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Consider an N × n random matrix Yn = (Y n
ij ) with entries given by

Yn
ij = σij (n)√

n
Xn

ij ,

the Xn
ij being centered, independent and identically distributed random vari-

ables with unit variance and (σij (n);1 ≤ i ≤ N,1 ≤ j ≤ n) being an array of
numbers we shall refer to as a variance profile. In this article, we study the
fluctuations of the random variable

log det(YnY ∗
n + ρIN ),

where Y ∗ is the Hermitian adjoint of Y and ρ > 0 is an additional parame-
ter. We prove that, when centered and properly rescaled, this random variable
satisfies a central limit theorem (CLT) and has a Gaussian limit whose pa-
rameters are identified whenever N goes to infinity and N

n → c ∈ (0,∞).
A complete description of the scaling parameter is given; in particular, it is
shown that an additional term appears in this parameter in the case where the
fourth moment of the Xij ’s differs from the fourth moment of a Gaussian
random variable. Such a CLT is of interest in the field of wireless communi-
cations.

1. Introduction.

The model and the statistics. Consider an N × n random matrix Yn = (Y n
ij )

whose entries are given by

Yn
ij = σij (n)√

n
Xn

ij ,(1.1)

where (σij (n),1 ≤ i ≤ N,1 ≤ j ≤ n) is a uniformly bounded sequence of real
numbers and the random variables Xn

ij are complex, centered, independent and
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identically distributed (i.i.d.) with unit variance and finite eighth moment. Consider
the following linear statistics of the eigenvalues:

In(ρ) = 1

N
log det(YnY

∗
n + ρIN) = 1

N

N∑
i=1

log(λi + ρ),

where IN is the N ×N identity matrix, ρ > 0 is a given parameter and the λi ’s are
the eigenvalues of matrix YnY

∗
n . This functional, known as the mutual information

for multiple antenna radio channels, is very popular in wireless communications.
Understanding its fluctuations and, in particular, being able to approximate its stan-
dard deviation is of major interest for various purposes such as, for instance, the
computation of the so-called outage probability.

Presentation of the results. The purpose of this article is to establish a central
limit theorem (CLT) for In(ρ) whenever n → ∞ and N

n
→ c ∈ (0,∞).

The centering procedure. In the companion paper [17], it has been proven that
there exists a sequence of deterministic probability measures (πn) such that the
mathematical expectation EIn(ρ) satisfies

EIn(ρ) −
∫

log(λ + ρ)πn(dλ) −→
n→∞ 0.

Moreover,
∫

log(λ + ρ)πn(dλ) has a closed-form formula (see Section 2.3) and
is easier to compute2 than EIn (whose evaluation would rely on massive Monte
Carlo simulations). Accordingly, in this article, we study the fluctuations of

1

N
log det(YnY

∗
n + ρIN) −

∫
log(ρ + t)πn(dt)

and prove that this quantity, properly rescaled, converges in distribution to a
Gaussian random variable. Although phrased differently, such a centering proce-
dure relying on a deterministic equivalent is used in [1] and [3].

In order to prove the CLT, we separately study the quantity N(In(ρ)−EIn(ρ)),
from which the fluctuations arise, and the quantity N(EIn(ρ) − ∫

log(λ +
ρ)πn(dλ)), which yields a bias.

The fluctuations. We shall prove in this paper that the variance �2
n of

N(In(ρ) − EIn(ρ)) takes a remarkably simple closed-form expression. In fact,
there exists an n × n deterministic matrix An (described in Theorem 3.1) whose
entries depend on the variance profile (σij ) such that the variance takes the form

�2
n = − log det(In − An) + κ TrAn,

2This is especially so in the important case where the variance profile is separable, that is, where

σ 2
ij (n) can be written as σ 2

ij (n) = di(n)d̃j (n).
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where κ = E|X11|4 − 2 is the fourth cumulant of the complex variable X11 and the
CLT can be expressed as follows:

N

�n

(In − EIn)
L−→

n→∞N (0,1).

The presence in the variance of a term directly dependent on the cumulant of the
variable X11 (κ = EX4

11 − 3EX2
11 if X11 is real; κ = E|X11|4 − 2E|X11|2 if X11

is complex) can be traced back to the article by Khorunzhy, Khoruzhenko and
Pastur [21], formula (I.15), and also appears in the recent paper by Anderson and
Zeitouni [1]. In the case where κ = 0 (which happens if Xij is, e.g., a complex
Gaussian random variable), the variance has the log-form �2

n = log det(In − An).
This has already been noticed for different models in the engineering literature
by Moustakas, Simon and Sengupta [23] and Taricco [30]; see also Hachem et al.
in [14].

The bias. It is proved in this paper that there exists a deterministic quantity
Bn(ρ) (described in Theorem 3.3) such that

N

(
EIn(ρ) −

∫
log(λ + ρ)πn(dλ)

)
− Bn(ρ) −→

n→∞ 0.

If κ = 0, then Bn(ρ) = 0 and there is no bias in the CLT.

The literature. Central limit theorems have been widely studied for various
models of random matrices and for various classes of linear statistics of the eigen-
values in the physics, engineering and mathematical literature.

In the mathematical literature, CLTs for Wigner matrices can be traced back to
Girko [9] (see also [12]). Results for this class of matrices have also been obtained
by Khorunzhy, Khoruzhenko and Pastur [21], Johansson [19], Sinai and Sochnikov
[27], Soshnikov [29] and Cabanal-Duvillard [7]. For band matrices, let us mention
the papers by Khorunzhy, Khoruzhenko and Pastur [21], Boutet de Monvel and
Khorunzhy [5], Guionnet [13] and Anderson and Zeitouni [1]. The case of Gram
matrices has been studied in Jonsson [20] and Bai and Silverstein [3]. Fluctuations
for Wigner and Wishart matrices have also been studied by Mingo and Speicher
in [22] with the help of free probability tools. For a more detailed overview, the
reader is referred to the introduction in [1]. In the physics literature, so-called
replica methods, as well as saddle-point methods, have long been a popular tool to
compute the moments of the limiting distributions related to the fluctuations of the
statistics of the eigenvalues.

Previous results and methods have recently been exploited in the engineering
literature, with the growing interest in random matrix models for wireless commu-
nications (see the seminal paper by Telatar [31] and the subsequent papers of Tse
and co-workers [32, 33]; see also the monograph by Tulino and Verdu [34] and the
references therein). One main interest lies in the study of the convergence and the
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fluctuations of the mutual information 1
N

log det(YnY
∗
n + ρIN) for various models

of matrices Yn. General convergence results have been established by the authors
in [15–17] while fluctuation results based on Bai and Silverstein [3] have been
developed in Debbah and Müller [8] and Tulino and Verdu [35]. Other fluctuation
results, based either on the replica method or on saddle-point analysis have been
developed by Moustakas, Sengupta and coauthors [23, 24] and Taricco [30]. In a
different fashion, and extensively based on the Gaussianity of the entries, a CLT
has been proven in Hachem et al. [14].

Comparison with existing work. There are many overlaps between this work
and other works in the literature, in particular, with the paper by Bai and Silverstein
[3] and the paper by Anderson and Zeitouni [1] (although the latter is primarily
devoted to band matrix models, i.e., symmetric matrices with a symmetric variance
profile). The computation of the variance and the establishing of a closed-form
formula significantly extend the results obtained in [14].

In this paper, we deal with complex variables, which are more relevant for wire-
less communication applications. The case of real random variables would have
led to very similar computation, the cumulant κ = E|X|4 − 2 being replaced by
κ̃ = EX4 − 3. In [1], Anderson and Zeitouni deal with band matrices with real
variables. Due to the complex nature of the variables herein, the standard trick
of considering the symmetric matrix

( 0 X
X∗ 0

)
to study the spectral distribution of

XX∗ does not help and one cannot rely on the CLT in [1]. Moreover, we sub-
stantially relax the moment assumptions concerning the entries with respect to [1],
where the existence of moments of all orders is required.3 In this paper, we shall
only assume the finiteness of the eighth moment. Bai and Silverstein [3] consider
the model T

1/2
n XnX

∗
nT

1/2
n , where the entries of Xn are i.i.d. and have Gaussian

fourth moment. This assumption can be skipped in our framework, where a good
understanding of the behavior of the individual diagonal entries of the resolvent
(−zIn + YnY

∗
n )−1 enables us to deal with non-Gaussian entries.

On the other hand, it must be noticed that we establish the CLT for the single
functional log det(YnY

∗
n + ρIN) and do not provide results for a general class of

functionals as in [1] and [3]. We do believe, however, that the computations per-
formed in this article are a good starting point to address this issue.

Outline of the article.

Nonasymptotic vs. asymptotic results. As one may check in Theorems 3.1,
3.2 and 3.3, we have deliberately chosen to provide nonasymptotic (i.e., depend-
ing on n) deterministic formulas for the variance and the bias that appear in the

3However, provided one is willing to make strong moment and distribution assumptions and con-
sider real, rather than complex, random variables, one can, in principle, get a CLT for I from [1],
although the closed-form formula for the variance obtained here would still require a specific effort.
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fluctuations of In(ρ). This approach has at least two advantages: nonasymptotic
formulas exist for very general variance profiles (σij (n)) and provide a natural
discretization which can easily be implemented. In the case where the variance
profile is the sampling of some continuous function, that is, σij (n) = σ(i/N, j/n)

(we shall refer to this as the existence of a limiting variance profile), the determin-
istic formulas converge as n goes to infinity (see Section 4) and one must consider
Fredholm determinants in order to express the results.

The general approach. The approach developed in this article is conceptually
simple. The quantity In(ρ)− EIn(ρ) is decomposed into a sum of martingale dif-
ferences; we then systematically approximate random quantities such as quadratic
forms xT Ax, where x is some random vector and A is some deterministic matrix,
by their deterministic counterparts 1

n
TraceA (in the case where the entries of x

are i.i.d. with variance 1
n

) as the size of the vectors and the matrices goes to in-
finity. A careful study of the deterministic quantities that arise, mainly based on
(deterministic) matrix analysis, is carried out and yields the closed-form formula
for the variance. The martingale method which is used to establish the fluctua-
tions of In(ρ) can be traced back to Girko’s REFORM (REsolvent, FORmula and
Martingale) method (see [9, 12]) and is close to the one developed in [3].

Contents. In Section 2, we introduce the main notation, provide the main as-
sumptions and recall all of the first-order results [deterministic approximation of
EIn(ρ)] needed in the expression of the CLT. In Section 3, we state the main
results of the paper: definition of the variance �2

n (Theorem 3.1); asymptotic be-
havior (fluctuations) of N(In(ρ) − EIn(ρ)) (Theorem 3.2); asymptotic behavior
(bias) of N(EIn(ρ) − ∫

log(ρ + t)πn(dt)) (Theorem 3.3). Section 5 is devoted to
the proof of Theorem 3.1, Section 6 to the proof of Theorem 3.2 and Section 7 to
the proof of Theorem 3.3.

2. Notation, assumptions and first-order results.

2.1. Notation and assumptions. Let N = N(n) be a sequence of integers such
that

lim
n→∞

N(n)

n
= c ∈ (0,∞).

In the sequel, we shall consider an N ×n random matrix Yn with individual entries

Yn
ij = σij (n)√

n
Xn

ij ,

where Xn
ij are complex centered i.i.d random variables with unit variance and

(σij (n);1 ≤ i ≤ N,1 ≤ j ≤ n) is a triangular array of real numbers. Denote by
var(Z) the variance of the random variable Z. Since var(Y n

ij ) = σ 2
ij (n)/n, the fam-

ily (σij (n)) will be referred to as a variance profile.
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The main assumptions.

ASSUMPTION A1. The random variables (Xn
ij ;1 ≤ i ≤ N,1 ≤ j ≤ n,n ≥ 1)

are complex, independent and identically distributed. They satisfy

EXn
ij = E(Xn

ij )
2 = 0, E|Xn

ij |2 = 1 and E|Xn
ij |8 < ∞.

ASSUMPTION A2. There exists a finite positive real number σmax such that
the family of real numbers (σij (n),1 ≤ i ≤ N,1 ≤ j ≤ n,n ≥ 1) satisfies

sup
n≥1

max
1≤i≤N

1≤j≤n

|σij (n)| ≤ σmax.

ASSUMPTION A3. There exists a real number σ 2
min > 0 such that

lim inf
n≥1

min
1≤j≤n

1

n

N∑
i=1

σ 2
ij (n) ≥ σ 2

min.

Sometimes we shall assume that the variance profile is obtained by sampling a
function on the unit square of R

2. This helps to obtain limiting expressions and
limiting behaviors (cf. Theorem 2.5).

ASSUMPTION A4. There exists a continuous function σ 2 : [0,1] × [0,1] →
(0,∞) such that σ 2

ij (n) = σ 2(i/N, j/n).

Remarks related to the assumptions.

1. One may readily relax the assumption N
n

→ c ∈ (0,∞) and assume instead that

0 < lim inf
n

N

n
≤ lim sup

n

N

n
< ∞,

as done in [14]. We stick to the initial assumption in order to remain coherent
with the companion paper [17].

2. Using truncation arguments à la Bai and Silverstein [2, 25, 26], one may lower
the moment assumption related to the Xij ’s in Assumption A1.

3. Obviously, Assumption A3 holds if σ 2
ij is uniformly lower bounded by some

nonnegative quantity.
4. Obviously, Assumption A4 implies both Assumptions A2 and A3. When As-

sumption A4 holds, we shall say that there exists a limiting variance profile.
5. If necessary, Assumption A3 can be slightly improved by stating

max

(
lim inf

n≥1
min

1≤j≤n

1

n

N∑
i=1

σ 2
ij (n), lim inf

n≥1
min

1≤i≤N

1

n

n∑
j=1

σ 2
ij (n)

)
> 0.

In the case where the first liminf is zero, one may note that log det(YnY
∗
n +

ρIN) = log det(Y ∗
n Yn + ρIn) + (n − N) logρ and consider Y ∗

n Yn instead.
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Notation. The indicator function of the set A will be denoted by 1A(x), its
cardinality by #A. As usual, R

+ = {x ∈ R :x ≥ 0} and C
+ = {z ∈ C : Im(z) > 0}.

We denote by
P→ the convergence in probability of random variables and by

D→
the convergence in distribution of probability measures.

Denote by diag(ai; 1 ≤ i ≤ k) the k × k diagonal matrix whose diagonal en-
tries are the ai ’s. Element (i, j) of matrix M will be denoted either mij or [M]ij ,
depending on the notational context. Denote by MT the matrix transpose of M ,
by M∗ its Hermitian adjoint, by Tr(M) its trace, by det(M) its determinant (if
M is square) and by FMM∗

the empirical distribution function of the eigenvalues
of MM∗, that is,

FMM∗
(x) = 1

N
#{i :λi ≤ x},

where MM∗ has dimensions N × N and the λi ’s are the eigenvalues of MM∗.
When dealing with vectors, ‖ · ‖ will refer to the Euclidean norm and ‖ · ‖∞, to

the max (or �∞-) norm. In the case of matrices, ‖ · ‖ will refer to the spectral norm
and ‖| · ‖|∞ to the maximum row sum norm (referred to as the max-row norm),
that is, ‖|M‖|∞ = max1≤i≤N

∑N
j=1 |[M]ij | when M is a N × N matrix. We shall

denote by r(M) the spectral radius of matrix M .
When no confusion can occur, we shall often drop subscripts and superscripts n

for readability.

2.2. Stieltjes transforms and resolvents. In this paper, Stieltjes transforms of
probability measures play a fundamental role. Let ν be a bounded nonnegative
measure over R. Its Stieltjes transform f is defined as

f (z) =
∫

R

ν(dλ)

λ − z
, z ∈ C \ supp(ν),

where supp(ν) is the support of the measure ν. We shall denote by S(R+) the set
of Stieltjes transforms of probability measures with support in R

+.
In the following proposition, we list the main properties of the Stieltjes trans-

forms that will be needed in the paper.

PROPOSITION 2.1. The following properties hold true.

1. If f is the Stieltjes transform of a probability measure ν on R, then:

• the function f is analytic over C \ supp(ν);
• if f (z) ∈ S(R+), then |f (z)| ≤ (d(z,R

+))−1, where d(z,R
+) denotes the

distance from z to R
+.

2. Let Pn and P be probability measures over R and denote by fn and f their
Stieltjes transforms. Then,(∀z ∈ C

+, fn(z) −→
n→∞f (z)

) ⇒ Pn
D−→

n→∞ P.
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There are very close ties between the Stieltjes transform of the empirical distrib-
ution of the eigenvalues of a matrix and the resolvent of this matrix. Let M be an
N × n matrix. The resolvent of MM∗ is defined as

Q(z) = (MM∗ − z IN)−1 = (qij (z))1≤i,j,≤N, z ∈ C − R
+.

The following properties are straightforward.

PROPOSITION 2.2. If Q(z) is the resolvent of MM∗, then:

1. The function hn(z) = 1
N

TrQ(z) is the Stieltjes transform of the empirical dis-
tribution of the eigenvalues of MM∗ and, since the eigenvalues of this matrix
are nonnegative, hn(z) ∈ S(R+).

2. For every z ∈ C − R
+, ‖Q(z)‖ ≤ (d(z,R

+))−1, and, in particular, if ρ > 0,
then ‖Q(−ρ)‖ ≤ ρ−1.

2.3. First order results: A primer. Recall that In(ρ) = 1
N

log det(YnY
∗
n + ρI)

and let ρ > 0. Below, we shall recall some results related to the asymptotic behav-
ior of EIn(ρ). As

In(ρ) = 1

N

N∑
i=1

log(λi + ρ) =
∫ ∞

0
log(λ + ρ)dFYnY ∗

n (λ),

where the λi’s are the eigenvalues of YY ∗, the approximation of EIn(ρ) is closely
related to the “first-order” approximation of FYnY ∗

n as n → ∞ and N/n → c > 0.
The following theorem summarizes the first-order results needed in the sequel.

It is a direct consequence of [17], Sections 2 and 4 (see also [11]).

THEOREM 2.3 ([11, 17]). Consider the family of random matrices (YnY
∗
n )

and assume that Assumptions A1 and A2 hold. Then, the following hold true:

1. The system of N functional equations

ti(z) = 1

−z + (1/n)
∑n

j=1
σ 2

ij (n)

1+(1/n)
∑N

�=1 σ 2
�j (n)t�(z)

(2.1)

admits a unique solution (t1(z), . . . , tN(z)) in S(R+)N ; in particular, mn(z) =
1
N

∑N
i=1 ti(z) belongs to S(R+) and there exists a probability measure πn on

R
+ such that

mn(z) =
∫ ∞

0

πn(dλ)

λ − z
.

2. For every continuous and bounded function g on R
+,∫

R+
g(λ)dFYnY ∗

n (λ) −
∫

R+
g(λ)πn(dλ) −→

n→∞ 0 a.e.
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3. The function Vn(ρ) = ∫
R+ log(λ + ρ)πn(dλ) is finite for every ρ > 0 and

EIn(ρ) − Vn(ρ) −→
n→∞ 0 where In(ρ) = 1

N
log det(YnY

∗
n + ρIN);

moreover, Vn(ρ) admits the closed-form formula

Vn(ρ) = − 1

N

N∑
i=1

log ti(−ρ) + 1

N

n∑
j=1

log

(
1 + 1

n

N∑
�=1

σ 2
�j (n)t�(−ρ)

)

− 1

Nn

∑
i=1:N,j=1:n

σ 2
ij (n)ti(−ρ)

1 + (1/n)
∑N

�=1 σ 2
�j (n)t�(−ρ)

,

where the ti ’s are defined above.

Theorem 2.3 follows partly from the following lemma, which will be often in-
voked later on and whose statement emphasizes the symmetry between the study
of YnY

∗
n and Y ∗

n Yn. Denote by Qn(z) and Q̃n(z) the resolvents of YnY
∗
n and Y ∗

n Yn,
that is,

Qn(z) = (YnY
∗
n − zIN)−1 = (qij (z))1≤i,j≤N, z ∈ C − R

+,

Q̃n(z) = (Y ∗
n Yn − zIn)

−1 = (q̃ij (z))1≤i,j≤n, z ∈ C − R
+.

LEMMA 2.4. Consider the family of random matrices (YnY
∗
n ) and assume that

Assumptions A1 and A2 hold. Consider the following system of N + n equations:⎧⎪⎪⎪⎨⎪⎪⎪⎩
ti,n(z) = −1

z(1 + (1/n)Tr D̃i,nT̃n(z))
, for 1 ≤ i ≤ N ,

t̃j,n(z) = −1

z(1 + (1/n)TrDj,nTn(z))
, for 1 ≤ j ≤ n,

where

Tn(z) = diag(ti,n(z),1 ≤ i ≤ N), T̃n(z) = diag(t̃j,n(z),1 ≤ j ≤ n),

Dj,n = diag(σ 2
ij (n),1 ≤ i ≤ N), D̃i,n = diag(σ 2

ij (n),1 ≤ j ≤ n).

The following then hold true:

(a) ([17], Theorem 2.4) this system admits a unique solution

(t1,n, . . . , tN,n, t̃1,n, . . . , t̃n,n) ∈ S(R+)N+n;
(b) ([17], Lemmas 6.1 and 6.6) for every sequence Un of N × N diago-

nal matrices and every sequence Ũn of n × n diagonal matrices such as
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supn max(‖Un‖,‖Ũn‖) < ∞, the following limits hold true almost surely:

lim
n→∞,N/n→c

1

N
Tr

(
Un

(
Qn(z) − Tn(z)

)) = 0 ∀z ∈ C − R
+;

lim
n→∞,N/n→c

1

n
Tr

(
Ũn

(
Q̃n(z) − T̃n(z)

)) = 0 ∀z ∈ C − R
+.

In the case where there exists a limiting variance profile, the results can be
expressed in the following manner.

THEOREM 2.5 ([6, 10, 16]). Consider the family of random matrices (YnY
∗
n )

and assume that Assumptions A1 and A4 hold. Then:

1. The functional equation

τ(u, z) =
(
−z +

∫ 1

0

σ 2(u, v)

1 + c
∫ 1

0 σ 2(x, v)τ (x, z) dx
dv

)−1

(2.2)

admits a unique solution among the class of functions � : [0,1] × C \ R → C

such that u �→ �(u, z) is continuous over [0,1] and z �→ �(u, z) belongs to
S(R+).

2. The function f (z) = ∫ 1
0 τ(u, z) du, where τ(u, z) is defined above, is the Stielt-

jes transform of a probability measure P; moreover, we have

FYnY ∗
n

D−→
n→∞ P a.s.

REMARK 2.1. If one is interested in the Stieltjes function related to the limit
of FY ∗

n Yn , then one must introduce the following function τ̃ , which is the counter-
part of τ :

τ̃ (v, z) =
(
−z + c

∫ 1

0

σ 2(t, v)

1 + ∫ 1
0 σ 2(t, s)τ̃ (s, z) ds

dt

)−1

.

Functions τ and τ̃ are related via the following equations:⎧⎪⎪⎪⎨⎪⎪⎪⎩
τ(u, z) = −

[
z

(
1 +

∫ 1

0
σ 2(u, v)τ̃ (v, z) dv

)]−1

,

τ̃ (v, z) = −
[
z

(
1 + c

∫ 1

0
σ 2(t, v)τ (t, z) dt

)]−1

.

(2.3)

REMARK 2.2. We briefly indicate here how Theorems 2.3 and 2.5 above can
be deduced from Lemma 2.4. As 1

N
TrQn(z) is the Stieltjes transform of FYnY ∗

n ,
Theorem 2.4(b) with Un = IN yields 1

N
TrQn(z) − 1

N
TrTn(z) → 0 almost surely.

When a limiting variance profile exists, as described by Assumption A4, one can
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easily show that 1
N

TrTn(z) converges to the Stieltjes transform f (z) given by
Theorem 2.5 [equation (2.2) is the “continuous equivalent” of equations (2.1)].
Thanks to Proposition 2.1(2), we then obtain the almost sure weak convergence of
FYnY ∗

n to F . In the case where Assumption A4 is not satisfied, one can similarly
prove that FYnY ∗

n is approximated by πn, as stated in Theorem 2.3(2).

3. The central limit theorem for In(ρ). When given a variance profile, one
can consider the ti ’s defined in Theorem 2.3(1). Recall that

T (z) = diag(ti(z),1 ≤ i ≤ N) and Dj = diag(σ 2
ij ,1 ≤ i ≤ N).

We shall first define, in Theorem 3.1, a nonnegative real number that will play the
role of the variance in the CLT. We then state the CLT in Theorem 3.2. Theorem 3.3
deals with the bias term N(EI − V ).

THEOREM 3.1 (Definition of the variance). Consider a variance profile (σij )

which fulfills Assumptions A2 and A3 and the related ti ’s defined in Theo-
rem 2.3(1). Let ρ > 0.

1. If An = (a�,m) is the matrix defined by

a�,m = 1

n

(1/n)TrD�DmT (−ρ)2

(1 + (1/n)TrD�T (−ρ))2 , 1 ≤ �,m ≤ n,

then the quantity Vn = − log det(In − An) is well defined.
2. Let Wn = TrAn and let κ be a real number4 satisfying κ ≥ −1. The sequence

(Vn + κWn) satisfies

0 < lim inf
n

(Vn + κWn) ≤ lim sup
n

(Vn + κWn) < ∞
as n → ∞ and N/n → c > 0. We shall write

�2
n

= − log det(I − An) + κ TrAn.

Proof of Theorem 3.1 is postponed to Section 5.
In the sequel, and for obvious reasons, we shall refer to matrix An as the vari-

ance matrix. In order to study the CLT for N(In(ρ) − Vn(ρ)), we decompose it
into a random term, from which the fluctuations arise,

N
(
In(ρ) − EIn(ρ)

) = log det(YnY
∗
n + ρIN) − E log det(YnY

∗
n + ρIN),

and a deterministic one, which yields a bias in the CLT,

N
(
EIn(ρ) − Vn(ρ)

) = E log det(YnY
∗
n + ρIN) − N

∫
log(λ + ρ)πn(dλ).

We can now state the CLT.

4In the sequel, κ is defined as κ = E|X11|4 − 2.
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THEOREM 3.2 (The CLT). Consider the family of random matrices (YnY
∗
n )

and assume that Assumptions A1, A2 and A3 hold true. Let ρ > 0, let κ =
E|X11|4 − 2 and let �2

n be given by Theorem 3.1. Then,

�−1
n

(
log det(YnY

∗
n + ρIN) − E log det(YnY

∗
n + ρIN)

) D−→
n→∞,N/n→c

N (0,1).

Proof of Theorem 3.2 is postponed to Section 6.
The asymptotic bias is described in the following theorem.

THEOREM 3.3 (The bias). Assume that the setting of Theorem 3.2 holds true.
Then:

1. For every ω ∈ [ρ,+∞), the system of n linear equations with unknown para-
meters (w�,n(ω);1 ≤ � ≤ n),

w�,n(ω) = 1

n

n∑
m=1

(1/n)TrD�DmT (−ω)2

(1 + (1/n)TrD�T (−ω))2 wm,n(ω) + p�,n(ω),(3.1)

with

p�,n(ω) = κω2 t̃�(−ω)2

(
ω

n

N∑
i=1

(
σ 2

i�ti(−ω)3

n
Tr D̃2

i T̃ (−ω)2
)

(3.2)

− t̃�(−ω)

n
TrD2

�T (−ω)2

)
,

admits a unique solution for n sufficiently large and, in particular, if κ = 0, then
p�,n = 0 and w�,n = 0.

2. If we let

βn(ω) = 1

n

n∑
�=1

w�,n(ω),(3.3)

then Bn(ρ)
= ∫ ∞

ρ βn(ω)dω is well defined; moreover,

lim sup
n

∫ ∞
ρ

|βn(ω)|dω < ∞;(3.4)

furthermore,

N
(
EIn(ρ) − Vn(ρ)

) − Bn(ρ) −→
n→∞,N/n→c

0.(3.5)

Proof of Theorem 3.3 is postponed to Section 7.
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REMARK 3.1 (The Gaussian case). In the case where the entries Xij are com-
plex Gaussian (i.e., with independent normal real and imaginary parts, each of
them centered with variance 2−1), κ = 0 and the CLT can be written as

N [− log det(I − An)]−1/2(
In(ρ) − Vn(ρ)

) D−→
n→∞,N/n→c

N (0,1).

4. The CLT for a limiting variance profile. In this section, we shall assume
that Assumption A4 holds, that is, σ 2

ij (n) = σ 2(i/N, j/n) for some continuous

nonnegative function σ 2(x, y). Recall the definitions (2.2) of the function τ and of
the ti ’s [defined in Theorem 2.3(1)]. In the sequel, we take ρ > 0, z = −ρ and let

τ(t)
= τ(t,−ρ). We first collect convergence results relating the ti ’s and τ .

LEMMA 4.1. Consider a variance profile (σij ) which fulfills Assumption A4.
Recall the definitions of the ti ’s and τ . Let ρ > 0 and let z = −ρ be fixed. The
following convergence results then hold true:

1. 1
N

∑N
i=1 tiδi/N

w−→
n→∞ τ(u) du, where

w→ stands for the weak convergence of mea-
sures;

2. supi≤N |ti − τ(i/N)| →
n→∞ 0.

3. 1
N

∑N
i=1 t2

i δi/N
w−→

n→∞ τ 2(u) du.

PROOF. The first item of the lemma follows from Lemma 2.4(b) together with
Theorem 2.3(3) of [16].

In order to prove item (2), one must compute

ti − τ(i/N) =
(
ρ + 1

n

n∑
j=1

σ 2(i/N, j/n)

1 + (1/n)
∑N

�=1 σ 2(�/N, j/n)t�

)−1

−
(
ρ +

∫ 1

0

σ 2(u, v)

1 + c
∫ 1

0 σ 2(x, v)τ (x) dx
dv

)−1

and use the convergence proved in the first part of the lemma. In order to prove
the uniformity over i ≤ N , one may recall that C[0,1]2 = C[0,1] ⊗ C[0,1],
which, in particular implies that for all ε > 0, there exist g� and h� such that
supx,y |σ 2(x, y) − ∑L

�=1 g�(x)h�(y)| ≤ ε. Details are left to the reader.
The convergence result stated in item (3) is a direct consequence of item (2).

�

4.1. A continuous kernel and its Fredholm determinant. Let K : [0,1]2 → R

be some nonnegative continuous function, which we shall refer to as a kernel. Con-
sider the associated operator (similarly denoted, with a slight abuse of notation)

K :C[0,1] → C[0,1],



2084 W. HACHEM, P. LOUBATON AND J. NAJIM

f �→ Kf (x) =
∫
[0,1]

K(x,y)f (y) dy.

One can then define (see, e.g., [28], Theorem 5.3.1) the Fredholm determinant
det(1 + λK), where 1 :f �→ f is the identity operator, as

det(1 − λK) =
∞∑

k=0

(−1)kλk

k!
∫
[0,1]k

K

(
x1 · · · xk

x1 · · · xk

) k⊗
i=1

dxi,(4.1)

where

K

(
x1 · · · xk

y1 · · · yk

)
= det(K(xi, yj ),1 ≤ i, j ≤ k)

for every λ ∈ C. One can define the trace of the iterated kernel as

TrKk =
∫
[0,1]k

K(x1, x2) · · ·K(xk−1, xk)K(xk, x1) dx1 · · ·dxk.

In the sequel, we shall focus on the following kernel:

K∞(x, y) = c
∫
[0,1] σ 2(u, x)σ 2(u, y)τ 2(u) du

(1 + c
∫
[0,1] σ 2(u, x)τ (u) du)2 .(4.2)

THEOREM 4.2 (The variance). Suppose that Assumptions A1 and A4 hold.
Let ρ > 0 and recall the definition of matrix An:

a�,m = 1

n

(1/n)
∑N

i=1 σ 2(i/N, �/n)σ 2(i/N,m/n)t2
i

(1 + (1/n)
∑N

i=1 σ 2(i/N, �/n)ti)2
, 1 ≤ �,m ≤ n.

Then:

1. TrAn →
n→∞ TrK∞;

2. det(In − An) →
n→∞ det(1 − K∞) and det(1 − K∞) �= 0;

3. if we let κ = E|X11|4 − 2, then

0 < − log det(1 − K∞) + κ TrK∞ < ∞.

PROOF. The convergence of TrAn to TrK∞ follows from Lemma 4.1(1), (3).
Details of the proof are left to the reader.

Let us introduce the following kernel:

Kn(x, y) = (1/n)
∑N

i=1 σ 2(i/N,x)σ 2(i/N,y)t2
i

(1 + (1/n)
∑N

i=1 σ 2(i/N,x)ti)2
.

One may note, in particular, that a�,m = 1
n
Kn(

�
n
, m

n
). Denote by ‖ · ‖∞ the supre-

mum norm for a function over [0,1]2 and by σ 2
max = ‖σ 2‖∞. Then,

‖Kn‖∞ ≤ N

n

σ 4
max

ρ2 and ‖K∞‖∞ ≤ c
σ 4

max

ρ2 .(4.3)

The following facts (whose proof is omitted) can be established:
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1. the family (Kn)n≥1 is uniformly equicontinuous;
2. for every (x, y), Kn(x, y) → K∞(x, y) as n → ∞.

In particular, Ascoli’s theorem implies the uniform convergence of Kn to K∞. It
is now a matter of routine to extend these results and to get

Kn

(
x1 · · · xk

y1 · · · yk

)
−→
n→∞K∞

(
x1 · · · xk

y1 · · · yk

)
(4.4)

uniformly over [0,1]2k . Using the uniform convergence (4.4) and a dominated
convergence argument, we obtain

1

nk

∑
1≤i1,...,ik≤n

Kn

(
i1/n · · · ik/n

i1/n · · · ik/n

)
−→
n→∞

∫
[0,1]k

K∞
(

x1 · · · xk

x1 · · · xk

) k⊗
i=1

dxi.

Now, writing the determinant det(In + λAn) explicitly and expanding it as a poly-
nomial in λ, we obtain

det(In − λAn) =
n∑

k=0

(−1)kλk

k!
(

1

nk

∑
1≤i1,...,ik≤n

Kn

(
i1/n · · · ik/n

i1/n · · · ik/n

))
.

Applying Hadamard’s inequality ([28], Theorem 5.2.1) to the determinants Kn(·)
and K∞(·) yields

1

nk

∑
1≤i1,...,ik≤n

Kn

(
i1/n · · · ik/n

i1/n · · · ik/n

)
≤ kk/2‖Kn‖k∞

(a)≤ kk/2Mk,

where (a) follows from (4.3). Similarly,∫
[0,1]k

K∞
(

x1 · · · xk

x1 · · · xk

) k⊗
i=1

dxi ≤ kk/2Mk.

Since the series
∑

k
Mkkk/2

k! |λ|k converges, a dominated convergence argument
yields the convergence

det(In + λAn) −→
n→∞ det(1 + λK∞)

and item (2) of the theorem is proved. Item (3) follows from Theorem 3.1(2) and
the proof of the theorem is complete. �

4.2. The CLT: Fluctuations and bias.

COROLLARY 4.3 (Fluctuations). Assume that Assumptions A1 and A4 hold.
If we let

�2∞ = − log det(1 − K∞) + κ TrK∞,
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then

N

�∞
(
In(ρ) − EIn(ρ)

)
= �−1∞

(
log det(YnY

∗
n + ρIN) − E log det(YnY

∗
n + ρIN)

) L−→
n→∞N (0,1).

PROOF. This follows easily from Theorem 3.2 and Theorem 4.2. �

Recall the definition of τ̃ (cf. Remark 2.1).

THEOREM 4.4 (The bias). Assume that the setting of Corollary 4.3 holds true.
Let ω ∈ [ρ,∞) and denote by p : [0,1] → R the quantity

p(x,ω) = κω2τ̃ 2(x,−ω)

{
ωc

∫ 1

0
σ 2(u, x)τ 3(u)

(∫ 1

0
σ 2(s, u)τ̃ 2(s) ds

)
du

− τ̃ (x)c

∫ 1

0
σ 2(u, x)τ 2(u) du

}
.

The following functional equation admits a unique solution:

w(x,ω) =
∫ 1

0

c
∫ 1

0 σ 2(u, x)σ 2(u, y)τ 2(u) du

(1 + c
∫ 1

0 σ 2(u, x)τ (u) du)2
w(y,ω)dy + p(x,ω).

Let β∞(ω) = ∫ 1
0 w(x,ω)dx. Then,

∫ ∞
ρ |β∞(ω)|dω < ∞. Moreover,

N
(
EIn(ρ) − Vn(ρ)

) −→
n→∞,N/n→c

B∞(ρ)
=

∫ ∞
ρ

β∞(ω)dω.(4.5)

The proof of Theorem 4.4, although technical, closely follows the classical
Fredholm theory as presented in, for instance, [28], Chapter 5. We sketch it below.

SKETCH OF PROOF OF THEOREM 4.4. The existence and uniqueness of
the functional equation follows from the fact that the Fredholm determinant
det(1 − K∞) differs from zero. In order to prove the convergence (4.5), one may
prove the convergence

∫ ∞
ρ βn → ∫ ∞

ρ β∞ (where βn is defined in Theorem 3.3) by
using an explicit representation for β∞ relying on the explicit representation of the
solution w via the resolvent kernel associated to K∞ (see, e.g., [28], Section 5.4)
and then approximating the resolvent kernel as done in the proof of Theorem 4.2.

�

4.3. The case of a separable variance profile. We now state a consequence
of Corollary 4.3 in the case where the variance profile is separable. Recall the
definitions of τ and τ̃ given in (2.3).
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COROLLARY 4.5 (Separable variance profile). Assume that Assumptions A1
and A4 hold. Assume, moreover, that ρ > 0 and that σ 2 is separable, that is, that

σ 2(x, y) = d(x)d̃(y),

where both d : [0,1] → (0,∞) and d̃ : [0,1] → (0,∞) are continuous functions.
Let

γ = c

∫ 1

0
d2(t)τ 2(t) dt and γ̃ =

∫ 1

0
d̃2(t)τ̃ 2(t) dt.

Then,

�2∞ = − log(1 − ρ2γ γ̃ ) + κρ2γ γ̃ .(4.6)

REMARK 4.1. In the case where the random variables Xij are standard com-
plex circular Gaussian (i.e., Xij = Uij + iVij with Uij and Vij independent, real,
centered Gaussian random variables with variance 2−1) and where the variance
profile is separable, we have

N
(
In(ρ) − Vn(ρ)

) L−→
n→∞N

(
0,− log(1 − ρ2γ γ̃ )

)
.

This result is in accordance with those in [23] and in [14].

PROOF OF COROLLARY 4.5. Recall the definitions of τ and τ̃ given in (2.3).
In the case where the variance profile is separable, the kernel K∞ can be written
as:

K∞(x, y) = cd̃(x)d̃(y)
∫
[0,1] d2(u)τ 2(u) du

(1 + cd̃(x)
∫
[0,1] d(u)τ(u) du)2

= ρ2γ d̃(x)d̃(y)τ̃ 2(x).

In particular, one can readily prove that TrK∞ = ρ2γ γ̃ . Since the kernel K∞(x, y)

is itself a product of a function depending on x and a function depending on y, the
determinant K∞

(x1 ··· xk

y1 ··· yk

)
is equal to zero for k ≥ 2 and the Fredholm determinant

can be written det(1 − K∞) = 1 − ∫
[0,1] K∞(x, x) dx = 1 − ρ2γ γ̃ . This yields

− log det(1 − A∞) + κ TrK∞ = − log(1 − ρ2γ γ̃ ) + κρ2γ γ̃ ,

which concludes the proof. �

5. Proof of Theorem 3.1. Recall the definition of the n × n variance ma-
trix An:

a�,m = 1

n2

TrD�DmT (−ρ)2

(1 + (1/n)TrD�T (−ρ))2 , 1 ≤ �,m ≤ n.

In the course of the proof of the CLT (Theorem 3.2), the quantity that will naturally
arise as a variance will turn out to be

�̃2
n = Ṽn + κWn(5.1)

(recall that Wn = TrAn), where Ṽn is introduced in the following lemma.
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LEMMA 5.1. Consider a variance profile (σij ) which fulfills Assumptions A2
and A3 and the related ti ’s defined in Theorem 2.3(1). Let ρ > 0 and consider the
matrix An defined above.

1. For 1 ≤ j ≤ n, the system of (n − j + 1) linear equations with unknown para-
meters (y(j)

�,n, j ≤ � ≤ n),

y(j)
�,n =

n∑
m=j+1

a�,my(j)
m,n + a�,j ,(5.2)

admits a unique solution for n sufficiently large.

Denote by Ṽn the sum of the first components of vectors (y(j)
�,n, j ≤ � ≤ n), that is,

Ṽn =
n∑

j=1

y(j)
j,n.

2. Let κ be a real number satisfying κ ≥ −1. The sequence (Ṽn + κWn) satisfies

0 < lim inf
n

(Ṽn + κWn) ≤ lim sup
n

(Ṽn + κWn) < ∞

as n → ∞ and N/n → c > 0.
3. The following holds true:

Ṽn + log det(In − An) −→
n→∞ 0.

Obviously, Theorem 3.1 is a by-product of Lemma 5.1. The remainder of the
section is devoted to the proof of this lemma.

We cast the linear system (5.2) into a matrix framework and denote by A
(j)
n

the (n − j + 1) × (n − j + 1) submatrix A
(j)
n = (a�,m)n�,m=j , and by A

0,(j)
n the

(n− j + 1)× (n− j + 1) matrix A
(j)
n , where the first column is replaced by zeros.

Denote by d(j)
n the (n − j + 1) × 1 vector

d(j)
n =

(
1

n

(1/n)TrD�DjT (−ρ)2

(1 + (1/n)TrD�T (−ρ))2

)n

�=j

.

This notation being introduced, the system can be rewritten as

y(j)
n = A0,(j)

n y(j)
n + d(j)

n ⇔ (
I − A0,(j)

n

)
y(j)

n = d(j)
n .(5.3)

The key issue that appears is to study the invertibility of matrix (I − A
0,(j)
n ) and

one should get some bounds on its inverse.
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5.1. Results related to matrices with nonnegative entries. The purpose of the
next lemma is to state some of the properties of matrices with nonnegative en-
tries that will appear to be satisfied by matrices A

0,(j)
n . We shall use the follow-

ing notation. Assume that M is a real matrix. By M � 0 (resp. M � 0) we mean
mij > 0 (resp. mij ≥ 0) for every element mij of M . We shall write M � M ′ (resp.
M � M ′) if M − M ′ � 0 (resp. M − M ′ � 0). If x and y are vectors, we similarly
write x � 0, x � 0 and x � y.

LEMMA 5.2. Let A = (a�,m)n�,m=1 be an n × n real matrix and u = (u�,1 ≤
� ≤ n), v = (v�,1 ≤ � ≤ n) be two real n × 1 vectors. Assume that A � 0, u � 0
and v � 0. Assume, furthermore, that the equation

u = Au + v

is satisfied. Then:

1. The spectral radius r(A) of A satisfies r(A) ≤ 1 − min(v�)
max(u�)

< 1.

2. The matrix In − A is invertible and its inverse (In − A)−1 satisfies

(In − A)−1 � 0 and [(In − A)−1]�� ≥ 1

for every 1 ≤ � ≤ n.
3. The max-row norm of the inverse is bounded: ‖|(In − A)−1‖|∞ ≤ max�(u�)

min�(v�)
.

4. If we consider the (n − j + 1) × (n − j + 1) submatrix A(j) = (a�m)n�,m=j and

denote by A0,(j) the matrix A(j) whenever the first column is replaced by zeros,
then properties (1) and (2) are valid for A0,(j) and∥∥∣∣(I(n−j+1) − A(j))−1∥∥∣∣∞ ≤ max1≤�≤n(u�)

min1≤�≤n(v�)
.

PROOF. Let α = 1 − min(v�)
max(u�)

. Since u � 0 and v � 0, α readily satisfies α < 1
and αu � u − v = Au which, in turn, implies that r(A) ≤ α < 1 by [18], Corol-
lary 8.1.29 and so (1) is proved. In order to prove (2), first note that for all m ≥ 1,
Am � 0. As r(A) < 1, the series

∑
m≥0 Am converges, the matrix In − A is in-

vertible and (In − A)−1 = ∑
m≥0 Am � In � 0. This, in particular, implies that

[(In −A)−1]�� ≥ 1 for every 1 ≤ � ≤ n and so (2) is proved. Now, u = (In −A)−1v

implies that for every 1 ≤ k ≤ n,

uk =
n∑

�=1

[(In − A)−1]k�v� ≥ min(v�)

n∑
�=1

[(In − A)−1]k�,

hence (3).
We shall first prove (4) for matrix A(j), then show how A0,(j) inherits A(j)’s

properties. As A � 0, one readily has A(j) � 0. In [18], matrix A(j) is called a
principal submatrix of A. In particular, r(A(j)) ≤ r(A), by [18], Corollary 8.1.20,
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which implies property (2) for A(j). Let Ã(j) be the matrix A(j) augmented with
zeros to reach the size of A. The inverse (In−j+1 −A(j))−1 is a principal submatrix
of (In − Ã(j))−1 � 0. Therefore, ‖|(I(n−j+1) − A(j))−1‖|∞ ≤ ‖|(In − Ã(j))−1‖|∞.
Since Am � (Ã(j))m for every m, one has

∑
m≥0 Am � ∑

m≥0(Ã
(j))m; equiv-

alently, (I − A)−1 � (I − Ã(j))−1, which yields ‖|(I − Ã(j))−1‖|∞ ≤ ‖|(I −
A)−1‖|∞. Finally, (4) is proved for matrix A(j).

We now prove (4) for A0,(j). By [18], Corollary 8.1.18, r(A0,(j)) ≤ r(A(j)) < 1,
as A(j) � A0,(j). Therefore, (I − A0,(j)) is invertible and

(
I − A0,(j))−1 =

∞∑
k=0

[
A0,(j)]k.

This yields, in particular, (I − A0,(j))−1 � 0 and (I − A0,(j))−1
kk ≥ 1. Finally, as

A(j) � A0,(j), one has∥∥∣∣(I − Ã0,(j))−1∥∥∣∣∞ ≤ ∥∥∣∣(I − Ã(j))−1∥∥∣∣∞.

Item (4) is proved and so is Lemma 5.2. �

5.2. Proof of Lemma 5.1: Some preparation. The following bounds will be
needed.

PROPOSITION 5.3. Let ρ > 0, consider a variance profile (σij ) which fulfills
Assumption A2 and consider the related ti ’s defined in Theorem 2.3(1). The fol-
lowing holds true:

1

ρ
≥ t�(−ρ) ≥ 1

ρ + σ 2
max

.

PROOF. Recall that t�(z) ∈ S(R+), by Theorem 2.3. In particular, t�(−ρ) =∫
R+ μ�(dλ)

λ+ρ
for some probability measure μ�. This yields the upper bound

t�(−ρ) ≤ ρ−1 and the fact that t�(−ρ) ≥ 0. The lower bound now readily follows
from equation (2.1). �

PROPOSITION 5.4. Let ρ > 0. Consider a variance profile (σij ) which fulfills
Assumptions A2 and A3; consider the related ti’s defined in Theorem 2.3(1). Then,

lim inf
n≥1

min
1≤j≤n

1

n
TrDjTn(−ρ)2 > 0 and lim inf

n≥1
min

1≤j≤n

1

n
TrD2

j Tn(−ρ)2 > 0.

PROOF. Applying Proposition 5.3 yields

1

N
TrDjT (−ρ)2 = 1

N

N∑
i=1

σ 2
ij t

2
i (−ρ) ≥ 1

(ρ + σ 2
max)

2

1

N

N∑
i=1

σ 2
ij ,(5.4)
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which is bounded away from zero by Assumption A3. Similarly,

1

N
TrD2

j T (−ρ)2 ≥ 1

(ρ + σ 2
max)

2

1

N

N∑
i=1

σ 4
ij

(a)≥ 1

(ρ + σ 2
max)

2

(
1

N

N∑
i=1

σ 2
ij

)2

,

which is bounded away from zero [notice that (a) follows from the elementary
inequality (n−1 ∑

xi)
2 ≤ n−1 ∑

x2
i ]. �

We are now in position to study the matrix An = A
(1)
n .

PROPOSITION 5.5. Let ρ > 0. Consider a variance profile (σij ) which fulfills
Assumptions A2 and A3. Also, consider the related ti ’s defined in Theorem 2.3(1)
and let An be the variance matrix. There then exist two n × 1 real vectors un =
(u�n) � 0 and vn = (v�n) � 0 such that un = Anun + vn. Moreover,

sup
n

max
1≤�≤n

(u�n) < ∞ and lim inf
n

min
1≤�≤n

(v�n) > 0.

PROOF. Let z = −ρ + δi with δ ∈ R − {0}. An equation involving the matrix
An will show up by developing the expression of Im(T (z)) = (T (z) − T ∗(z))/2i
and by using the expression of the ti(z)’s given by Theorem 2.3(1). We first rewrite
the system (2.1) as

T (z) =
(
−zIN + 1

n

n∑
m=1

Dm

1 + (1/n)TrDmT

)−1

.

We then have

Im(T ) = 1

2i
(T − T ∗) = 1

2i
T T ∗(T ∗−1 − T −1)

= 1

n

n∑
m=1

DmT T ∗

|1 + (1/n)TrDmT |2 Im
(

1

n
TrDmT

)
+ δT T ∗.

This yields, in particular, for any 1 ≤ � ≤ n,

1

δ
Im

(
1

n
TrD�T

)
(5.5)

= 1

n2

n∑
m=1

TrD�DmT T ∗

|1 + (1/n)TrDmT |2
1

δ
Im

(
1

n
TrDmT

)
+ 1

n
TrD�T T ∗.

Recall that for every 1 ≤ i ≤ N , ti(z) ∈ S(R+). Denote by μi the probability mea-
sure associated with ti , that is, ti(z) = ∫

R+ μi(dλ)
λ−z

. Then,

1

δ
Im

(
1

n
TrD�T

)
= 1

n

N∑
i=1

σ 2
i�

∫ ∞
0

μi(dλ)

|λ − z|2 −→
δ→0

1

n

N∑
i=1

σ 2
i�

∫ ∞
0

μi(dλ)

(λ + ρ)2 .
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Denote by ũ�n the right-hand side of the previous limit and let u�n =
ũ�n

(1+(1/n)TrD�T (−ρ))2 . Plugging this expression into (5.5) and letting δ → 0, we
end up with the equation

un = Anun + vn,

where An � 0 is given in the statement of the lemma and un = (u�,n;1 ≤ � ≤ n),
vn = (v�n;1 ≤ � ≤ n) are the n × 1 vectors with elements

u�,n = (1/n)
∑N

i=1 σ 2
i�

∫ ∞
0 μi(dλ)/(λ + ρ)2

(1 + (1/n)TrD�T (−ρ))2 and

(5.6)

v�,n = (1/n)TrD�T
2(−ρ)

(1 + (1/n)TrD�T (−ρ))2 .

For n large enough, the numerator of u�,n is lower than (Nσ 2
max)/(nρ

2) and its
denominator is bounded away from zero (uniformly in n) due to Assumption A3
and Propositions 5.3 and 5.4. Similar arguments can be used to prove un � 0 and
vn � 0 and to get a uniform lower bound for v�,n. This concludes the proof of
Proposition 5.5. �

5.3. Proof of Lemma 5.1: End of proof.

PROOF OF LEMMA 5.1(1). Proposition 5.5 and Lemma 5.2(4) together yield
that I − A0,(j) is invertible. Therefore, the system (5.3) admits a unique solution
given by

y(j)
n = (

I − A0,(j)
n

)−1d(j)
n

and (1) is proved. �

PROOF OF LEMMA 5.1(2). Let us first prove the upper bound. Proposition 5.5
and Lemma 5.2 together yield

lim sup
n

max
j

∥∥∣∣(I − A0,(j))−1∥∥∣∣∞ ≤ lim sup
n≥1

max1≤�≤n(u�n)

min1≤�≤n(v�n)
< ∞.

Each component of vector d(j)
n satisfies d(j)

�,n ≤ Nσ 4
max

n2ρ2 , that is, sup1≤j≤n ‖d(j)
n ‖∞ <

K
n

. Therefore, vector y(j)
n satisfies

sup
j

∥∥y(j)
n

∥∥∞ ≤ sup
j

∥∥∣∣(I − A0,(j)
n

)−1∥∥∣∣∞∥∥d(j)
n

∥∥∞ <
K

n
.

Consequently,

0 ≤ V̌n =
n∑

j=1

y(j)
j,n ≤

n∑
j=1

∥∥y(j)
n

∥∥∞



CLT FOR CERTAIN STATISTICS OF GRAM RANDOM MATRICES 2093

satisfies lim supn V̌n < ∞. Moreover, Proposition 5.3 yields Wn ≤ n−2 ×∑n
j=1 TrD2

j T
2 ≤ σ 4

maxN(ρ2n)−1. In particular, Wn is also bounded and

lim supn(V̌n + κWn) ≤ lim supn(V̌n + |κ|Wn) < ∞.
We now prove the lower bound

V̌n + κWn =
n∑

j=1

y(j)
j,n + κd(j)

j,n ≥
n∑

j=1

y(j)
j,n − d(j)

j,n.

Recall that y(j)
n = (I − A0,(j))−1d(j)

n . We therefore have

y(j)
j,n − d(j)

j,n = [
y(j)

n − d(j)
n

]
1 = [((

I − A0,(j)
n

)−1 − I
)
d(j)

n
]
1

= [(
I − A0,(j)

n

)−1
A0,(j)

n d(j)
n

]
1.

As (I − A
0,(j)
n )−1 � I , we have

y(j)
j,n − d(j)

j,n ≥ [
A0,(j)

n d(j)
n

]
1 =

n∑
�=j+1

1

n2

((1/n)TrD�DjT
2(−ρ))2

(1 + (1/n)TrDjT (−ρ))4

(a)≥ K

n∑
�=j+1

1

n2

(
1

n
TrD�Dj

)2

,

where (a) follows from Proposition 5.3, which is used to get both a lower bound
for the numerator and an upper bound for the denominator: (1 + 1

n
TrDjT )4 ≤

(1 + Nn−1σ 2
maxρ

−1)4. Some computations remain to be carried out in order to
take advantage of Assumption A3 and thereby obtain the lower bound. Recall that
1
m

∑m
k=1 x2

k ≥ ( 1
m

∑m
k=1 xk)

2. We have

n∑
j=1

y(j)
j,n − d(j)

j,n ≥
n∑

j=1

n∑
�=j+1

1

n2

(
1

n
TrD�Dj

)2

= 1

n2 × n(n − 1)

2
× 2

n(n − 1)

∑
j<�

(
1

n
TrD�Dj

)2

(a)≥ 1

3

(
2

n(n − 1)

∑
j<�

1

n
TrD�Dj

)2

(b)= 1

3

(
1

n(n − 1)

∑
1≤j,�≤n

1

n
TrD�Dj

)2

+ o(1)

≥ 1

3

(
1

n3

N∑
i=1

(
n∑

j=1

σ 2
ij

)2)2

+ o(1)
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≥ 1

3

(
N

n3

(
1

N

N∑
i=1

n∑
j=1

σ 2
ij

)2)2

+ o(1)

≥ 1

3

(
N

n3

(
n∑

j=1

1

N

N∑
i=1

σ 2
ij

)2)2

+ o(1),

where (a) follows from the bound n(n−1)

2n2 ≥ 1
3 , valid for n sufficiently large. The

term o(1) at step (b) goes to zero as n → ∞ and takes into account the diagonal
terms in the formula 2

∑
j<� αj� + ∑

j αjj = ∑
j,� αj�. It remains now to take the

lim inf to obtain

lim inf
n→∞

(
n∑

j=1

y(j)
j,n + κd(j)

j,n

)
≥ c2σ 8

min

3
.

Item (2) is now proved. �

PROOF OF LEMMA 5.1(3). We first introduce the following block-matrix no-
tation:

A(j)
n =

(
d(j)

j,n ā
(j)
n

d̄(j)
n A

(j+1)
n

)
and A0,(j)

n =
(

0 ā
(j)
n

0 A
(j+1)
n

)
.

We can now express the inverse of(
I − A0,(j)

n

) =
(

1 −ā
(j)
n

0 (I − A
(j+1)
n )

)

as
(
I − A

0,(j)
n

)−1 =
(

1 ā
(j)
n

(
I − A

(j+1)
n

)−1

0
(
I − A

(j+1)
n

)−1

)
.

This, in turn, yields y(j)
j,n = d(j)

j,n + ā
(j)
n (I − A

(J+1)
n )−1d̄(j)

n and one can easily check

that y(j)
j,n ≤ K

n
, where K does not depend on j and n, as∣∣y(j)

j,n

∣∣ ≤ ∣∣d(j)
j,n

∣∣ + n
∥∥ā(j)

n

∥∥∞
∥∥∣∣(I − A0,(j)

n

)−1∥∥∣∣∞∥∥d̄(j)
n ‖∞.

Note that

log det
(
I − A(j)

n

) − log det
(
I − A(j+1)

n

)
= log det

([(
1 − d(j)

j,n −ā
(j)
n

−d̄(j)
n I − A

(j+1)
n

)][(
1 0

0
(
I − A

(j+1)
n

)−1

)])

= log det

[
1 − d(j)

j,n −ā
(j)
n

(
I − A

(j+1)
n

)−1

−d̄(j)
n I

]

= log
(
1 − d(j)

j,n − ā(j)
n

(
I − A(j+1)

n

)−1d̄(j)
n

)
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and write log det(I − An) as

log det(I − An) =
n−1∑
j=1

(
log det

(
I − A(j)

n

) − log det
(
I − A(j+1)

n

)) + log(1 − ann)

=
n−1∑
j=1

log
(
1 − d(j)

j,n − ā(j)
n

(
I − A(j+1)

n

)−1d̄(j)
n

) + log(1 − ann)

= −
n−1∑
j=1

(
d(j)

j,n + ā(j)
n

(
I − A(j+1)

n

)−1d̄(j)
n

) + o(1)

= −
n−1∑
j=1

y(j)
j,n + o(1) = −

n∑
j=1

y(j)
j,n + o(1)

= −V̌n + o(1).

This concludes the proof of Lemma 5.1. �

6. Proof of Theorem 3.2.

6.1. More notation; outline of the proof; key lemmas.

More notation. Recall that Yn = (Y n
ij ) is an N × n matrix with Yn

ij = σij√
n
Xij

and that Qn(z) = (qij (z) ) = (YnY
∗
n − zIN)−1. We denote:

1. by Q̃n(z) the matrix (q̃ij (z)) = (Y ∗
n Yn − zIn)

−1;
2. by yj the column number j of Yn;

3. by Y
j
n the N × (n−1) matrix that remains after deleting column number j from

Yn;
4. by Qj,n(z) [or Qj(z) for short when there is no confusion with Qn(z)] the

N × N matrix

Qj(z) = (Y jY j∗ − zIN)−1;
5. by ξi the row number i of Yn;
6. by Yi,n (or Yi for short when there is no confusion with Yn) the (N − 1) × n

matrix that remains after deleting row i from Y ;
7. by Q̃i,n(z) [or Q̃i(z)] the n × n matrix

Q̃i(z) = (Y ∗
i Yi − zIn)

−1.

Recall that we use either qij or [Q]ij for the individual element of Q(z), depending
on the context (the same is true for other matrices). The following formulas are
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well known (see, e,g., Sections 0.7.3 and 0.7.4 in [18]):

Q = Qj − Qjyjy
∗
j Qj

1 + y∗
j Qjyj

, Q̃ = Q̃i − Q̃iξ
∗
i ξiQ̃i

1 + ξiQ̃iξ
∗
i

,(6.1)

qii(z) = −1

z(1 + ξiQ̃i(z)ξ
∗
i )

, q̃jj (z) = −1

z(1 + y∗
j Qj (z)yj )

.(6.2)

For 1 ≤ j ≤ n, denote by Fj the σ -field Fj = σ(yj , . . . , yn) generated by the
random vectors (yj , . . . , yn). Denote by Ej the conditional expectation with re-
spect to Fj , that is, Ej = E(· | Fj). By convention, Fn+1 is the trivial σ -field; in
particular, En+1 = E.

Outline of the proof. In order to prove the convergence of �−1
n (log det(YnY

∗
n +

ρIN)−E log det(YnY
∗
n +ρIN)) to the standard Gaussian law N (0,1), we shall rely

on the following CLT for martingales.

THEOREM 6.1 (CLT for martingales, Theorem 35.12 in [4]). Let γ
(n)
n , γ

(n)
n−1,

. . . , γ
(n)
1 be a martingale difference sequence with respect to the increasing filtra-

tion F (n)
n , . . . ,F (n)

1 . Assume that there exists a sequence of positive real numbers
�2

n such that

1

�2
n

n∑
j=1

Ej+1γ
(n)
j

2 P−→
n→∞ 1.(6.3)

Assume, further, that the Lindeberg condition holds:

∀ε > 0
1

�2
n

n∑
j=1

E
(
γ

(n)
j

2
1|γ (n)

j |≥ε�n

) −→
n→∞ 0.

Then, �−1
n

∑n
j=1 γ

(n)
j converges in distribution to N (0,1).

REMARK 6.1. The condition

∃δ > 0
1

�
2(1+δ)
n

n∑
j=1

E
∣∣γ (n)

j

∣∣2+δ −→
n→∞ 0,(6.4)

known as Lyapunov’s condition, implies Lindeberg’s condition and is easier to
establish (see, e.g., [4], Section 27, page 362).

The proof of the CLT will be carried out in three steps:

1. We first show that log det(YnY
∗
n + ρI) − E log det(YnY

∗
n + ρI) can be written

as
∑n

j=1 γj , where (γj ) is a martingale difference sequence.

2. We then prove that (γj ) satisfies Lyapunov’s condition (6.4), where �2
n is given

by Theorem 3.1.
3. We finally prove (6.3), which implies the CLT.
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Key lemmas. The two lemmas stated below will be of constant use in the se-
quel. The first lemma describes the asymptotic behavior of quadratic forms related
to random matrices.

LEMMA 6.2. Let x = (x1, . . . , xn) be a n× 1 vector where the xi are centered
i.i.d. complex random variables with unit variance. Let M be a n×n deterministic
complex matrix.

1. (Bai and Silverstein, Lemma 2.7 in [2].) Then, for any p ≥ 2, there exists a
constant Kp for which

E|x∗Mx − TrM|p ≤ Kp

(
(E|x1|4 TrMM∗)p/2 + E|x1|2p Tr(MM∗)p/2)

.

2. (See also equation (1.15) in [3].) If we assume, moreover, that Ex2
1 = 0, then

E(x∗Mx − TrM)2 = TrM2 + κ

n∑
i=1

m2
ii ,

where κ = E|x1|4 − 2.

As a consequence of the first part of this lemma, there exists a constant K ,
independent of j and n, for which

E

∣∣∣∣y∗
j Qj (−ρ)yj − 1

n
TrDjQj(−ρ)

∣∣∣∣p ≤ Kn−p/2(6.5)

for p ≤ 4.
We introduce here various intermediate quantities, where 1 ≤ i ≤ N and 1 ≤

j ≤ n:

ci(z) = −
[
z

(
1 + 1

n
Tr D̃iEQ̃(z)

)]−1

, C = diag(ci),

c̃j (z) = −
[
z

(
1 + 1

n
TrDjEQ(z)

)]−1

, C̃ = diag(c̃j ),

(6.6)

bi(z) = −
[
z

(
1 + 1

n
Tr D̃iC̃(z)

)]−1

, B = diag(bi),

b̃j (z) = −
[
z

(
1 + 1

n
TrDjC(z)

)]−1

, B̃ = diag(b̃j ).

The following lemma provides various bounds and approximation results.

LEMMA 6.3. Consider the family of random matrices (YnY
∗
n ) and assume that

Assumptions A1 and A2 hold true. Let z = −ρ where ρ > 0. Then:
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1. Matrices Cn satisfy ‖Cn‖ ≤ 1
ρ

and 0 < ci ≤ 1
ρ

, these inequalities remaining

true when C is replaced with B or C̃.
2. If we let Un and Ũn be two sequences of real diagonal deterministic N × N

and n × n matrices and assume that supn≥1 max(‖Un‖,‖Ũn‖) < ∞, then the
following hold true:

(a) 1
n

TrU(EQ − T ) →
n→∞ 0 and 1

n
Tr Ũ (EQ̃ − T̃ ) →

n→∞ 0;

(b) 1
n

TrU(B − T ) →
n→∞ 0;

(c) supn E(TrU(Q − EQ))2 < ∞;
(d) supn

1
n2 E(TrU(Q − EQ))4 < ∞.

3. [Rank-one perturbation inequality] the resolvent Qj satisfies |TrM(Q −
Qj)| ≤ ‖M‖

ρ
for any N × N matrix M (see Lemma 2.6 in [26]).

Proof of Lemma 6.3 is postponed to Appendix A.
Finally, we shall frequently use the following identities, which are obtained

from the definitions of ci and c̃j , together with equations (6.2):

[Q(z)]ii = ci + zci[Q]ii
(
ξiQ̃iξ

∗
i − 1

n
Tr D̃iEQ̃

)
;(6.7)

[Q̃(z)]jj = c̃j + zc̃j [Q̃]jj
(
y∗
j Qjyj − 1

n
TrDjEQ

)
.(6.8)

6.2. Proof of step 1: The sum of a martingale difference sequence. Recall that
Ej = E(· | Fj ), where Fj = σ(y�, j ≤ � ≤ n). We have

log det(YY ∗ + ρIN) − E log det(YY ∗ + ρIN)

=
n∑

j=1

(Ej − Ej+1) log det(YY ∗ + ρIN)

(a)= −
n∑

j=1

(Ej − Ej+1) log
(

det(Y jY j ∗ + ρIN)

det(YY ∗ + ρIN)

)

(b)= −
n∑

j=1

(Ej − Ej+1) log
(

det(Y j ∗
Y j + ρIn−1)

det(Y ∗Y + ρIn)

)

(c)= −
n∑

j=1

(Ej − Ej+1) log[Q̃(−ρ)]jj

(d)=
n∑

j=1

(Ej − Ej+1) log
(
1 + y∗

j Qj (−ρ)yj

)
,

where (a) follows from the fact that Y j does not depend upon yj , in particular,
Ej log det(Y jY j ∗ +ρIN) = Ej+1 log det(Y jY j ∗ +ρIN); (b) follows from the fact



CLT FOR CERTAIN STATISTICS OF GRAM RANDOM MATRICES 2099

that det(Y j∗Y j +ρIn−1) = det(Y jY j∗ +ρIN)×ρn−1−N [and a similar expression
for det(Y ∗Y + ρIn)]; (c) follows from the equality

[Q̃(−ρ)]jj = det(Y j ∗Y j + ρIn−1)

det(Y ∗Y + ρIn)
,

which is a consequence of the general inverse formula A−1 = 1
det(A)

adj(A), where
adj(A) is the transposed matrix of cofactors of A (see [18], Section 0.8.2); (d) fol-
lows from (6.2). We therefore have

log det(YY ∗ + ρIN) − E log det(YY ∗ + ρIN)

=
n∑

j=1

(Ej − Ej+1) log
(
1 + y∗

j Qj (−ρ)yj

) =
n∑

j=1

γj .

As we have

Ej log
(

1 + 1

n
TrDjQj

)
= Ej+1 log

(
1 + 1

n
TrDjQj

)
,

γj can be expressed as

γj = (Ej − Ej+1) log
(

1 + y∗
j Qjyj − (1/n)TrDjQj

1 + (1/n)TrDjQj

)
(6.9)

= (Ej − Ej+1) log(1 + �j).

where �j = y∗
j Qj yj−(1/n)TrDjQj

1+(1/n)TrDjQj
. The sequence γn, . . . , γ1 is a martingale differ-

ence sequence with respect to the increasing filtration Fn, . . . ,F1 and so step 1 is
established.

6.3. Proof of step 2: Validation of Lyapunov’s condition (6.4). In the remain-
der of this section, z = −ρ. Let δ > 0 be a fixed positive number that will be
specified below. As lim inf�2

n > 0 by Theorem 3.1, we only need to prove that∑n
j=1 E|γj |2+δ →n 0. We have E|γj |2+δ = E|(Ej − Ej+1) log(1 + �j )|2+δ ; the

Minkowski and Jensen inequalities yield

(E|γj |2+δ)1/(2+δ)

≤ (
E|Ej log(1 + �j)|2+δ)1/(2+δ) + (

E|Ej+1 log(1 + �j )|2+δ)1/(2+δ)

≤ 2
(
E| log(1 + �j)|2+δ)1/(2+δ)

.

Otherwise stated,

E|γj |2+δ ≤ K0 E| log(1 + �j)|2+δ,(6.10)

where K0 = 22+δ . Since y∗
j Qjyj ≥ 0, �j [defined in (6.9)] is lower bounded:

�j ≥ −(1/n)TrDjQj

1 + (1/n)TrDjQj

.
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Now, since

0 ≤ 1

n
TrDjQj(−ρ) ≤ ‖Dj‖

n
Tr Qj(−ρ) ≤ K1

= σ 2
max

ρ
sup
n

(
N

n

)
and since x �→ x

1+x
is nondecreasing, we have

(1/n)TrDjQj

1 + (1/n)TrDjQj

≤ K2
= K1

1 + K1
< 1.(6.11)

In particular, �j ≥ −K2 > −1. The function (−1,∞) � x �→ log(1+x)
x

is nonneg-

ative, nonincreasing. Therefore, log(1+x)
x

≤ log(1−K2)
K2

for x ∈ [−K2,∞). Plugging
this into (6.10) yields

E|γj |2+δ ≤ K0K
2+δ
2 E|�j |2+δ

= K3E|�j |2+δ ≤ K3E

∣∣∣∣y∗
j Qjyj − 1

n
TrDjQj

∣∣∣∣2+δ

.

By Lemma 6.2(1), the right-hand side of the last inequality is less than K4n
−(1+δ/2)

as soon as E|X11|2+δ < ∞. This is ensured by Assumption A1 for δ ≤ 6. There-
fore, Lyapunov’s condition (6.4) holds and step 2 is proved.

6.4. Proof of step 3: Convergence of the normalized sum of conditional vari-
ances. This section, by far the most involved in this article, is devoted to estab-
lishing the convergence result (6.3), hence the CLT. In an attempt to guide the
reader, we divide it into five stages. Recall that z = −ρ and

γj = (Ej − Ej+1) log(1 + �j), where �j = y∗
j Qjyj − (1/n)TrDjQj

1 + (1/n)TrDjQj

.

In order to apply Theorem 6.1, we shall prove that �−2
n

∑n
j=1 Ej+1γ

2
j

P→ 1, where

�2
n is given by Theorem 3.1. Since lim inf�2

n > 0, it is sufficient to establish the
following convergence result:

n∑
j=1

Ej+1γ
2
j − �2

n

P−→
n→∞ 0.(6.12)

Instead of working with �n, we shall work with �̃n [introduced in Section 5, see
equation (5.1)] and prove

n∑
j=1

Ej+1γ
2
j − �̃2

n

P−→
n→∞ 0.(6.13)

In the sequel, K will denote a constant whose value may change from line to line,
but which will depend neither on n nor on j ≤ n.

Here are the main steps of the proof:
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1. The following convergence result holds true:

n∑
j=1

Ej+1γ
2
j −

n∑
j=1

Ej+1(Ej�j )
2 P→

n→∞ 0.(6.14)

This convergence result roughly follows from a first-order approximation, as
we shall informally discuss. Recall that γi = (Ej − Ej+1) log(1 + �j) and that
�j → 0, by Lemma 6.2(1). A first-order approximation of log(1 + x) yields
γj ≈ (Ej − Ej+1)�j . As E(y∗

j Qjyj | Qj) = 1
n

TrDjQj , one can prove that

Ej+1�j = 0, hence γj ≈ Ej�j , and one may expect Ej+1γ
2
j ≈ Ej+1(Ej�j )

2

and even (6.14), as we shall demonstrate.
2. Recall that κ = E|X11|4 − 2. The following equality holds true:

Ej+1(Ej�j )
2

= 1

n2(1 + (1/n)TrDjEQ)2

(6.15)

×
(

TrDj(Ej+1Qj)Dj (Ej+1Qj) + κ

N∑
i=1

σ 4
ij (Ej+1[Qj ]ii)2

)
+ ε2,j,

where

max
j≤n

E|ε2,j| ≤ K

n3/2

for some given K .

A closer look at the right-hand side of (6.15) leads to the following observations.
By Lemma 6.3(2a), the denominator (1 + 1

n
TrDjEQ)2 can be approximated by

(1+ 1
n

TrDjT )2; moreover, it is possible to prove that [Qj ]ii ≈ [T ]ii [some details
are given in the course of the proof of step (5) below]. Hence,

κ

n

N∑
i=1

σ 4
ij (Ej+1[Qj ]ii)2 ≈ κ

n
TrD2

j T
2.

Therefore, it remains to study the asymptotic behavior of the term 1
n

×
TrDj(Ej+1Qj)Dj (Ej+1Qj) in order to understand (6.15). This is the purpose
of step (3) below.

(3) In order to evaluate 1
n

TrDj(Ej+1Qj)Dj (Ej+1Qj) for large n, we introduce
the random variables

χ
(j)
�,n = 1

n
TrD�(Ej+1Q)DjQ, j ≤ � ≤ n.(6.16)
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Note that, up to rank one perturbations, Ejχ
(j)
j,n is very close to the term of

interest. We prove here that χ
(j)
�,n satisfies the following equation:

χ
(j)
�,n = 1

n

n∑
m=j+1

(1/n)Tr(D�BDmEQ)

(1 + (1/n)TrDmEQ)2 χ (j)
m,n

(6.17)

+ 1

n
TrD�BDjEQ + ε3,�j, j ≤ � ≤ n,

where B is defined in Section 6.1 and where

max
�,j≤n

E|ε3,�j| ≤ K√
n
.

(4) Recall that we have proven in Section 5 (Lemma 5.1) that the (deterministic)
system

y(j)
�,n =

n∑
m=j+1

a�,my(j)
m,n + a�,j , for j ≤ � ≤ n,

where a�,m = 1
n2

TrD�DmT 2

(1+ 1
n

TrD�T )2 , admits a unique solution. If we write x(j)
�,n =

n(1 + 1
n

TrD�T )2y(j)
�,n, then (x(j)

�,n, j ≤ � ≤ n) readily satisfies the following
system:

x(j)
�,n = 1

n

n∑
m=j+1

(1/n)TrD�DmT 2

(1 + (1/n)TrDmT )2 x(j)
m,n + 1

n
TrD�DjT

2, j ≤ � ≤ n.

As one may notice, (6.17) is a perturbed version of the system above and we
shall indeed prove that

χ
(j)
j,n = x(j)

j,n + ε41,j + ε42,j,
(6.18)

where max
j≤n

E|ε41,j| ≤ K√
n

and max
j≤n

|ε42,j| ≤ δn,

the sequence (δn) being deterministic with δn → 0 as n → ∞.
(5) Combining the previous results, we finally prove that

n∑
j=1

Ej+1(Ej�j )
2 − �̃2

n

P−→
n→∞ 0.(6.19)

This, together with (6.14), yields convergence results (6.13) and (6.12) which,
in turn, proves (6.3), completing the proof of Theorem 3.2.

PROOF OF (6.14). Recall that (1/n)TrDjQj

1+(1/n)TrDjQj
≤ K2 < 1, by (6.11). In particu-

lar, �j ≥ −K2 > −1. We first prove that

Ej log(1 + �j ) = Ej�j + ε11,j + ε12,j,
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where {
ε11,j = Ej log(1 + �j)1|�j |≤K2 − Ej�j ,

ε12,j = Ej log(1 + �j)1(K2,∞)(�j )
and

(6.20) ⎧⎪⎪⎨⎪⎪⎩
max
j≤n

Eε2
11,j ≤ K

n2 ,

max
j≤n

Eε2
12,j ≤ K

n2 .

In the sequel, we shall often omit the subscript j while dealing with the ε’s. As
0 < K2 < 1, we have

|ε11| =
∣∣∣∣∣Ej

( ∞∑
k=1

(−1)k−1

k
�k

j 1|�j |≤K2 − �j

)∣∣∣∣∣
≤ Ej�j 1�j>K2 +

∞∑
k=2

Ej |�j |k1|�j |≤K2 ≤ Ej�j 1�j>K2 + Ej�
2
j 1|�j |≤K2

1 − K2
.

Therefore,

Eε2
11

(a)≤ 2
(

E�2
j 1�j>K2 + E�4

j 1|�j |≤K2

(1 − K2)2

)
(b)≤ 2E�4

j

K2
2

+ 2E�4
j

(1 − K2)2

(c)≤
(

2

K2
2

+ 2

(1 − K2)2

)
E

(
y∗
j Qjyj − 1

n
TrDjQj

)4 (d)≤ K

n2 ,

where (a) follows from (a +b)2 ≤ 2(a2 +b2), (b) from the inequality �2
j 1�j>K2 ≤

�2
j (

�j

K2
)21�j>K2 , (c) from the fact that the denominator of �j is larger than one and

(d) from Lemma 6.2(1), as X11 has a finite eighth moment by Assumption A1.
Now, 0 ≤ ε12 ≤ Ej�j 1�j>K2 . Thus, Eε2

12 ≤ E�2
j 1�j>K2 ≤ K−2

2 E�4
j 1�j>K2 .

Lemma 6.2(1) again yields

Eε2
12 ≤ K

n2

and (6.20) is proved. Similarly, we can prove

Ej+1 log(1 + �j ) = Ej+1�j + ε13,j with max
j≤n

Eε2
13,j ≤ K

n2 .

Denote by FQj
the σ -field generated by all of the yk’s except yj , and by EQj

the
conditional expectation with respect to FQj

. Then,

Ej+1�j = Ej+1EQj

(y∗
j Qjyj − (1/n)TrDjQj

1 + (1/n)TrDjQj

)
= 0
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since yj and FQj
are independent and since EQj

(y∗
j Qjyj ) = 1

n
TrDjQj . Collect-

ing all of the previous estimates, we obtain

γj = Ej�j + ε11,j + ε12,j − ε13,j
= Ej�j + ε14,j,

where maxj≤n Eε2
14,j ≤ Kn−2, by Minkowski’s inequality. We therefore have

Ej+1(γj )
2 = Ej+1(Ej�j + ε14,j)

2. Let

ε1,j
= Ej+1(γj )

2 − Ej+1(Ej�j )
2 = Ej+1ε

2
14,j + 2Ej+1(ε14,jEj�j ).

Then,

E|ε1,j| ≤ Eε2
14,j + 2E|ε14,jEj�j |

(a)≤ Eε2
14,j + 2(Eε2

14,j)
1/2(E�2

j )
1/2 (b)≤ K

n3/2 ,

where (a) follows from the Cauchy–Schwarz inequality and (Ej�j )
2 ≤ Ej�

2
j ,

and (b) follows from Lemma 6.2(1), which yields E�2
j ≤ Kn−1. Finally, we have∑n

j=1 E|Ej+1(γj )
2 − Ej+1(Ej�j )

2| ≤ Kn−1/2, which implies (6.14). �

PROOF OF (6.15). We have

Ej�j = Ej

(y∗
j Qjyj − (1/n)TrDjQj

1 + (1/n)TrDjQj

)

= 1

1 + (1/n)TrDjEQ

×
{
Ej

(
y∗
j Qjyj − 1

n
TrDjQj

)

− Ej

(y∗
j Qjyj − (1/n)TrDjQj

1 + (1/n)TrDjQj

(
1

n
TrDjQj − 1

n
TrDjEQ

))}
.

Hence,

Ej+1(Ej�j )
2

= 1

(1 + (1/n)TrDjEQ)2

× Ej+1

((
y∗
j (EjQj )yj − 1

n
TrDjEjQj

)2

+ ε21,j + ε22,j

)
(6.21)

= 1

(1 + (1/n)TrDjEQ)2

× Ej+1

(
y∗
j (EjQj )yj − 1

n
TrDjEjQj

)2

+ ε2,j,
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where

ε21,j =
[
Ej

(y∗
j Qjyj − (1/n)TrDjQj

1 + (1/n)TrDjQj

(
1

n
TrDjQj − 1

n
TrDjEQ

))]2

,

ε22,j = −2Ej

(
y∗
j Qjyj − 1

n
TrDjQj

)

× Ej

(y∗
j Qjyj − (1/n)TrDjQj

1 + (1/n)TrDjQj

(
1

n
TrDjQj − 1

n
TrDjEQ

))
,

ε2,j = Ej+1(ε21,j + ε22,j)

(1 + (1/n)TrDjEQ)2 .

As 1
n

TrDjQj ≥ 0, standard inequalities yield

Eε21,j ≤
[
E

(
y∗
j Qjyj − 1

n
TrDjQj

)4]1/2

×
[
E

(
1

n
TrDjQj − 1

n
TrDjEQ

)4]1/2

.

By Lemma 6.2(1), E(y∗
j Qjyj − 1

n
TrDjQj)

4 ≤ Kn−2. Due to the convex inequal-

ity (a + b)4 ≤ 23(a4 + b4), we obtain

E

(
1

n
TrDj(Qj − EQ)

)4

= E

(
1

n
TrDj(Qj − EQj) + 1

n
TrDj(EQj − EQ)

)4

≤ K

{
E

(
1

n
TrDj(Qj − EQj)

)4

+ E

(
1

n
TrDj(EQj − EQ)

)4}
,

where the first term of the right-hand side is bounded by Kn−2, by (2d) in
Lemma 6.3, and the second one is bounded by Kn−4, due to the rank one pertur-
bation inequality [Lemma 6.3(3)]. Therefore, Eε21,j ≤ Kn−2 and similar deriva-
tions yield E|ε22,j| ≤ Kn−3/2. Combining these two results yields the bound
E|ε2,j| ≤ Kn−3/2. Let us now expand the term Ej+1(y

∗
j EjQjyj − 1

n
TrDjEjQj )

2

in the right-hand side of (6.21).
Recall that EjQj = Ej+1Qj and that yj = D

1/2
j (

X1j√
n
, . . . ,

XNj√
n

)T . Note also

that Ej+1(y
∗
j EjQjyj ) = 1

n
TrDjEj+1Qj . Lemma 6.2(2) then immediately yields

Ej+1

(
y∗
j EjQjyj − 1

n
TrDjEjQj

)2

= 1

n2

(
TrDj(Ej+1Qj)Dj (Ej+1Qj) + κ

N∑
�=1

σ 4
�j (Ej+1[Qj ]��)2

)
.
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Equation (6.15) is thus proved. �

PROOF OF (6.17). Recall that χ
(j)
�,n = 1

n
TrD�(Ej+1Q)DjQ. The outline of

the proof of (6.17) is given by the following set of equations, the χ ’s and ε’s being
introduced as and when required:

χ
(j)
�,n = χ1 + χ2 − χ3;(6.22)

χ3 = χ ′
3 + ε3;(6.23)

χ ′
3 = χ4 + χ5 + ε′

3;(6.24)

χ5 = χ6 − χ7 + ε6 − ε7.(6.25)

Collecting the previous equations, we will end up with

χ
(j)
�,n = χ1 + χ2 − χ4 − χ6 + χ7 + ε,

(6.26)
where ε = −ε3 + ε′

3 − ε6 + ε7.

Let us first give decomposition (6.22) and introduce χ1, χ2 and χ3. Recall that
B (defined in Section 6.1) is the N × N diagonal matrix B = diag(bi), where
bi = (ρ(1 + 1

n
Tr D̃iC̃))−1. This yields

Q = B + B(B−1 − Q−1)Q

= B + B

(
ρ diag

(
1

n
Tr D̃iC̃

)
− YY ∗

)
Q.

Therefore,

χ
(j)
�,n = 1

n
TrD�(Ej+1Q)DjQ

= 1

n
TrD�BDjQ + ρ

n
TrD�B diag

(
1

n
Tr D̃iC̃

)
(Ej+1Q)DjQ

− 1

n
TrD�B

(
n∑

m=1

Ej+1ymy∗
mQ

)
DjQ

= χ1 + χ2 − χ3

and (6.22) is established. We now turn to decomposition (6.23). Identities (6.1)
and (6.2) yield

y∗
mQ = y∗

mQm − y∗
m

Qmymy∗
mQm

1 + y∗
mQmym

= y∗
mQm

1 + y∗
mQmym

= ρ[Q̃]mmy∗
mQm.
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Using this equation, we have

χ3 = 1

n
TrD�B

(
n∑

m=1

Ej+1ymy∗
mQ

)
DjQ

= ρ

n
TrD�B

(
n∑

m=1

Ej+1([Q̃]mmymy∗
mQm)

)
DjQ

(a)= ρ

n
TrD�B

(
n∑

m=1

c̃mEj+1(ymy∗
mQm)

)
DjQ

− ρ2

n
TrD�B

(
n∑

m=1

c̃mEj+1

(
[Q̃]mm

(
y∗
mQmym

− 1

n
TrDmEQ

)
ymy∗

mQm

))
DjQ

= χ ′
3 + ε3,

where (a) follows directly from (6.8). We are now in a position to prove that

max
�,j≤n

E|ε3| ≤ K√
n
.(6.27)

Using the fact that |TrAyy∗B| = |y∗BAy| ≤ ‖AB‖‖y‖2 together with the norm
inequality ‖AB‖ ≤ ‖A‖‖B‖, we obtain

|ε3| ≤ ρ2

n

n∑
m=1

‖DjQD�B‖c̃m

× Ej+1

(
[Q̃]mm

∣∣∣∣y∗
mQmym − 1

n
TrDmEQ

∣∣∣∣‖ym‖2‖Qm‖
)

(a)≤ σ 4
max

ρ3

1

n

n∑
m=1

Ej+1

(∣∣∣∣y∗
mQmym − 1

n
TrDmEQ

∣∣∣∣‖ym‖2
)
,

where (a) follows from the fact that ‖DjQD�B‖c̃m ≤ σ 4
maxρ

−3 and [Q̃]mm‖Qm‖ ≤
ρ−2. Writing 1

n
TrDmEQ = 1

n
TrDmQ+ 1

n
TrDm(EQ−Q) and replacing it in the

previous inequality, we obtain:

E

(∣∣∣∣y∗
mQmym − 1

n
TrDmEQ

∣∣∣∣‖ym‖2
)

≤
([

E

∣∣∣∣y∗
mQmym − 1

n
TrDmQ

∣∣∣∣2]1/2

+
[
E

∣∣∣∣1

n
TrDm(Q − EQ)

∣∣∣∣2]1/2)
× (E‖ym‖4)1/2,
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where [E|y∗
mQmym − 1

n
TrDmQ|2]1/2 ≤ Kn−1/2 by Lemma 6.2(1) combined

with Lemma 6.3(3), [E| 1
n

TrDm(Q − EQ)|2]1/2 ≤ Kn−1 by Lemma 6.3(2c)
and E‖ym‖4 ≤ σ 4

maxE|X11|4(Nn−1)2. This yields, in particular, max�,j≤n E|ε3| ≤
Kn−1/2 and proves (6.27).

Recall that if m ≤ j , then

Ej+1(ymy∗
mQm) = Ej+1(ymy∗

m)Ej+1(Qm) = Dm

n
Ej+1(Qm).

We now turn to equation (6.24) and introduce χ4, χ5 and ε′
3.

χ ′
3 = ρ

n
TrD�B

(
n∑

m=1

c̃mEj+1(ymy∗
mQm)

)
DjQ

= ρ

n2 TrD�B

( j∑
m=1

c̃mDmEj+1Qm

)
DjQ

+ ρ

n
TrD�B

(
n∑

m=j+1

c̃mEj+1(ymy∗
mQm)

)
DjQ

= ρ

n2 TrD�B

( j∑
m=1

c̃mDmEj+1Q

)
DjQ

+ ρ

n
TrD�B

(
n∑

m=j+1

c̃mEj+1(ymy∗
mQm)

)
DjQ

+ ρ

n2 TrD�B

( j∑
m=1

c̃mDmEj+1(Qm − Q)

)
DjQ

= χ4 + χ5 + ε′
3

and decomposition (6.24) is introduced. In order to estimate ε′
3, recall that, given

two square matrices R and S, one has |TrRS| ≤ ‖R‖TrS for S nonnegative and
Hermitian. As matrix Qm − Q is nonnegative and Hermitian by (6.1), we obtain

|ε′
3| ≤

1

n2 ‖D�BDjQ‖
j∑

m=1

E
(
TrDm(Qm − Q)

) ≤ σ 6
max

nρ3(6.28)

by Lemma 6.3(3).
We now turn to χ5 and provide decomposition (6.25). Recall that TrAyy∗B =

y∗BAy. Combining (6.1) and (6.2), we get Q = Qm−ρ[Q̃]mmQmymy∗
mQm. Plug-

ging this expression into the definition of χ5 and using the fact that ym is measur-
able with respect to Fj+1 (since m ≥ j + 1), we obtain

χ5 = ρ

n
TrD�B

(
n∑

m=j+1

c̃mEj+1(ymy∗
mQm)

)
DjQ
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= ρ

n

n∑
m=j+1

c̃my∗
m(Ej+1Qm)DjQmD�Bym

− ρ2

n

n∑
m=j+1

c̃m[Q̃]mmy∗
m(Ej+1Qm)DjQmymy∗

mQmD�Bym.

In order to understand the forthcoming decomposition, recall that, asymptoti-
cally, y∗

mAmym ∼ 1
n

TrDmAm as long as ym and Am are independent, and that
1
n

TrDmAm ∼ 1
n

TrDmA if Am is a rank one perturbation of A. We can now intro-
duce χ6 and χ7:

χ5 = ρ

n

n∑
m=j+1

c̃m

n
TrD�BDm(Ej+1Q)DjQ

− ρ2

n

n∑
m=j+1

c̃2
m

n
TrDm(Ej+1Q)DjQ × 1

n
Tr(DmQD�B) + ε6 − ε7

= χ6 − χ7 + ε6 − ε7,

where

ε6 = ρ

n

n∑
m=j+1

c̃my∗
m(Ej+1Qm)DjQmD�Bym

− ρ

n

n∑
m=j+1

c̃m

n
TrD�BDm(Ej+1Q)DjQ,

ε7 = ρ2

n

n∑
m=j+1

c̃m[Q̃]mmy∗
m(Ej+1Qm)DjQmymy∗

mQmD�Bym

− ρ2

n

n∑
m=j+1

c̃2
m

n
TrDm(Ej+1Q)DjQ × 1

n
Tr(DmQD�B).

It is now a matter of routine to check that

E|ε6| ≤ K√
n

and E|ε7| ≤ K√
n
.(6.29)

Let us provide some details.
Recall that ym is independent of Ej+1(Qm). To obtain the bound on E|ε6|, we

use the facts that E(y∗
m(Ej+1Qm)DjQmD�Bym − 1

n
TrD�BDm(Ej+1Qm)Dj ×

Qm)2 ≤ Kn−1 by Lemma 6.2(1), | 1
n

TrD�BDm(Ej+1Qm)Dj(Qm − Q)| ≤ Kn−1

by Lemma 6.3(3), etc.
In order to prove that E|ε7| ≤ Kn−1/2, we use similar arguments but we also

need two additional estimates. The control [Q̃]mm − c̃m (which has already been
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done while estimating ε3) relies on (6.8). The bounded character of E(y∗
mAmym)2,

where Am is independent of ym and of finite spectral norm is a by-product of
Lemma 6.2(1).

We now put the pieces together and provide (6.26) satisfied by χ�j. Recall that

χ1 = 1

n
TrD�BDjQ,

χ2 = ρ

n
TrD�B diag

(
1

n
Tr D̃iC̃

)
(Ej+1Q)DjQ,

χ4 = ρ

n2 TrD�B

( ∑
m≤j

c̃mDm

)
(Ej+1Q)DjQ,

χ6 = ρ

n2 TrD�B

(
n∑

m=j+1

c̃mDm

)
(Ej+1Q)DjQ,

χ7 = ρ2

n

n∑
m=j+1

c̃2
m

n
TrDm(Ej+1Q)DjQ × 1

n
Tr(DmQD�B)

= 1

n

n∑
m=j+1

(1/n)Tr(D�BDmQ)

(1 + (1/n)TrDmEQ)2 χm,j .

As 1
n

∑n
m=1 c̃mDm = diag( 1

n
Tr D̃1C̃, . . . , 1

n
Tr D̃NC̃), we have χ2 − χ4 − χ6 = 0

and (6.26) becomes

χ
(j)
�,n = 1

n
TrD�BDjQ + 1

n

n∑
m=j+1

(1/n)Tr(D�BDmQ)

(1 + (1/n)TrDmEQ)2 χ (j)
m,n + ε,

where E|ε| ≤ Kn−1/2, by inequalities (6.27), (6.28) and (6.29). Small adjust-
ments need to be made in order to obtain (6.17). Now, replace 1

n
TrD�BDpQ

by 1
n

TrD�BDpEQ [use Lemma 6.3(2c)]. The new error term ε3,�j still satisfies
max�,j≤n E|ε3,�,j| ≤ Kn−1/2. Equation (6.17) is thus proved. �

PROOF OF (6.18). Recall that χ�,j and ε3,�j have been introduced above.
Following the matrix framework introduced to express the system satisfied

by the y’s (matrices An, A
(j)
n and A

0,(j)
n ), we introduce the matrix Gn = AT

n =
(g�m)n�,m=1, its (n − j + 1) × (n − j + 1) principal submatrix G

(j)
n = (g�,m)n�,m=j

and the matrix G
0,(j)
n which differs from matrix G

(j)
n by its first column, equal to

zero. Writing δ
(j)
n = ( 1

n
TrD�DjT

2; j ≤ � ≤ n), we have

x(j)
n = G0,(j)

n x(j)
n + δ(j)

n .
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Now, define the (n − j + 1) × 1 vector ε
(j)
3 = (ε3,�j; j ≤ � ≤ n) and the (n −

j + 1) × 1 vectors:

χ (j) = (
χ

(j)
�,n; j ≤ � ≤ n

);
δ̆
(j) =

(
1

n
TrD�BDjEQ; j ≤ � ≤ n

)
.

Now, define the (n − j + 1) × (n − j + 1) matrix

Ğ(j) =
(

(1/n2)TrD�BDmEQ

(1 + (1/n)TrDmEQ)2

)n

�,m=j

and Ğ0,(j), which is equal to Ğ(j) except for its first column, equal to zero. With
this notation, equation (6.17), valid for j ≤ � ≤ n, can take the following matrix
form:

χ (j) = Ğ0,(j)χ (j) + δ̆
(j) + ε

(j)
3 .

We will heavily rely on the inequality

lim sup
n

∥∥∣∣(I − G0,(j))−1∥∥∣∣∞ < ∞,

which can be proven as in Lemma 5.2(4) and Lemma 5.5. We drop the super-
script 0,(j) in the equation below for the sake of readability.

χ = Ğχ + δ̆ + ε3

⇔ χ = Gχ + δ + ε3 + (Ğ − G)χ + (δ̆ − δ),

⇔ χ = (I − G)−1δ + (I − G)−1ε3
(6.30)

+ (I − G)−1(Ğ − G)χ + (I − G)−1(δ̆ − δ),

⇔ χ = x + (I − G)−1ε3

+ (I − G)−1(Ğ − G)χ + (I − G)−1(δ̆ − δ).

The first component of the previous equation can be written as

χ
(j)
j = x(j)

j + [(
I − G0,(j))−1

ε3
]
1

+ [(
I − G0,(j))−1(

Ğ0,(j) − G0,(j))χ + (
I − G0,(j))−1

(δ̆ − δ)
]
1

= x(j)
j + ε41,j + ε42,j.

Due to Lemma 5.2(4), which applies to G0,(j) and to the fact that
max�,j≤n E|ε3,�j| ≤ Kn−1/2, we have

E|ε41,j| ≤
n−j+1∑
m=1

[(
I − G0,(j))−1]

1,mE|ε3,�j| ≤ K√
n
.
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The second error term ε42,j is the sum

ε42,j = [(
I − G0,(j))−1(

Ğ0,(j) − G0,(j))χ]
1 + [(

I − G0,(j))−1
(δ̆ − δ)

]
1.

Let us first prove that [(I − G0,(j))−1(Ğ0,(j) − G0,(j))χ ]1 is dominated by a se-
quence independent of j that converges to zero as n → ∞. The mere definition of
χ

(j)
�,n [see (6.16)] yields ‖χ (j)‖∞ ≤ (Nσ 4

max)(nρ
2)−1, where ‖ · ‖∞ stands for the

�∞-norm. Hence,∣∣[(I − G0,(j))−1(
Ğ0,(j) − G0,(j))χ]

1

∣∣
≤ ∥∥∣∣(I − G0,(j))−1∥∥∣∣∞∥∥∣∣( ˘G0,(j) − G0,(j))T ∥∥∣∣∞‖χ‖∞

≤ K
∥∥∣∣(Ğ0,(j) − G0,(j))T ∥∥∣∣∞.

Let us prove that ∥∥∣∣(Ğ0,(j) − G0,(j))T ∥∥∣∣∞ −→
n→∞ 0(6.31)

uniformly in j . To this end, let us evaluate the (�,m)-element of matrix Ğ0,(j) −
G0,(j) (m > j):

n
∣∣[Ğ0,(j) − G0,(j)]

�m

∣∣
=

∣∣∣∣ (1/n)TrD�BDmEQ

(1 + (1/n)TrDmEQ)2 − (1/n)TrD�DmT 2

(1 + (1/n)TrDmT )2

∣∣∣∣
≤

∣∣∣∣(1 + 1

n
TrDmT

)2 1

n
TrD�BDmEQ

−
(

1 + 1

n
TrDmEQ

)2 1

n
TrD�DmT 2

∣∣∣∣(6.32)

≤
∣∣∣∣(1 + 1

n
TrDmT

)2 1

n
TrD�BDm(EQ − T )

∣∣∣∣
+

∣∣∣∣(1 + 1

n
TrDmT

)2 1

n
TrD�T Dm(B − T )

∣∣∣∣
+

∣∣∣∣((
1 + 1

n
TrDmT

)2

−
(

1 + 1

n
TrDmEQ

)2)
1

n
TrD�DmT 2

∣∣∣∣.
The first term of the right-hand side of (6.32) satisfies∣∣∣∣(1 + 1

n
TrDmT

)2 1

n
TrD�BDm(EQ − T )

∣∣∣∣ ≤
(

1 + σ 2
max

ρ

)2 1

n
TrU(EQ − T ),

where U is the N × N diagonal matrix U = σ 4
max ρ−1 diag(sign(E[Q]ii − ti),1 ≤

i ≤ N). By Lemma 6.3(2a), the right-hand side of this inequality converges to zero
as n → ∞.
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The second and third terms of the right-hand side of (6.32) can be han-
dled similarly with the help of Lemma 6.3 and one can prove that elements of
n(Ğ0,(j) − G0,(j)) are dominated by a sequence independent of j that converges
to zero. This implies that ‖|(Ğ0,(j) − G0,(j))T ‖|∞ converges to zero uniformly in
j and (6.31) is proved. As a consequence, [(I − G0,(j))−1(Ğ0,(j) − G0,(j))χ ]1 is
dominated by a sequence independent of j that converges to zero. The other term,
[(I − G0,(j))−1(δ̆ − δ)]1, in the expression of ε42,j is handled similarly. Equa-
tion (6.18) is thus proved. �

PROOF OF (6.19). We rewrite equation (6.15) as Ej+1(Ej�j )
2 = η1,j +

κη2,j + ε2,j, with

η1,j = 1

n2

1

(1 + (1/n)TrDjEQ)2 TrDj(Ej+1Qj)Dj (Ej+1Qj),

η2,j = 1

n2(1 + (1/n)TrDjEQ)2

N∑
i=1

σ 4
ij (Ej+1[Qj ]ii)2

and we prove that
∑n

j=1 η1,j − Ṽn
P→ 0 and

∑n
j=1 η2,j − Wn

P→ 0, where Ṽn and
Wn are defined in Section 5. To prove the first assertion, we first notice that

TrDj(Ej+1Qj)Dj (Ej+1Qj) = Ej+1(TrDj(Ej+1Qj)DjQj)

= Ej+1(TrDj(Ej+1Q)DjQ) + ε,

with |ε| ≤ 2σ 4
maxρ

−2, by Lemma 6.3(3). Therefore,

η1,j = Ej+1χ
(j)
j,n

(1 + (1/n)TrDjEQ)2 + ε

(1 + (1/n)TrDjEQ)2 .

It remains to control the difference (1 + 1
n

TrDjEQ)−2 − (1 + 1
n

TrDjT )−2, to

use (6.18) and one easily obtains
∑n

j=1 η1,j − Ṽn
P→ 0.

We now sketch the proof of
∑n

j=1 η2,j − Wn
P→0. As in (6.2), [Qj ]ii satisfies

[Qj ]ii = −(z(1 + ξ
j
i Q̃

j
i ξ

j
i

∗
))−1, where ξ

j
i is the row ξi without element j , and

Q̃
j
i = (Y

j
i

∗
Y

j
i + ρIn−1)

−1, where Y
j
i is the matrix Y without row i and column j .

Using this identity and Lemmas 6.2(1) and 6.3, we can show that [Qj ]ii is approx-

imated by ti , which is key to proving
∑n

j=1 η2,j − Wn
P→ 0. �

7. Proof of Theorem 3.3. We first provide an expression of the bias that in-
volves the Stieltjes transforms 1

N
Tr Q and 1

N
Tr T . By writing log det(YnY

∗
n +

ρIN) = N logρ + log det( 1
ρ
YnY

∗
n + IN) and taking the derivative of log det( 1

ρ
Yn ×
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Y ∗
n + IN) with respect to ρ, we obtain

log det(YnY
∗
n + ρIN) = N logρ + N

∫ ∞
ρ

(
1

ω
− 1

N
TrQ(−ω)

)
dω.

Since 1
N

TrQ(z) ∈ S(R+), we have 1
ω

− 1
N

TrQ(−ω) ≥ 0 for ω > 0. In fact, recall
that ‖Q(−ω)‖ ≤ ω−1, by Proposition 2.2. Therefore, by Fubini’s theorem,

E log det(YnY
∗
n + ρIN) = N logρ + N

∫ ∞
ρ

(
1

ω
− 1

N
Tr EQ(−ω)

)
dω.

Similarly,

NVn(ρ) = N

∫
log(λ + ρ)πn(dλ) = N logρ + N

∫ ∞
ρ

(
1

ω
− 1

N
TrT (−ω)

)
dω.

Hence, the bias term is given by

Bn(ρ)
= E log det(YnY

∗
n + ρIN) − NVn(ρ)

(7.1)
=

∫ ∞
ρ

Tr
(
T (−ω) − EQ(−ω)

)
dω.

In Appendix B, we prove that

Tr(T − Q) = Tr(T̃ − Q̃).(7.2)

Therefore, we can also write the bias as

Bn(ρ) =
∫ ∞
ρ

Tr
(
T̃ (−ω) − EQ̃(−ω)

)
dω.(7.3)

For technical reasons (and in order to rely on results of Section 5), we use repre-
sentation (7.3) of the bias instead of (7.1). The proof of Theorem 3.3 will rely on
the study of the asymptotic behavior of the integrand in the right-hand side of this
equation.

As a by-product of Section 5, the existence and uniqueness of the solution of
the system of equations (3.1) is straightforward. Indeed, define the n × 1 vectors
w and p as

w = (wj,n;1 ≤ j ≤ n),

p = (pj,n;1 ≤ j ≤ n).

The system (3.1) can then be written in matrix form as

w = Aw + p.(7.4)

Since (I − A) is invertible for n large enough, this proves Theorem 3.3(1).
The rest of the proof will be carried out into four steps:
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1. We first introduce a perturbed version of the system (7.4). For the reader’s con-
venience, we recall the following notation:

ti = 1

ω(1 + (1/n)Tr D̃i T̃ )
; t̃j = 1

ω(1 + (1/n)TrDjT )
;

ci = 1

ω(1 + (1/n)Tr D̃iEQ̃)
; c̃j = 1

ω(1 + (1/n)TrDjEQ)
;

bi = 1

ω(1 + (1/n)Tr D̃iC̃)
; b̃j = 1

ω(1 + (1/n)TrDjC)
,

where z is equal to −ω with ω ≥ 0. Write the integrand in (7.3) as

Tr
(
T̃ (−ω) − EQ̃(−ω)

) = 1

n

n∑
j=1

ϕj (ω),

(7.5)
with ϕj (ω)

= n
(
t̃j (−ω) − E[Q̃(−ω)]jj )

.

Let ψ (j)(ω)
= n(b̃j (−ω) − E[Q̃(−ω)]jj ) and define the n × 1 vectors ϕ and

ψ and the n × n matrix Ă as

ϕ = (ϕj ;1 ≤ j ≤ n),

ψ = (ψ (j);1 ≤ j ≤ n),

Ă =
(

(1/n2)TrDjDmCT

(1 + (1/n)TrDjT )(1 + (1/n)TrDjC)

)n

j,m=1
.

We first prove that

ϕ = Ăϕ + ψ .(7.6)

2. We prove that

ψ (j) = κω2b̃j c̃j

(
ω

n

N∑
i=1

(
σ 2

ij c
3
i

1

n

n∑
m=1

σ 4
imE[Q̃i]2

mm

)
− c̃j

n

N∑
i=1

σ 4
ijE[Qj ]2

ii

)
(7.7)

+ ε(j),

with |ε(j)| ≤ Kn−1/2, where K is a constant that does not depend on n nor or j

(but may depend on ω).
3. Matrix Ă readily approximates A and vector ψ approximates p for large n, by

step 2. Therefore, by inspecting equations (7.4) and (7.6), one may expect ϕ to
be close to w. We prove here that

‖ϕ − w‖∞ −→
n→∞,N/n→c

0.(7.8)
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4. Let βn(ω) = 1
n

∑n
j=1 wj,n(ω). Equation (7.8) yields 1

n

∑n
j=1 ϕj (ω) −

βn(ω) → 0. In order to prove (3.5), it remains to integrate and to provide a
dominated convergence theorem argument. To this end, we shall prove that

|βn(ω)| ≤ K ′

ω3(7.9)

for n large enough. This will establish (3.4). We will also prove that∣∣∣∣∣1

n

n∑
j=1

ϕj (ω)

∣∣∣∣∣ ≤ K ′

ω2(7.10)

for ω ∈ [ρ,+∞), where K ′ does not depend on n or ω. This will yield (3.5)
and the proof of Theorem 3.3 will be completed.

7.1. Proof of step 1: equation (7.6). Recall that ψ (j) = n(b̃j −E[Q̃]jj ). Using
these expressions, we have, for 1 ≤ j ≤ n,

ϕj = n(t̃j − b̃j ) + ψ (j) = nb̃j t̃j (b̃
−1
j − t̃−1

j ) + ψ (j)

= ωb̃j t̃j TrDj(C − T ) + ψ (j)

= ωb̃j t̃j

N∑
i=1

σ 2
ij ci ti(t

−1
i − c−1

i ) + ψ (j)

= ω2b̃j t̃j

n2

N∑
i=1

n∑
m=1

σ 2
ij σ

2
imcitiϕm + ψ (j)

= ω2b̃j t̃j

n∑
m=1

1

n2 Tr(DjDmCT )ϕm + ψ (j),

which yields equation (7.6).

7.2. Proof of step 2: Expression for ψ (j). We shall develop ψ (j) as

ψ (j) = ψ1 + ψ2 − ψ3,(7.11)

ψ1 = ψ4 + ε1,(7.12)

ψ2 = −ψ5 + ψ6,(7.13)

ψ5 = ψ7 + ε5,(7.14)

ψ6 = ψ8 + ε6,(7.15)

ψ3 = ψ9 + ε3,(7.16)
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where the ψk’s and the εk’s will be introduced when required. We shall further-
more prove that |εk| ≤ Kn−1/2 for k = 1,3,5,6. This will yield

ψ (j) = ψ4 − ψ7 + ψ8 − ψ9 + ε(j)

(7.17)

with
∣∣ε(j)

∣∣ = |ε1 − ε3 − ε5 + ε6| ≤ K

n1/2 .

Let us begin with decomposition (7.11):

ψ (j) = nb̃jE
([Q̃]jj ([Q̃]−1

jj − b̃−1
j )

)
(a)= nωb̃jE

(
[Q̃]jj

(
y∗
j Qjyj − 1

n
TrDjC

))
(b)= nωb̃j c̃jE

(
y∗
j Qjyj − 1

n
TrDjC

)
− nω2b̃j c̃jE

(
[Q̃]jj

(
y∗
j Qjyj − 1

n
TrDjEQ

)(
y∗
j Qjyj − 1

n
TrDjC

))
(c)= ωb̃j c̃j TrDjE(Qj − Q) + ωb̃j c̃j TrDj(EQ − C)

− nω2b̃j c̃jE

(
[Q̃]jj

(
y∗
j Qjyj − 1

n
TrDjEQ

)(
y∗
j Qjyj − 1

n
TrDjC

))
= ψ1 + ψ2 − ψ3,

where (a) follows from (6.2) and the definition of b̃j , (b) follows from identity (6.8)
and (c) follows from the equality

E

(
y∗
j Qjyj − 1

n
TrDjC

)
= 1

n
TrDj(EQj − C)

= 1

n
TrDjE(Qj − Q) + 1

n
TrDj(EQ − C).

Equation (7.11) is thus established.
We now turn to the decomposition (7.12). Combining (6.1) and (6.2), we obtain

Q = Qj −ω[Q̃]jjQjyjy
∗
j Qj , hence ψ1 = ω2b̃j c̃jE([Q̃]jj y∗

j QjDjQjyj ). Using

identity (6.8) and the fact that E(y∗
j QjDjQjyj ) = 1

n
E(TrDjQjDjQj), we obtain

ψ1 = ω2

n
b̃j c̃

2
jE(TrDjQjDjQj)

− ω3b̃j c̃
2
jE

(
[Q̃]jj

(
y∗
j Qjyj − 1

n
TrDjEQ

)
(y∗

j QjDjQjyj )

)
= ψ4 + ε1.
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We have

|ε1| ≤ 1

ω
E(y∗

j QjDjQjyj |ε11 + ε12 + ε13|),

with ε11 = y∗
j Qjyj − 1

n
TrDjQj , ε12 = 1

n
TrDj(Qj − EQj) and ε13 = 1

n
×

TrDjE(Qj − Q). By Lemmas 6.2(1), 6.3(2c) and 6.3(3), we have E|ε11|2 ≤
Kn−1, E|ε12|2 ≤ Kn−2 and |ε13|2 ≤ Kn−2, respectively. By the Cauchy–Schwarz
inequality, we therefore have

|ε1| ≤
K(E(y∗

j QjDjQjyj )
2)1/2

√
n

≤ K ′
√

n

and (7.12) is established.
We now establish decomposition (7.13):

ψ2 = ωb̃j c̃j TrDj(EQ − C)

= ωb̃j c̃j

N∑
i=1

σ 2
ij ciE

([Q]ii(c−1
i − [Q]−1

ii )
)

= −ω2b̃j c̃j

N∑
i=1

σ 2
ij ciE

(
[Q]ii

(
ξiQ̃iξ

∗
i − 1

n
Tr D̃iEQ̃

))

(a)= −ω2b̃j c̃j

N∑
i=1

σ 2
ij c

2
i

(
E(ξiQ̃iξ

∗
i ) − 1

n
Tr D̃iEQ̃

)

+ ω3b̃j c̃j

N∑
i=1

σ 2
ij c

2
i E

(
[Q]ii

(
ξiQ̃iξ

∗
i − 1

n
Tr D̃iEQ̃

)2)
= −ψ5 + ψ6,

where (a) follows from (6.7). Equation (7.13) is thus established.

Let us now turn to decomposition (7.14). We have ψ5 = ω2b̃j c̃j

n

∑N
i=1 σ 2

ij c
2
i ×

Tr D̃iE(Q̃i − Q̃). By similar arguments as those used for ψ1, we have

ψ5 = ω3b̃j c̃j

n2

N∑
i=1

σ 2
ij c

3
i E(Tr D̃iQ̃iD̃iQ̃i)

+ ω3b̃j c̃j

n2

N∑
i=1

σ 2
ij c

2
i E([Q]ii − ci)Tr D̃iQ̃iξ

∗
i ξiQ̃i

= ψ7 + ε5,

where |ε5| ≤ Kn−1/2 and (7.14) is thus established.



CLT FOR CERTAIN STATISTICS OF GRAM RANDOM MATRICES 2119

Turning to (7.15), we have

ψ6 = ω3b̃j c̃j

N∑
i=1

σ 2
ij c

2
i E

(
[Q]ii

(
ξiQ̃iξ

∗
i − 1

n
Tr D̃iEQ̃

)2)

= ω3b̃j c̃j

N∑
i=1

σ 2
ij c

3
i E

(
ξiQ̃iξ

∗
i − 1

n
Tr D̃iEQ̃

)2

(7.18)

− ω4b̃j c̃j

N∑
i=1

σ 2
ij c

3
i E

(
[Q]ii

(
ξiQ̃iξ

∗
i − 1

n
Tr D̃iEQ̃

)3)
= ψ ′

6 + ε61,

again using (6.7). The term ε61 satisfies

|ε61| ≤ 1

ω2

N∑
i=1

σ 2
ijE|ε611,i + ε612,i + ε613,i |3

≤ 9

ω2

N∑
i=1

σ 2
ij (E|ε611,i |3 + E|ε612,i |3 + |ε613,i |3),

where ε611,i = ξiQ̃iξ
∗
i − 1

n
Tr D̃iQ̃i , ε612,i = 1

n
Tr D̃i(Q̃i − EQ̃i) and ε613,i =

1
n

Tr D̃iE(Q̃i − Q̃). By Lemma 6.2(1), E|ε611,i |3 ≤ Kn−3/2. By Lemma 6.3(2d),
E|ε612,i |3 ≤ (E|ε612,i |4)3/4 ≤ Kn−3/2. By Lemma 6.3(3), |ε613,i |3 ≤ Kn−3,
hence

|ε6,1| ≤ K√
n
.

We now handle the term ψ ′
6 in (7.18). We have

ψ ′
6 = ω3b̃j c̃j

N∑
i=1

σ 2
ij c

3
i E

(
ξiQ̃iξ

∗
i − 1

n
Tr D̃iQ̃i + ε612,i + ε613,i

)2

= ω3b̃j c̃j

N∑
i=1

σ 2
ij c

3
i E

(
ξiQ̃iξ

∗
i − 1

n
Tr D̃iQ̃i

)2

+ ε62

= ψ8 + ε62,

where

ε62 = ω3b̃j c̃j

N∑
i=1

σ 2
ij c

3
i

(
E(ε612,i + ε613,i )

2

+ 2E

((
ξiQ̃iξ

∗
i − 1

n
Tr D̃iQ̃i

)
(ε612,i + ε613,i )

))
.
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Using Lemmas 6.2(1) and 6.3, it is easy to show that

|ε62| ≤ K√
n
.

Furthermore, the terms E()2 in the expression of ψ8 have a more explicit form.
Indeed, applying Lemma 6.2(2) yields

ψ8 = ω3b̃j c̃j

n2

N∑
i=1

σ 2
ij c

3
i

(
E(Tr D̃iQ̃iD̃iQ̃i) + κ

n∑
m=1

σ 4
imE([Q̃i]2

mm)

)
.

Decomposition (7.15) is established with ε6 = ε61 + ε62.
It remains to give decomposition (7.16). Using (6.8), we have

ψ3 = nω2b̃j c̃jE

(
[Q̃]jj

(
y∗
j Qjyj − 1

n
TrDjEQ

)(
y∗
j Qjyj − 1

n
TrDjC

))
= nω2b̃j c̃

2
jE

((
y∗
j Qjyj − 1

n
TrDjEQ

)(
y∗
j Qjyj − 1

n
TrDjC

))

− nω3b̃j c̃
2
jE

(
[Q̃]jj

(
y∗
j Qjyj − 1

n
TrDjEQ

)2(
y∗
j Qjyj − 1

n
TrDjC

))
= ψ ′

3 + ε31.

The term ε31 satisfies

|ε31| ≤ n

ω
E

(∣∣∣∣y∗
j Qjyj − 1

n
TrDjQj + ε311 + ε312

∣∣∣∣2
×

∣∣∣∣y∗
j Qjyj − 1

n
TrDjQj + ε311 + ε312 + ε313

∣∣∣∣),

with ε311 = 1
n

TrDj(Qj − EQj), ε312 = 1
n

TrDjE(Qj − Q) and ε313 = 1
n

×
TrDj(EQ − C).

The terms ε311, ε312 and y∗
j Qjyj − 1

n
TrDjQj can be handled by Lemmas

6.2(1) and 6.3. The term ε313 coincides with ψ2(nωb̃j c̃j )
−1. The derivations made

on ψ2 above [decompositions (7.13)–(7.15)] show that |ψ2(ωb̃j c̃j )
−1| ≤ K , there-

fore |ε313| ≤ Kn−1.
Using these results, we obtain, after some standard manipulations,

|ε31| ≤ K√
n
.

The term ψ ′
3 can be written as

ψ ′
3 = nω2b̃j c̃

2
jE

((
y∗
j Qjyj − 1

n
TrDjQj + ε311 + ε312

)



CLT FOR CERTAIN STATISTICS OF GRAM RANDOM MATRICES 2121

×
(
y∗
j Qjyj − 1

n
TrDjQj + ε311 + ε312 + ε313

))

= nω2b̃j c̃
2
jE

(
y∗
j Qjyj − 1

n
TrDjQj

)2

+ ε32

= ψ9 + ε32,

with |ε32| ≤ Kn−1/2. Similarly to ψ8, we can develop ψ9 to obtain

ψ9 = ω2b̃j c̃
2
j

n

(
E(TrDjQjDjQj) + κ

N∑
i=1

σ 4
ijE([Qj ]2

ii)

)
.(7.19)

Decomposition (7.16) is established with ε3 = ε31 + ε32.
We now put the pieces together and provide equation (7.17), satisfied by ψ (j).

We recall that

ψ4 = ω2b̃j c̃
2
j

n
E(TrDjQjDjQj),

ψ7 = ω3b̃j c̃j

n2

N∑
i=1

σ 2
ij c

3
i E(Tr D̃iQ̃iD̃iQ̃i),

ψ8 = ω3b̃j c̃j

n2

N∑
i=1

σ 2
ij c

3
i

(
E(Tr D̃iQ̃iD̃iQ̃i) + κ

n∑
m=1

σ 4
imE([Q̃i]2

mm)

)
,

ψ9 = ω2b̃j c̃
2
j

n

(
E(TrDjQjDjQj) + κ

N∑
i=1

σ 4
ijE([Qj ]2

ii)

)
.

When computing the right-hand side of (7.17), all terms of the form
E TrDjQjDjQj and E Tr D̃iQ̃iD̃iQ̃i cancel out and we end up with equa-
tion (7.7). Step 2 is thus established.

7.3. Proof of step 3: ‖ϕ − w‖∞ → 0. In order to prove (7.8), we need the
following facts:

‖|(Ă − A)T ‖|∞ →
n→∞ 0;(7.20)

lim sup
n

‖|(I − A)−1‖|∞ < ∞;(7.21)

I − Ă is invertible for n large enough;(7.22)

lim sup
n

‖|(I − Ă)−1‖|∞ < ∞.(7.23)

The proof of (7.20) is close to the proof of (6.31) above and is therefore omitted.
The bound (7.21) follows from Lemma 5.2(3). We now prove (7.22) and (7.23).
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Recall that, by Lemma 5.5, there exist two vectors un = (u�,n) � 0 and vn =
(v�,n) � 0 such that un = Aun +vn, supn ‖un‖∞ < ∞ and lim infn min�(v�,n) > 0.
Matrix Ă satisfies the equation un = Ăun + v̆n with v̆n = (v̆�n) = vn + (A− Ă)un.
Combining (7.20) with inequalities supn ‖un‖∞ < ∞ and lim infn(min� v�n) > 0,
we have lim infn(min� v̆�n) > 0. Therefore, Lemma 5.2 applies to matrix Ă for n

large enough, which implies (7.22) and (7.23).
We are now in a position to prove ‖ϕ − w‖∞ → 0. Working out equations (7.6)

and (7.4), we obtain

ϕ = w + (I − A)−1(Ă − A)ϕ + (I − A)−1(ψ − p),

hence

‖ϕ − w‖∞ ≤ ‖|(I − A)−1‖|∞‖|(Ă − A)‖|∞‖ϕ‖∞ + ‖|(I − A)−1‖|∞‖ψ − p‖∞.

Thanks to (7.22), we have ϕ = (I − Ă)−1ψ for n large enough. One can check
from (7.7) that supn ‖ψ‖∞ < ∞. Therefore, by (7.23), we have supn ‖ϕ‖∞ < ∞.
Using (7.20) and (7.21), we then have ‖|(I − A)−1‖|∞‖|(Ă − A)‖|∞‖ϕ‖∞ → 0.

It remains to prove that ‖ψ − p‖∞ → 0. In step 3, it has been established that
ψ is a perturbed version of p, as defined in (3.2), in the sense of equation (7.7).
Using the arguments developed in the course of the proof of (6.18), it is a matter
of routine to check that ‖ψ − p‖∞ → 0. Details are omitted. Hence,

‖|(I − A)−1‖|∞‖ψ − p‖∞ → 0.

Consequently, ‖ϕ − w‖∞ → 0 and step 3 is proved.

7.4. Proof of step 4: Dominated convergence. In this section, the constant K ′
does not depend on n or ω, but its value is allowed to change from line to line. We
first prove (7.9). We have

|βn| ≤ ‖w‖∞ ≤ ‖|(I − A)−1‖|∞‖p‖∞,

by (7.4). By inspecting (3.2), one obtains ‖p‖∞ ≤ |κ|(N/n)(
σ 6

max
ω4 + σ 4

max
ω3 ) ≤

K ′ω−3. We need now to bound ‖|(I − A)−1‖|∞ in terms of ω ∈ [ρ,∞).
Lemma 5.2(3) yields

‖|(I − A)−1‖|∞ ≤ max�(u�,n)

min�(v�,n)
,

where un = (u�n) and vn = (v�n) are the vectors given in the statement of
Lemma 5.5. We now inspect the expressions of u�n and v�n. Equation (5.4) yields

min
�

(v�,n) ≥ 1

(ω + σmax)2 min
j

1

N
TrDj

and max�(u�,n) ≤ (Nσ 2
max)(nω2)−1 by (5.6). Collecting all of these estimates, we

obtain |βn| ≤ K ′ω−3 and inequality (7.9) is proved.
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We now prove (7.10). We have∣∣∣∣∣1

n

n∑
j=1

ϕj

∣∣∣∣ ≤ ‖ϕ‖∞ ≤ ‖|(I − Ă)−1‖|∞‖ψ‖∞,(7.24)

by (7.6) and (7.22). We know that the right-hand side is bounded as n → ∞. How-
ever, not much is known about the behavior of the bound with respect to ω. Using
inequality (7.24) and relying on the derivations that lead to (7.6)–(7.7), one can
prove that ‖|(I − Ă)−1‖|∞, ‖ψ‖∞ and, therefore, ‖ϕ‖∞ are bounded on the com-
pact subsets of [ρ,+∞). Therefore, in order to establish (7.10), it is sufficient
to prove that ‖ϕ‖∞ is bounded by K ′ ω−2 near infinity. To this end, we develop
|ϕj (ω)| as follows:

|ϕj (ω)| = nt̃j
∣∣E([Q̃]jj ([Q̃]−1

jj − t̃−1
j )

)∣∣
= nωt̃j

∣∣∣∣E(
[Q̃]jj

(
y∗
j Qjyj − 1

n
TrDjT

))∣∣∣∣
≤ ωt̃jE[Q̃]jj |TrDjE(Q − T )|

+ nωt̃j

∣∣∣∣E(
[Q̃]jj

(
y∗
j Qjyj − 1

n
TrDjEQ

))∣∣∣∣
(a)≤ ωt̃jE[Q̃]jj |TrDjE(Q − T )|

+ nωt̃j c̃j

∣∣∣∣E(
y∗
j Qjyj − 1

n
TrDjEQ

)∣∣∣∣
+ nω2 t̃j c̃j

∣∣∣∣E(
[Q̃]jj (y∗

j Qjyj − 1

n
TrDjEQ)2

)∣∣∣∣
(b)≤ ωt̃jE[Q̃]jj |TrDjE(Q − T )| + ωt̃j c̃j

∣∣E(
TrDj(Qj − Q)

)∣∣
+ 2nω2 t̃j c̃jE

(
[Q̃]jj

(
y∗
j Qjyj − 1

n
TrDjEQj

)2)

+ 2
ω2 t̃j c̃j

n
E[Q̃]jj (

TrDjE(Qj − Q)
)2

,

where (a) follows from (6.8) and (b) from the fact that(
y∗
j Qjyj − 1

n
TrDjEQ

)2

≤ 2
(
y∗
j Qjyj − 1

n
TrDjEQj

)2

+ 2
(

1

n
TrDjE(Qj − Q)

)2

.
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Let α(ω) = nmax1≤i≤N |ti − E[Q]ii |. Using Lemma 6.3(3), we obtain from the
last inequality that

‖ϕ(ω)‖∞ ≤ σ 2
max

ω
α(ω) + σ 2

max

ω2 + 2n

ω
E

(
y∗
j Qjyj − 1

n
TrDjEQj

)2

+ 2σ 4
max

nω3 .

As in (7.19), we have

E

(
y∗
j Qjyj − 1

n
TrDjEQj

)2

= 1

n2

(
E(TrDjQjDjQj) + κ

N∑
i=1

σ 4
ijE[Qj ]2

ii

)

≤ Nσ 4
max(1 + |κ|)

n2ω2 .

Therefore,

‖ϕ(ω)‖∞ ≤ σ 2
max

ω
α(ω) + K ′

ω2(7.25)

for ω ∈ [ρ,+∞). A similar derivation yields α(ω) ≤ σ 2
max
ω

‖ϕ(ω)‖∞+ K ′
ω2 . Plugging

this inequality into (7.25), we obtain

(1 − σ 4
max/ω

2)‖ϕ(ω)‖∞ ≤ K ′

ω2 ,

hence ‖ϕ(ω)‖∞ ≤ K ′ω−2 for ω large enough.
We have proven that ‖ϕ(ω)‖∞ is bounded on compact subsets of [ρ,∞) and,

furthermore, that (7.10) is true for ω large enough. Therefore, (7.10) holds for
every ω ∈ [ρ,+∞). Step 4 is proved and so is Theorem 3.3.

APPENDIX A: PROOF OF LEMMA 6.3

PROOF OF LEMMA 6.3(1). This is straightforward. �

PROOF OF LEMMA 6.3(2).

PROOF OF (2A). From [17], Lemmas 6.1 and 6.6, we get

1

n
TrU

(
Q(−ρ) − T (−ρ)

) −→
n→∞ 0 a.s.

Now, since∣∣∣∣1

n
TrU

(
Q(−ρ) − T (−ρ)

)∣∣∣∣ ≤ ‖U‖(‖Q(−ρ)‖ + ‖T (−ρ)‖) ≤ 2‖U‖
ρ

,

the dominated convergence theorem yields the first part of (2a). The second part is
proved similarly. �
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PROOF OF (2B). Recall from Theorem 2.3(1) and from the mere definitions
of T and B that the matrices T (z) and B(z) can be written as

T =
(
−zI + 1

n

n∑
j=1

1

1 + (1/n)TrDjT
Dj

)−1

and

B =
(
−zI + 1

n

n∑
j=1

1

1 + (1/n)TrDjEQ
Dj

)−1

.

We therefore have
1

n
TrU

(
B(−ρ) − T (−ρ)

)
= 1

n
TrUBT (T −1 − B−1)

= 1

n2 Tr

(
UBT

n∑
j=1

(1/n)TrDj(EQ − T )

(1 + (1/n)TrDjT )(1 + (1/n)TrDjEQ)
Dj

)

= 1

n2

N∑
i=1

n∑
j=1

xn
ij ,

with xn
ij = [U ]iibi tiσ

2
ij

(1+(1/n)TrDjT )(1+(1/n)TrDj EQ)
1
n

TrDj(EQ − T ). It can be easily

checked that |xn
ij | ≤ 2 supn(‖U‖)σ 4

max/ρ
3. Furthermore, xn

ij →n 0 for every i, j ,
by (2a). It remains to apply the dominated convergence theorem to the integral
with respect to Lebesgue measure on [0,1]2 of the staircase function fn(x, y), de-
fined as fn(i/N, j/n) = xn

ij , to deduce that 1
n

TrU(B − T ) → 0. This completes
the proof of (2b). �

In the sequel, K is a constant whose value might change from line to line, but
which remains independent of n.

PROOF OF (2C). We have

TrU(Q − EQ)
(a)=

n∑
j=1

(Ej − Ej+1)TrUQ

(b)=
n∑

j=1

(Ej − Ej+1)TrU(Q − Qj)(A.1)

(c)= −
n∑

j=1

(Ej − Ej+1)
y∗
j QjUQjyj

1 + y∗
j Qjyj

=
n∑

j=1

xj ,



2126 W. HACHEM, P. LOUBATON AND J. NAJIM

where (a) follows from the fact that E1 TrUQ = TrUQ and En+1 TrUQ =
E TrUQ, (b) follows from the fact that Ej TrUQj = Ej+1 TrUQj since Qj does
not depend on yj and (c) follows from (6.1) and the fact that TrQjyjy

∗
j QjU =

y∗
j QjUQjyj .

Now, one can easily check that
∑n

j=1 xj (= TrU(Q − EQ)) is the sum of a
martingale difference sequence with respect to the increasing filtration Fn, . . . ,F1
since Ekxj = 0 for k > j . Therefore,

E
(
TrU(Q − EQ)

)2 =
n∑

j=1

Ex2
j .

Write xj = xj,1 + xj,2, where

xj,1 = −(Ej − Ej+1)

( y∗
j QjUQjyj

1 + (1/n)TrDjQj

)
,

xj,2 = −(Ej − Ej+1)

(y∗
j QjUQjyj

1 + y∗
j Qjyj

− y∗
j QjUQjyj

1 + (1/n)TrDjQj

)
.

Using the fact that yj and Fj+1 are independent and the fact that Qj does not
depend on yj , one easily obtains

Ej+1

( y∗
j QjUQjyj

1 + (1/n)TrDjQj

)
= 1

n
TrDjEj+1

(
QjUQj

1 + (1/n)TrDjQj

)
.

Thus, xj,1 and xj,2 can be written as

xj,1 = −y∗
j Ej+1

(
QjUQj

1 + (1/n)TrDjQj

)
yj

+ 1

n
TrDjEj+1

(
QjUQj

1 + (1/n)TrDjQj

)
,

xj,2 = (Ej − Ej+1)
y∗
j QjUQjyj

(1 + (1/n)TrDjQj)(1 + y∗
j Qjyj )

×
(
y∗
j Qjyj − 1

n
TrDjQj

)
= (Ej − Ej+1)xj,3.

Since the matrix ‖DjEj (
QjUQj

1+(1/n)TrDjQj
)‖ ≤ K , Lemma 6.2(1) and Assump-

tion A1 together yield Ex2
1,j ≤ Kn−1. Furthermore, we have

|xj,3| ≤
∣∣∣∣y∗

j QjUQjyj

(
y∗
j Qjyj − 1

n
TrDjQj

)∣∣∣∣
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since y∗
j Qjyj ≥ 0 and 1

n
TrDjQj ≥ 0. The Cauchy–Schwarz inequality yields

Ex2
j,3 ≤ (E(y∗

j QjUQjyj )
4)1/2

(
E

(
y∗
j Qjyj − 1

n
TrDjQj

)4)1/2

,

which, in turn, yields Ex2
j,3 < K

n
since

E(y∗
j QjUQjyj )

4 ≤ K and E

(
y∗
j Qjyj − 1

n
TrDjQj

)4

≤ K

n2 ,(A.2)

where the first inequality in (A.2) follows from 0 ≤ y∗
j QjUQjyj ≤ ‖QjUQj‖ ×

‖yj‖2 and Assumption A1, and the second from Assumption A1 and Lem-
ma 6.2(1).

We are now in a position to conclude.

Ex2
j,2 = E

(
(Ej − Ej+1)xj,3

)2 ≤ 2E
(
(Ej xj,3)

2 + (Ej+1xj,3)
2)

(a)≤ 2E(Ej x
2
j,3 + Ej+1x

2
j,3) = 4Ex2

j,3,

where (a) follows from Jensen’s inequality. Now,

Ex2
j = E(xj,1 + xj,2)

2 ≤ (
(Ex2

j,1)
1/2 + (Ex2

j,2)
1/2)2 ≤ K

n

and E(TrU(Q − EQ))2 = ∑n
j=1 Ex2

j ≤ K . Inequality (c) is thus proved. �

PROOF OF (2D). We again rely on the decomposition (A.1) and follow along
the lines of the computations in [3], page 580:

TrU(Q − EQ) = −
n∑

j=1

(Ej − Ej+1)
y∗
j QjUQjyj

1 + y∗
j Qjyj

.

Thus,

E

(
1

N
TrU(Q − EQ)

)4

= 1

N4 E

(
n∑

j=1

(Ej − Ej+1)
y∗
j QjUQjyj

1 + y∗
j Qjyj

)4

(a)≤ K

N4 E

(
n∑

j=1

(
(Ej − Ej+1)

y∗
j QjUQjyj

1 + y∗
j Qjyj

)2
)2

(b)≤ K

N4 N

n∑
j=1

E

(
(Ej − Ej+1)

y∗
j QjUQjyj

1 + y∗
j Qjyj

)4

≤ K

N2 sup
j

E

(
(Ej − Ej+1)

y∗
j QjUQjyj

1 + y∗
j Qjyj

)4

,

where (a) follows from Burkholder’s inequality and (b) from the convexity inequal-
ity (

∑n
i=1 ai)

2 ≤ n
∑n

i=1 a2
i . Now, recall that y∗

j Qjyj ≥ 0 and ‖Qj(−ρ)‖ ≤ 1/ρ.
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Standard computations yield

E

(
(Ej − Ej+1)

y∗
j QjUQjyj

1 + y∗
j Qjyj

)4

≤ KE(y∗
j QjUQjyj )

4 ≤ K‖U‖4

ρ8 E‖yj‖4,

which is uniformly bounded by Assumptions A1 and A2. Therefore, (2d) is proved.
�

PROOF OF LEMMA 6.3(3). Developing the difference Q − Qj with the help
of (6.1), we obtain

|TrM(Q − Qj)| =
∣∣∣∣TrM

( Qjyjy
∗
j Qj

1 + y∗
j Qjyj

)∣∣∣∣
= |y∗

j QjMQjyj |
1 + y∗

j Qjyj

≤ ‖M‖ ‖Qjyj‖2

1 + y∗
j Qjyj

.

Consider a spectral representation of Y jY j ∗
, that is, Y jY j ∗ = ∑N

i=1 λieie
∗
i . We

have

‖Qjyj‖2 =
N∑

i=1

|e∗
i yj |2

(λi + ρ)2 and y∗
j Qjyj =

N∑
i=1

|e∗
i yj |2

λi + ρ
≥ ρ

N∑
i=1

|e∗
i yj |2

(λi + ρ)2 ,

hence the result. Inequality (3) is thus proved. �

APPENDIX B: PROOF OF FORMULA (7.2)

Recalling that Q(z) = (YY ∗ − zIN)−1 and Q̃(z) = (Y ∗Y − zIn)
−1, it is easy to

show that Tr(Q) − Tr(Q̃) = (n − N)/z. We shall now show that Tr(T ) − Tr(T̃ ) =
(n − N)/z. Formula (7.2) is obtained by combining these two equations.

Equations (2.2) in the statement of Lemma 2.4 can be rewritten as

ti + ti

n

n∑
j=1

σ 2
ij t̃j = −1

z
for 1 ≤ i ≤ N,

t̃j + t̃j

n

N∑
i=1

σ 2
ij ti = −1

z
for 1 ≤ j ≤ n.

By summing the first N equations over i and the next n equations over j , and by
eliminating the term 1

n

∑N
i=1

∑n
j=1 σ 2

ij ti t̃j , we obtain
∑

i ti − ∑
j t̃j = (n − N)/z,

which is the desired result. Equation (7.2) is thus proved.
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