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BINOMIAL APPROXIMATIONS OF SHORTFALL RISK
FOR GAME OPTIONS1

BY YAN DOLINSKY AND YURI KIFER

Hebrew University

We show that the shortfall risk of binomial approximations of game
(Israeli) options converges to the shortfall risk in the corresponding Black–
Scholes market considering Lipschitz continuous path-dependent payoffs for
both discrete- and continuous-time cases. These results are new also for usual
American style options. The paper continues and extends the study of Kifer
[Ann. Appl. Probab. 16 (2006) 984–1033] where estimates for binomial ap-
proximations of prices of game options were obtained. Our arguments rely,
in particular, on strong invariance principle type approximations via the Sko-
rokhod embedding, estimates from Kifer [Ann. Appl. Probab. 16 (2006) 984–
1033] and the existence of optimal shortfall hedging in the discrete time es-
tablished by Dolinsky and Kifer [Stochastics 79 (2007) 169–195].

1. Introduction. This paper deals with game (Israeli) options introduced
in [5] sold in a standard securities market consisting of a nonrandom component bt

representing the value of a savings account at time t with an interest rate r and of a
random component St representing the stock price at time t . As usual, we view St ,
t > 0 as a stochastic process on a probability space (�,F ,P ) and we assume that
it generates a right-continuous filtration {Ft }. The setup includes also two continu-
ous stochastic payoff processes Xt ≥ Yt ≥ 0 adapted to the above filtration. Recall
that game contingent claim (GCC) or game option is defined as a contract between
the seller and the buyer of the option such that both have the right to exercise it
at any time up to a maturity date (horizon) T . If the buyer exercises the contract
at time t , then he receives the payment Yt , but if the seller exercises (cancels) the
contract before the buyer, then the latter receives Xt . The difference �t = Xt − Yt

is the penalty which the seller pays to the buyer for the contract cancellation. In
short, if the seller will exercise at a stopping time σ ≤ T and the buyer at a stopping
time τ ≤ T , then the former pays to the latter the amount H(σ, τ) where

H(s, t) = XsIs<t + YtIt≤s

and we set IA = 1 if an event A occurs and IA = 0 if not.
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A hedge (for the seller) against a GCC is defined here as a pair (π,σ ) which
consists of a self-financing strategy π (i.e., a trading strategy with no consumption
and no infusion of capital) and a stopping time σ which is the cancellation time
for the seller. A hedge is called perfect if no matter what exercise time the buyer
chooses, the seller can cover his liability to the buyer (with probability 1). The
option price V ∗ is defined as the minimal initial capital which is required for a
perfect hedge, that is, for any x > V ∗ there is a perfect hedge with an initial capi-
tal x. Recall (see [6]) that pricing a GCC in a complete market leads to the value of
a zero sum optimal stopping (Dynkin’s) game with discounted payoffs X̃t = b0

Xt

bt
,

Ỹt = b0
Yt

bt
considered under the unique martingale measure P̃ ∼ P . The stochas-

tic process of values V π
t of the portfolio π at time t is called the wealth process.

In this paper we allow only hedges (π,σ ) with self-financing strategies π having
nonnegative wealth process, calling such π admissible. This corresponds to the
situation when the portfolio is handled without borrowing of the capital. In real
market conditions an investor (seller) may not be willing for various reasons to tie
in a hedging portfolio the full initial capital required for a perfect hedge. In this
case the seller is ready to accept a risk that his portfolio value at an exercise time
may be less than his obligation to pay and he will need additional funds to fulfill
the contract. Thus a portfolio shortfall comes into the picture and by this reason
we distinguish here between hedges and perfect hedges.

In this paper we deal with a certain type of risk called the shortfall risk (cf., e.g.,
[1, 2, 4, 9]) which was defined for game options in [2] by

R(π,σ ) = sup
τ

E

[(
Q(σ, τ) − b0

V π
σ∧τ

bσ∧τ

)+]

where the supremum is taken over all stopping times not exceeding a horizon T ,
Q(s, t) = X̃sIs<t + ỸtIt≤s is the discounted payoff, and E denotes the expectation
with respect to the objective probability P . The shortfall risk for an initial capital
x is defined as

R(x) = inf
(π,σ )

R(π,σ )

where the infimum is taken over all hedges with an initial capital x. An investor
(seller) whose initial capital x is less than the option price V ∗ still wants to com-
pute the minimal possible shortfall risk and to find a hedge with the initial capital x

which minimizes or “almost” minimizes the shortfall risk. For discrete-time mod-
els we showed in [2] how to do this but for the continuous-time Black–Scholes
(BS) market the problem becomes quite complicated. The Cox, Ross and Rubin-
stein (CRR) binomial model (see, e.g., [12]) is an efficient tool to approximate
derivative securities in a BS market. In [6] it was shown under quite general as-
sumptions for path-dependent payoff functions that the option price (for a game
option) in a BS model can be approximated by a sequence of option prices in ap-
propriate CRR n-step models with errors bounded by Cn−1/4(lnn)3/4 where C
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is a constant which can be estimated explicitly. The main goal of this paper is
to show that for path-dependent payoffs satisfying the conditions of [6] and for
an initial capital x the shortfall risk in a BS market R(x) is a limit of the short-
fall risks Rn(x) for the same initial capital in an appropriate sequence of CRR
markets. For game options we are able to provide only a one-sided error estimate
R(x)−Rn(x) ≤ Cn−1/4(lnn)3/4 where C > 0 is a constant, but for American ones
we derive in Section 6 full error estimates. These results rely on estimates of [6]
and hedge constructions for shortfall risks in the discrete time from [2] but require
also substantial additional arguments to ensure convergence under constraints.

Some discrete-time approximation results without error estimates for European
options with payoffs depending only on the current stock price were obtained in [3]
where the authors proved a weak convergence of shortfall risk minimizing portfo-
lios in CRR markets to the one in the BS market. For American and Israeli options
the problem was not studied before. For European options in continuous-time mod-
els (see [1, 4]) it is known that under a constraint on the initial capital there exists a
portfolio which minimizes the shortfall risk. Furthermore, by using the Neyman–
Pearson lemma and convex duality methods, this portfolio can be found explicitly.
In [9] the author proved without an explicit construction that for American op-
tions in the continuous-time BS model there exists a portfolio which minimizes
the risk. The proof was based on the fact that the shortfall risk in this case is a
convex functional of the wealth process while for game options the shortfall risk
fails to be a convex functional of the wealth process, and so the convex analysis
methods become unavailable in this case. For game options the question whether
there exists a hedge which minimizes the shortfall risk in the continuous-time BS
model remains open.

In [2] we proved that for a game option in the multinomial model there exists
a hedge which minimizes the shortfall risk under constraint on the initial capital,
and the above hedge can be computed via a dynamical programming procedure.
We will use these hedges in the CRR markets in order to construct hedges in the
continuous BS market which “almost” minimize the shortfall risk. Although the
BS market is continuous, in practice an investor can buy stock and bond units only
on a finite set of times (may be random), and so construction of the above hedges
can be useful for practical applications, since (as we will see) in order to manage
the corresponding portfolios it is sufficient to buy stocks and bonds only on a finite
set of random times. There was no construction of such portfolio strategies before
even for European options. Our main tool is the Skorokhod type embedding of
sums of i.i.d. random variables into a Brownian motion with a constant drift. This
tool was employed in [6] in order to obtain error estimates for approximations of
option prices. We will use this embedding in order to turn optimal hedges of CRR
markets into hedges in the BS market which are almost optimal. If we could show
that the sequence of the above hedges converges to a hedge in some reasonable
sense, then the latter hedge would minimize the shortfall risk for the BS market,
but meanwhile this problem remains open.
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Main results of this paper are formulated in the next section where we discuss
also the Skorokhod type embedding. In Section 3 we introduce recursive formulas
which enable us to compare various risks. In Section 4 we derive auxiliary esti-
mates for risks. In Section 5 we complete the proof of main results of the paper.

2. Preliminaries and main results. First, we recall the setup from [6]. De-
note by M[0, t] the space of Borel-measurable functions on [0, t] with the uniform
metric d0t (υ, υ̃) = sup0≤s≤t |υs − υ̃s |. For each t > 0 let Ft and �t be nonnegative
functions on M[0, t] such that for some constant L ≥ 1 and for any t ≥ s ≥ 0 and
υ, υ̃ ∈ M[0, t],

|Fs(υ) − Fs(υ̃)| + |�s(υ) − �s(υ̃)| ≤ L(s + 1)d0s(υ, υ̃)(2.1)

and

|Ft(υ) − Fs(υ)| + |�t(υ) − �s(υ)|
(2.2)

≤ L

(
|t − s|

(
1 + sup

u∈[0,t]
|υu|

)
+ sup

u∈[s,t]
|υu − υs |

)
.

By (2.1), F0(v) = F0(v0) and �0(v) = �0(v0) are functions of v0 only and
by (2.2),

Ft(υ) + �t(υ)
(2.3)

≤ F0(υ0) + �0(υ0) + L(t + 2)

(
1 + sup

0≤s≤t

|υs |
)
.

Next we consider a complete probability space (�B , F B , P B ) together with a
standard one-dimensional continuous-in-time Brownian motion {Bt }∞t=0, and the
filtration F B

t = σ {Bs |s ≤ t}. A BS financial market consists of a savings account
and a stock whose prices bt and SB

t at time t , respectively, are given by the formu-
las

bt = b0e
rt and SB

t = S0e
rt+κB∗

t , b0, S0 > 0,(2.4)

where

B∗
t =

(
μ

κ
− κ

2

)
t + Bt, t ≥ 0,(2.5)

r is the interest rate, κ > 0 is called volatility and μ is another parameter. Denote
by S̃B

t = e−rtSB
t the discounted stock price. We will consider a game option in the

BS market with payoff processes having the form

Yt = Ft(S
B) and Xt = Gt(S

B), t ≥ 0,

where Gt = Ft + �t with F and � satisfying (2.1) and (2.2), and SB = SB(ω) ∈
M[0,∞) is a random function taking the value SB

t = SB
t (ω) at t ∈ [0,∞). When



RISK APPROXIMATIONS 1741

considering Ft(S
B),Gt(S

B) for t < ∞ we take the restriction of SB to the interval
[0, t]. Denote by T the horizon of our game option assuming that T < ∞. Recall
(see, e.g., [12], Section 7.1) that a self-financing strategy π with a (finite) horizon
T and an initial capital x is a process π = {πt }Tt=0 of pairs πt = (βt , γt ) where βt

and γt are progressively measurable with respect to the filtration F B
t , t ≥ 0, and

satisfy

∫ T

0
ert |βt |dt < ∞ and

∫ T

0
(γtS

B
t )2 dt < ∞.(2.6)

The portfolio value V π
t for a strategy π at time t ∈ [0, T ] is given by

V π
t = βtbt + γtS

B
t = x +

∫ t

0
βu dbu +

∫ t

0
γu dSB

u .(2.7)

Denote by Ṽ π
t = e−rtV π

t the discounted portfolio value at time t . Then it is easy
to see that (see, e.g., [12])

Ṽ π
t = x +

∫ t

0
γu dS̃B

u(2.8)

and by (2.7),

βt =
(
x +

∫ t

0
γu dS̃B

u − γt S̃
B
t

)/
b0.(2.9)

Hence, the discounted portfolio value depends only on the process {γt }Tt=0 and
the process {βt }Tt=0 can be obtained by (2.9). A self-financing strategy π is called
admissible if V π

t ≥ 0 for all t ∈ [0, T ] and the set of such strategies with an initial
capital x will be denoted by AB(x). Set also AB = ⋃

y>0 AB(y). Denote by T B

the set of all stopping times with respect to the Brownian filtration F B
t , t ≥ 0,

and let T B
0T be the set of all stopping times with values in [0, T ]. A pair (π,σ ) ∈

AB(x) × T B
0T of an admissible self-financing strategy π with an initial capital x

and of a stopping time σ will be called a hedge. Set

QB(s, t) = X̃sIs<t + ỸtIt≤s,(2.10)

where Ỹt = e−rtYt and X̃t = e−rtXt are the discounted payoffs. For a hedge (π,σ )

the shortfall risk is given by (see [2])

R(π,σ ) = sup
τ∈T B

0T

EB[(
QB(σ, τ ) − Ṽ π

σ∧τ

)+]
,(2.11)

which is the maximal possible expectation with respect to the probability measure
P B of the discounted shortfall. The shortfall risks for a portfolio π ∈ AB and for
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an initial capital x are given by

R(π) = inf
σ∈T B

0T

R(π,σ ) and R(x) = inf
π∈AB(x)

R(π),(2.12)

respectively. Denote by P̃ B the unique martingale measure. Using standard argu-
ments we obtain that the restriction of the P̃ B to the σ -algebra F B

t satisfies

Zt = dP B

dP̃ B

∣∣∣∣F B
t = e(μ/κ)Bt+(1/2)(μ/κ)2t .(2.13)

By [5] the game option price V ∗ is given by

V ∗ = inf
σ∈T B

0T

sup
τ∈T B

0T

ẼBQB(σ, τ )(2.14)

where ẼB is the expectation with respect to P̃ B .
As in [6] we consider a sequence of CRR markets on a complete probability

space such that for each n = 1,2, . . . the bond prices b
(n)
t at time t are

b
(n)
t = b0e

r[nt/T ]T/n = b0(1 + rn)
[nt/T ], rn = erT /n − 1,(2.15)

and stock prices S
(n)
t at time t are given by the formulas S

(n)
t = S0 for t ∈ [0, T /n)

and

S
(n)
t = S0 exp

([nt/T ]∑
k=1

(
rT

n
+ κ

(
T

n

)1/2

ξk

))

(2.16)

= S0

[nt/T ]∏
k=1

(
1 + ρ

(n)
k

)
if t ≥ T/n,

where ρ
(n)
k = exp( rT

n
+ κ(T

n
)1/2ξk) − 1 and ξ1, ξ2, . . . are i.i.d. random variables

taking values 1 and −1 with probabilities p(n) = (exp((κ − 2μ
κ

)
√

T
n
) + 1)−1 and

1 − p(n) = (exp((
2μ
κ

− κ)
√

T
n
) + 1)−1, respectively. Let P

ξ
n = {p(n),1 − p(n)}∞

be the corresponding product probability measure on the space of sequences �ξ =
{−1,1}∞ and let S̃m = (1 + rn)

−mSm be the discounted stock price. We consider
S(n) = S(n)(ω) as a random function on [0, T ], so that S(n)(ω) ∈ M[0, T ] takes
the value S

(n)
t = S

(n)
t (ω) at t ∈ [0, T ]. Set F

ξ
k = σ {ξ1, . . . , ξk}, F ξ = ⋃

k≥1 F
ξ
k

and denote by T
ξ

0n the set of all stopping times with respect to the filtration F
ξ
k

with values in {0,1, . . . , n}. Let Aξ,n(x) be the set of all admissible self-financing
strategies with an initial capital x. Recall (see [12]) that a self-financing strategy
π with an initial capital x and a horizon n is a sequence (π1, . . . , πn) of pairs
πk = (βk, γk) where βk, γk are F

ξ
k−1-measurable random variables representing
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the number of bond and stock units, respectively, at time k. Thus the portfolio
value V π

k , k = 0,1, . . . , n is given by

V π
0 = x, V π

k = βkb
(n)
kT /n + γkS

(n)
kT /n, 1 ≤ k ≤ n.(2.17)

Denote by Ṽ π
k = (1 + rn)

−kV π
k the discounted portfolio value at time k. Since π

is self-financing, then

βkb
(n)
kT /n + γkS

(n)
kT /n = βk+1b

(n)
kT /n + γk+1S

(n)
kT /n,(2.18)

and so (see [12]),

Ṽ π
k = x +

k−1∑
i=0

γi+1
(
S̃

(n)
(i+1)T /n − S̃

(n)
iT /n

)
.(2.19)

Furthermore, again,

βk =
(
x +

k−1∑
i=0

γi+1
(
S̃

(n)
(i+1)T /n − S̃

(n)
iT /n

) − γkS̃
(n)
kT /n

)/
b0,(2.20)

and so, as before, in order to determine a self-financing strategy it suffices to
introduce a process {γk}nk=0 and to obtain the process {βk}nk=0 by (2.20). We
call a self-financing strategy π admissible if V π

k ≥ 0 for any k ≤ n. Set also
Aξ,n = ⋃

u>0 Aξ,n(u).
Let

Y
(n)
k = FkT/n

(
S(n)), X

(n)
k = GkT/n

(
S(n))(2.21)

and

Q(n)(s, k) = X̃(n)
s Is<k + Ỹ

(n)
k Ik≤s, k, s ≤ n,(2.22)

where X̃
(n)
k = (1 + rn)

−kX
(n)
k and Ỹ

(n)
k = (1 + rn)

−kY
(n)
k are the discounted pay-

offs. Clearly Yk,Xk are F
ξ
k -measurable. A hedge with an initial capital x is an

element in the set Aξ,n(x) × T
ξ

0n. For a hedge (π,σ ) the shortfall risk is given by

Rn(π,σ ) = max
τ∈T

ξ
0n

Eξ
n

[(
Q(n)(σ, τ ) − Ṽ π

σ∧τ

)+]
,(2.23)

which is the maximal expectation with respect to the probability measure P
ξ
n of

the discounted shortfall. Observe that T
ξ

0n is a finite set so that we can use max
in (2.23). The shortfall risk for a portfolio π ∈ Aξ,n and for an initial capital x is
given by

Rn(π) = min
σ∈T

ξ
0n

Rn(π,σ ) and Rn(x) = inf
π∈Aξ,n(x)

Rn(π),(2.24)



1744 Y. DOLINSKY AND Y. KIFER

respectively. Let P̃
ξ
n be a probability measure such that ξ1, ξ2, . . . is a sequence

of i.i.d. random variables taking on the values 1 and −1 with probabilities p̃(n) =
(exp(κ

√
T
n
)+1)−1 and 1− p̃(n) = (exp(−κ

√
T
n
)+1)−1, respectively (with respect

to P̃
ξ
n ). Observe that for any n the process {S̃(n)

mT/n}
n

m=0
is a martingale with respect

to P̃
ξ
n , and so we conclude that P̃

ξ
n is the unique martingale measure for the above

CRR markets.
Consider an investor in the BS market whose initial capital is x which is less

than the option price V ∗. In this case the investor accepts a risk since there is no
perfect hedge (see [2]). The following result says that the shortfall risk R(x) of
a game option in the BS market can be approximated by a sequence Rn(x) of
shortfall risks of game options in the CRR markets defined above and it provides
also a one-sided error estimate of this approximation.

THEOREM 2.1.

lim
n→∞Rn(x) = R(x).(2.25)

Furthermore, there exists a constant C > 0 such that for any n > 0,

R(x) ≤ Rn(x) + Cn−1/4(lnn)3/4.(2.26)

Relying on convexity arguments which are not available for game options, we
complement for American options in Section 6 the upper bound (2.26) by a similar
lower bound.

In order to compare R(x) and Rn(x) we will use (a trivial form of) the Sko-
rokhod type embedding. Thus, define recursively

θ
(n)
0 = 0, θ

(n)
k+1 = inf

{
t > θ

(n)
k :

∣∣B∗
t − B∗

θ
(n)
k

∣∣ =
√

T

n

}

where, recall, B∗
t = (

μ
κ

− κ
2 )t + Bt . Using the same arguments as in [6] we ob-

tain that for each of the measures P B, P̃ B , the sequence θ
(n)
k − θ

(n)
k−1, k = 1,2, . . . ,

is a sequence of i.i.d. random variables such that (θ
(n)
k+1 − θ

(n)
k ,B∗

θ
(n)
k+1

− B∗
θ

(n)
k

) are

independent of F B

θ
(n)
k

. Employing the exponential martingale exp((κ − 2μ
κ

)B∗
t ) for

the probability P B , we obtain that EB exp((κ − 2μ
κ

)B∗
θ

(n)
1

) = 1, concluding that

B∗
θ

(n)
1

=
√

T
n

or −
√

T
n

with probability p(n) or 1−p(n), respectively. Using the mar-

tingale S̃B
t = S0 exp(κB∗

t ) for the probability P̃ B , we obtain ẼB exp(κB∗
θ

(n)
1

) = 1,

and so B∗
θ

(n)
1

=
√

T
n

or −
√

T
n

with probability p̃(n) or 1 − p̃(n), respectively.

A hedge (π,σ ) ∈ AB(x) × T B
0T will be called ε-optimal if R(π,σ ) ≤ R(x) + ε.

For ε = 0 the above hedge is called an optimal hedge. Theorem 2.1 provides an ap-
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proximation of the shortfall risk of a game option in the BS market by means of the
shortfall risks of game options in the CRR market which becomes especially use-
ful if we can provide also a simple description of ε-optimal hedges in the BS mar-
ket via optimal hedges in the CRR markets. Set bi = B∗

θ
(n)
i

− B∗
θ

(n)
i−1

, i = 1,2, . . . ,

and following [6] introduce for each k = 1,2, . . . the finite σ -algebra GB,n
k =

σ {b1, . . . ,bk} with GB,n
0 = {∅,�B} being the trivial σ -algebra. Let SB,n

0,n be the

set of all stopping times with respect to the filtration GB,n
k , k = 0,1,2, . . . , with

values in {0,1, . . . , n}. Observe that for any n and k ≤ n we have a natural bijec-
tion �n,k :L∞(F

ξ
k ,P

ξ
n ) → L∞(GB,n

k ,P B) which is given by �n,kZ = Z̃ so that

if Z = f (ξ1, . . . , ξk) for a function f on {−1,1}k , then Z̃ = f (
√

n
T
b1, . . . ,

√
n
T
bk).

For simplicity denote �n = �n,n and notice that if we restrict �n to T
ξ

0n we

obtain a bijection �n :T ξ
0n → SB,n

0,n . In addition to the set SB,n
0,n consider also the

set T B,n
0,n of stopping times with respect to the filtration {F B

θ
(n)
k

}n
k=0

with values in

{0,1, . . . , n}. Clearly, SB,n
0,n ⊂ T B,n

0,n . Finally, we define a function φn :T ξ
0n → T B

0T

which maps stopping times in CRR markets to stopping times in the BS model by

φn(σ ) =
{

T ∧ θ
(n)
�n(σ), if �n(σ) < n,

T , if �n(σ) = n.
(2.27)

Let us check that φn(σ ) ∈ T B
0T . Indeed, for t < T ,

{φn(σ ) ≤ t} =
n−1⋃
k=0

{
θ

(n)
k ≤ t

} ∩ {�n(σ) = k}(2.28)

and since {�n(σ) = k} ∈ GB,n
k ⊂ F B

θ
(n)
k

the event in the right-hand side of (2.28)

belongs to F B
t . Since {φn(σ ) ≤ T } = �B we conclude that φn(σ ) ∈ T B

0T . For
each n and x > 0 let AB,n(x) be the set of all admissible self-financing strate-
gies with an initial capital x in the BS model which can be managed only on the
set {0, θ

(n)
1 , . . . , θ

(n)
n } and such that the discounted portfolio value remains constant

after the moment θ
(n)
n . Namely, if π = {(βt , γt )}∞t=0 ∈ AB,n(x), then βt = β

θ
(n)
k

and

γt = γ
θ

(n)
k

provided t ∈ [θ(n)
k , θ

(n)
k+1) and k < n while γt = 0 for all t ≥ θ

(n)
n which is

achieved by selling all stocks in the portfolio at the time θ
(n)
n , buying immediately

bonds for all money and doing nothing afterward. This together with (2.8) yields
that for π = {(βt , γt )}∞t=0 ∈ AB,n(x) the corresponding discounted portfolio value
is given by

Ṽ π
t =

⎧⎪⎨
⎪⎩

Ṽ π

θ
(n)
k

+ γ
θ

(n)
k

(
S̃B

t − S̃B

θ
(n)
k

)
, t ∈ [

θ
(n)
k , θ

(n)
k+1

]
,

Ṽ π

θ
(n)
n

, t > θ
(n)
n .

(2.29)
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Next, we define a function ψn :Aξ,n(x) → AB,n(x) which maps admissible self-
financing strategies in the CRR n-step model to the set of admissible self-financing
strategies in the BS model which are managed on the set {0, θ

(n)
1 , . . . , θ

(n)
n }. For

π = {(βk, γk)}nk=1 ∈ Aξ,n(x) define ψn(π) ∈ AB,n(x) by

Ṽ
ψn(π)
t =

⎧⎪⎨
⎪⎩

Ṽ
ψn(π)

θ
(n)
k

+ �n,k(γk+1)
(
S̃B

t − S̃B

θ
(n)
k

)
, t ∈ [

θ
(n)
k , θ

(n)
k+1

]
,

Ṽ
ψn(π)

θ
(n)
n

, t > θ
(n)
n .

(2.30)

Observe that �n,k(S̃
(n)
(kT )/n) = S̃B

θ
(n)
k

for any k ≤ n, and so we obtain from (2.19) and

(2.30) that Ṽ
ψn(π)

θ
(n)
n

= �n(Ṽ
π
n ) ≥ 0. Since the discounted wealth process Ṽ

ψn(π)
t

in (2.30) is a martingale and it does not change when t ≥ θ
(n)
n , we obtain that

Ṽ
ψn(π)
t ≥ 0 for all t . Hence, if π is an admissible portfolio, then the portfolio

ψn(π) is admissible concluding that ψn(π) ∈ AB,n(x), as required. Clearly, if we
restrict the portfolio ψn(π) to the interval [0, T ] we can consider ψn(π) as an
element in AB(x) since the discounted wealth process Ṽ π

t in (2.30) is a martin-
gale and it does not change for t ≥ θ

(n)
n , whence it is nonnegative for all t if it is

nonnegative at t = θ
(n)
n .

In [2] we showed that in CRR markets, for any initial capital x there exists an
optimal hedge which can be calculated by a dynamical programming algorithm.
We will use these hedges for our sequence of CRR markets together with the cor-
respondence maps φn and ψn introduced above in order to obtain a simple repre-
sentation of ε-optimal hedges for the BS market.

THEOREM 2.2. For any n let (πn, σn) ∈ Aξ,n(x) × T
ξ

0n be the optimal hedge
constructed in the next section [see (3.14) and Lemma 3.3] for the corresponding
CRR markets; then

lim
n→∞R(ψn(πn),φn(σn)) = R(x).(2.31)

3. Optimal stopping risk representation and Skorokhod embedding. We
start with an exposition of the machinery from [2] which enables us to reduce opti-
mization of the shortfall risk to optimal stopping problems for Dynkin’s games
with appropriately chosen payoff processes. For any n set a

(n)
1 = eκ

√
T/n − 1,

a
(n)
2 = e

−κ
√

T
n − 1 and observe that for each m ≤ n the random variable

S̃
(n)
mT/n

S̃
(n)
(m−1)T /n

−
1 = exp(κ(T

n
)1/2ξm)−1 takes on only the values a

(n)
1 and a

(n)
2 . For each y > 0 and

n ∈ N introduce the closed interval In(y) = [− y

a
(n)
1

,− y

a
(n)
2

] and for 0 ≤ k < n and a
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given positive F
ξ
k -measurable random variable X, define

A
ξ,n
k (X) =

{
Y |Y = X + α

(
exp

(
κ

(
T

n

)1/2

ξk+1

)
− 1

)
(3.1)

for some F
ξ
k -measurable α ∈ In(X)

}
.

Notice that if Ṽ π
k = X and Ṽ π

k+1 = Y for π = {(βk, γk)}nk=1, then by (2.16)

and (2.19), Y = X + α(exp(κ(T
n
)1/2ξk+1) − 1) where α = γk+1S̃

(n)
(kT )/n is F

ξ
k -

measurable. Since we allow only nonnegative portfolio values, and so Y ≥ 0 which
must be satisfied for all possible values of (exp(κ(T

n
)1/2ξk+1) − 1), we conclude

in view of independency of α and ξk+1 that A
ξ,n
k (X) is the set of all possible dis-

counted portfolio values at the time k + 1 provided that the discounted portfolio
value at the time k is X.

For any n and π ∈ Aξ,n define a sequence of random variables {Wπ
k }n

k=0 by

Wπ
n = (

Ỹ (n)
n − Ṽ π

n

)+ and

Wπ
k = min

((
X̃

(n)
k − Ṽ π

k

)+
,max

((
Ỹ

(n)
k − Ṽ π

k

)+
,Eξ

n(Wπ
k+1|F ξ

k )
))

(3.2)

for k < n.

Applying the results for Dynkin’s games from [10] for the payoff processes{(
X̃

(n)
k − Ṽ π

k

)+}n
k=0 and

{(
Ỹ

(n)
k − Ṽ π

k

)+}n
k=0

in place of {X̃(n)
k }nk=0 and {Ỹ (n)

k }nk=0 as before, we obtain that

Wπ
0 = min

σ∈T
ξ

0n

max
τ∈T

ξ
0n

Eξ
n

[(
Q(n)(σ, τ ) − Ṽ π

σ∧τ

)+] = Rn(π) = Rn(π,σ (π)),(3.3)

where

σ(π) = min
{
k
∣∣(X̃(n)

k − Ṽ π
k

)+ = Wπ
k

} ∧ n.(3.4)

On the Brownian probability space define S
B,n
t = S0 if t < T/n and

S
B,n
t = S0 exp

([nt/T ]∑
k=1

(
rT

n
+ κbk

))
if t ∈ [T/n,T ](3.5)

where, recall, bk = B∗
θ

(n)
k

− B∗
θ

(n)
k−1

and consider new payoff functions Y
B,n
t =

Ft(S
B,n) and X

B,n
t = Gt(S

B,n). Set

QB,n(s, t) = X̃B,n
s Is<t + Ỹ

B,n
t It≤s,(3.6)

where Ỹ
B,n
t = e−rtY

B,n
t and X̃

B,n
t = e−rtX

B,n
t are the discounted payoffs. For

each positive F B

θ
(n)
k

-measurable random variable X define AB,n
k (X) by (3.1) with
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(T /n)1/2ξk+1 and F
ξ
k replaced by bk+1 and F B

θ
(n)
k

, respectively. By (2.29) we con-

clude similarly to the above that AB,n
k (X) consists of all possible discounted val-

ues at the time θ
(n)
k+1 of portfolios managed only at embedding times {θ(n)

i } with the

discounted stock evolution S̃B
t provided the discounted portfolio value at the time

θ
(n)
k is X.

Next, define the shortfall risk by

RB,n(π, ζ ) = sup
η∈T B,n

0n

EB

[(
QB,n

(
T ζ

n
,
T η

n

)
− Ṽ π

θ
(n)
ζ∧η

)+]
,

(3.7)
RB,n(π) = inf

ζ∈T B,n
0n

RB,n(π, ζ ) and RB,n(x) = inf
π∈AB,n(x)

RB,n(π).

For any π ∈ AB,n define a sequence of random variables {Uπ
k }n

k=0,

Uπ
n = (

Ỹ
B,n
T − Ṽ π

θ
(n)
n

)+ and

Uπ
k = min

((
X̃

B,n
(kT )/n − Ṽ π

θ
(n)
k

)+
,(3.8)

max
((

Ỹ
B,n
(kT )/n − Ṽ π

θ
(n)
k

)+
,EB(

Uπ
k+1|F B

θ
(n)
k+1

)))
, k < n

and a stopping time

ζ(π) = min
{
k|(X̃B,n

(kT )/n − Ṽ π

θ
(n)
k

)+ = Uπ
k

} ∧ n.(3.9)

Again, using the results of [10] for Dynkin’s games with the adapted (with re-
spect to the filtration {F B

θ
(n)
k

}n
k=0

) payoff processes {(X̃B,n
(kT )/n − Ṽ π

θ
(n)
k

)+}n
k=0

and

{(Ỹ B,n
(kT )/n − Ṽ π

θ
(n)
k

)+}n
k=0

, we obtain

Uπ
0 = RB,n(π) = RB,n(π, ζ(π)).(3.10)

For k ≤ n and x1, . . . , xk ∈ R consider the function ψx1,...,xk ∈ M[0, kT
n

] given by

ψx1,...,xk (t) = S0 exp
(

rjT

n
+ κ

j∑
i=1

xi

)
for t ∈ [

j t/n, (j + 1)T /n
)
,1 ≤ j ≤ k

and

ψx1,...,xk (0) = S0 for t ∈ [0, T /n).

Introduce functions f n
k , gn

k : Rk → R such that for any x1, . . . , xk ∈ R,

f n
k (x1, . . . , xk) = (1 + rn)

−kF
(kT )/n

(ψx1,...,xk ) = e−rkT /nF
(kT )/n

(ψx1,...,xk ),

gn
k (x1, . . . , xk) = (1 + rn)

−kG
(kT )/n

(ψx1,...,xk ) = e−rkT /nG
(kT )/n

(ψx1,...,xk ).
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Observe that for the above functions,

Ỹ
B,n
(kT )/n = f n

k (b1, . . . ,bk) and

X̃
B,n
(kT )/n = gn

k (b1, . . . ,bk),
(3.11)

Ỹ
(n)
k = f n

k

(√
T

n
ξ1, . . . ,

√
T

n
ξk

)
and

X̃
(n)
k = gn

k

(√
T

n
ξ1, . . . ,

√
T

n
ξk

)
.

The following technical lemma was proved under even more general assumptions
in [2], Lemma 3.3, so for its proof we refer the reader there.

LEMMA 3.1. Let h1, h2 : [0,∞) → R. For a fixed n define a function
ψ : [0,∞) → R by

ψ(y) = inf
u∈In(y)

(
p(n)h1

(
y + ua

(n)
1

) + (
1 − p(n))h2

(
y + ua

(n)
2

))
[with p(n) defined after (2.16)]. If h1, h2 are continuous decreasing functions, then
so is ψ .

For each n define a sequence of functions Jn
k : [0,∞) × R

k → R, k = 0,

1, . . . , n, by the backward recursion

Jn
n (y,u1, u2, . . . , un)

= (
f n

n (u1, . . . , un) − y
)+

,

J n
k (y, u1, . . . , uk)

= min
((

gn
k (u1, . . . , uk) − y

)+
,

(3.12)

max
((

f n
k (u1, . . . , uk) − y

)+
,

inf
u∈In(y)

[
p(n)J n

k+1

(
y + ua

(n)
1 , u1, . . . , uk,

√
T

n

)

+ (
1 − p(n))Jn

k+1

(
y + ua

(n)
2 , u1, . . . , uk,−

√
T

n

)]))

for k = n − 1, n − 2, . . . ,0.

Similarly in [2], these dynamical programming relations will enable us to compare
shortfall risks defined in (2.24) and (3.7) since we will be able to represent both
types of risks via J n

0 . Meanwhile we state additional properties of the functions Jn
k .
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LEMMA 3.2. The function Jn
k (y,u1, . . . , uk) is continuous and decreasing

with respect to y for any n, k ≤ n.

PROOF. We fix n and use the backward induction in order to prove that
Jn

k (y,u1, . . . , uk) satisfies the required conditions for any k ≤ n. For k = n

the statement is clear. Suppose that statement holds true for k + 1 and prove

it for k. Fix u1, . . . , uk . Denote h1(y) = Jn
k+1(y, u1, . . . , uk,

√
T
n
), h2(y) =

Jn
k+1(y, u1, . . . , uk,−

√
T
n
) and ψ(y) = infu∈In(y)[p(n)h1(y +ua

(n)
1 )+(1−p(n))×

h2(y + ua
(n)
2 )]. From the induction hypothesis it follows that h1(y) and h2(y) are

continuous decreasing functions, and so we obtain from Lemma 3.1 that ψ(y) is
continuous and decreasing, as well. Observe that

Jn
k (y,u1, . . . , uk)

= min
[(

gn
k (u1, . . . , uk) − y

)+
,max

[(
f n

k (u1, . . . , uk) − y
)+

,ψ(y)
]]

,

and so Jn
k (y,u1, . . . , uk) is a continuous and decreasing in y function. �

For a given closed interval K = [a, b] and a function f :K × R
k → R such

that f (·, v) is continuous for all v ∈ R
k , define arg mina≤u≤b f (u, v) = min{w ∈

K|f (w,v) = minβ∈K f (β, v)}. The last lemma enables us to define the following
functions:

hn
k(y, x1, . . . , xk)

= arg min
u∈In(y)

[
p(n)J n

k+1

(
y + ua

(n)
1 , u1, . . . , uk,

√
T

n

)
(3.13)

+ (
1 − p(n))Jn

k+1

(
y + ua

(n)
2 , u1, . . . , uk,−

√
T

n

)]
,

k < n.

Let x be an initial capital. For any n there exists a hedge (πn, σn) ∈ Aξ,n(x) × T
ξ

0n

such that

Ṽ
πn

0 = x and

Ṽ
πn

k+1 = Ṽ
πn

k + hn
k(Ṽ

πn

k , eκ
√

T/nξ1, . . . , eκ
√

T/nξk )(eκ
√

T/nξk+1 − 1)(3.14)

for k < n and σn = σ(πn)

with σ(π) defined by (3.4). From the arguments concerning A
ξ,n
k (X) at the be-

ginning of this section it follows that πn is an admissible strategy. From the de-
finition of AB,n

k (X) we conclude that for each n there exists a hedge (π̃n, ζn) ∈
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AB,n(x) × T B,n
0,n such that

Ṽ
π̃n

0 = x,

Ṽ
π̃n

θ
(n)
k+1

= Ṽ
π̃n

θ
(n)
k

+ hn
k

(
Ṽ

π̃n

θ
(n)
k

, exp(κb1), . . . , exp(κbk)
)(

exp(κbk) − 1
)

and(3.15)

ζn = �n(σn)

with �n defined before (2.27). The following lemma enables us to consider all
relevant processes on the Brownian probability space and to deal with stopping
times with respect to the same filtration.

LEMMA 3.3. For any n,x > 0,

Rn(x) = Rn(πn) = Rn(πn,σn) = Jn
0 (x)

(3.16)
= RB,n(π̃n) = RB,n(π̃n, ζn) = RB,n(x).

PROOF. For fixed n and x we prove first that RB,n(π̃n) = RB,n(x) = J
n,x
0 (x).

Set �π
k = Ṽ π

θ
(n)
k

and �k = Ṽ
π̃n

θ
(n)
k

. We claim that for each k ≤ n and any π ∈ AB,n(x),

Jn
k (�π

k ,b1, . . . ,bk) ≤ Uπ
k and Jn

k (�k,b1, . . . ,bk) = U
π̃n

k .(3.17)

Let k ≤ n and π ∈ AB,n(x); then by the properties of AB,n
k (�π

k ) there ex-
ists a F B

θ
(n)
k

-measurable random variable α ∈ In(�
π
k ) such that �π

k+1 = �π
k +

α(exp(κbk+1) − 1). Since bk+1 is independent of F B

θ
(n)
k

we obtain

A
def= EB(

Jn
k+1(�

π
k+1,b1, . . . ,bk+1)|F B

θ
(n)
k

)

= p(n)J n
k+1

(
�π

k + αa
(n)
1 ,b1, . . . ,bk,

√
T

n

)
(3.18)

+ (
1 − p(n))Jn

k+1

(
�π

k + αa
(n)
2 ,b1, . . . ,bk,−

√
T

n

)
,

and so

A ≥ inf
β∈In(�π

k )

[
p(n)J n

k+1

(
�π

k + βa
(n)
1 ,b1, . . . ,bk,

√
T

n

)
(3.19)

+ (
1 − p(n))Jn

k+1

(
�π

k + βa
(n)
2 ,b1, . . . ,bk,−

√
T

n

)]
.

In order to prove (3.17) we will use the backward induction. For k = n the relations
(3.17) follow from (3.8) and (3.12). Suppose that (3.17) hold true for k + 1 and
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prove them for k. Let π ∈ AB,n(x); then from (3.19) and the induction hypothesis
we get

EB(
Uπ

k+1|F B

θ
(n)
k

)

≥ A ≥ inf
β∈In(�π

k )

[
p(n)J n

k+1

(
�k + βa

(n)
1 ,b1, . . . ,bk,

√
T

n

)

+ (
1 − p(n))Jn

k+1

(
�k + βa

(n)
2 ,b1, . . . ,bk,−

√
T

n

)]
.

From (3.8) and (3.12) it follows that

Uπ
k ≥ Jn

k (�π
k ,b1, . . . ,bk).(3.20)

Set α = h
n,x
k (�k, exp(κb1), . . . , exp(κbk)). By the induction hypothesis similarly

to (3.18) we have

EB(
U

π̃n

k+1|F B

θ
(n)
k

) = EB(
Jn

k+1(�k+1,b1, . . . ,bk+1)|F B

θ
(n)
k

)

= p(n)J n
k+1

(
�k + αa

(n)
1 ,b1, . . . ,bk,

√
T

n

)

+ (
1 − p(n))Jn

k+1

(
�k + αa

(n)
2 ,b1, . . . ,bk,−

√
T

n

)
def= D.

By the definition of π̃n [see (3.13)–(3.15)] we derive that

D = inf
β∈In(�k)

[
p(n)J n

k+1

(
�k + βa

(n)
1 ,b1, . . . ,bk,

√
T

n

)

+ (
1 − p(n))Jn

k+1

(
�k + βa

(n)
2 ,b1, . . . ,bk,−

√
T

n

)]
.

From (3.8) and (3.12) it follows that

U
π̃n

k = Jn
k (�k,b1, . . . ,bk).(3.21)

Combining (3.20) and (3.21) we obtain that (3.17) holds true for any k, as required.
From (3.17) for k = 0 together with (3.10) it follows that for any π ∈ AB,n(x),

RB,n(π̃n) = U
π̃n

0 = Jn
0 (x) ≤ Uπ

0 = RB,n(π).

Hence,

Jn
0 (x) = RB,n(π̃n) = RB,n(x).(3.22)
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The proof of the equality Rn(x) = R(πn) = Jn
0 (x) is the same; just replace Ṽ π

k ,

Ṽ
πn

k ,
√

T
n
ξi and Wπ

k by �π
k , �k , bi and Uπ

k , respectively. This together with (3.3)
and (3.4) gives

Jn
0 (x) = Rn(πn,σn) = Rn(πn) = Rn(x).(3.23)

Furthermore, similarly to (3.17),

W
πn

k = Jn
k

(
Ṽ

πn

k ,

√
T

n
ξ1, . . . ,

√
T

n
ξk

)
.(3.24)

From (3.14), (3.15), (3.21) and (3.24) we obtain that for any k ≤ n,

�n,k(Ṽ
πn

k ) = Ṽ
π̃n

k and �n,k(W
πn

k ) = U
π̃n

k .(3.25)

By (3.14), σn = min {k|(X̃(n)
k − Ṽ

πn

k )+ = W
πn

k } ∧ n and so from (3.11) and (3.15)

we have ζn = min {k|(X̃B,n
(kT )/n − Ṽ

π̃n

(kT )/n)
+ = U

π̃n

k } ∧ n. By (3.9) and (3.10) it fol-

lows that RB,n(π̃n, ζn) = RB,n(π̃n) which together with (3.22) and (3.23) com-
pletes the proof of the lemma. �

4. Approximations and estimates. Set

A = sup
0≤s≤T

Xs and An = sup
0≤s≤θ

(n)
n ∨T

Xs, n ∈ N.(4.1)

From the exponential moment estimates (4.8) and (4.25) of [6] it follows that there
exists a constant K1 such that for any natural n and a real a,

EBe|a|θ(n)
n ∨T ≤ e|a|K1T and EB sup

0≤t≤θ
(n)
n ∨T

exp(aBt ) ≤ 2ea2K1T .(4.2)

Thus, employing the Cauchy–Schwarz inequality and (2.3), we obtain that for any
p there exists a constant hp such that for all n ∈ N,

EBAp
n ≤ hp.(4.3)

Recall (see [12]) that for any self-financing strategy the discounted portfolio
process is a right-continuous supermartingale with respect to the martingale mea-
sure. Let AB,M(x) ⊂ AB(x) be the subset of all admissible self-financing strate-
gies such that the corresponding discounted portfolio with the initial capital x is
a right-continuous martingale with respect to the martingale measure P̃ B and set
AB,M = ⋃

u>0 AB,M(u).

LEMMA 4.1. There exists a constant K2 such that if π, π̃ ∈ AB,M and
ẼB |Ṽ π

T − Ṽ π̃
T | < ε, then

|RB(π) − RB(π̃)| ≤ K2ε
1/4.(4.4)
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PROOF. Let ϒ = sup0≤t≤T |Ṽ π
t − Ṽ π̃

t |. Using the Cauchy–Schwarz inequality
we obtain

|RB(π) − RB(π̃)|
≤ sup

σ∈T B
0T

sup
τ∈T B

0T

EB
∣∣[(QB(σ, τ ) − Ṽ π

σ∧τ

)+] − [(
QB(σ, τ ) − Ṽ π̃

σ∧τ

)]+∣∣
≤ EB(AIϒ>

√
ε) + √

ε = ẼB(AZT Iϒ>
√

ε) + √
ε

≤ (ẼBA4)1/4(ẼBZ4
T )1/4(

P̃ B{
ϒ ≥ √

ε
})1/2 + √

ε.

From our assumptions it follows that the process {|Ṽ π
t − Ṽ π̃

t |}Tt=0 is a right-
continuous submartingale with respect to P̃ B , and so using the Doob–Kolmogorov

inequality we see that P̃ B{ϒ ≥ √
ε} ≤ ẼB |Ṽ π

T −Ṽ π̃
T |√

ε
≤ √

ε. Thus (assuming ε < 1)

we obtain (4.4) with K2 = (ẼBA4)1/4ẼB(ZT
4)1/4 + 1, completing the proof. �

Set B̃t = Bt + μ
κ
t . From Girsanov’s theorem it follows that {B̃t }Tt=0 is a Brown-

ian motion with respect to the martingale measure P̃ B and the filtration F B
t . The

following lemma is a standard result but since we could not find a direct reference
its proof for the reader’s convenience is given here.

LEMMA 4.2. For any nonnegative random variable X ∈ L1(FT , P̃ B), X �= 0
and ε > 0 there exist t1, . . . , tk ∈ [0, T ] and a smooth function with a compact
support 0 ≤ g ∈ C∞

0 (Rk) such that

ẼB |X − g(Bt1, . . . ,Btk )| < ε and ẼBg(Bt1, . . . ,Btk ) < ẼBX.(4.5)

PROOF. Observe that without loss of generality we can assume that ẼBX = 1.
Fix ε > 0. It is well known (see Lemma 4.3.1 in [11]) that there exist t1, . . . , tk ∈
[0, T ] and a smooth function with a compact support 0 ≤ f ∈ C∞

0 (Rk) such
that ẼB |X − f (B̃t1, . . . , B̃tk )| < ε

2 . Set h = f
1+ε/2 and observe that ẼBh(B̃t1, . . . ,

B̃tk ) <
ẼBX+ε/2

1+ε/2 = ẼBX. Furthermore,

ẼB |X − h(B̃t1, . . . , B̃tk )|
≤ ẼB |X − f (B̃t1, . . . , B̃tk )| + ẼB |f (B̃t1, . . . , B̃tk ) − h(B̃t1, . . . , B̃tk )|
≤ ε

2
+ ε

2
ẼBh(B̃t1, . . . , B̃tk ) < ε.

Next define a function g ∈ C∞
0 (Rk) by g(x1, . . . , xk) = h(x1 + μ

κ
t1, . . . , x1 + μ

κ
tk)

and the result follows. �

For any x let AB,C(x) ⊂ AB,M(x) be the subset consisting of all π ∈ AB,M(x)

such that Ṽ π
T = g(Bt1, . . . ,Btk ) for some smooth function g ∈ C∞

0 (Rk) with a
compact support and t1, . . . , tk ∈ [0, T ].
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LEMMA 4.3. For any initial capital x and ε > 0 there exist y < x and π ∈
AB,C(y) such that

R(π) < R(x) + ε.(4.6)

PROOF. Fix x, ε and let π̃ ∈ AB(x) satisfy R(π̃) < R(x) + ε
2 . Set Mt =

Ṽ π̃
t ∧ Dt where {Dt }Tt=0 is the regular continuous martingale defined by Dt =

ẼB(A|F B
t ) where A is the same as in (4.1). Observe that under P̃ B , {Mt }Tt=0 is

a right-continuous supermartingale which belongs to the class D (see, e.g., [8]).
Using the Doob–Meyer decomposition (see [8]) we obtain that there exists a right-

continuous martingale {M̃t }Tt=0 belonging to the class D and a positive adapted
process {Ut }Tt=0 such that

U0 = 0 and Mt = M̃t − Ut .

Thus M̃0 = M0 = x ∧ D0 ≤ x. Let δ = ( ε
2K2

)4 where K2 is a constant from

Lemma 4.1. By Lemma 4.2 we obtain that there exist 0 ≤ g ∈ C∞
0 (Rk) and

t1, . . . , tk ∈ [0, T ] such that

ẼB |M̃T − g(Bt1, . . . ,Btk )| < δ and ẼBg(Bt1, . . . ,Btk ) < ẼBM̃T ≤ x.(4.7)

Set y = ẼBg(Bt1, . . . ,Btk ). It follows from (4.7) that y < x. Since the BS market
is complete there exists π ∈ AB,C(y) such that Ṽ π

t = ẼB(g(Bt1, . . . ,Btk )|Ft ). By
Lemma 3.4 we obtain that

R(π) ≤ K2δ
1/4 + inf

σ∈T B
0T

sup
τ∈T B

0T

EB[(
QB(σ, τ ) − M̃σ∧τ

)+]
(4.8)

≤ K2δ
1/4 + inf

σ∈T B
0T

sup
τ∈T B

0T

EB[(
QB(σ, τ ) − Mσ∧τ

)+]
.

Since Dt ≥ Xt , then for any σ, τ ∈ T B
0T , (QB(σ, τ ) − Mσ∧τ )

+ = (QB(σ, τ ) −
Ṽ π̃

σ∧τ )
+. Hence, by (4.8),

R(π) ≤ K2δ
1/4 + R(π̃) < R(x) + ε,

completing the proof. �

Next, we prove a general result employing arguments similar to the proof of
Lemma 3.2 in [6].

LEMMA 4.4. Let n ∈ N and τ1, τ2 ≤ θ
(n)
n ∨ T be stopping times with respect

to the Brownian filtration. Then there exist constants L1,L2 such that

(i) EB |e−rτ1Fτ1(S
B) − e−rτ2Fτ2(S

B)| ≤ L1
(
EB(τ1 − τ2)

2)1/2

+ L2
(
EB(τ1 − τ2)

2)1/4
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and

(ii) EB |e−rτ1Gτ1(S
B) − e−rτ2Gτ2(S

B)| ≤ L1
(
EB(τ1 − τ2)

2)1/2

+ L2
(
EB(τ1 − τ2)

2)1/4
,

where, recall, Ft and Gt = Ft + �t are functions introduced at the beginning of
Section 2.

PROOF. We start with the first term. By the Cauchy–Schwarz inequality

EB |e−rτ1Fτ1(S
B) − e−rτ2Fτ2(S

B)|
≤ EB(|e−rτ1 − e−rτ2 |Fτ2(S

B)
) + EB |e−rτ1Fτ1(S

B) − e−rτ1Fτ2(S
B)|

(4.9)
≤ rEB[|τ1 − τ2|An] + EB |Fτ1(S

B) − Fτ2(S
B)|

≤ rh
1/2
2

(
EB(τ1 − τ2)

2)1/2 + EB |Fτ1(S
B) − Fτ2(S

B)|
with h2 the same as in (4.3). Using (2.2) we obtain that

|Fτ1(S
B) − Fτ2(S

B)| ≤ I1 + I2,(4.10)

where

I1 = L(τ1 ∨ τ2 − τ1 ∧ τ2)

(
1 + sup

0≤t≤θ
(n)
n ∨T

SB
t

)
,

I2 = sup
τ1∧τ2≤t≤τ1∨τ2

L|SB
t − SB

τ1∧τ2
|.

Again, using the Cauchy–Schwarz inequality and (4.2) we obtain that there exists
a constant H(1) such that

EBI1 ≤ H(1)(EB(τ1 − τ2)
2)1/2

.(4.11)

Observe that

SB
t = S0 + κ

∫ t

0
SB

u dBu + (r + μ)

∫ t

0
SB

u du.(4.12)

Using the Doob–Kolmogorov inequality and Itô’s isometry for stochastic integrals
(see, e.g., [11]) we obtain

EB sup
τ1∧τ2≤t≤τ1∨τ2

∣∣∣∣
∫ t

τ1∧τ2

SB
u dBu

∣∣∣∣
≤

(
EB sup

τ1∧τ2≤t≤τ1∨τ2

∣∣∣∣
∫ t

τ1∧τ2

SB
u dBu

∣∣∣∣
2)1/2

≤ 2
(
EB

(∫ τ1∨τ2

τ1∧τ2

SB
u dBu

)2)1/2
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= 2
(
EB

∫ τ1∨τ2

τ1∧τ2

(SB
u )2 du

)1/2

≤ 2
(
EB

(
|τ1 − τ2| sup

0≤t≤θ
(n)
n ∨T

(SB
t )2

))1/2

.

This together with (4.12) and the Cauchy–Schwarz inequality yields

EBI2 ≤ 2Lκ

(
EB

(
|τ1 − τ2| sup

0≤t≤θ
(n)
n ∨T

(SB
t )2

))1/2

+ |r + μ|LEB

(
|τ1 − τ2| sup

0≤t≤θ
(n)
n ∨T

SB
t

)

≤ H(2)(EB(τ1 − τ2)
2)1/2 + H̃ (2)(EB(τ1 − τ2)

2)1/4

for some constants H(2), H̃ (2). Combining (4.9)–(4.11) and (4.13) we complete
the proof of (i) while (ii) is derived in a same way with the same constants.

�

5. Proving the main results. In this section we complete the proof of The-
orems 2.1 and 2.2, relying on the key Lemma 3.3, on estimates and on ap-
proximation results from Section 4 and on some additional estimates similar
to [6]. We start with the lower bound estimate of the BS risk where we can
rely only on quite general Lemmas 4.2 and 4.3 which do not provide specific
estimates and a good lower bound in Theorem 2.1 would require more pre-
cise information on optimal hedges of shortfall risk in the BS market. Con-
cerning the upper bound estimate we observe that admissible portfolio strate-
gies which are managed only at embedding times are also admissible port-
folio strategies for the continuous BS market which will lead to the esti-
mate (2.26).

Let x be an initial capital and ε > 0. From Lemma 4.3 it follows that there exist
k, 0 < t1 < t2 < · · · < tk ≤ T and 0 ≤ f,g ∈ C∞

0 (Rk) such that f (x1, . . . , xk) =
g(x1 + κ

2 t1, . . . , xk + κ
2 tk), and so f (B∗

t1
, . . . ,B∗

tk
) = g(B̃t1, . . . , B̃tk ) while the port-

folio π ∈ AB with Ṽ π
t = Ẽ(f (B∗

t1
, . . . ,B∗

tk
)|Ft ) satisfies

R(π) < R(x) + ε and V π
0 < x.(5.1)

Set

�n = f
(
B∗

θ
(n)
[nt1/T ]

, . . . ,B∗
θ

(n)
[ntk/T ]

)
,(5.2)

un = max0≤k≤n |θ(n)
k − kT

n
| and wn = max0≤k≤n−1 |θ(n)

k −θ
(n)
k−1|+|T −θ

(n)
n |. Since

wn ≤ 3un + T
n

, then from (4.7) in [6] we obtain that for any m there exists a
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constant K(m) such that for all n,

EBu2m
n ≤ K(m)n−m and EBw2m

n ≤ K(m)n−m.(5.3)

Clearly, (B∗
t − B∗

θ
(n)
[nt/T ]

)2 ≤ 2(Bt − B
θ

(n)
[nt/T ]

)2 + 2((
μ
κ

− κ
2 )(t − θ

(n)
[nt/T ]))2 and |t −

θ
(n)
[nt/T ]| ≤ T

n
+ un. Hence, from (5.3) and the Doob–Kolmogorov inequality it fol-

lows that there exists a constant H(3) such that for all t , EB |B∗
t − B∗

θ
(n)
[nt/T ]

|2 ≤
H(3)n−1/2. Let L(f ) = max1≤i≤k supx∈Rk | ∂f

∂xi
(x1, . . . , xk)|. Then by (5.2) and the

inequality (
∑k

i=1 ai)
2 ≤ k

∑k
i=1 a2

i we obtain

EB(�n − Ṽ π
T )2 ≤ L(f )2EB

(
k∑

i=1

∣∣B∗
tk

− B∗
θ

(n)
[ntk/T ]

∣∣)2

(5.4)

≤ kL(f )2
k∑

i=1

EB(
B∗

tk
− B∗

θ
(n)
[ntk/T ]

)2 ≤ k2L(f )2H(3)n−1/2.

By (4.2) and the Cauchy–Schwarz inequality,

lim
n→∞ ẼB |�n − Ṽ π

T | = lim
n→∞(EB |�n − Ṽ π

T |2)1/2(
EBZ−2

θ
(n)
n ∨T

)1/2 = 0,

where Zt is the Radon–Nikodym derivative given by (2.13). Since ẼBṼ π
T < x,

then for sufficiently large n we can assume that vn = Ẽ(�n) < x. Observe that the

finite-dimensional distributions of the sequence
√

T
n
ξ1, . . . ,

√
T
n
ξn with respect to

P̃
ξ
n and the finite-dimensional distributions of the sequence B∗

θ
(n)
1

, . . . ,B∗
θ

(n)
n

−B∗
θ

(n)
n−1

with respect to P̃ B are the same, and so (for sufficiently large n),

vn = Ẽξ
nf

(√
T

n

[nt1/T ]∑
i=1

ξi, . . . ,

√
T

n

[ntk/T ]∑
i=1

ξi

)
< x.

Since CRR markets are complete we can find a portfolio π̃(n) ∈ Aξ,n(vn) such
that

Ṽ π̃
n = f

(√
T

n

[nt1/T ]∑
i=1

ξi, . . . ,

√
T

n

[ntk/T ]∑
i=1

ξi

)
.(5.5)

Let π ′ = ψn(π̃) ∈ AB,n(vn); then by the definition (2.30), Ṽ π ′
θ

(n)
n

= �n. Since Rn(·)
is a nonincreasing function, then by (5.1),

Rn(x) − R(x) ≤ Rn(vn) − R(x) ≤ ε + RB,n(π ′) − R(π).(5.6)
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Given δ > 0 there exists a stopping time σ(δ) ∈ T B
0T such that

R(π) > sup
τ∈T B

0T

EB[(
QB(σ, τ ) − Ṽ π

σ∧τ

)+] − δ.(5.7)

Define a stopping time ζ = ζ(n,σ ) ∈ T B,n
0,n by

ζ =
{

n ∧ min
{
i|θ(n)

i ≥ σ
}
, if σ < T ,

n, if σ = T .

Next, check that ζ ∈ T B,n
0,n . Since the Brownian filtration is right-continuous, then

for any i < n, {ζ ≤ i} = {σ ≤ θ
(n)
i } ∩ {σ < T } ∈ F B

θ
(n)
i

and {ζ ≤ n} = �B , thus

ζ ∈ T B,n
0,n . Clearly, there exists a stopping time η = η(n, ζ ) such that

EB[(
QB,n(

θ
(n)
ζ , θ (n)

η

) − Ṽ π ′
θ

(n)
ζ∧η

)+]
(5.8)

> sup
η̃∈T B,n

0,n

EB[(
QB,n(

θ
(n)
ζ , θ

(n)
η̃

) − Ṽ π ′
θ

(n)
ζ∧η̃

)+] − δ ≥ RB,n(π ′) − δ.

Similarly to Lemmas 3.2 and 3.3 in [6] it follows that there exists a constant C1
such that for any n,

sup
ζ∈T B,n

0,n

sup
η∈T B,n

0,n

EB

[∣∣∣∣QB(
θ

(n)
ζ , θ (n)

η

) − QB,n

(
ζT

n
,
ηT

n

)∣∣∣∣
]

(5.9)
≤ C1n

−1/4(lnn)3/4.

Observe that if σ ≥ θ
(n)
η ∧ T , then ζ ≥ η, and so from (5.7)–(5.9) we obtain

RB,n(π ′) − R(π)

< C1n
−1/4(lnn)3/4 + 2δ + EB

∣∣Ṽ π ′
θ

(n)
ζ∧η

− Ṽ π

σ∧θ
(n)
η

∣∣
(5.10)

+ EB[(
QB(

θ
(n)
ζ , θ (n)

η

) − QB(
σ, θ(n)

η ∧ T
))+]

≤ J1 + J2 + I1 + I2 + 2δ + C1n
−1/4(lnn)3/4

where

I1 = EB
∣∣Ṽ π ′

θ
(n)
ζ∧η

− Ṽ π

θ
(n)
ζ∧η∧T

∣∣, I2 = EB
∣∣Ṽ π

θ
(n)
ζ∧η∧T

− Ṽ π

θ
(n)
η ∧σ

∣∣
and since |θ(n)

ζ∧η − θ
(n)
η ∧ σ | ≤ wn, then by (5.3) and Lemma 4.4,

J1 = EB
∣∣e−rθ

(n)
ζ∧ηG

θ
(n)
ζ∧η

(SB) − e−rσ∧θ
(n)
η G

θ
(n)
η ∧σ

(SB)
∣∣ ≤ H(4)n−1/4,

(5.11)
J2 = EB

∣∣e−rθ
(n)
ζ∧ηF

θ
(n)
ζ∧η

(SB) − e−rσ∧θ
(n)
η F

θ
(n)
η ∧σ

(SB)
∣∣ ≤ H(4)n−1/4
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for some constant H(4). Clearly,

Ṽ π ′
θ

(n)
ζ∧η

− Ṽ π

θ
(n)
ζ∧η∧T

= ẼB(
�n − Ṽ π

T |F
θ

(n)
ζ∧η

)
(5.12)

= EB

( Z
θ

(n)
ζ∧η

Z
T ∨θ

(n)
n

(�n − Ṽ π
T )

∣∣∣F
θ

(n)
ζ∧η

)
.

By (5.4), (5.12), the Cauchy–Schwarz and Jensen inequalities,

I1 ≤ C(f )n−1/4(5.13)

where C(f ) is a constant which depends only on f . Next, we estimate I2. Recall
(see Section 4 in [11]) that

Ṽ π
t = ẼB(g(B̃t1, . . . , B̃tk )|F B

t )

= Ṽ π
0 +

j∑
i=1

∫ ti

ti−1

∂qi

∂xi

(u, B̃t1, . . . , B̃ti−1, B̃u) dB̃u

(5.14)

+
∫ t

tj

∂qj+1

∂xj+1
(u, B̃t1, . . . , B̃tj , B̃u) dB̃u, if t ∈ [tj , tj+1] and

Ṽ π
t = g(B̃t1, . . . , B̃tk ), if tk ≤ t ≤ T ,

where t0 = 0 and the functions qi : [ti−1, ti] × R
i → R are defined inductively as

follows:

qk(t, x1, . . . , xk)

= (
2π(tk − t)

)−1/2
∫

R

g(x1, . . . , xk−1, xk + u) exp
(
− u2

2(tk − t)

)
du

if tk−1 ≤ t < tk, qk(tk, x1, . . . , xk) = g(x1, . . . , xk) and
(5.15)

for i < k, qi(t, x1, . . . , xi) = (
2π(ti − t)

)−1/2
∫

R

qi+1(ti , x1, . . . , xi, xi + u)

× exp
(
− u2

2(ti − t)

)
du

if ti−1 ≤ t < ti, qi(ti , x1, . . . , xi) = qi+1(ti, x1, . . . , xi, xi).

Clearly, for any x = (x1, . . . , xk), y = (y1, . . . , yk) we have |g(x) − g(y)| ≤
kL(f )max1≤i≤k |xi − yi |. Then it follows from (5.15) by means of the back-
ward induction that for any j ≤ k, |qj (t, x1, . . . , xj ) − qj (t, y1, . . . , yj )| ≤
kL(f )max1≤i≤j |xi − yi |. Thus for any j ≤ k,

sup
t∈[tj−1,tj ]

sup
x∈Rj

∣∣∣∣∂qj

∂xj

(t, x1, . . . , xj )

∣∣∣∣ ≤ kL(f ).(5.16)
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From (5.14), (5.16) and Itô’s isometry for stochastic integrals we obtain that

ẼB(
Ṽ π

θ
(n)
ζ∧η

− Ṽ π

σ∧θ
(n)
η

)2 ≤ k2(L(f ))2ẼB
∣∣θ(n)

ζ∧η − σ ∧ θ(n)
η

∣∣ ≤ k2(L(f ))2ẼBwn,

which together with (5.3) and the Cauchy–Schwarz inequality yields

I2 ≤ C̃(f )n−1/2(5.17)

for some constant C̃(f ) which depends only on f . Combining (5.6), (5.10)–(5.13)
and (5.17) we conclude that there is a constant C(1)(f ) such that for any n, Rn(x)−
R(x) ≤ ε + 2δ + C(1)n−1/4(lnn)3/4, and so for any initial capital x,

R(x) ≥ lim sup
n→∞

Rn(x).(5.18)

Next we want to prove (2.26) and (2.31). Fix an initial capital x and an integer
n ≥ 1. Set (π,σ ) = (ψn(πn),φn(σn)) where (πn, σn) ∈ Aξ,n(x) × T

ξ
0n is the op-

timal hedge given by (3.14) and the functions ψn,φn were defined in Section 2.
We can consider the portfolio π = ψn(πn) not only as an element in AB,n(x) but
also as an element in AB(x) if we restrict the above portfolio to the interval [0, T ].
From Lemma 3.3 we obtain that

R(π,σ ) − Rn(x) = R(π,σ ) − RB,n(π, ζn)(5.19)

where, recall, ζn was defined in (3.15). Observe that by (2.27) and (3.14), σ =
φn(σn) = T ∧ θ

(n)
ζn

Iζn<n + T Iζn=n. Since n is fixed we will skip the index writing
ζ = ζn. Given δ > 0 there exists a stopping time τ = τ(n, δ) such that

R(π,σ ) < δ + EB[(
QB(σ, τ ) − Ṽ π

σ∧τ

)+]
.(5.20)

Let η(n, τ ) = n ∧ min{k|θ(n)
k ≥ τ } ∈ T B,n

0,n . Observe that min{k|θ(n)
k ≥ τ } ∈ T B,n

since {min{k|θ(n)
k ≥ τ } ≤ j} = {θ(n)

j ≥ τ } ∈ F B

θ
(n)
j

. From (5.9) it follows that

RB,n(π, ζ ) ≥ EB[(
QB(

θ
(n)
ζ , θ (n)

η

) − Ṽ π

θ
(n)
ζ∧η

)+] − C1n
−1/4(lnn)3/4.(5.21)

Set

�1 = (
QB(σ, τ ) − QB(

θ
(n)
ζ , θ (n)

η

))+
,

�2 = ∣∣QB(σ, τ ) − QB(
σ ∧ θ(n)

n , τ ∧ θ(n)
n

)∣∣.
From (5.20) and (5.21) we obtain that

RB,n(π, ζ ) ≥ EB[(
QB(

σ ∧ θ(n)
n , τ ∧ θ(n)

n

) − Ṽ π

θ
(n)
ζ∧η

)+]
− C1n

−1/4(lnn)3/4 − EB(�1 + �2),

R(π,σ ) < δ + EB[(
QB(

σ ∧ θ(n)
n , τ ∧ θ(n)

n

) − Ṽ π
σ∧τ

)+] + EB�2.
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Hence,

R(π,σ ) − RB,n(π, ζ ) < EB[(
QB(

σ ∧ θ(n)
n , τ ∧ θ(n)

n

) − Ṽ π
σ∧τ

)+]
− EB[(

QB(
σ ∧ θ(n)

n , τ ∧ θ(n)
n

) − Ṽ π

θ
(n)
ζ∧η

)+]
(5.22)

+ δ + EB(�1 + 2�2) + C1n
−1/4(lnn)3/4.

Observe that σ ∧ τ ∧ θ
(n)
n ≤ θ

(n)
ζ∧η. Since π ∈ AB,n(x), then by (2.29), Ṽ π

σ∧τ =
Ṽ π

σ∧τ∧θ
(n)
n

= ẼB(Ṽ π

θ
(n)
ζ∧η

|F B

σ∧τ∧θ
(n)
n

) which together with the Jensen inequality yields

that (
QB(

σ ∧ θ(n)
n , τ ∧ θ(n)

n

) − Ṽ π
σ∧τ

)+
≤ ẼB((

QB(
σ ∧ θ(n)

n , τ ∧ θ(n)
n

) − Ṽ π

θ
(n)
ζ∧η

)+|F B

σ∧τ∧θ
(n)
n

)
(5.23)

= EB

(Z
σ∧τ∧θ

(n)
n

Z
θ

(n)
ζ∧η

(
QB(

σ ∧ θ(n)
n , τ ∧ θ(n)

n

) − Ṽ π

θ
(n)
ζ∧η

)+|F B

σ∧τ∧θ
(n)
n

)
.

Thus,

EB(
QB(

σ ∧ θ(n)
n , τ ∧ θ(n)

n

) − Ṽ π
σ∧τ

)+
(5.24)

≤ EB

(Z
σ∧τ∧θ

(n)
n

Z
θ

(n)
ζ∧η

(
QB(

σ ∧ θ(n)
n , τ ∧ θ(n)

n

) − Ṽ π

θ
(n)
ζ∧η

)+)
.

By (5.22) and (5.24) we obtain that

R(π,σ ) − RB,n(π, ζ ) < C1n
−1/4(lnn)3/4 + δ + EB(�1 + 2�2) + I(5.25)

where

I = EB

(Z
σ∧τ∧θ

(n)
n

− Z
θ

(n)
ζ∧η

Z
θ

(n)
ζ∧η

(
QB(

σ ∧ θ(n)
n , τ ∧ θ(n)

n

) − Ṽ π

θ
(n)
ζ∧η

)+)
.

Notice that ∣∣σ ∧ τ − θ
(n)
ζ∧η

∣∣ ≤ wn and
(5.26) ∣∣σ ∧ τ ∧ θ(n)

n − θ
(n)
ζ∧η

∣∣ ≤ ∣∣σ ∧ τ − θ
(n)
ζ∧η

∣∣ ≤ wn.

From Itô’s formula it follows that dZt = μ
κ
Zt dBt + (

μ
κ
)2Zt dt , and so

Z
θ

(n)
ζ∧η

− Z
σ∧τ∧θ

(n)
n

= μ

κ

∫ θ
(n)
ζ∧η

σ∧τ∧θ
(n)
n

Zt dBt +
(

μ

κ

)2 ∫ θ
(n)
ζ∧η

σ∧τ∧θ
(n)
n

Zt dt.
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Set Dn = sup
0≤t≤θ

(n)
n ∨T

Zt . From (5.3), the Cauchy–Schwarz inequality and Itô’s
isometry we obtain that

EB(
Z

θ
(n)
ζ∧η

− Z
σ∧τ∧θ

(n)
n

)2

≤ 2
(

μ

κ

)2

EB
∫ θ

(n)
ζ∧η

σ∧τ∧θ
(n)
n

Z2
t dt + 2

(
μ

κ

)4

EB(wnDn)
2

(5.27)

≤ 2
(

μ

κ

)2

EB(wnD
2
n) + 2

(
μ

κ

)4

EB(wnDn)
2

≤ H(5)n−1/2

for some constant H(5). Since QB(σ ∧θ
(n)
n , τ ∧θ

(n)
n ) ≤ An by (4.1), then by (5.27)

and the Cauchy–Schwarz inequality there exists a constant H(6) such that

I ≤ H(6)n−1/4.(5.28)

Next we want to estimate EB�1. Observe that if σ < τ , then ζ < η, and so by
(5.3), (5.26) and Lemma 4.3 there exists a constant H(7) such that

EB�1 ≤ EB
∣∣e−rσ∧τGσ∧τ (S

B) − e
−rθ

(n)
ζ∧ηG

θ
(n)
ζ∧β

(SB)
∣∣

(5.29)
+ EB

∣∣e−rσ∧τFσ∧τ (S
B) − e

−rθ
(n)
ζ∧βF

θ
(n)
ζ∧η

(SB)
∣∣≤ H(7)n−1/4.

Finally we estimate EB�2. From the definitions it follows easily that σ < τ is
equivalent to σ ∧ θ

(n)
n < τ ∧ θ

(n)
n , and so from (5.26) it follows that there exists a

constant H(8) such that

EB�2 ≤ EB
∣∣e−rσ∧τGσ∧τ (S

B) − e−rθ
(n)
n ∧σ∧τG

θ
(n)
n ∧σ∧τ

(SB)
∣∣

+ EB
∣∣e−rσ∧τ̃ Fσ∧τ̃ (S

B) − e−rθ
(n)
n ∧σ∧τF

θ
(n)
n ∧σ∧τ

(SB)
∣∣(5.30)

≤ H(8)n−1/4.

Since δ is arbitrary, then combining (5.19), (5.25) and (5.28)–(5.30) we con-
clude that there is a constant C(2) (which does not depend on the initial cap-
ital x) such that R(π,σ ) − Rn(x) ≤ C(2)n−1/4(lnn)3/4. Recall that (π,σ ) =
(ψn(πn),φn(σn)), and so for all n ≥ 1,

R(ψn(πn),φn(σn)) − Rn(x) ≤ C(2)n−1/4(lnn)3/4,(5.31)

which together with (5.18) completes the proof of Theorems 2.1 and 2.2.
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6. Additional estimates for American options. In the case of American op-
tions in BS markets the definitions (2.12) of the shortfall risks take on the following
form:

R(π) = sup
τ∈T B

0T

EB[(Ỹτ − Ṽ π
τ )+], π ∈ AB and

(6.1)
R(x) = inf

π∈AB(x)
R(π)

where Ỹt is defined after (2.10). Similarly for CRR models we have

Rn(π) = max
τ∈T

ξ
0n

Eξ
n

[(
Ỹ (n)

τ − Ṽ π
τ

)+]
, π ∈ Aξ,n and

(6.2)
Rn(x) = inf

π∈Aξ,n(x)
Rn(π).

THEOREM 6.1. There exists a constant C such that for any initial capital x

and n ∈ N in addition to (2.26) we have

Rn(x) ≤ R(x) + Cn−1/4(lnn)3/4.(6.3)

REMARK 6.2. It is easy to see that all proofs of previous sections go through
for American options simplifying the corresponding arguments. Namely, assume
formally in previous sections that the seller is allowed to stop only at time T in the
continuous-time case and at time n at the n-step CRR model; then since φn(n) = T

[see (2.27)] all proofs above will go through and we derive the results of Section 2
for corresponding American options, as well, assuming (2.1)–(2.2) for payoffs.
In general, American options can be considered as partial cases of game options
where penalties are chosen so high that it will not be wise for the seller to stop until
the expiration time; but in order to apply our results from previous sections to such
game options directly we have to construct such penalties satisfying conditions
(2.1)–(2.2), which is not very easy.

The dynamical programming algorithm that we used in order to calculate opti-
mal hedges for Israeli options is also valid in the American options case. Namely,
similarly to (3.12)–(3.13) define

J n
n (y,u1, u2, . . . , un)

= (
f n

n (u1, . . . , un) − y
)+

,

J n
k (y, u1, . . . , uk)

= max
((

f n
k (u1, . . . , uk) − y

)+
,(6.4)
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inf
u∈In(y)

[
p(n)J n

k+1

(
y + ua

(n)
1 , u1, . . . , uk,

√
T

n

)

+ (
1 − p(n))Jn

k+1

(
y + ua

(n)
2 , u1, . . . , uk,−

√
T

n

)])

for k = n − 1, n − 2, . . . ,0

and

hn
k(y, x1, . . . , xk)

= arg min
u∈In(y)

[
p(n)J n

k+1

(
y + ua

(n)
1 , u1, . . . , uk,

√
T

n

)
(6.5)

+ (
1 − p(n))Jn

k+1

(
y + ua

(n)
2 , u1, . . . , uk,−

√
T

n

)]
,

k < n.

Similarly to (3.14), for a given initial capital x and n ∈ N define an admissible self-
financing strategy πn by

Ṽ
πn

0 = x and

Ṽ
πn

k+1 = Ṽ
πn

k + hn
k

(
Ṽ

πn

k , eκ
√

T/nξ1, . . . , eκ
√

T/nξk
)(

eκ
√

T/nξk+1 − 1
)

(6.6)

for k > 0.

As in Lemma 3.3 we have that

Rn(πn) = Rn(x).(6.7)

For American options we can also improve Theorem 2.2 as follows.

THEOREM 6.3. For any n let πn ∈ Aξ,n(x) be the optimal hedge constructed
in (6.6); then

lim
n→∞R(ψn(πn)) = R(x).(6.8)

Furthermore, there exists a constant C̃ such that

R(ψn(πn)) ≤ R(x) + C̃n−1/4(lnn)3/4.(6.9)

In order to derive these results we will need several lemmas. Let n ∈ N and
consider the restriction of the measures P B, P̃ B to the σ -algebra GB,n

n . Set Wn =
dP B

dP̃ B
|GB,n

n . Observe that
∫
A Wn dP̃ B = P B(A) for any A ∈ GB,n

n . Since A ∈ F B

θ
(n)
n

,

then
∫
A Z

θ
(n)
n

dP̃ B = P B(A), and so

Wn = ẼB(
Z

θ
(n)
n

|GB,n
n

)
.(6.10)
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LEMMA 6.4. There exists a constant C2 such that for any n,

ẼB(
Wn − Z

θ
(n)
n

)2 ≤ C2n
−1/2.(6.11)

PROOF. We know that Z
θ

(n)
n

= exp(aB∗
θ

(n)
n

+ bθ
(n)
n ) where a = μ

κ
and b =

−μ
2 − μ2

2κ2 . Set Vn = exp(aB∗
θ

(n)
n

+ bT ) which is clearly GB,n
n -measurable. Since

conditional expectation is an orthogonal projection it follows from (6.10) that

ẼB(
Wn − Z

θ
(n)
n

)2 ≤ ẼB(
Vn − Z

θ
(n)
n

)2
.(6.12)

Using Cauchy–Schwarz and Chebyshev inequalities together with the inequality
|ebx − 1| ≤ |b|e|b||x| for −1 ≤ x ≤ 1 we obtain

ẼB(
Vn − Z

θ
(n)
n

)2

≤ ẼB[
I{1<|θ(n)

n −T |}
(
V 2

n + Z2
θ

(n)
n

)]
+ ẼB[

I{1≥|θ(n)
n −T |}V

2
n

∣∣e|b|(θ(n)
n −T ) − 1

∣∣2]
≤ (

ẼB(
V 2

n + Z2
θ

(n)
n

)2)1/2(
ẼB

I{1<|θ(n)
n −T |}

)1/2

(6.13)
+ ẼB(

b2e2|b|V 2
n

∣∣θ(n)
n − T

∣∣2)
≤ (

ẼB(
V 2

n + Z2
θ

(n)
n

)2)1/2(
ẼB

∣∣θ(n)
n − T

∣∣2)1/2

+ b2e2|b|(ẼBV 4
n )1/2(

ẼB
∣∣θ(n)

n − T
∣∣4)1/2

≤ C2n
−1/2

for some constant C2. Now (6.11) follows from (6.12) and (6.13), completing the
proof. �

LEMMA 6.5. For n ∈ N let {Mi}ni=0 be a martingale with respect to the filtra-

tion {F B

θ
(n)
i

}n
i=0

and the measure P̃ B . Set M̃i = ẼB(Mi |GB,n
n ). Then {M̃i}ni=0 is a

martingale with respect to the filtration {GB,n
i }n

i=0 and the measure P̃ B .

PROOF. For a fixed 0 ≤ k ≤ n set � = Mk , F = GB,n
k , K = σ(B∗

θ
(n)
k+1

−
B∗

θ
(n)
k

, . . . ,B∗
θ

(n)
n

− B∗
θ

(n)
n−1

) and H = GB,n
n . Using Remark 4.3 in [7] we obtain

M̃k = ẼB(Mk|GB,n
n ) = ẼB(Mk|GB,n

k ) = ẼB(
ẼB(

Mn|F B

θ
(n)
k

)|GB,n
k

)
(6.14)

= ẼB(Mn|GB,n
k ) = ẼB(ẼB(Mn|GB,n

n )|GB,n
k ) = ẼB(M̃n|GB,n

k )

and the result follows. �
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Next, we will need some additional estimates. For any initial capital x and n ∈ N

define

Jn(x) = inf
π∈AB(x)

sup
τ∈T B,n

0,n

EB[(
Ỹ

B,n
τT /n − Ṽ π

T ∧θ
(n)
τ

)+]
(6.15)

where, recall, Ỹ B,n
t is defined after (3.6). The following inequality is the main point

which we cannot extend directly to game options in view of the additional infimum
in stopping times of the option seller there.

LEMMA 6.6. There exists a constant C3 such that for any initial capital x and
n ∈ N,

Jn(x) ≤ R(x) + C3n
−1/4.(6.16)

PROOF. Fix n ∈ N and an initial capital x. By using (5.9) for η = n we get
that sup

ζ∈T B,n
0,n

EB |Ỹ
θ

(n)
ζ

− Ỹ
B,n
ζT /n| ≤ C1n

−1/4(lnn)3/4. From (5.3) and Lemma 4.3

it follows that there exists a constant C̃1 such that sup
ζ∈T B,n

0,n
EB |Ỹ

θ
(n)
ζ

− Ỹ
T ∧θ

(n)
ζ

| ≤
C̃1n

−1/4. Thus for C3 = C1 + C̃1, sup
ζ∈T B,n

0,n
EB |Ỹ

T ∧θ
(n)
ζ

− Ỹ
B,n
ζT /n| ≤ C3n

−1/4.

Hence,

Jn(x) = inf
π∈AB(x)

sup
ζ∈T B,n

0,n

EB[(
Ỹ

B,n
ζT /n − Ṽ π

T ∧θ
(n)
ζ

)+]

≤ C3n
−1/4 + inf

π∈AB(x)
sup

ζ∈T B,n
0,n

EB[(
Ỹ

T ∧θ
(n)
ζ

− Ṽ π

T ∧θ
(n)
ζ

)+]

≤ C3n
−1/4 + inf

π∈AB(x)
sup

τ∈T B
0,T

EB [(Ỹτ − Ṽ π
τ )+]

= C3n
−1/4 + R(x). �

For any initial capital x and n ∈ N define

En(x) = inf
π∈AB(x)

sup
τ∈T B,n

0,n

ẼB[(
Ỹ

B,n
τT /n − Ṽ π

T ∧θ
(n)
τ

)+
Wn

]
(6.17)

where, recall, Wn is defined in (6.10). From (6.15) it follows that Jn(x) =
infπ∈AB(x) sup

τ∈T B,n
0,n

ẼB [(Ỹ B,n
τT /n − Ṽ π

T ∧θ
(n)
τ

)+Z
θ

(n)
n

]. Thus from (6.11) and the

Cauchy–Schwarz inequality we obtain

|En(x) − Jn(x)|
≤ sup

ζ∈T B,n
0,n

ẼB[∣∣Wn − Z
θ

(n)
n

∣∣Ỹ B,n
ζT /n

]
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≤ (
ẼB(

Wn − Z
θ

(n)
n

)2)1/2 sup
ζ∈T B,n

0,n

(ẼB(Ỹ
B,n
ζT /n)

2)1/2

≤ C4n
−1/4,

for some constant C4. This together with Lemma 6.3 yields that there exists a
constant C5 such that

En(x) ≤ R(x) + C5n
−1/4(lnn)3/4.(6.18)

Now we return to the proof of Theorems 6.1 and 6.3. Fix an initial capital x and
n ∈ N. Analogously to (3.7) define

RB,n(x) = inf
π∈AB,n(x)

sup
τ∈T B,n

0,n

EB[(
Ỹ

B,n
τT /n − Ṽ π

θ
(n)
τ

)+]
,(6.19)

where AB,n(x) is defined in (2.29). Similarly to Lemma 3.3

Rn(x) = RB,n(x).(6.20)

Choose ε > 0. There exists π ∈ AB,M(x) such that

sup
τ∈T B,n

0,n

ẼB[(
Ỹ

B,n
τT /n − Ṽ π

T ∧θ
(n)
τ

)+
Wn

]
< En(x) + ε.(6.21)

The sequence {Ṽ π

T ∧θ
(n)
k

}n
k=0

is a martingale with respect to the filtration {F B

θ
(n)
k

}n
k=0

and the martingale measure P̃ B . Define

M̃k = ẼB(
Ṽ π

T ∧θ
(n)
k

|GB,n
n

)
, 0 ≤ k ≤ n.(6.22)

From Lemma 6.5 it follows that {M̃k}nk=0 is a martingale with respect to the filtra-

tion {GB,n
k }n

k=0 and the measure P̃ B . Thus for any k ≤ n there exists a measurable

function fk : {−
√

T
n
,
√

T
n
}k → R+ such that M̃k = fk(B

∗
θ

(n)
1

, . . . ,B∗
θ

(n)
k

− B∗
θ

(n)
k−1

).

Thus the sequence {fk(
√

T
n
ξ1, . . . ,

√
T
n
ξk)}

n

k=0
is a martingale with respect to

the filtration {F ξ
k }n

k=0 and the measure P̃
ξ
n . Since the CRR markets are com-

plete and M̃0 = x, it follows that there exists a portfolio πξ ∈ Aξ,n(x) such that

for any k ≤ n Ṽ πξ

k = fk(
√

T
n
ξ1, . . . ,

√
T
n
ξk). Hence, we obtain for the portfolio

π̃ = ψn(π
ξ ) ∈ AB,n(x) that for any k ≤ n,

Ṽ π̃

θ
(n)
k

= M̃k.(6.23)

Thus by (6.19)–(6.20),

Rn(x) ≤ sup
ζ∈T B,n

0,n

EB[(
Ỹ

B,n
ζT /n − Ṽ π̃

θ
(n)
ζ

)+]
(6.24)

= sup
ζ∈SB,n

0,n

EB[(
Ỹ

B,n
ζT /n − Ṽ π̃

θ
(n)
ζ

)+]
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where the last equality follows from the fact that (Ỹ
B,n
kT /n − Ṽ π̃

θ
(n)
k

)+ is GB,n
k -

measurable (for any k). Since Wn is GB,n
n -measurable, then from (6.22) and (6.23)

it follows that for any ζ ∈ SB,n
0,n ,

Wn

(
Ỹ

B,n
ζT /n − Ṽ π̃

θ
(n)
ζ

) = ẼB(
Wn

(
Ỹ

B,n
ζT /n − Ṽ π

T ∧θ
(n)
ζ

)|GB,n
n

)
,(6.25)

and from Jensen’s inequality we obtain that

ẼB[
Wn

(
Ỹ

B,n
ζT /n − Ṽ π̃

θ
(n)
ζ

)+] ≤ ẼB[
Wn

(
Ỹ

B,n
ζT /n − Ṽ π

T ∧θ
(n)
ζ

)+]
.(6.26)

By (6.21), (6.24), (6.26) and the definition of Wn,

Rn(x) ≤ sup
ζ∈SB,n

0,n

ẼB[(
Ỹ

B,n
ζT /n − Ṽ π̃

θ
(n)
ζ

)+
Wn

]

≤ sup
ζ∈SB,n

0,n

ẼB[(
Ỹ

B,n
ζT /n − Ṽ π

T ∧θ
(n)
ζ

)+
Wn

]
(6.27)

< En(x) + ε.

Since ε > 0 is arbitrary, then Rn(x) ≤ En(x) which together with (6.18) completes
the proof of Theorem 6.1. Using the inequality (5.31) for the case of American
options it follows that for any n,

R(ψn(πn)) − Rn(x) ≤ C(2)n−1/4(lnn)3/4,(6.28)

which together with Theorem 6.1 completes the proof of Theorem 6.3.
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