∈ 
 according to the value
of the radius r(x). Using the fact that the supremum of a sum is less than
the sum of the supremum, this allows to obtain the following upper bound [it is
derived in details in (9)]:

ES(ξ) ≤
∫ +∞

0
ES(ξρ) dρ,

where ξρ = {(c,1) : c ∈ 
 and r(c) ≥ ρ}. The point is then that, by a scaling ar-
gument for Poisson point processes, one can express ES(ξρ) as the product of
ν([ρ,+∞))1/d by the expectancy of S in the case where ν is the Dirac mass at
point 1. This scaling argument, which is straightforward in the continuous setting,
explains the role played by the dimension d . The proof is given in Section 2.1.

Note also that the link between the measure ν in the continuous greedy paths
model and the distribution μ in Deijfen’s model is presented in Section 2.3 (and
thus the link between conditions in Theorem 1.2 and in Theorem 1.1).

1.4. Links with the Boolean model of continuum percolation and further intu-
ition. In this part we point out some links with the Boolean model of continuum
percolation and give some further intuition. Fix α > 0 and denote by � the union of
the balls c+Br , (c, r) ∈ ξα [ξα is defined by (5)]. This is the Boolean model of con-
tinuum percolation driven by ξα . We can define a first-passage percolation process
on the complete nonoriented graph of R

d as follows: the time needed to travel
along an edge xy is α times the one-dimensional Lebesgue measure of [x, y] \ �.
In other words, one travels at speed α−1 outside � and at speed +∞ inside �.
Let us call it the Boolean first-passage percolation process. By coupling, we can
see that the speed in this Boolean first-passage percolation process is larger than
in Deijfen’s one.

The intensity of ξα is the product of the Lebesgue measure on R
d by the measure

να(dr) = αrμ(dr), which is also α times the product of the Lebesgue measure on
R

d by the measure ν1(dr) = rμ(dr). By a result of Gouéré [6], one knows that the
connected component of � that contains the origin is almost surely bounded for
small enough α if and only if

∫
rdν1(dr) is finite, that is, if and only if

∫
rd+1μ(dr)

is finite.
This suggests that, when

∫
rd+1μ(dr) is finite, a constant and positive propor-

tion of any path should lie outside �. If this result were true, then the speed in the
Boolean first-passage percolation process—and therefore the speed in Deifen’s
model—would be finite as soon as

∫
rd+1μ(dr) is finite. Unfortunately, we do
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not know whether the finiteness of
∫

rd+1μ(dr) is sufficient or not to bound away
from 0 the proportion of length that any path spends outside �.

On the other hand, if
∫

rd+1μ(dr) is infinite, “fast” balls with speed larger than
1/α percolate for all α > 0. This very roughly suggests that the speed in Deifjen’s
model is at least 1/α for every α > 0, which means that the growth is superlinear.

To conclude, let us notice that one can also compare the Boolean first-passage
percolation process with the continuous greedy paths. The Boolean first-passage
percolation process is actually an intermediate model between Deijfen’s one and
the continuous greedy paths model. With the results of this paper about contin-
uous greedy paths, one can therefore show that the growth in the Boolean first-
passage percolation process is not superlinear for small enough α as soon as∫ +∞

0 ν1([r,+∞))1/d dr is finite. This implies that, under the same conditions,
the Boolean model driven by ξα does not percolate. This is almost the main
result of [6]: nonpercolation of the Boolean model for small enough α when∫ +∞

0 rdν1(dr) is finite.

2. Proofs.

2.1. Continuous greedy paths: proof of Theorem 1.2. We keep the notation
and objects introduced in Section 1.3. We begin with the case of a deterministic
radius equal to 1 and we denote by δ1 the Dirac mass at point 1.

LEMMA 2.1. If d ≥ 2 and ν = δ1, then ES < +∞.

PROOF. Let α0 > 0 be such that

∀α ≥ α0

∫
Rd

exp(1 − α‖x‖) dx < 1.

Let α ≥ α0 be fixed and fix also an integer k ≥ 1. Let us denote by B(k,α) the set
of all finite sequences (x1, . . . , xk) of distinct points of 
 such that

k ≥ α

(
‖x1‖ +

k∑
i=2

‖xi − xi−1‖
)
.

For a finite set A, we denote by card(A) its cardinality. We have

P
(
B(k,α) �= ∅

) ≤ E(card(B(k,α)))

=
∫
(Rd )k

1k≥α(‖x1‖+∑k
i=2 ‖xi−xi−1‖) dx1 · · ·dxk

≤
∫
(Rd )k

exp

(
k − α

(
‖x1‖ +

k∑
i=2

‖xi − xi−1‖
))

dx1 · · ·dxk

=
(∫

Rd
exp(1 − α‖x‖) dx

)k

.
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Let us denote by F(α) the following event: there exists a path π originating in 0,
with positive length and whose points, except 0, belong to 
, such that the in-
equality A(π) ≥ α|π | holds. Decomposing on the number of points in the path,
we get

{S > α} ⊂ F(α) =
+∞⋃
k=1

{B(k,α) �= ∅},

and thus,

P(S > α) ≤
+∞∑
k=1

(∫
Rd

exp(1 − α‖x‖) dx

)k

≤
∫

Rd
exp(1 − α‖x‖) dx

(
1 −

∫
Rd

exp(1 − α‖x‖) dx

)−1

≤
∫

Rd
exp(1 − α‖x‖) dx

(
1 −

∫
Rd

exp(1 − α0‖x‖) dx

)−1

≤ α−d
∫

Rd
exp(1 − ‖x‖) dx

(
1 −

∫
Rd

exp(1 − α0‖x‖) dx

)−1

,

which is an integrable function of α since d ≥ 2. �

We next give the scaling argument announced in the introduction. Denote by ξν

a Poisson point process on R
d × (0,+∞) with intensity the product of Lebesgue’s

measure on R
d by the positive finite measure ν on (0,+∞).

LEMMA 2.2. For any m > 0, S(ξmν) has the same law as m1/dS(ξν).

PROOF. We just need to notice that the random set {(m1/dc, r) : (c, r) ∈ ξmν} is
a Poisson point process on R

d × (0,+∞) with intensity the product of Lebesgue’s
measure on R

d by the positive finite measure ν on (0,+∞). �

PROOF OF THEOREM 1.2. 1. Assume that∫ +∞
0

ν([ρ,+∞))1/d dρ < +∞,

and let us prove that ES < +∞.
First, we need to make the process with the Dirac mass appear, by, in a certain

manner, decomposing on the different values of the support of ν. In fact, the useful
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way to do so is to use the classical trick r = ∫ +∞
0 1r≥ρ dρ: we have

ES = E

(
sup

π=(0,x1,...,xn)

∫ +∞
0

∑
i 1r(xi )≥ρ

|π | dρ

)

≤
∫ +∞

0
E

(
sup

π=(0,x1,...,xn)

∑
i 1r(xi )≥ρ

|π |
)

dρ(9)

≤
∫ +∞

0
ES(ξρ) dρ,

where ξρ is the point process on R
d × (0,+∞) defined by

ξρ = {(c,1) : c ∈ 
 and r(c) ≥ ρ}.
Notice that ξρ is a Poisson point process whose intensity is the product of the
Lebesgue measure on R

d by ν([ρ,+∞))δ1.
Then, we use the scaling property: if ξ̃ is a Poisson point process on

R
d × (0,+∞) whose intensity is the product of the Lebesgue measure on R

d

by δ1, then

ES(ξρ) = ν([ρ,+∞))1/d
ES(̃ξ).(10)

Indeed, if ν([ρ,+∞)) = 0, then the equality is straightforward, while if
ν([ρ,+∞)) �= 0, it is a simple application of Lemma 2.2.

Finally, from (9) and (10) we get

ES ≤
∫ +∞

0
ν([ρ,+∞))1/d

ES(̃ξ) dρ < +∞,(11)

by the integrability assumption on ν and Lemma 2.1.
2. Assume that ∫ +∞

0
rdν(dr) = +∞,

and let us prove that S = +∞ a.s.
Let M > 0 and consider the following point process:

{(c, r) : (c, r) ∈ ξ, r ≥ M‖c‖ and c �= 0}.(12)

The cardinality of this point process is distributed according to a Poisson law with
parameter∫

Rd
dc

∫ +∞
0

1r≥M‖c‖ν(dr) =
∫ +∞

0
|BrM−1 |ν(dr) = |BM−1 |

∫ +∞
0

rdν(dr).

By our assumption on ν, this equals infinity and, therefore, this point process is
almost surely nonempty. But if (c, r) is a point of this point process, then, by
considering the path (0, c), we get S ≥ M a.s., which concludes the proof. �
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2.2. Continuous greedy paths in dimension d = 1. To tackle the one dimen-
sional case, where E(S) = +∞, we will use the asymptotic behavior of Sl stated
in the following easy result.

LEMMA 2.3. If d = 1 and
∫ +∞

0 rν(dr) is finite, then

lim
l→+∞Sl ≤ 2

∫ +∞
0

rν(dr) a.s.

PROOF. Let l > 0 and π = (x0, . . . , xn) ∈ �l , where �l is the set of paths
whose length is larger than l and that originate in 0. As x0 = 0, all the xi belong to
[−|π |, |π |]. We then have

A(π) ≤ ∑
x∈
∩[−|π |,|π |]

r(x).

Therefore,

limSl ≤ lim sup
1

l

∑
x∈
∩[−l,l]

r(x).(13)

Recall the following:

• 
 is a Poisson point process with intensity ν((0,+∞)) times the Lebesgue mea-
sure. This implies that the number of points in 
 ∩ [−l, l] is Poisson distributed
with mean 2lν((0,+∞)).

• Given 
, the sequence (r(x))x∈
 is an i.i.d. sequence of random variables dis-
tributed according to ν((0,+∞))−1ν.

Therefore, the right-hand side of (13) is a.s.

2ν((0,+∞))

∫
(0,+∞)

rν((0,+∞))−1ν(dr).

This concludes the proof. �

2.3. A link between Deijfen’s model and continuous greedy paths. Let us re-
call that the Poisson point process χ , driving Deijfen’s model, has been introduced
in Section 1.1. In this subsection we fix a real α > 0. We consider the following
point process on R

d × (0,+∞):

ξα = {(c, r) :∃t ≤ αr : (c, t, r) ∈ χ}.
In other words, ξα is the projection on R

d × (0,+∞) of the intersection of χ with
the Borel set

{(c, t, r) ∈ R
d × [0,+∞) × (0,+∞) : t ≤ αr}.
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Let us notice that ξα is a Poisson point process on R
d × (0,+∞) whose intensity

is the product of the Lebesgue measure on R
d by the finite measure να on (0,+∞)

defined by

να(dr) = αrμ(dr).

We consider the continuous greedy paths model driven by ξα . Except for the
name of this point process, we keep the notation and objects defined in Sec-
tions 1.3 and 1.1.

The set ξα corresponds to the “fast” balls, that is, the balls where the infection
progresses with a speed larger than 1/α. The next lemma gives the link between
the travel time in Deijfen’s model and the functional S in the continuous greedy
paths model driven by ξα : roughly speaking, outside the balls in ξα , the travel
time between two points is at least α times the Euclidean distance between the two
points, and the existence of “fast” balls gives a correction term controlled by S(ξα).

LEMMA 2.4. For all x ∈ R
d \ B , for all α > 0, one has

T (B,x)

‖x‖ ≥ α

(
1 − S‖x‖(ξα) − 1

‖x‖
)
.

PROOF. Let x ∈ R
d \B . Let π = (x0, . . . , xn) be a path from B to x. (In other

words, x0 belongs to B and xn equals x.) Therefore, in order to prove the lemma,
it is sufficient to check the following inequality:

T (π)

‖x‖ ≥ α

(
1 − S‖x‖(ξα) − 1

‖x‖
)
.

We assume that for every i ∈ {1, . . . , n}, xi �= 0 [otherwise, if xi = 0, one uses the
inequality T (π) ≥ T (xi, . . . , xn) and works with the path (xi, . . . , xn)].

We extend π in a path π̃ starting from 0 by adding, if necessary, a first point
x−1 = 0 to π . As xn = x, the length of the path π̃ is at least ‖x‖. To establish the
lemma, it is therefore sufficient to prove that

T (π)

‖x‖ ≥ α

(
1 − A(π̃)

|π̃ | − 1

‖x‖
)
.

Let i ∈ {0, . . . , n − 1}. Let us show the following inequality:

τ(xi, xi+1) ≥ α‖xi − xi+1‖ − αr(xi).(14)

Remember that if there exists ri (a.s. unique) such that (xi, ri) ∈ ξα , then
r(xi) = ri , and r(xi) = 0 in any other case. Two cases arise:

(1) If τ(xi, xi+1) is infinite, (14) is obvious.
(2) Otherwise, there exist ri, ti such that (xi, ti, ri) belongs to χ and ‖xi −

xi+1‖ ≤ ri , which implies τ(xi, xi+1) = ti .
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• If ti > αri , then (xi, ri) /∈ ξα , and r(xi) = 0: thus, (14) holds.
• If ti ≤ αri , then (xi, ri) ∈ ξα and, thus, r(xi) = ri , which gives (14).

As αr(xn) is nonnegative, summing (14) for i ∈ {0, . . . , n − 1} implies that
T (π) ≥ α(|π |−A(π)). Remember that a.s., 0 /∈ 
, and, thus, that r(0) = 0 a.s. As

‖x0 − x−1‖ − r(x−1) = ‖x0‖ − r(0) ≤ 1,

we obtain [whether π̃ = (x−1, . . . , xn) or π̃ = (x0, . . . , xn)] that T (π) ≥ α(|π̃ | −
A(π̃) − 1). From |π̃ | ≥ ‖xn − 0‖ = ‖x‖, we then deduce

T (π)

‖x‖ ≥ T (π)

|π̃ | ≥ α

(
1 − A(π̃)

|π̃ | − 1

|π̃ |
)

≥ α

(
1 − A(π̃)

|π̃ | − 1

‖x‖
)
.(15)

The lemma follows. �

2.4. Deijfen’s model: Proof of Theorem 1.1. Let us recall the following result
from Deijfen [3].

THEOREM 2.5. There exists a constant λ ≥ 0 such that the following conver-
gence holds almost surely and in L1:

lim‖x‖→+∞
T (B,x)

‖x‖ = λ.

If λ > 0, then, almost surely, for all ε > 0 and for all large enough positive real t ,
one has

Bλ−1(1−ε)t ⊂ St ⊂ Bλ−1(1+ε)t .

If λ = 0, then, almost surely, for all M > 0 and for all large enough positive real t ,
one has

BMt ⊂ St .

Actually, Theorem 2.5 is not explicitly stated in [3]. Nevertheless, it can be
easily proven using ideas and results of Deijfen’s paper. A complete proof can be
found in the first version of our paper on the Mathematics ArXiv.

The following lemma will enable us to prove the first part of Theorem 1.1. We
have stated it in such a way that its proof does not rely on Theorem 2.5.

LEMMA 2.6.

If
∫ +∞

0

(∫ +∞
x

rμ(dr)

)1/d

dx < +∞ then lim inf‖x‖→+∞
ET (B,x)

‖x‖ > 0.
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PROOF. Recall that measures να , α > 0, are defined in Section 2.3 and that

να(dr) = αν1(dr) = αrμ(dr).(16)

By assumption, the following condition holds:∫ +∞
0

ν1([x,+∞))1/d dx < +∞.

Let us first consider the case d ≥ 2. By Theorem 1.2, we then get that ES(ξ1) is
finite. Using (16), Lemma 2.2 ensures that ES(ξα) = α1/d

ES(ξ1). As S‖x‖(ξα) ≤
S(ξα), Lemma 2.4 implies then that, for all real α > 0,

lim inf‖x‖→+∞
ET (B,x)

‖x‖ ≥ α
(
1 − ES(ξα)

) = α
(
1 − α1/d

ES(ξ1)
)
.(17)

But this quantity is positive as soon as α is small enough.
Let us assume now that d = 1. The assumption of the lemma guarantees that∫ +∞

0 r2μ(dr) < +∞. By Lemma 2.4, we get

lim inf‖x‖→+∞
T (B,x)

‖x‖ ≥ α

(
1 − lim

l→+∞Sl(ξα)

)
.

By Lemma 2.3, we then get, almost surely,

lim inf‖x‖→+∞
T (B,x)

‖x‖ ≥ α

(
1 − 2

∫ +∞
0

rνα(dr)

)
= α

(
1 − 2α

∫ +∞
0

r2μ(dr)

)
.

By the Fatou lemma, we get

lim inf‖x‖→+∞
ET (B,x)

‖x‖ ≥ α

(
1 − 2α

∫ +∞
0

r2μ(dr)

)
.

But this quantity is positive as soon as α is small enough. This ends the proof of
the lemma. �

REMARK. By optimizing in α in equation (17), we get, for d ≥ 2, the follow-
ing lower bound for the inverse of the speed:

λ ≥ dd

(d + 1)d+1

(
1

ES(ξ1)

)d

.

Using the bound in (11), we obtain that, if ξ̃ is a Poisson point process on
R

d × (0,+∞) whose intensity is the product of the Lebesgue measure on R
d by

δ1, then

ES(ξ1) ≤ ES(̃ξ)

∫ +∞
0

(∫ +∞
ρ

rμ(dr)

)1/d

dρ.



CONTINUOUS FIRST-PASSAGE AND GREEDY PATHS MODELS 2315

Finally, there exists a positive constant Cd that only depends on the dimension d

such that

λ ≥ Cd

(∫ +∞
0

(∫ +∞
ρ

rμ(dr)

)1/d

dρ

)−d

.

The result is still true for d = 1.

The following lemma will enable us to prove the second part of Theorem 1.1.

LEMMA 2.7.

If
∫ +∞

0
rd+1μ(dr) = +∞, then lim

x→+∞
T (B,x)

‖x‖ = 0 a.s. and in L1.

PROOF. By Theorem 2.5, one can fix a real β > 0 such that, almost surely, for
all x such that ‖x‖ is large enough, the following inequality holds:

T (B,x) ≤ β‖x‖.(18)

Let M > 0 and write A = {(c, t, r) ∈ R
d ×[0,+∞)×(0,+∞) : t ≤ ‖c‖ ≤ rM−1}.

The cardinality of χ ∩ A is distributed according to a Poisson law with parameter∫
Rd

dc

∫
[0,+∞)

dt

∫
(0,+∞)

μ(dr)1(c,t,r)∈A

=
∫
(0,+∞)

μ(dr)

∫
B

rM−1

dc ‖c‖

=
∫
(0,+∞)

μ(dr)rd+1
∫
B

M−1

dc ‖c‖ = +∞,

because of the assumption made about μ. Therefore, the cardinality of χ ∩A is al-
most surely infinite. Let s be a positive real and write As = {(c, t, r) ∈ A :‖c‖ ≤ s}.
The cardinality of χ ∩ As is distributed according to a Poisson law with parameter∫

Rd
dc

∫
[0,+∞)

dt

∫
(0,+∞)

ν(dr)1(c,t,r)∈As ≤ |Bs |s < +∞.

The cardinality of χ ∩ As is therefore almost surely finite. The two preceding
observations imply that, almost surely, there exists a sequence (cn, tn, rn)n with
values in χ ∩ A such that ‖cn‖ goes to infinity.

As Mcn belongs to cn + Brn , we have τ(cn,Mcn) = tn, which leads, using (18)
and the definition of A, to

T (B,Mcn) ≤ T (B, cn) + tn ≤ β‖cn‖ + ‖cn‖ = (1 + β)‖cn‖,
(for large enough n) and thus,

T (B,Mcn)

M‖cn‖ ≤ 1 + β

M
, which implies lim inf‖x‖→∞

T (B,x)

‖x‖ ≤ 1 + β

M
.
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Theorem 2.5 enables us then to conclude the proof. �

PROOF OF THEOREM 1.1. Just apply Theorem 2.5, Lemma 2.6 and Lem-
ma 2.7. �

APPENDIX: COMPUTATION OF THE SPEED IN DIMENSION d = 1

We assume that d = 1 and that
∫ +∞

0 r2μ(dr) is finite. Our aim in this section is
to sketch a proof of the following result: almost surely, for all ε > 0 and for all t

large enough, we have

[−v(1 − ε)t, v(1 − ε)t] ⊂ St ⊂ [−v(1 + ε)t, v(1 + ε)t],
where

v = 1

2

∫ +∞
0

r2μ(dr) = E(R2)

2
.

We come back to the initial description of the process by Deijfen in [3]. We
keep the same point process χ , but a point (c, t, r) ∈ χ has now the following in-
terpretation: the ball centered at c with radius r becomes infected at time t if its
center has been infected before time t . The equivalence of the two descriptions
follows from the properties of the exponential law. In order to simplify the nota-
tion, instead of setting S0 = [−1,1], we set S0 = [−2,0]. We denote by (St )t the
continuous first-passage percolation process starting from S0 and driven by χ . We
denote by ρt the rightmost point in St . By symmetry arguments, it is sufficient to
prove that ρt t

−1 converges almost surely to v.
• In this step, we show

lim sup
t→+∞

ρt t
−1 ≤ v a.s.

In order to prove this result, we introduce a process (St )t that stochastically dom-
inates (St )t . It has the same evolution by outbursts as (St )t—in particular, it uses
the same Poisson point process χ—but it starts from S0 = (−∞,0]. Denote by ρt

the rightmost point in St . It suffices to show that ρt t
−1 converges almost surely

to v.
Denote by χ+ = {(c, t, r) ∈ χ : c ≤ 0, r + c > 0} the set of efficient balls. It is

a Poisson point process with intensity measure

1c∈(−r,0] dc dt μ(dr).

Its projection on the t coordinate is a homogeneous Poisson point process on R
+

with finite intensity∫ +∞
0

μ(dr)

∫ 0

−r
dc =

∫ +∞
0

rμ(dr) = ER.
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Consider the first efficient outburst time T1 (i.e., the leftmost point of the previous
point process). The random variable T1 follows the exponential law with mean
(ER)−1. Let (C1,R1) be such that (C1, T1,R1) ∈ χ+. It is a random variable with
law

(ER)−11c∈(−r,0] dcμ(dr).

We have ρT1
= C1 + R1. We can then compute the mean increase at time T1:

E(ρT1
) = (ER)−1

∫ +∞
0

μ(dr)

∫ 0

−r
dc (c + r) = E(R2)

2ER
.

Set T0 = 0 and denote by (Ti)i≥1 the sequence of efficient outburst times. For
example, T2 is the t coordinate of the point of {(c, t, r) ∈ χ : c ≤ ρT1

, r + c >

ρT1
, t ≥ T1} whose t coordinate is minimal. The increments (ρTi

− ρTi−1
)
i≥1

and
(Ti − Ti−1)i≥1 are independent sequences of i.i.d. random variables. Thus,

ρTk

k
→ E(ρT1

) = E(R2)

2ER
and

Tk

k
→ E(T1) = 1

ER

almost surely when k goes to infinity. As (Ti)i≥1 goes almost surely to infinity, we
can find for any t > 0 a random k such that Tk ≤ t < Tk+1. For such a k, we have

ρTk

Tk+1
≤ ρt

t
≤ ρTk+1

Tk

.

This ends this step.
• In this step we show

lim inf
t→+∞ ρt t

−1 ≥ v a.s.

We introduce a process (St )t that is stochastically dominated by (St )t . It also starts
from [−2,0], uses the same outburst process χ , but increases only by the right-
hand side (the contribution of added balls on the left-hand side are erased). Denote
by ρ

t
its rightmost point at time t . It suffices to prove

lim inf
t→+∞ ρ

t
t−1 ≥ v a.s.

Set T0 = 0. We define (C1, T1,R1) as in the previous step. The first efficient
outburst for (St )t occurs at time T1 or later. We have

ρ
T1

= (C1 + R1)1C1≥−2.

Let T2 be the t-coordinate of the point of {(c, t, r) ∈ χ : c ≤ ρ
T1

, r + c > ρ
T1

,

t ≥ T1} whose t coordinate is minimal. Let C2 and R2 be such that (C2, T2,R2)

belongs to χ . We define in the same way (Ci, Ti,Ri) for all i ≥ 3.
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Notice that (Ci − ρ
Ti−1

, Ti − Ti−1,Ri)
i≥1

is a sequence of i.i.d. random vari-

ables with the same law as (C1, T1,R1). Moreover, for all i ≥ 1, we have

ρ
Ti

− ρ
Ti−1

= (Ci − ρ
Ti−1

+ Ri)1Ci≥−2.

We write this as follows:

ρ
Ti

− ρ
Ti−1

= (Ci − ρ
Ti−1

+ Ri)1Ci−ρ
Ti−1

≥−2−ρ
Ti−1

.

In particular, we have

ρ
Ti

− ρ
Ti−1

≥ (Ci − ρ
Ti−1

+ Ri)1Ci−ρ
Ti−1

≥−2,

from which we can conclude that ρ
Ti

converges to +∞. Therefore, for all s > 0,
almost surely and for large enough i, we have

ρ
Ti

− ρ
Ti−1

≥ (Ci − ρ
Ti−1

+ Ri)1Ci−ρ
Ti−1

≥−s .

Consequently, for all s > 0 and almost surely, we have

lim inf
i→+∞

ρ
Ti

i
≥ lim inf

∑i
j=1(Cj − ρ

Tj−1
+ Rj)1Cj−ρ

Tj−1
≥−s

i

= E
(
(C1 + R1)1C1≥−s

)
.

We let s go to infinity and end the proof as in the first step.
• The result follows from the previous two steps. Let us notice that the proof

of the previous step also allows us to prove again that the speed is infinite when
E(R2) is infinite.
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