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A FUNCTIONAL CENTRAL LIMIT THEOREM FOR THE M/GI/∞
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Technologie de Compiègne

In this paper, we present a functional fluid limit theorem and a func-
tional central limit theorem for a queue with an infinity of servers M/GI/∞.
The system is represented by a point-measure valued process keeping track
of the remaining processing times of the customers in service. The conver-
gence in law of a sequence of such processes after rescaling is proved by
compactness-uniqueness methods, and the deterministic fluid limit is the so-
lution of an integrated equation in the space S′ of tempered distributions. We
then establish the corresponding central limit theorem, that is, the approxi-
mation of the normalized error process by a S′-valued diffusion. We apply
these results to provide fluid limits and diffusion approximations for some
performance processes.

1. Introduction. The queues with an infinite reservoir of servers are classical
models in queueing theory. In such cases, all the customers are immediately taken
care of upon arrival, and spend in the system a sojourn time equal to their ser-
vice time. Beyond its interest to represent telecommunication networks or comput-
ers architectures in which the number of resources is extremely large, this model
(commonly referred to as pure delay queue) has been often used for comparison
to other ones whose dynamics are formally much more complicated, but close in
some sense. Then the performances of the pure delay system may give good esti-
mators, or bounds, of that of the other system.

The studies proposed in the literature mainly focused on classical descriptors,
such as the length of the queue: among others, its stationary regime under Markov-
ian assumptions ([11]), the transient behavior and law of hitting times of given
levels ([14]), the fluid limit and diffusion approximations of normalized sequences
([3, 15]) are now classical results. Let us also mention the recent study on the
existence/uniqueness of a stationary regime for the process counting the largest
remaining processing time of a customer in the system ([21]).

But when one aim is to have more accurate information on the state of the sys-
tem, such as the total amount of work at current time (workload) or the number
of customers having remaining processing time in a given range, no such simple
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state descriptor can be used. In order to address such questions, one has to know
at current time the exhaustive collection of residual processing times of all the
customers present in the system. Consequently, we represent the queue by a point
measure-valued process (μt )t≥0, putting Dirac measures at all residual processing
times. The price to pay to have such a global information is therefore to work on
a very big state space, in fact, of infinite dimension. In the past fifteen years an in-
creasing interest has been dedicated to the study of such measure-valued Markov
processes (for definition and main properties, see the reference survey of Dawson
[5] on this subject). Such a framework is particularly adequate to describe particles
or branching systems (see [5, 22, 24]), or queueing systems whose dynamics are
too complex to be carried on with simple finite-dimensional processes: the proces-
sor sharing queue (see [12, 26]), queues with deadlines (see [6] for a queue under
the earliest deadline first service discipline without reneging, [7, 8] for the same
system with reneging and [13] for a processor sharing queue with reneging), or the
Shortest Remaining Processing time queue ([1, 20]).

In this paper we aim to identify the “mean behavior” of the measure valued
process (μt )t≥0 describing the pure delay system, introduced above. In that pur-
pose, we use the recent tools of normalization of processes to identify the fluid
limit of the process, or formal law of large numbers. This fluid limit is the contin-
uous and deterministic limit in law of a normalized sequence of these processes.
We characterize as well the accuracy of this approximation by providing the cor-
responding functional central limit theorem, that is, the convergence in law of the
normalized process of difference between the normalized process and its fluid limit
to a diffusion.

Formally, it is rather straightforward in our case to identify the infinitesimal
generator of the Feller process (μt )t≥0. The natural but unusual term is that due to
the continuous decreasing of the residual processing times at unit rate as time goes
on. This term involves a “spatial derivative” of the measure μt , a notion which
can only be rigorously defined within the framework of distributions. Because of
this term, the fluid limit equation [see (4)] is the integrated version of a partial
differential equation rather than an ordinary differential equation, as it is the rule
in the previously studied queueing systems. Thus, the classical Gronwall’s lemma
is of no use here. Fortunately, we can circumvent this difficulty by solving the
involved integrated equation, known as transport equation, which is simple enough
to have a closed form solution—see Theorem 1. Then, we can proceed using more
classical techniques to show the convergence in law of the normalized sequence to
the fluid limit (the authors have been informed during the review process of this
paper that a similar result has been announced independently in [13]). As a second
step, we show the weak convergence of the normalized sequence of deviation to
the limit to a diffusion process.

This paper is organized as follows. After some preliminaries in Section 2, we
define properly the profile process (μt )t≥0 in Section 3, show, in particular, that
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(μt )t≥0 is Feller–Dynkin, and give the corresponding martingale property. In Sec-
tion 4, we give the fluid limit of (μt )t≥0. We deduce from this result fluid approx-
imations of some performance processes in Section 5. We prove the functional
central limit theorem for (μt )t≥0 in Section 6, and give the diffusion approxima-
tions of the performance processes in Section 6.3.

2. Preliminaries. We denote by Db (resp. Cb, CK ) the set of real-valued
functions defined on R which are bounded, right-continuous with left-limit (rcll
for short) (resp. bounded continuous, continuous with compact support). The space
Db is equipped with the Skorokhod topology and Cb with the topology of the uni-
form convergence. The space of bounded (resp. with compact support) differen-
tiable functions from R to itself is denoted by C1

b (resp. C1
K ) and for φ ∈ C1

b ,

‖φ‖∞ := sup
x∈R

(|φ(x)| + |φ′(x)|).
We denote by 1 the real function constantly equal to 1, I , the identity function
I (x) = x, x ∈ R, and for all Borel set B ∈ B(R), 1B the indicator function of B .
For all f ∈ Db and all x ∈ R, we denote by τxf , the function τxf (·) := f (· − x).

The Schwartz space, denoted by S, is the space of infinitely differentiable func-
tions, equipped with the topology defined by the semi-norms

|φ|β,γ := sup
x∈R

∣∣∣∣xβ dγ

dxγ
φ(x)

∣∣∣∣, β ∈ N, γ ∈ N.

Its topological dual, the space of tempered distributions, is denoted by S′, and the
duality product is classically denoted 〈μ,φ〉. The distributional derivative of some
μ ∈ S′ is μ′ ∈ S′ such that 〈μ′, φ〉 = −〈μ,φ′〉 for all φ ∈ S. For all μ ∈ S′ and
x ∈ R, we denote by τxμ the tempered distribution satisfying 〈τxμ,φ〉 = 〈μ,τxφ〉
for all φ ∈ S.

The set of finite nonnegative measures on R is denoted by M+
f (which is part

of S′) and Mp is the set of finite counting measures on R. The space M+
f is

equipped with the weak topology σ(M+
f ,Cb), for which M+

f is Polish (we write

〈μ,f 〉 = ∫
f dμ for μ ∈ M+

f and f ∈ Db). We say that a sequence {μn}n∈N∗ of

M+
f converges weakly to μ, and denote μn w⇒μ, if for all f ∈ Cb, 〈μn,f 〉 tends

to 〈μ,f 〉.
We also denote for all x ∈ R and all ν ∈ M+

f , τxν the measure satisfying for all
Borel set B , τxν(B) := ν(B − x). Remark that these last two definitions coincide
with that in S′: for all φ ∈ S′ and ν ∈ M+

f , 〈ν,φ〉S′ = 〈ν,φ〉M+
f

, and for all x ∈ R,

〈τxν,φ〉 = 〈ν, τxφ〉.
For a random variable (r.v. for short) X defined on a fixed probability space

(�,F ), we say that {Xn}n∈N∗ converges in distribution to X, and denote Xn ⇒ X,
if the sequence of the distributions of the Xn’s tends weakly to that of X.



A CENTRAL LIMIT THEOREM FOR THE M/GI/∞ QUEUE 2159

Let C(M+
f ,R) be the set of continuous functions from M+

f to R. Letting 0 <

T ≤ ∞, for E a Polish space, we denote C([0, T ],E), respectively D([0, T ],E),
the Polish space (for its usual strong topology) of continuous, respectively rcll,
functions from [0, T ] to E. The mutual variation of two local martingales (Mt)t≥0
and (Nt )t≥0 in D([0, T ],R) is denoted by (< M,N >t)t≥0 with (< M >t)t≥0 =
(< M,M >t)t≥0 for the quadratic variation (or the increasing process) of (Mt)t≥0.

Since S′ is a nuclear Fréchet space (see [27]), note that (μt )t≥0 ∈ C([0, T ],S′)
(resp. D([0, T ],S′)) if and only if (〈μt,φ〉)t≥0 ∈ C([0, T ],R) (resp.
D([0, T ],R)) for all φ ∈ S.

Let T > 0, and let (Xt)t≥0
1 be a process of D([0, T ],S′). We denote for all

t ∈ [0, T ], ∫ t
0 Xs ds, the element of S′ such that, for all φ ∈ S,〈∫ t

0
Xs ds,φ

〉
=

∫ t

0
〈Xs,φ〉ds.

Let us, moreover, define the following S′-valued processes:

(G(X)t )t≥0 = (τtXt )t≥0,(1)

(H(X)t )t≥0 =
(∫ t

0
Xs ds

)
t≥0

,(2)

(N(X)t )t≥0 =
(∫ t

0
τt−s(Xs)

′ ds

)
t≥0

,(3)

which means, for all φ ∈ S and all t ∈ [0, T ],

〈N(X)t , φ〉 = −
∫ t

0
〈Xs, τt−sφ

′〉ds.

Let (Ft )t≥0 be a filtration on (R,B(R)). Let us recall (cf. [17, 27]) that a
process M ∈ D([0, T ],S′) is a S′ valued Ft -semi-martingale (resp. local martin-
gale, martingale) if, for all φ ∈ S, (〈Mt,φ〉)t≥0 is a real Ft -semi-martingale (resp.
local martingale, martingale). According to [18], page 13, the tensor-quadratic
process << M >> of the S′ valued martingale M is given for all t ≥ 0 and all
φ,ψ ∈ S by

<< M >>t(φ,ψ) :=< 〈M., φ〉, 〈M.,ψ〉 >t.

For all S′-valued semi-martingale M , and all real semi-martingale X, the S′-valued
stochastic integral of M with respect to X is denoted by

∫ t
0 Ms dXs, and is such

that, for all t ≥ 0 and all φ ∈ S,〈∫ t

0
Ms dXs,φ

〉
=

∫ t

0
〈Ms,φ〉dXs.

1when no ambiguity is possible, we often write for instance X for the process (Xt )t≥0.
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Let T ≥ 0. We say that X ∈ D([0, T ],S′) satisfies the integrated transport equa-
tion associated to (K,g) (see [8]) if, for some K ∈ S′ and (gt )t≥0 ∈ D([0, T ],S′),

Xt = K +
∫ t

0
(Xs)

′ ds + gt for all t ∈ [0, T ].(4)

Let us then recall the following result.

THEOREM 1 ([8], Theorem 1). The only solution in D([0, T ],S′) of the inte-
grated transport equation associated to (K,g) is given for all t ∈ [0, T ] by

Xt = τtK + gt + N(g)t ,(5)

where the mapping N is defined in (3).

Note that Propositions 3 and 4 show, in particular, that X defined by (5) is an
element of D([0, T ],S′).

3. The profile process of the M/GI/∞ queue. Hereafter we consider a pure
delay system M/GI/∞: on a probability space (�,F ,P), consider a Poisson
process

Nt := ∑
i∈N∗

1{Ti≤t}

of positive intensity λ, representing the arrivals of the customers in a queueing
system with an infinite reservoir of servers. Hence, any of them is immediately
attended upon arrival. The time spent in the system by the ith arriving customer
(denoted Ci ) equals the service duration σi he requests. We assume that the se-
quence of marks {σi}i∈N∗ is i.i.d. with the random variable σ having the distribu-
tion α ∈ M+

f . We denote at all time t ≥ 0, Xt the number of customers currently in
the system, and St the number of already served customers at t , related to Nt and
Xt by the relation Nt = Xt + St . The workload process (Wt)t≥0 equals at time t

the total amount of service requested by the customers in the system at t , in time
units. The profile process of the queue is the point-measure valued process (μt )t≥0
whose units of mass represent the remaining processing times (i.e., time to the ser-
vice completion) of all the customers who already entered the system at current
time. In other words, for all t ≥ 0,

μt =
Nt∑
i=1

δ(Ti+σi−t).

In this expression a nonpositive remaining processing time (Ti +σi − t ≤ 0) stands
for a customer who already left the system, precisely t − (Ti + σi) time units
before t . As easily seen, for all t ≥ 0 and any x < y, the number of customers
having at t a remaining processing time in (x, y) (the boundaries may be included
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or infinite) is given by 〈μt,1(x,y)〉. Thus, the congestion, service and workload
processes X, S and W are easily recovered from μ by the relations Xt = 〈μt,1R∗+〉,
St = 〈μt,1R−〉 and Wt = 〈μt, I1R∗+〉, t ≥ 0.

The dynamics of (μt )t≥0 can be described as follows. For any t ≥ 0, μt+dt is
the translated of μt toward left by dt , that is, τdtμt (the remaining service times
of all the customers in the system at t , if any, decrease at unit rate), and a Dirac
measure at σ is added if a new customer enters the system between t and t + dt

having service time σ . In other words, we have for any φ ∈ CK

〈μt+dt , φ〉 = 〈τdtμt , φ〉 + φ(σ)N(dt, dσ ),(6)

where N(·, ·) denotes the Poisson measure associated to the marked arrival point
process. Hence, the above equation allows one to construct (〈μt,φ〉)t≥0 for any
φ ∈ CK by induction on the arrival times and for any initial state μ ∈ M+

f (as in

[26], page 192). Since CK is a separating class of M+
f , the initial value μ0 and

the evolution equation (6) fully define (μt )t≥0. Let h > 0 and F be a bounded
continuous function from M+

f into R. Denote for all i ∈ N

Ai (h) = {There are exactly i arrivals in [0, h]}.
We have for all μ ∈ M+

f

ThF (μ) := E[F(μh)|μ0 = μ]

= ∑
i≥0

E

[
F

(
τhμ + ∑

j>0

δσj−(h−Tj )1{Tj≤h}
)

1Ai (h) | μ0 = μ

]
(7)

= (1 − λh)F (τhμ) + λh

∫
F

(
τh(μ + δx)

)
dα(x) + ε(μ,h),

where

ε(μ,h) = {P[A0(h)] − (1 − λh)}F(τhμ)

+ {
P[A1(h)] − λh

} ∫
F

(
τh(μ + δx)

)
dα(x)

(8)
+ E

[{
F

(
τhμ + δσ1−(h−T1)

) − F
(
τh(μ + δσ1)

)}
1A1(h) | μ0 = μ

]

+ ∑
i≥2

E

[
F

(
τhμ +

i∑
j=1

δσj−(h−Tj )

)
1Ai (h) | μ0 = μ

]
.

Hence, ε(μ,h) is a o(h), as easily seen using dominated convergence for the third
term on the right-hand side of (8), and from the fact that F is bounded for the
other three terms. Therefore, according to [5], page 18, (μt )t≥0 is a weak ho-
mogeneous M+

f -valued Markov process having transition ThF for all h > 0 and

all bounded continuous F . Note, moreover, that (μt )t≥0 ∈ D([0,∞),M+
f ) since

(〈μt,φ〉)t≥0 ∈ D([0,∞),R) for all φ ∈ Cb.
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PROPOSITION 1. The process (μt )t≥0 is a Feller–Dynkin process of D([0,

∞),M+
f ).

PROOF. According to Lemma 3.5.1 and Corollary 3.5.2 of [5], the Markov
process (μt )t≥0 enjoys the Feller–Dynkin property if:

(i) For all f ∈ C1
K , h > 0, the mapping μ �→ E[Ff (μh) | μ0 = μ] is continu-

ous.
(ii) For all h > 0, E[F1(μh) | μ0 = μ] −→ 0, as μ(R) → +∞.

(iii) For all μ ∈ M+
f and f ∈ C1

K , E[Ff (μh) | μ0 = μ] −→ Ff (μ) as h → 0.

Let us denote for all f ∈ C1
K , Ff the mapping from M+

f into R defined by

Ff (μ) = e−〈μ,f 〉. In view of (7) and (8), we have for all μ ∈ M+
f and f ∈ C1

K

E[Ff (μh) | μ0 = μ]
(9)

= e−〈τhμ,f 〉
(

1 − λh + λh

∫
e−〈τhδx,f 〉 dα(x) + εf (h)

)
,

where

εf (h) = {P[A0(h)] − (1 − λh)} + {P[A1(h)] − λh}
∫

e−f (x−h) dα(x)

+ E
[{

e−f (σ1−(h−T1)) − e−f (σ1−h)}1A1(h)

]

+ ∑
i≥2

E

[{
i∏

j=1

e−f (σj−(h−Tj ))

}
1Ai (h)

]
,

which is a o(h) from the same arguments as for (8). Note, moreover, that εf (h)

does not depend on μ. Hence, the continuity in (i) is granted by the fact that, for all
h > 0, the mapping μ �→ τhμ is continuous from M+

f into itself. For (ii), remark
that the total mass on R of τhμ equals that of μ. Finally, the convergence in (iii)
holds since 〈μ,τhf 〉 −→h→0 〈μ,f 〉 by dominated convergence. The proposition
is proved. �

As easily seen from (9), and since the set of linear combinations of Ff , f ∈ C1
K ,

is dense in C(M+
f ,R) (see [26], Proposition 7.10), the infinitesimal generator A

of (μt )t≥0 is given for all μ ∈ M+
f by

AF(μ) := lim
h→0

E[F(μh) | μ0 = μ] − F(μ)

h

= lim
h→0

F(τhμ) − F(μ)

h
− λF(μ) + λ

∫
F(μ + δx) dα(x),

for all F ∈ C(M+
f ,R) such that the latter limit exists (we say that F belongs to the

domain of A).
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PROPOSITION 2. For all φ ∈ C1
b , the process defined for all t ≥ 0 by

Mt(φ) = 〈μt,φ〉 − 〈μ0, φ〉 +
∫ t

0
〈μs,φ

′〉ds − λt〈α,φ〉
is an rcll square integrable Ft -martingale. For all φ,ψ ∈ S, the mutual variation
of (Mt(φ))t≥0 with (Mt(ψ))t≥0 is given for all t ≥ 0 by

< M.(φ),M.(ψ) >t = λt〈α,φψ〉.(10)

PROOF. For all φ ∈ C1
b , the mapping �φ from M+

f into R defined by
�φ(μ) = 〈μ,φ〉 clearly belongs to the domain of A. As a consequence of
Dynkin’s lemma ([9, 10]), the process defined for all t ≥ 0 by

Mt(φ) = �φ(μt) − �φ(μ0) −
∫ t

0
A�φ(μs) ds

(11)

= 〈μt,φ〉 − 〈μ0, φ〉 +
∫ t

0
〈μs,φ

′〉ds − λt〈α,φ〉

is an rcll Ft -local martingale. Let now ψ ∈ C1
b . The mapping �φ,ψ from M+

f into
R defined by �φ,ψ(μ) = �φ(μ)�ψ(μ) also belongs to the domain of A, implying
that

M̃t (φ,ψ) = �φ(μt)�ψ(μt) − �φ(μ0)�ψ(μ0) −
∫ t

0
A�φ,ψ(μs) ds(12)

is as well an rcll Ft -local martingale. But as easily checked, for all μ ∈ M+
f ,

A�φ,ψ(μ) = �φ(μ)A�ψ(μ) + �ψ(μ)A�φ(μ) + λ〈α,φψ〉.(13)

Itô’s formula yields together with (11) that, for all t ≥ 0,

�φ(μt)�ψ(μt)

= �φ(μ0)�ψ(μ0) +
∫ t

0
�φ(μs) dMs(ψ) +

∫ t

0
�φ(μs)A�ψ(μs) ds

+
∫ t

0
�ψ(μs) dMs(φ) +

∫ t

0
�ψ(μs)A�φ(μs) ds

+ < �φ(μ.),�ψ(μ.) >t ,

which, together with (12) and (13), implies∫ t

0
�φ(μs) dMs(ψ) +

∫ t

0
�ψ(μs) dMs(φ)+ < �φ(μ.),�ψ(μ.) >t

= M̃t (φ,ψ) + λt〈α,φψ〉.
By identifying the finite variation processes, we obtain that P-a.s. for all t ≥ 0,

< �φ(μ.),�ψ(μ.) >t = λt〈α,φψ〉,(14)
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but in view of (11), this last quantity equals < M.(φ),M.(ψ) >t . In particular, for
all t ≥ 0,

E[< M.(φ) >t ] = λt〈α,φ2〉 < ∞,

hence, (Mt(φ))t≥0 is a square integrable martingale. �

4. Fluid limit. Consider a sequence of M/GI/∞ systems such that the nth sys-
tem has an initial profile μn

0, is fed by a Poisson process (Nn
t )t≥0 of arrival times

{T n
i }i∈N∗ and of intensity λn, in which the customers request i.i.d. service durations

{σn
i }i∈N∗ which have the nonatomic distribution αn of a r.v. σn. We assume, fur-

thermore, that σn is integrable, that is, 〈αn, I 〉 < ∞. The process (μn
t )t≥0, defined

for all t by

μn
t =

Nn
t∑

i=1

δT n
i +σn

i −t ,

is the profile process of this nth system. Denote by (F n
t )t≥0 the associated filtra-

tion. Let us also define as previously the performance processes of the nth system:
Xn, Sn and Wn. We normalize the process μn in time, space and weight by defin-
ing for all t ≥ 0

μ̄n
t = 1

n

Nn
nt∑

i=1

δ(T n
i +σn

i −nt)/n.

Thus, for all Borel set B and all t ,

μ̄n
t (B) = μn

nt (nB)

n
,

where nB := {nx, x ∈ B}. In words, μ̄n
t is 1/n times the point measure hav-

ing atoms at levels n times smaller than that of μn
nt . We also define (Gn

t )t≥0 :=
(F n

nt )t≥0, the associated filtration, and normalize the arrival process as well as the
performance processes of the nth system the corresponding way, that is, for all
t ≥ 0,

N̄n
t := Nn

nt

n
, X̄n

t := Xn
nt

n
= 〈μ̄n

t ,1R∗+〉,

S̄n
t := Sn

nt

n
= 〈μ̄n

t ,1R−〉, W̄ n
t := Wn

nt

n2 = 〈μ̄n
t , I1R∗+〉.

We denote for all i ∈ N∗, σ̄ n
i := σn

i /n. Thus, the {σ̄ n
i }i∈N∗ are i.i.d. with the

nonatomic distribution ᾱn of the r.v. σn/n. The distribution ᾱn is such that
〈ᾱn, I 〉 < ∞, and satisfies for all Borel set B

ᾱn(B) = αn(nB).

We assume hereafter that the following hypothesis holds.
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HYPOTHESIS 1. There exists λ > 0 such that

λn −→
n→∞λ,(15)

For all ε > 0, there exists Mε > 0 such that, for all n ∈ N∗,

P[〈μn
0,1〉 > nMε] ≤ ε.(16)

For some measure μ̄∗
0 of M+

f such that

〈μ̄∗
0, I 〉 < ∞,

for all f ∈ Db,

〈μ̄n
0, f 〉 −→

n→∞〈μ̄∗
0, f 〉 in probability.(17)

There exists a nonatomic probability distribution ᾱ∗ such that

ᾱn w⇒ ᾱ∗,
〈ᾱn, I 〉 −→

n→∞ 〈ᾱ∗, I 〉 < ∞.

Let φ ∈ C1
b and ψn(·) = φ(·/n)/n. According to Proposition 2, the process

defined for all t by

M̄n
t (φ) := Mn

nt (ψ
n) = 〈μ̄n

t , φ〉 − 〈μ̄n
0, φ〉 +

∫ t

0
〈μ̄n

s , φ
′〉ds − λnt〈ᾱn, φ〉(18)

is a square integrable Gn
t -martingale of D([0,∞),R), such that

< M̄n
. (φ) >t = λn

n
t〈ᾱn, φ2〉.(19)

In other words, the process M̄n defined for all t by

M̄n
t = μ̄n

t − μ̄n
0 −

∫ t

0
(μ̄n

s )
′ ds − λntᾱn

is a S′-valued Gn
t -martingale of tensor-quadratic process given for any φ and ψ in

S by

<< M̄n >>t (φ,ψ) = λn

n
t〈ᾱn, φψ〉.

THEOREM 2. Assume that Hypothesis 1 holds. Then

μ̄n �⇒ μ̄∗ in D([0,∞),M+
f ),

where μ̄∗ is the deterministic element of C([0,∞),M+
f ) defined for all t ≥ 0 and

all φ ∈ Db by

〈μ̄∗
t , φ〉 = 〈μ̄∗

0, τtφ〉 + λ

∫ t

0
〈ᾱ∗, τsφ〉ds.(20)



2166 L. DECREUSEFOND AND P. MOYAL

PROOF. First we prove that {μ̄n}n∈N∗ is tight in D([0,∞),M+
f ). To this end,

it suffices to show conditions C.1 and C.2 of Theorem A.2 in the Appendix. To
show C.1, fix φ ∈ C1

b and T > 0. Remarking that, for all s ≥ 0,

〈μ̄n
s ,1〉 ≤ N̄n

s + 〈μ̄n
0,1〉,

equation (18) yields P-a.s. for all u < v ≤ T ,

|〈μ̄n
v, φ〉 − 〈μ̄n

u,φ〉|
≤

∫ v

u
|〈μ̄n

s , φ
′〉|ds + λn|〈ᾱn, φ〉||v − u| + |M̄n

φ(v) − M̄n
φ(u)|

(21)
≤ |v − u|{‖φ′‖∞(N̄n

T + 〈μ̄n
0,1〉) + ‖φ‖∞λn}

+ |M̄n
φ(v) − M̄n

φ(u)|.
Let ξ > 0. From Doob’s inequality,

P
[
sup
t≤T

|M̄n
t (φ)| ≥ ξ

]
≤ 4

ξ2 E[< M̄n
. (φ) >T ] ≤ 4

ξ2

(
λn

n

)
‖φ2‖∞T −→

n→∞ 0,

in view of (19). Hence, it follows from the standard convergence criterion on
D([0, T ],R) that {(M̄n

t (φ))t≥0}n∈N∗ converges in distribution to the null process.
This sequence is, in particular, tight, and it is routine in view of (21) and Hypoth-
esis 1 to check the standard tightness criterion in D([0, T ],R): for all ε > 0 and
η > 0, there exists δ > 0 and N ∈ N such that, for all n ≥ N ,

P
[

sup
u,v≤T ,|v−u|≤δ

|〈μ̄n
v, φ〉 − 〈μ̄n

u,φ〉| ≥ η

]
≤ ε.(22)

Letting βε := Mε‖φ‖∞, assumption (16) implies that, for all n ∈ N∗,

P[|〈μ̄n
0, φ〉| > βε] ≤ P

[‖φ‖∞〈μ̄n
0,1〉 > Mε‖φ‖∞

] ≤ ε.(23)

Hence, (22) and (23) show that {(〈μ̄n
t , φ〉)t≥0}n∈N∗ is tight in D([0, T ],R) for all

T > 0 (see [25], Theorem D.9). This sequence is thus tight in D([0,∞),R).

We now prove condition C.2 (compact containment). Fix T > 0. Let us first
apply [12], Lemma A.2.: under Hypothesis 1, we have{(

1

n

nN̄n
t∑

i=1

φ(σ̄ n
i )

)
t≥0

}
n∈N∗

�⇒ (λt〈ᾱ∗, φ〉)t≥0 in D([0, T ],R)(24)

for any measurable φ, such that φ is continuous on the supports of ᾱ∗ and ᾱn,
n ∈ N∗, and such that 〈|φ|, ᾱ∗〉 < ∞ and 〈|φ|, ᾱn〉 < ∞, n ∈ N∗. In particular, this
yields for any 0 < l ≤ T , and any such φ,

P

[
sup

t∈[0,T −l]
1

n

Nn
n(t+l)∑

Nn
nt+1

φ(σ̄ n
i ) > 2λl〈ᾱ∗, φ〉

]
−→
n→∞ 0.(25)



A CENTRAL LIMIT THEOREM FOR THE M/GI/∞ QUEUE 2167

Taking l = T and φ = 1 (resp. φ = I ) in the above expression yields

P[N̄n
T > 2λT ] −→

n→∞ 0,

P

[
1

n

Nn
nT∑

i=1

σ̄ n
i > 2λT 〈ᾱ∗, I 〉

]
−→
n→∞ 0.

Letting MT = max{2λT + 〈μ̄∗
0,1〉,2λT 〈ᾱ∗, I 〉 + 〈μ̄∗

0, I 〉} + 1, we have

P
[

sup
t∈[0,T ]

max{〈μ̄n
t ,1R+〉, 〈μ̄n

t , I1R+〉} > MT

]

≤ P[〈μ̄n
0,1〉 > 〈μ̄∗

0,1〉 + 1] + P[N̄n
T > 2λT ](26)

+ P[〈μ̄n
0, I 〉 > 〈μ̄∗

0, I 〉 + 1] + P

[
1

n

Nn
nT∑

i=1

σ̄ n
i > 2λT 〈ᾱ∗, I 〉

]
−→

n→+∞ 0.

For all 0 < η < 1, denote

KT ,η := {
ζ ∈ M+

f ;max{〈ζ,1R+〉, 〈ζ, I1R+〉} ≤ MT ,
〈
ζ,1(−∞,−T ]

〉 = 0
}
.

Since 〈ζ, I1R+〉 ≤ MT implies that for all y > 0, ζ([y,∞)) ≤ MT /y, we have

lim
y→∞ sup

ζ∈KT ,η

ζ([y,∞)) = 0, lim
y→−∞ sup

ζ∈KT ,η

ζ((−∞, y]) = 0,

which implies in turns that KT η ⊂ M+
f is relatively compact (see [16]). Now, since

up to time T no already served customer can have a remaining processing time less
than −T , we have

sup
t≤T

〈
ν̄n
t ,1(−∞,−T ]

〉 = 0.

This, together with (26), implies that

lim inf
n→∞ P

[
μ̄n

t ∈ KT ,η, for all t ∈ [0, T ]] ≥ 1 − η.

KT ,η being the closure of KT ,η, we found a compact subset KT ,η ⊂ M+
f such that

lim inf
n→∞ P

[
μ̄n

t ∈ KT ,η, for all t ∈ [0, T ]] ≥ 1 − η,

which completes the proof of tightness.
Let now (χt )t≥0 be a subsequential limit of {μ̄n}n∈N∗ . We have for all t ≥ 0

χt = μ̄∗
0 +

∫ t

0
(χs)

′ ds + λtᾱ∗,

which is nothing but the integrated transport equation associated to (μ̄∗
0, g), where

gt := λtᾱ∗, t ≥ 0. From Theorem 1, we have for all t ≥ 0 and φ ∈ S

〈χt ,φ〉 = 〈τt μ̄
∗
0, φ〉 + 〈gt , φ〉 + 〈N(gt ), φ〉

= 〈μ̄∗
0, τtφ〉 + λt〈ᾱ∗, φ〉 − λ

∫ t

0
s

d

ds
〈ᾱ∗, τt−sφ〉ds = 〈μ̄∗

t , φ〉,
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integrating by parts. The subsequential limit is therefore unique in the space
D([0,∞),M+

f ), and equal to μ̄∗, since S is a separating class of M+
f . �

5. Fluid limits of some performance processes. Let us provide some appli-
cations of Theorem 2 to the asymptotic estimation of some performance processes
describing the queueing system. Assume that Hypothesis 1 hold and, in addition,
that the limiting initial profile μ̄∗

0 in Hypothesis 1 is such that

μ̄∗
0 has no atom.(27)

Assumption (27) implies in view of (20) that μ̄∗
t has no atom for any t ≥ 0. Thus,

Theorem 2 and the Continuous Mapping Theorem yield that, for any x < y, the se-
quence {(〈μ̄n

t ,1(x,y)〉)t≥0}n∈N∗ tends in distribution to the real deterministic func-
tion (〈μ̄∗

t ,1(x,y)〉)t≥0 (the boundaries may as well be included or infinite). Thus,
a fluid limit approximation of the process counting the customers having residual
service times in the range (x, y) is given for all t ≥ 0 by

〈μ̄∗
t ,1(x,y)〉 = μ̄∗

0
(
(x + t, y + t)

) + λ

∫ t

0

(∫ y+s

x+s
dᾱ∗(x)

)
ds.

In particular, a fluid approximation of the normalized congestion process X̄n is
given by the process X̄∗ defined for all t by

X̄∗
t = 〈μ̄∗

t ,1R∗+〉 = μ̄∗
0((t,∞)) + λ

∫ t

0

(∫ +∞
s

dᾱ∗(x)

)
ds,

whereas the normalized service process S̄n can be approximated by S̄∗, where

S̄∗
t = 〈μ̄∗

t ,1R−〉 = μ̄∗
0((−∞, t]) + λ

∫ t

0

(∫ s

0
dᾱ∗(x)

)
ds.

Remark now that for all t ≤ T , all x ≥ 0 and all n ∈ N∗,

W̄n
t ≤ 〈

μ̄n
t , I1(0,x]

〉 + 〈
μ̄n

0, I1(t+x,∞)

〉 + 1

n

Nn
nt∑

i=1

σ̄ n
i 1σ̄ n

i ≥x.

In view of (24), the third process on the right tends to (λt〈ᾱ∗, I1(x,∞)〉)t≥0. Hence,
it is bounded over compact sets and uniformly in n since 〈ᾱ∗, I1(x,∞)〉 is finite.
The same argument applies to the second process on the right since 〈μ̄n

0, I1(x,∞)〉
is finite as well, and the first one tends in distribution to (〈μ̄∗

t , I1(0,x]〉)t≥0. Hence,
{W̄n}n∈N∗ is tight, and any subsequential limit thus reads (〈μ̄∗

t , I1R∗+〉)t≥0. In other

words, the fluid limit of W̄n is given by W̄ ∗, where

W̄ ∗
t = 〈μ̄∗

t , I1R∗+〉

=
∫ +∞
t

(x − t) dμ̄∗
0(x) + λ

∫ t

0

(∫ +∞
s

(x − s) dᾱ∗(x)

)
ds.
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6. Functional central limit theorem.

6.1. Preliminary results. In this section we prove two technical results (Propo-
sitions 3 and 4), which will be useful in the sequel. We refer again the reader to the
definitions and notation introduced in Section 2. Throughout this whole section,
fix T > 0.

LEMMA 1. For all φ ∈ S, the collection {τrφ, r ∈ [0, T ]} is a pre-compact set
of S.

PROOF. For all semi-norm associated to the integers β , γ , for all r ∈ [0, T ],

|τrφ|β,γ = sup
x

∣∣xβφ(γ )(x − r)
∣∣ ≤

β∑
j=1

C
j
βrβ−j |φ|j,γ ≤

β∑
j=1

C
j
βT β−j |φ|j,γ .

The set {τrφ, r ∈ [0, T ]} is thus bounded in the nuclear space S: it is a pre-compact
set in view of Proposition 4.4.7, page 81 of [23]. �

LEMMA 2. For all φ ∈ S, the mapping r �−→ τrφ is continuous from R into S.

PROOF. Let r ′ < r . Let β and γ ∈ N. For some s ∈]r ′, r[,
|τr ′φ − τrφ|β,γ = sup

x

∣∣xβ(
φ(γ )(x − r ′) − φ(γ )(x − r)

)∣∣

≤ |r − r ′|
β∑

j=1

C
j
βsβ |φ|j,γ+1

≤ |r − r ′|
β∑

j=1

C
j
β(r + 1)β |φ|j,γ+1 =: Mr,β,γ,φ.

Thus, for all ε > 0, fixing η := ε(Mr,β,γ,φ)−1, we have |τr ′φ − τrφ|β,γ < ε when-
ever | r − r ′ |< η. �

We therefore have the following results.

PROPOSITION 3. The mapping G defined by (1) is continuous from C([0, T ],
S′) into itself.

PROOF. We first prove that G takes its values in C([0, T ],S′). Let φ ∈ S, X ∈
C([0, T ],S′), and let GX

φ be the mapping from R2 into R defined by GX
φ (t, r) =

〈Xt, τrφ〉. Let t, r ≤ T . For all t ′, r ′,

|GX
φ (t ′, r ′) − GX

φ (t, r)| ≤ |〈Xt ′ − Xt, τrφ〉| + |〈Xt, τr ′φ − τrφ〉|.(28)
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On the one hand, (〈Xs,φ〉)s≥0 ∈ D([0, T ],R), and is thus bounded on [0, T ]:
sup
s≤T

|〈Xs,φ〉| = sup
s∈[0,T ]∩Q

|〈Xs,φ〉| < ∞.

Therefore, X := {Xs, s ∈ [0, T ] ∩ Q} is a weakly bounded subset of the set of
continuous mappings from S into R. The space S is Fréchet, and hence is a tonnel
in view of corollary 0, page III.25 of [4]. From the Banach–Steinhaus theorem
(Theorem 1, page III.25 of [4]), X is equicontinuous. Hence, for all ε > 0,

Vε := ⋂
s∈[0,T ]∩Q

X−1
s

(]
−ε

2
,
ε

2

[)
=

{
φ, sup

s∈[0,T ]∩Q

|〈Xs,φ〉| < ε

2

}

is a neighborhood of 0, the zero of S. The mapping r �→ τrφ being continuous in
view of Lemma 2, for some ηr,φ > 0

|r ′ − r| < ηr,φ �⇒ (τr ′φ − τrφ) ∈ Vε �⇒ |〈Xt, τr ′φ − τrφ〉| < ε

2
.

On the other hand, (〈Xs, τrφ〉)s≥0 ∈ C([0, T ],R), hence, for some δr,t,φ and all t ′,

|t ′ − t | < δr,t,φ �⇒ |〈Xt ′ − Xt, τrφ〉| < ε

2
.

For all t, r and all ε > 0, the two previous relations in (28) imply that, for some
ηr,φ and δr,t,φ ,

|t ′ − t | < δr,t,φ, |r ′ − r| < ηr,φ �⇒ |GX
φ (t ′, r ′) − GX

φ (t, r)| < ε.

The mapping GX
φ is thus continuous, and hence uniformly continuous on the com-

pact set ([0, T ])2: for some δφ, ηφ > 0,

sup
r,r ′,|r−r ′|<ηφ

sup
t,t ′|t−t ′|<δφ

|GX
φ (t ′, r ′) − GX

φ (t, r)| < ε.

Finally, letting ξφ := ηφ ∧ δφ ,

sup
t,t ′,|t−t ′|<ξφ

|〈G(X)t ′, φ〉 − 〈G(X)t , φ〉|

≤ sup
r,r ′,|r−r ′|<ηφ

sup
t,t ′,|t−t ′|<δφ

|GX
φ (t ′, r ′) − GX

φ (t, r)| < ε.

Thus, G(X) ∈ C([0, T ],S′) since the map t �→ 〈G(X)t , φ〉 is continuous for all
φ ∈ S.

Let us now show the continuity of G. Let {Xn}n∈N∗ be a sequence of
D([0, T ],S′) tending to X. In particular, for all φ ∈ S, {(〈Xn

t ,φ〉)t≥0}n∈N∗ tends
in D([0, T ],R) to (〈Xt,φ〉)t≥0, and thus supn∈N∗ supt≤T |〈Xn

t ,φ〉| < ∞. Hence,
in view of the Banach–Steinhaus theorem,

H := {Xn
t , n ∈ N, t ∈ Q ∩ [0, T ]}
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is equicontinuous. Therefore, for all φ ∈ S,

sup
t≤T

|〈Xn
t − Xt,φ〉| −→

n→∞ 0,

and consequently, for all k, all collection {φi, i = 1, . . . , k} of S and all i ≤ k,

sup
t≤T

max
i=1,...,k

|〈Xn
t − Xt,φi〉| −→

n→∞ 0.

The latter means that for all semi-norm pw of the weak topology,

sup
t≤T

pw(Xn
t − Xt) −→

n→∞ 0.

Thus, in view of Pietsch’s theorem ([23], Proposition 0.6.7, page 9), for all pre-
compact set K of S,

sup
t≤T

sup
φ∈K

|〈Xn
t − Xt,φ〉| −→

n→∞ 0.

This result can be applied for a fixed φ ∈ S to the collection {τrφ, r ∈ [0, T ]}
(which is a pre-compact set of S from Lemma 1) to obtain

sup
t≤T

sup
r≤T

|〈Xn
t − Xt, τrφ〉| −→

n→∞ 0.

It follows that G is continuous, since

sup
t≤T

|〈G(Xn)t − G(X)t , φ〉| = sup
t≤T

|〈Xn
t − Xt, τtφ〉|

≤ sup
t≤T

sup
r≤T

|〈Xn
t − Xt, τrφ〉| −→

n→∞ 0. �

PROPOSITION 4. The mapping N defined by (3) is continuous from D([0, T ],
S′) into C([0, T ],S′).

PROOF. That N takes values in C([0, T ],S′) can be shown similarly to Propo-
sition 3. For the continuity of N , remark that the mapping H defined by (2) is con-
tinuous from D([0, T ],S′) into C([0, T ],S′) since, as well known, the mapping
(Xt)t≥0 �−→ (

∫ t
0 Xs ds)t≥0 is continuous from D([0, T ],R) into C([0, T ],R) for

the Skorokhod topology. The proof then proceeds as that of Proposition 3. �

6.2. Central limit theorem. Fix ξ, {λn}n∈N∗, λ, and {σn}n∈N∗ satisfying Hy-
pothesis 1. {μ̄n}n∈N∗ is the corresponding sequence of normalized profile pro-
cesses. From Theorem 2, {μ̄n}n∈N∗ tends in distribution to μ̄∗ in D([0,∞),M+

f ),
defined by (20). Throughout this section, we make the following additional as-
sumptions.
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HYPOTHESIS 2. √
n(λn − λ) −→

n→∞ 0.(29)

There exists Y0 ∈ S′, such that for all φ ∈ S,√
n〈μ̄n

0 − μ̄∗
0, φ〉 −→ 〈Y0, φ〉 in probability,(30)

√
n|〈ᾱn, I 〉 − 〈ᾱ∗, I 〉| −→

n→∞ 0.(31)

Let n ∈ N∗. Define the following processes for all t by

Yn
t = √

n(μ̄n
t − μ̄∗

t ),

Mn
t = √

nM̄n
t ,

An
t (φ,ψ) = λnt〈ᾱn, φψ〉, φ,ψ ∈ S.

The process Mn is an S′-valued Gn
t -martingale, hence, for all φ ∈ S, the

process (〈Mn
t , φ〉)t≥0 is a real square integrable martingale of increasing process

(An
t (φ,φ))t≥0 [by (19)].

LEMMA 3. Under Hypotheses 1 and 2, for all T > 0, the sequence {Mn}n∈N∗
converges in distribution to the martingale M of D([0, T ],S′), whose tensor-
quadratic process satisfies for all t ∈ [0, T ] and all φ,ψ ∈ S

<< M >>t(φ,ψ) = λt〈ᾱ∗, φψ〉.(32)

PROOF. We use the convergence criterion, Theorem A.3 in the Appendix. De-
fine for all t ≥ 0 and φ,ψ ∈ S

γt (φ,ψ) := λt〈ᾱ∗, φψ〉.
For all φ ∈ S, γ0(φ,φ) = 0 and for all n, ((〈Mn

t , φ〉)2 −An
t (φ,φ))t≥0 is a Gn

t -local
martingale, thus conditions (37) and (38) are verified. On the other hand, for all
T > 0 and ψ ∈ S, we have P-a.s. for all t ≤ T

An
t (φ,ψ) − γt (φ,ψ) = (λn − λ)t〈ᾱn, φψ〉 + λt〈ᾱn − ᾱ∗, φψ〉,

hence,

sup
t≤T

{An
t (φ,ψ) − γt (φ,ψ)}2

≤ 2T 2{(λn − λ)2‖φψ‖2∞ + λ2‖(φψ)′‖2∞〈ᾱn − ᾱ∗, I 〉} −→
n→∞ 0,

which proves (41) taking ψ := φ. Finally, for all T > 0, condition (40) is met since
(An

t (φ,φ))t≥0 ∈ C([0, T ],R) and

E
[

sup
t≤T

(〈Mn
t , φ〉 − 〈Mn

t−, φ〉)2
]
E

[
sup
t≤T

(〈μ̄n
t , φ〉 − 〈μ̄n

t−, φ〉)2
]

≤ ‖φ‖∞
n

−→
n→∞ 0,
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the jumps of (〈μ̄n
t , φ〉)t≥0 being a.s. of size less than ‖φ‖∞

n
: we have (39) as well.

Therefore, we can apply Theorem A.3 to state that

{(〈Mn
t , φ〉)t≥0}n∈N∗ �⇒ (Pt )t≥0 in D([0,∞),R),(33)

where P is a continuous martingale of increasing process (γt (φ,φ))t≥0. In par-
ticular, for all T > 0 and all φ ∈ S, {(〈Mn

t , φ〉)t≥0}n∈N∗ is tight in D([0, T ],R),
and hence (Theorem A.1 in the Appendix), {Mn}n∈N∗ is tight in D([0, T ],S′). All
subsequential limit M thus satisfies 〈Mt , φ〉 = Pt for all t ∈ [0, T ] and all φ ∈ S,
which means with (33) that {Mn}n∈N∗ tends in distribution to the martingale M of
D([0, T ],S′). Finally and according to the previous arguments,

{(< 〈Mn
. , φ〉, 〈Mn

. ,ψ〉 >t)t≥0}n∈N∗ = {(An
t (φ,ψ))t≥0}n∈N∗

tends to (<< M >>t(φ,ψ))t≥0 as well as to (γt (φ,ψ))t≥0, which completes the
proof. �

Consider now the Hilbert space L2(dᾱ∗). Since ᾱ∗ is a probability measure,
we have S ⊂ L2(dᾱ∗), and hence, (L2(dᾱ∗))′ ⊂ S′. Moreover, L2(dᾱ∗) admits a
countable basis, denoted {hi}i∈N. For all i ≥ 0 and all ψ ∈ L2(dᾱ∗), denote

ci(ψ) =
∫

ψ(x)hi(x) dᾱ∗(x),

the ith coordinate of ψ in that basis. We have the following result.

THEOREM 3. Under Hypotheses 1 and 2, for all T > 0, the sequence
{Yn}n∈N∗ tends in distribution in D([0, T ],S′) to the process Y∗ defined for all
t ≥ 0 and all φ ∈ S by

〈Y∗
t , φ〉 = 〈Y0, τtφ〉 + √

λ
∑
i≥0

∫ t

0
ci(τt−sφ) dBi

s,(34)

where {Bi}i≥0 is a sequence of independent real standard Brownian motions.

PROOF. For all n ∈ N and all t ∈ [0, T ], P-a.s.,

Yn
t = Yn

0 +
∫ t

0
(Yn

s )′ ds + √
n{λntᾱn − λtᾱ∗} + Mn

t .

Hence, (Yn
t )t≥0 solves a transport equation, and in view of Theorem 1, the above

equation amounts P-a.s. for all t ≤ T to

Yn
t = G(Yn

0)t + √
n{λntᾱn − λtᾱ∗} + Mn

t

+ √
nλnN(· ᾱn) − √

nλN(· ᾱ∗) + N(Mn)t

= G(Yn
0)t + √

n(λn − λ)tᾱn − λt
√

n(ᾱ∗ − ᾱn) + Mn
t(35)

+ √
n(λn − λ)N(· ᾱn)t − λ{N(

√
n · ᾱ∗)t − N(

√
n · ᾱn)t }

+ N(Mn)t ,
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where (Yn
0)t≥0 denotes the S′-valued process constantly equal to Yn

0 and · ᾱn (resp.
·ᾱ∗,

√
n · ᾱn,

√
n · ᾱ∗) denotes the S′-valued process (tᾱn)t≥0 [resp. (tᾱ∗)t≥0,

(
√

ntᾱn)t≥0, (
√

ntᾱ∗)t≥0]. First, from (30), for all φ ∈ S, ξ > 0,

P[|〈Yn
0 − Y0, φ〉| ≥ ξ ] −→

n→∞ 0.

Hence, in view of Corollary A.1 in the Appendix, we have that (Yn
0)t≥0 ⇒ (Y0)t≥0

in D([0, T ],S′). Thus, from Proposition 3 and the Continuous Mapping Theorem
(see [2]),

(G(Yn
0)t )t≥0 ⇒ (G(Y0)t )t≥0 in D([0, T ],S′).

On the other hand, we have

sup
0≤t≤T

√
n|λn − λ|t |〈ᾱn, φ〉| ≤ √

n|λn − λ|T ‖φ‖∞ −→
n→∞ 0,

sup
0≤t≤T

√
n|λn − λ||〈N(· ᾱn)t , φ

′〉| ≤ √
n|λn − λ|T 2‖φ′‖∞ −→

n→∞ 0,

sup
0≤t≤T

λt
√

n|〈ᾱ∗, φ〉 − 〈ᾱn, φ〉| ≤ λT
√

n‖φ′‖∞|〈ᾱ∗, I 〉 − 〈ᾱn, I 〉| −→
n→∞ 0.

Hence, the sequences {(λn − λ)
√

n · ᾱn}n∈N∗ , {(λn − λ)N(
√

n · ᾱn)}n∈N∗ and
{λ(

√
n · ᾱ∗ − √

n · ᾱn)}n∈N∗ converge to the null process (0)t≥0 of C([0, T ],S′).
The convergence of this last sequence implies in view of Proposition 4 that

λ
{
N

(√
n · ᾱ∗) − N

(√
n · ᾱn)} −→

n→∞(0)t≥0 in C([0, T ],S′).

Now, from Lemma 3, Mn �⇒ M in D([0, T ],S′), thus, in view of Proposition 4
and the Continuous Mapping Theorem, N(Mn) �⇒ N(M) in D([0, T ],S′). Con-
sequently, {Yn}n∈N∗ is tight and from (35), its limit in distribution Y∗ satisfies
P-a.s. for all t ∈ [0, T ]:

Y∗
t = G(Y0)t + Mt + N(M)t = τtY0 + Mt +

∫ t

0
τt−s(Ms)

′ ds.(36)

In view of (32), the process M reads M = √
λB(ᾱ∗), where B(ᾱ∗) is the cylin-

drical Brownian motion on (L2(dᾱ∗))′ (see [18]). Thus, from (36), we have for all
φ ∈ S and for all t

〈Y∗
t , φ〉 = 〈Y0, τtφ〉 + √

λ

{
〈B(ᾱ∗)t , φ〉 −

∫ t

0
〈B(ᾱ∗)s, τt−sφ

′〉ds

}

= 〈Y0, τtφ〉 + √
λ

∑
i≥0

{
ci(φ)Bi

t −
∫ t

0
ci(τt−sφ

′)Bi
s ds

}
,

where {Bi}i≥0 is a sequence of independent real standard Brownian motions (see
again [18]). Note that the latter series converges in L2(�) since φ ∈ L2(dᾱ∗).
Remark now that, for all i ≥ 0,

d(ci(τt−sφ))

ds
= ci(τt−sφ

′).
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Using Itô’s integration by parts formula, this yields to

ci(φ)Bi
t −

∫ t

0
ci(τt−sφ

′)Bi
s ds =

∫ t

0
ci(τt−sφ) dBi

s,

which completes the proof. �

6.3. Diffusion approximations of the performance processes. In this section
we show that Theorem 3 can be used to provide diffusion approximations for the
congestion, service and workload processes. The stochastic integrals on the right-
hand side of (34) make sense for any φ ∈ L2(dᾱ∗), hence, the process (Y∗

t )t≥0
takes values in (L2(dᾱ∗))′, provided that the limiting initial state Y0 belongs to
(L2(dᾱ∗))′. Showing that in that case the convergence announced in Theorem 3
holds in D([0, T ], (L2(dᾱ∗))′) is an open problem at this point, that is beyond
the scope of this paper. However, it is easily seen that under Hypothesis 1 the
limiting service time distribution ᾱ∗ is such that the functions 1R∗+ and 1R− be-

long to L2(dᾱ∗). Hence, diffusion approximations for the congestion and service
processes can be provided by the real processes obtained when fixing φ = 1R∗+ and
φ = 1R− in (34), that is, for all t ≥ 0,

〈Y∗
t ,1R∗+〉 = Y0((t,+∞)) + √

λ
∑
i≥0

∫ t

0

(∫ +∞
t−s

hi(x) dᾱ∗(x)

)
dBi

s

and

〈Y∗
t ,1R−〉 = Y0((−∞, t]) + √

λ
∑
i≥0

∫ t

0

(∫ t−s

0
hi(x) dᾱ∗(x)

)
dBi

s .

Moreover, provided that
∫ +∞

0 x2 dᾱ∗(x) < ∞ (i.e., the limiting service time has
a finite second moment), a diffusion approximation for the workload process is
given for all t ≥ 0 by

〈Y∗
t , I1R∗+〉 =

∫ +∞
t

(x − t) dY0(x)

+ √
λ

∑
i≥0

∫ t

0

(∫ +∞
t−s

(x + s − t)hi(x) dᾱ∗(x)

)
dBi

s .

Assume, for example, that ᾱ∗ is the exponential distribution ε(1) [which is the
limiting distribution obtained when taking σn ∼ ε(1/n) for all n ∈ N∗]. In that
case, it is well known that a possible {hi}i∈N is given by the sequence of Laguerre’s
polynomials, defined for all i ≥ 0 by

hi(x) = ex

i!
di

dxi
(e−xxi).
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Then a diffusion approximation of the congestion process (and accordingly, of the
service and workload processes) is given for all t ≥ 0 by

〈Y∗
t ,1R∗+〉 = Y0((t,+∞)) + √

λ
∑
i≥0

∫ t

0

(∫ +∞
t−s

1

i!
di

dxi
(e−xxi) dx

)
dBi

s .

APPENDIX: TIGHTNESS AND WEAK CONVERGENCE ON
FUNCTIONAL SPACES

Let us recall some results about tightness and weak convergence on metric
spaces.

THEOREM A.1 (cf. [19], Theorem 4.1). Let F be a nuclear Fréchet space,
F ′ be its topological dual, and {Xn}n∈N∗ be a sequence of D([0, T ],F ′)-valued
r.v. Then {Xn}n∈N∗ is tight if for all φ ∈ F , the sequence {(〈Xn

t ,φ〉)t≥0}n∈N∗ is
tight in D([0, T ],R).

This shows, in particular, since S is a nuclear Fréchet space, that the tightness of
{Xn}n∈N∗ in D([0, T ],S′) is granted by that of {(〈Xn,φ〉)t≥0}n∈N∗ for all φ ∈ S.
Moreover, since S is naturally a separating class of its topological dual S′, we have
the following:

COROLLARY A.1. For all sequence {Xn}n∈N∗ of D([0, T ],S′), Xn �⇒ X if,
for all φ ∈ S, (〈Xn

t ,φ〉)t≥0 �⇒ (〈Xt,φ〉)t≥0 in D([0, T ],S′).

The space M+
f has no such good topological properties as that of S′. Neverthe-

less, a tightness criterion is established for sequences of M+
f -valued processes.

THEOREM A.2 (Jakubowski’s criterion, cf. [5], Theorem 3.6.4). The sequence
{Xn}n∈N∗ of D([0, T ],M+

f ) is tight if the following two conditions hold:

C.1. For all φ ∈ C1
b , the sequence {(〈Xn

t ,φ〉)t≥0}n∈N∗ is tight in D([0,∞),R),
C.2. For all T > 0 and 0 < η < 1, there exists a compact subset KT ,η of M+

f

such that

lim inf
n→∞ P

[
Xn

t ∈ KT ,η ∀t ∈ [0, T ]] ≥ 1 − η.

Let us finally give the following result, which establishes a criterion for the
convergence in distribution of a sequence of real processes to a diffusion process.

THEOREM A.3 ([10], Theorem 1.4). Let {Rn} and {An} be two sequences of
D([0,∞),R), and an increasing function γ ∈ D([0,∞),R) such that

Rn(0) = 0 and γ (0) = 0,(37)
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Rn and (Rn)2 − An are two Ft − local martingales,(38)

and for all T > 0,

E
[

sup
t<T

{Rn(t) − Rn(t−)}2
]

−→
n→∞ 0,(39)

E
[

sup
t<T

{An(t) − An(t−)}
]

−→
n→∞ 0,(40)

∀t > 0,∀ε > 0 P[{An(t) − γ (t)} > ε] −→
n→∞ 0.(41)

Then, Yn tends in distribution to a continuous martingale of increasing process
(γ (t))t≥0.
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